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ABSTRACT

FPGAs are increasingly used to accelerate modern applications, and
cloud providers offer FPGA platforms on-demand with a variety of
FPGAs, I/O peripherals, and memory options. FPGA vendors ex-
pose I/O with low-level interfaces that limit application portability.
Current approaches to abstracting these interfaces trade level of
abstraction against performance.

We present FSRF, File System for Reconfigurable Fabrics, which
abstracts FPGA I/O at a high level without sacrificing performance.
Rather than exposing platform-specific I/O interfaces, FSRF enables
files to be mapped directly into FPGA virtual memory from the
host. On the FPGA, powerful OS-managed virtual memory hard-
ware provides performant access to FPGA-local resources and helps
coordinate access to remote data. FSRF leverages reconfigurability
to specialize its virtual memory implementation to applications,
including selecting between SRAM and DRAM TLBs, adapting
FPGA DRAM striping, and tuning DMA I/O. On Amazon F1 FPGAs,
FSRF outperforms techniques from FPGA OSes such as Coyote and
AmorphOS with improvements of up to 64× and 2.3×, respectively
(+75% and +27% geometric mean), and performance close to that of
physical addressing (90% geometric mean).
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1 INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are reconfigurable ac-
celerators, providing hardware-like efficiency with software-like
customizability. Developers use FPGAs to create datapaths specific
to their application, maximizing the utilization of functional units,
on-chip cache, and off-chip memory. This enables them to outper-
form CPUs by orders of magnitude [25, 92] without the costs and
limitations of ASIC development.

FPGAs’ tight coupling of memory and logic makes them com-
petitive for a wide variety of workloads, including communica-
tion [23, 51, 55, 92, 108], databases [24, 57, 74], image process-
ing [81], finance [52, 69], graph processing [33, 82], and machine
learning [29, 97, 104, 121]. Their growing capacity and capabili-
ties have led to their adoption by cloud providers such as Ama-
zon [37], Microsoft [79], Alibaba [4], Baidu [13], Huawei [48], and
Tencent [107]. However, with increasing demand for, and availabil-
ity of, FPGAs comes the need for simplified development workflows
and greater application portability. This requires abstraction of not
just FPGA fabric, but also external FPGA resources as well.

While many previous FPGA operating systems have focused on
how to abstract on-chip fabric [60, 66, 78, 118], abstracting FPGA
I/O remains a significant challenge. An FPGA OS, ideally provides
critical features and properties (§3) including efficiency, compati-
bility, portable I/O interfaces, and automated management of the
storage and memory hierarchy. Existing approaches forfeit at least
one of these goals to meet the others. Some FPGA OSes [60, 78]
simply multiplex available I/O resources, often in a coarse-grained
fashion. This approach can have low hardware overheads, but fails
to provide portable high-level interfaces that are useful to develop-
ers, forcing them to implement data retrieval and storage stacks for
each application. In contrast, FPGA OSes that heavily abstract the
communication process [1, 30, 68, 96, 99, 118] can place a consider-
able burden on system, compiler, and runtime developers. This, in
turn, can lead to poor performance that application developers have
little control over. Even state-of-the-art systems [66] can neglect
important classes of workloads with design decisions such as using
SRAM TLBs, which struggle to scale to larger working sets. While
abstraction is expected to come at some cost, high overheads can
disincentivize system adoption, especially when performance and
efficiency gains motivate the use of FPGAs.

We argue that a balanced and practical approach to FPGA I/O
abstraction can provide portability, compatibility, and performance
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without such compromises. Reconfigurability is key to making this
possible. We demonstrate this with FSRF (File System for Recon-
figurable Fabrics), a new solution for FPGA I/O. FSRF makes data
accessible through an mmap-like file system interface and auto-
mates data movement throughout the storage and memory stack
in response to application needs. Previous systems have supported
mmap techniques for accelerators accessing host data [90, 98]; FSRF
uses similar techniques but specializes the design for FPGAs and
specializes implementation for applications using reconfiguration.
Data is accessed via a virtualized version of the industry-standard
AXI4 [10] interface, enabling compatibility with a large variety
of applications without impacting their portability between differ-
ent hardware platforms. FSRF accomplishes this via a new, FPGA-
optimized virtual memory system that selects between using FPGA-
local DRAM or on-chip SRAM for caching translations, enabling
fast access to large working sets, even for applications with random
access patterns. A key insight is that reconfigurability can be used
to tailor FSRF’s implementation to the task at hand.

We implement FSRFin the Amazon F1 cloud and evaluate it with
a variety of demanding workloads, finding that it can maximize the
throughput of modern FPGA hardware while greatly simplifying
the process of accessing data for a diverse set of applications. This
is accomplished without exposing the particular peripherals or ar-
chitecture of the target hardware, and without requiring significant
changes to existing applications. We show this functionality has
minimal overhead (90% of physical addressing) is up to 64× faster
(75% overall) vs. the state of the art, Coyote, and performs up to 2.3×
faster (+27%) vs. AmorphOS. We make the following contributions:

• We describe a design for an mmap-based virtual memory system
for FPGAs that provides performant access to file-backed data
without exposing hardware specifics;

• FSRF leverages reconfigurability to specialize the implementation
of its virtual memory hardware to maximize per-application
performance;

• FSRF transparently moves data throughout the memory hierar-
chy, enabling oversubscription of FPGA-local memory (a first for
FPGA OSes);

• FSRF modulates between DRAM- and SRAM-based TLBs to save
area while enabling local address translation to cover all of mem-
ory, even without huge pages.

2 BACKGROUND

Field Programmable Gate Arrays (FPGAs) are circuits that can be
(re-)configured to implement custom logic. They can be deployed
in many ways, including: standalone (e.g. network switches [5]), in
SoCs [6, 32], on I/O pipelines [106], or I/O-attached (e.g. via PCIe)
to offload compute. We focus on offload configurations as they are
the most common case for on-demand cloud FPGAs [37, 79].

Currently, on-demand FPGAs in the cloud [37], only support
coarse-grain sharing. F1 supports SDKs for developing hardware
accelerators, saved as Amazon FPGA Images (AFIs), which up-
date the entirety of the FPGA fabric when deployed. Abundant
recent work on FPGA sharing [60, 66, 78, 109, 118, 119], has not
yet impacted production settings. Previous FPGA OS proposals
explored cross-application sharing [28, 50, 112], hardware abstrac-
tion layers [47, 61, 62, 77, 80, 114], shared runtime support [35,

44, 103], and access from a virtual machine [78, 87]. Theoretical
aspects of FPGA scheduling [28, 40, 102, 111], heterogeneous sched-
uling [7, 20, 43, 102, 111], preemption [72], relocation [53], and
context switch [70, 94] are well-explored. While prior work has
explored FPGA access to OS-managed resources such as virtual
memory [1, 30, 75, 117] and file systems [100], there remains an
urgent need for solutions that are both portable and efficient, which
is our focus.

Recent designs for FPGA sharing in datacenters [22, 27, 38, 60,
64, 66, 113, 118, 119] use reconfiguration or partial reconfiguration
to share fixed partitions of FPGA fabric among applications with
bitstreams pre-compiled to target those partitions. While there are
variations in this space we focus on supporting performant I/O for
a design of this form, which we assume uses some form of address
translation to enforce cross-domain protection/isolation.

The current states-of-the-art in OS FPGA support are Amor-
phOS [60] and Coyote [66], both of which support multi-tenancy.
AmorphOS extends processes with an abstraction for FPGA-based
execution and can spatially share an FPGA among applications.
Coyote [66] is a shell for FPGAs which supports both spatial and
temporal multiplexing as well as communication and virtual mem-
ory management. While Coyote provides interfaces for networking
and memory, it does so using a fixed mechanism for address trans-
lation (software-managed, configurable-size SRAM TLBs) and it
does not support oversubscription. FSRF extends a design such as
AmorphOS or Coyote with performant and flexible access to I/O
through the file system.

3 MOTIVATION

In the wake of Moore’s Law, hardware specialization is the de facto
approach to improving performance, scalability and energy effi-
ciency [45]. Creating new hardware is slow and expensive, and
provisioning shared infrastructure with diverse fixed function ac-
celerators is untenable [93]. FPGAs deployed as arbitrarily reconfig-
urable universal accelerators, can enable infrastructure providers to
meet diverse specialization needs while retaining the simplicity of
single-SKU provisioning. However, to enable this vision software
layers that support protected sharing, virtualization, compatibility,
portability, and access to other OS-managed resources are necessary.

Research exploring protected FPGA sharing [26, 44, 50, 75, 84,
99, 100] based on static partitioning [22, 27, 38, 63, 64, 78, 113] and
dynamic partitioning [60, 66, 68, 118] has yielded techniques for
sharing on-fabric resources by mediating access to OS-managed
resources, but has largely retained traditional abstractions for those
resources and neglected the opportunity to leverage reconfigura-
bility to specialize the implementation of those abstractions to
individual application needs. We argue that compatibility requires
better access to virtual memory and the file system, particularly as
consolidated cloud settings can often be subject to oversubscription
that is unpredictable by a developer at design time.

Improved techniques for FPGA virtual memory are also neces-
sary because FPGA applications do not access memory like CPUs
or GPUs do. In CPUs and GPUs, caches automatically manage the
process of coalescing small memory accesses into larger memory
transactions, and handle the process of prefetching data that will
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be needed in the near future. In FPGAs, register sizes, cache archi-
tecture, and prefetching are largely implemented by the user to
suit the needs of applications. Applications access memory through
the same bus protocols they use to access peripherals. Applica-
tions streaming large amounts of data can request entire pages at
a time, while applications performing random accesses can make
many smaller requests. Furthermore, many FPGA memory systems
decouple read requests from the return of read data, and write re-
quests from the return of a write persistence response, enabling
prefetching of data far ahead of its use.

These key differences mean FPGAs do not always benefit from a
fixed CPU-like memory hierarchy design (e.g. on-chip TLBs). While
the smaller accesses of CPUs and GPUs will often hit the same page
(and corresponding TLB entry) repeatedly, FPGA applications often
tune their access sizes to request as much data from a page as they
need at that time, meaning that the corresponding TLB entry will
likely not be reused. FPGA applications often prefetch data far
enough in advance to hide the latency of the memory entirely. We
therefore find it worthwhile to explore new approaches to address
translation and memory hierarchy design for FPGAs that can take
advantage of and support the unique needs of FPGA applications.

Limitations in State-of-the-Art. Current state-of-the-art FPGA
systems struggle to balance the need to deliver performant I/O
while also providing sufficient abstraction for usability. For instance,
Cascade [96] and Synergy [68] completely abstract away I/O inter-
faces through the use of “unsynthesizable” Verilog system tasks.
Verilog logic is converted into a state machine that can pause pro-
gram execution at sub-clock-tick granularity to create the illusion
that the I/O is performed instantaneously. While this provides a
familiar libc-like programming model with APIs like fopen and
fread, it presents significant challenges for the runtime to overlap
I/O with execution, resulting in poor performance.

In contrast, systems such as Coyote [66] and AmorphOS [60]
expose the underlying hardware interfaces of their platform. Coy-
ote uses a user-configurable TLB to enable virtual addressing of
host, network, and local memory interfaces, while AmorphOS uses
segment-based address translation. Both approaches burden devel-
opers withmanaging data placement, TLB sizing, and implementing
system services, and require a large number of I/O signals to be
routed to applications, regardless of whether they need them. Nei-
ther system directly supports the file system. FPGA OS support
that delivers both performance and portability is urgently needed.

4 DESIGN

FSRF extends a generic FPGA OS design, such as AmorphOS or
Coyote, to provide mmap-style virtual memory on FPGAs. On the
host side, FSRF provides applications with functions for manag-
ing an accelerator’s file descriptors and virtual memory mappings
(§ 4.3). Data can then be accessed from the FPGA through a latency-
insensitive, virtually-addressed AXI4 memory interface (§ 4.4).

An overview of FSRF is shown in Figure 1. Applications on the
host use a FSRF-provided library (§ 4.3) to communicate with a FSRF
daemon (§ 5.1) to open files, mmap them into FPGA virtual memory,
and control FPGA applications. When applications access virtual
address, translation is handled by a hardware memory management
unit (§ 5.2). FPGA accesses to not-present memory are handled by
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Figure 1: Overview of FSRF’s design and implementation.

the daemon, which manages an FPGA-local page cache through
communication with the host file system, DMAs between the host
and FPGA (§ 5.4), and control messages to the MMUs. Translated
accesses on the FPGA are then forwarded to the interconnect (§ 5.3)
to access file data from FPGA DRAM.

4.1 File Abstraction for I/O Interfaces

FSRF integrates with the host file system to provide a single, ab-
stract point of access to data from a variety of sources including
stable storage, networking, and virtual services. This design choice
is driven by increasing connectivity of modern FPGAs and the need
for scalability for system software. FPGAs can be equipped with on-
board networking and storage, and can access data from external
NICs and SSDs via the PCIe bus. They can feature multiple types
of memory, such as local DRAM, GDDR, and HBM; remote DRAM
via an interconnect (e.g. Intel QPI); and storage-class memory (e.g.
3D XPoint). Without abstraction, application developers face a
growing variety of peripherals, each of which can require unique
interface implementations. FPGA OSes, such as AmorphOS [60]
and Coyote [66], multiplex on-device I/O resources and present
each application with a unique port for each interface. Under this
scheme, routing connections from 𝑁 applications to𝑀 interfaces
can require 𝑁 ×𝑀 interconnections for maximal bandwidth. Pro-
viding a single file-based I/O abstraction reduces developer effort
and makes accelerators more portable as they no longer need to
implement interface-specific functionality.

4.2 Virtual Memory Abstraction and MMAP
Tomake data accessible from the FPGA, FSRF usesmemory-mapping.
An mmap-like interface on the host is used to convert file-based data
locations into virtual addresses that can referenced on the FPGA.
While lower-level than the libc-like abstractions supported by
Borph [100], Cascade [96] and Synergy [68], virtual addressing
avoids the high costs associated with forwarding accesses to the
CPU by enabling most I/O accesses to be handled entirely on-chip.
Memory mapping provides the best balance of functionality, ab-
straction, and performance because it divides the labor of accessing
data between host CPU and FPGA according their strengths.
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1: package FSRF_SRAM_TLB;

2: parameter NUM_TLB = 3;

3: parameter PAGE_BITS[] = {12,21,32};

4: parameter LOG_DEPTH[] = {10,6,2};

5: parameter ASSOC[] = {2,1,2};

6: endpackage

Figure 2: Example of FSRF’s compilation controls.

In FSRF, the host CPU maintains memory-mapping metadata,
including tracking which resources back virtual addresses. This
involves small, complex, and latency-sensitive operations that CPUs
handle well. Synchronization and coherency are software-initiated
to reduce unnecessary communication overheads. FPGAMMUs and
DMA engines are also software-managed to enable the hardware
to support a wide range of policies efficiently. We take this one
step further on FPGAs with their own DRAM by caching data and
offloading virtual memory accesses to FPGA logic. This eliminates
system call and software overheads in the common case, enabling
the accelerator to operate at near-native performance.

FSRF differs from prior work in two other key ways. The first
is having files back virtual memory addresses. Prior work, such as
Coyote [66] and Optimus [78], use host memory to back virtual
addresses. This requires them to pin host pages to make them ac-
cessible from the FPGA, preventing data movement throughout the
memory hierarchy. With FSRF, data can be prefetched, faulted in,
and migrated back to storage without interrupting accelerator exe-
cution, providing the greatest possible performance and flexibility.

FSRF also decouples accelerator virtual memory from host vir-
tual memory. Current FPGA systems focus on supporting the 4 KiB
and 2MiB page sizes used by modern x86 CPUs. However, increas-
ingly popular alternatives, such as ARM and RISC V CPUs, do not
necessarily use these page sizes. For instance, the ARM A15 uses
64KiB, 4MiB, and 16MiB huge pages [9], while the ARM A9 in
Xilinx SoCs does not support huge pages at all. Furthermore, CPUs
like Apple’s M1 use 16 KiB base pages by default [49]. Decoupling
these virtual memory systems enables FSRF to retain control over
its page sizes for better performance and portability.

4.3 Host Interface

FSRF provides two host-side interfaces for managing its operation: a
compile-time interface for tweaking hardware implementation and
a run-time interface for managing file mappings. The compile-time
interface enables developers to optionally adjust FSRF’s hardware
configuration based on application needs. While exact options avail-
able will depend on the backend platform, Figure 2 demonstrates
the configuration for the SRAM TLB from our evaluation. The pa-
rameters shown control the number of TLBs and (in powers of
two) their page sizes, capacities, and associativities. This enables
developers to trade off FPGA area for functionality, with FSRF’s
host software adapting to the changes accordingly.

File mappings are managed using the API in Figure 3. Files can
be opened and closed (fsrf_open, fsrf_close) and mapped
to / unmapped from FPGA virtual memory (fsrf_mmap, fsrf_-
munmap) with POSIX-style semantics. Data synchronization can

1: #define FSRF_ADV_STREAM 1

2: #define FSRF_ADV_RANDOM 2

3: #define FSRF_ADV_REUSE 4

4: #define FSRF_ADV_LOWUSE 8

5: fsrf_rc fsrf_open(int* fd,

6: char* path, int prot, int mode);

7: fsrf_rc fsrf_close(int fd);

8: fsrf_rc fsrf_mmap(void** addr,

9: size_t len, int prot, int flags,

10: int fd, size_t offset);

11: fsrf_rc fsrf_munmap(void* addr,

12: size_t len);

13: fsrf_rc fsrf_msync(void* addr,

14: size_t len, int flags);

15: fsrf_rc fsrf_madvise(void* addr,

16: size_t len, int advice);

Figure 3: FSRF’s C API for FPGA file mappings.

be triggered both to and from the host with fsrf_msync via
flags. Finally, access pattern metadata can be provided via fsrf_-
madvise. Flags, such as FSRF_ADV_STREAM and FSRF_ADV_-
RANDOM, hint at locality, while flags like FSRF_ADV_REUSE and
FSRF_ADV_LOWUSE hint at data cacheability. These help FSRF
make the best policy decisions for the target workload, including
which virtual memory hardware and policies to use.

4.4 FPGA Interface

In previous FPGA OSes, applications manually stream data from
the host and manage caching in device-side memory. Instead, FSRF
automatically handles paging and caching, so these interfaces are
not necessary. FSRF presents applicationswith a virtually-addressed
AXI4 memory interface [10] for data access. AXI4 can efficiently
handle a wide variety of access patterns, works with IP from many
vendors, supports high-level synthesis code (e.g. Xilinx Vitis HLS),
and is interoperable with other standards like Intel’s Avalon bus.

AXI4 includes 5 independent channels: two for initiating R/W
transactions, two for R/W data, and one for write completion meta-
data. Transaction channels specify the starting address, the number
of words, and an ID for ordering. Data channels carry both data
and metadata, such as the transaction ID and an error response.
The write response channel signals write completions, including
the corresponding ID and write response.

To access data, applications generate AXI4 transactions to the
corresponding virtual addresses. FSRF handles transaction buffering
so requests and data can be pipelined for maximal throughput.

4.5 Reconfigurable TLBs

Prior work in FPGA virtual memory has often mirrored that of CPU
designs, using segments [60] or small SRAM TLBs [66] for fast ad-
dress translation on-chip. While these mechanisms are sufficient for
many workloads, their limited capacity ultimately requires systems
to trade-off TLB reach with granularity of memory management,
leading to poor performance in important classes of algorithms and
datasets. FSRF takes the position that there is no one-size-fits-all
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solution to address translation for to FPGA applications, and ex-
ploits the reconfigurability of FPGAs to tailor address translation
mechanisms to application requirements for optimal performance.

For workloads that benefit from fine-grain management of large
amounts of memory, FSRF offers a specialized address translation
mechanism: a DRAM TLB which uses a portion of FPGA-local, off-
chip memory for caching TLB entries. This provides ample TLB
capacity at the cost of increased translation latency and of a small
amount of memory bandwidth and capacity. However, since FPGA
workloads often heavily pipeline memory requests, the additional
translation latency can often be hidden entirely. Likewise, the small
amount of memory bandwidth and capacity the TLB uses is worth-
while as it overall improves performance by reducing misses that
would have otherwise needed to be handled by the host.

FSRF also offers a more traditional SRAM TLB option. At compile
time, the page sizes, number of TLB entries, and cache associativity
can be configured as covered in Sec 4.3, enabling a wide range of
possibilities for workloads that do not need particularly large TLBs.

4.6 Oversubscription

FSRF supports oversubscription of device-side memory using sim-
ilar mechanisms to swapping-based virtual memory. When the
device-side MMU cannot find data in local memory, it waits for out-
standing I/O to complete and generates a page fault for the host to
handle. The host then evicts pages (currently via FIFO policy) from
device memory before loading the requested data on the device.

4.7 OS-Defined Striping

Striping splits contiguous data across multiple DIMMs, increasing
memory parallelism. While this can increase performance when
applications have exclusive access to memory, it can increase the
chance of collisions and reduce performance when DIMMs are
shared. To minimize these conflicts, FSRF either implements a
coarse-grain isolated-sharing strategy (e.g. 1 application to 4DIMMs,
2 applications to 2 DIMMs each) in hardware or sets virtual-to-
physical page mappings to achieve a fine-grain solution from soft-
ware. FSRF uses the latter in cases where there may be significant
differences in applicationmemory use, bandwidth, or access pattern,
or when DIMMs cannot be evenly split among applications.

4.8 Stream Support

Some data sources (e.g. pipes and network streams) are not seekable
and so require special consideration. Normally, these would be ac-
cessed using a dedicated streaming interface, such as AXI4-Stream,
which provides ordering, packet delimitation, and low signal over-
heads. However, many of these signals are already present in the
standard AXI4 interface.

Instead, FSRF provides two modes of operation: memory and
streaming. In memory mode, streams are adapted to be fully com-
patible with AXI4 and mimic a memory-mapped FIFO. Reads and
writes to the virtual stream address can attempt to block until the
stream is ready, but can time out and return an error if the trans-
action cannot complete in a timely manner. Applications will not
receive stream packet termination signals in this mode, but they
will have more control over how stream data is interleaved with
standard file data due to AXI semantics.

In streaming mode, an extra signal is provided on data channels
for streaming operations. Applications create streams by making
an AXI4 transaction to the virtual stream address, which sets the
stream width and assigns it an ID. The streaming signal is then used
to indicate incoming or outgoing stream data, with the AXI last
signal used to delineate packet termination when supported. Steams
can be closed in a similar manner to how they were opened, and if
closed on the opposite end first, a decode error (invalid interconnect
address) will be returned upon attempting to access it.

4.9 Contrast with Prior Work

AmorphOS implements minimal segment-based memory virtualiza-
tion hardware, specializing in fabric- and interface-sharing tech-
niques. AmorphOS requires host applications to push data to the
FPGA in advance of its use, and supports segmentation as the only
means to manage memory mappings. FSRF, on the other hand, can
dynamically fault in data to natively overlap computation and com-
munication, and uses configurable TLBs for much finer-grained
control of memory management. These enable features, such as
oversubscription, that AmorphOS lacks. Compared to AmorphOS’
custom memory interface, which only supports 64-byte requests,
FSRF uses AXI4, which can natively encode sequential accesses for
better memory access efficiency. Finally, FSRF’s flexible striping
policy intelligently splits data across DIMMs when it is not detri-
mental to performance, eliminating DIMM collision issues that can
arise from AmorphOS’ striping scheme.

Coyote is the most similar prior work to FSRF, but it still reflects
a number of different design decisions. While Coyote’s approach
to virtual memory only transfers data at page or request granular-
ity, FSRF’s approach can adapt both the page and transfer size to
suit application needs. Through the use of a metadata interface,
and by monitoring page faults at run time, FSRF is able to adapt
these policies to maximize DMA bandwidth and FPGA memory
utilization. FSRF’s use of files for backing storage also enables ex-
plicit support for oversubscription, both of FPGA and host page
cache memory, for better access to large datasets. In contrast to
AmorphOS, Coyote is optimized for streaming memory workloads,
and uses a custom interface for requests generated by the FPGA.
FSRF’s use of AXI4 enables comparable streaming performance, but
with greater flexibility, compatibility, and transaction metadata for
developers who desire such features. While Coyote only supports
SRAM TLBs with a limited selection of page sizes, FSRF offers cus-
tomizable page sizes and a DRAM-based TLB. These enable efficient
random access to large working sets without sacrificing granularity
of memory management to cater to workloads of all types. Finally,
FSRF’s flexible striping policy enables performance benefits over
Coyote’s approach (§ 6).

OPTIMUS specifically targets Intel’s HARP platform, where the
FPGA is socketed alongside a CPU and must access DRAM through
it. OPTIMUS enables host memory to be accessed from the FPGA
by pinning host pages and configuring IOMMU entries for efficient
address translation across the UPI link. While this approach does
provide shared virtual memory across the host and FPGA, it does
not provide the ability to dynamically fault in data like FSRF does, so
demand paging and transparent oversubscription are not available.
Since OPTIMUS is not moving data between host and FPGA-local
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Figure 4: Control flow of FSRF’s DRAM-backed TLB.

memory like FSRF, huge pages are always used to maximize the
hardware-provided TLB’s reach. Likewise, since memory accesses
are always performed remotely, policies such as striping or batching
are not supportable.

5 IMPLEMENTATION

We implement FSRF by extending AmorphOS since it is open source
and runs on public cloud hardware (Amazon F1). We considered
Coyote, which is also open source, but it is not currently available
for cloud platforms.

5.1 FSRF Daemon

The FSRF daemon contains FSRF’s host-side implementation. When
an application opens and mmaps a file, a unique fault handler thread
is created to interface with the corresponding MMU on the FPGA.

The fault handler polls the FPGA for TLB misses, dequeues them,
and checks validity/permissions, returning errors when appropriate.
If the requested data is not present in FPGA-local memory, the
handler ensures there is enough free space by writing back and
freeing resident pages when necessary. It then fetches the file data,
DMAs it to FPGA DRAM, updates the TLB as needed, and sends a
response to the MMU to continue.

FSRF’s host component supports a number of policies for improv-
ing performance. Policies are chosen automatically unless explicitly
set via an appropriate library function. A configurable I/O batch
size (default 2MiB) enables applications to trade off latency and
throughput depending on their needs. FSRF also supports selecting
between DRAM and SRAM TLB implementations when both have
a corresponding bitstream compiled. For the SRAM TLB, FSRF uses
2MiB pages when undersubscribed to populate memory as fast as
possible and maximize throughput and TLB reach. Once oversub-
scribed, FSRF switches to a 4KiB page and I/O size to minimize
latency and thrashing. If data is accessed sequentially, FSRF progres-
sively scales up the I/O size exponentially until either the stream
ends (e.g. short bursts) or the maximum size of 2MiB is reached.
This enables efficient operation for both random and streaming
workloads in both under- and over-subscribed conditions.

5.2 MMU with DRAM and SRAM TLBs

Virtual memory accesses are handled by FSRF’s memory manage-
ment unit (MMU), which uses a device-side TLB cache to translate

accesses. FSRF supports TLBs in both FPGA-local DRAM and on-
chip in SRAM, and can use control registers or reconfiguration to
switch between them according to application needs.

DRAM TLB. When TLB entries are cached in FPGA-local DRAM,
FSRF processes them in parallel via the pipeline summarized in
Figure 4. The MMU receives accesses as virtually-addressed AXI4
read requests (1) and write requests combined with write data (2).
Before processing write requests, FSRF waits until all their data has
been buffered (3) to prevent their physical accesses from stalling
after address translation.

Once a transaction is ready, the MMU uses its virtual address to
index into a host-managed set-associative cache held in FPGA-local
DRAM (4). This lookup returns a number of TLB entries based on
the associativity of the cache. We currently configure FSRF’s DRAM
TLB with an associativity of 8 and a 4 KiB page size, resulting in
a 48-bit virtual address space and a 36-bit physical address space.
Accesses into DRAM are pipelined so that the TLB can process a
translation every cycle provided sufficient memory bandwidth.

TLB entries are checked in parallel for validity, permission, and
virtual address match (5). On a hit, the transaction is forwarded to
the interconnect (6) using the physical address from the matching
TLB entry. Read data and transaction responses from DRAM are
buffered (7) until they are ready to be returned to the application.

If there are no hits, the MMU waits for outstanding memory
accesses to complete and yields to the page fault handler on the
host (8). The host provides a response (9) enabling the MMU to
either proceed normally (6) or return an error. Data and responses
from both the interconnect and the MMU are combined back into a
single stream (10) and returned to the application (11).

SRAM TLB. FSRF also supports on-chip SRAM TLBs for applica-
tions with high locality and reuse. Since SRAM has very low access
latencies, we manage translations entirely via a state machine, as
opposed to the pipeline design of the DRAM TLB. The SRAM TLB
is highly configurable and supports power of 2 page sizes (though
FSRF’s host software only supports 4K and 2M pages currently).
Each supported page size has its own SRAM cache and hit eval-
uation logic, with tunable capacity and associativity. The SRAM
TLB is otherwise quite similar to the DRAM TLB in how it accepts
transactions, formats TLB entries, and handles TLB misses.

5.3 Interconnect

Once AXI transactions are translated to physical addresses, the
interconnect routes them to the appropriate memory controller to
access the corresponding DRAM DIMM. Generally, this would be
implemented with a vendor-provided IP. However, our vendor’s
interconnect has a critical limitation: transactions issued with the
same ID cannot be issued to different endpoints until the prior one
completes, significantly limiting memory parallelism.

FSRF’s interconnect takes a different approach. It issues trans-
actions to memory controllers in-order and forces the controllers
to process them in-order by assigning them the same ID down-
stream. This enables transactions to proceed to multiple memory
controllers in parallel while ensuring they can be returned to appli-
cations in-order without deadlock, even when other applications
are submitting transactions to the same DIMM.
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FSRF’s interconnect also features a custom arbiter for enhanced
performance. The arbiter prioritizes PCIe transactions first for bet-
ter throughput and latency. When there are no DMA requests, it
accepts application requests according to a priority list, which is
rotated every cycle to improve fairness and reduce starvation. The
arbiter is pipelined to ease timing closure, and can accept new
transactions every cycle for full throughput.

5.4 DMA

FSRF also provides its own DMA implementation. DMAs are often
limited by handshake overheads, so FSRF simplifies communication
to improve performance.

On the host, DMA buffers are allocated using 2MiB huge pages
to guarantee contiguity of physical memory. Since CPU bandwidth
on the host is ample (70-80GiB/s theoretical on F1), we are able to
quickly coalesce file data into the DMA buffers. FSRF is then able
to issue a single DMA command for the entirety of the buffer.

On the FPGA, FSRF includes its own DMA controller that takes
advantage of the PCIe master (PCIM) interface on F1. This interface
allows FSRF to generate its own PCIe DMAs, control buffering of
data, andmonitor their completion. FSRF’s DMA controller includes
a virtual queues for each FPGA application, allowing for concur-
rent requests from their respective fault handlers on the host and
independent DMA completion tracking.

6 EVALUATION

We evaluate FSRF with the workloads summarized in Table 1. Our
workloads use a variety of programming models (HDL and HLS)
and cover several common uses cases for file and memory ac-
cess patterns. These include purely streaming workloads (AES,
CONV, FLOW, HLL, MD5, SHA, and SHA HLS) as well as work-
loads with data reuse and/or random access patterns (DNN, GUPS,
NW, PGRNK, RNG, and TRI).

6.1 Workloads

AES is an AES-256 cryptography accelerator. Each instance uses 4
open-source AES cores [46] in parallel, enabling it to stream up to
32GiB/s of data (16GiB/s per read/write data channel) per instance.

CONV is an image convolution accelerator. It processes 64 1-
channel pixels every cycle via a wide pipeline for a peak of 16GiB/s
throughput per read/write data channel.

DNN is anAI inference engine synthesized by theDNNWeaver [97]
framework. We adapt its memory interface to AXI4 and modify
its control API to facilitate running kernels back-to-back. DNN
exhibits aspects of both sequential and random access patterns.

FLOW computes the optical flow for a set of images based on
code from the Rosetta suite [123]. We widen the original datapath
and streaming memory interface to be able to saturate the available
bandwidth on F1.

GUPS is a random-access microbenchmark. For a number of 8-
byte words, 𝑁 , it performs 4𝑁 RMW updates to an 8𝑁 -byte region
of memory using a simple PRNG to determine the access pattern.

HLL is an accelerator for the HyperLogLog algorithm modified
from [67]. It streams input data at full-throughput (16GiB/s), and
approximates the cardinality of the the target set of unique numbers.

MD5, SHA, and SHA HLS are streaming-style hashing acceler-
ators that stream data at full-throughput (16GiB/s), hash data in
parallel, and accumulate the results locally. Operations are imple-
mented using open-source MD5 [71] and SHA-256 [91] cores. SHA
HLS uses Vitis HLS.

NW is a Needleman-Wunsch DNA sequence alignment accel-
erator. It uses a pipelined grid to compare two 128-bit (64 base-
pair) sequences every cycle. NW iterates over all combinations of
grid-aligned sub-sequences from two input strings and writes out
alignment scores for a peak total bandwidth of roughly 4GiB/s.

PGRNK is an iterative PageRank graph accelerator. It streams
in vertices and incoming edges, fetches weights, and computes the
updated pageranks. We use matrices from the SuiteSparse Matrix
collection [34], including a small web connectivity matrix (webbase-
1M [116]), an internet traffic archive (mawi_201512020030 [8]), and
a large synthetic matrix (GAP-kron [16]).

RNG is a microbenchmark that generates random accesses using
a PRNG with a period of 219. The core has a configurable access
size, from 64 B to 2MiB, in powers of two, and can generate new
accesses every cycle.

TRI is a graph triangle counting accelerator. It uses a domain-
specific data format designed to reduce neighbor lookup latency.
Graphs are randomly generated with an average degree of 20 and
roughly 1.3k triangles.

6.2 Methodology

We measure the execution of four concurrent workloads, each
processing small (∼32MiB), large (∼2GiB), and oversubscribed
(∼32GiB) datasets (collectively using 2× FPGA DRAM). Since TRI
and GUPS have extremely long run times, we use their large datasets
for their oversubscription experiments, and instead limit applica-
tions to 1.920MiB (2GiB - 128MiB) of usable FPGA DRAM.

Each workload is measured with cold, warm, and hot data. Cold
data is not initially cached, and must be loaded from an NVMe SSD.
Warm data is initially cached in host DRAM, but not FPGA DRAM.
Hot data is cached entirely in FPGA DRAM with corresponding
TLB entries prepopulated as well, modulo limitations in TLB size.
Since oversubscribed datasets exceed the size of FPGA DRAM, we
only evaluate them with cold and warm data. Workloads are run on
AWS f1.4xlarge instances to ensure the host has sufficient RAM for
our warm, oversubscribed dataset experiments and for consistency
with this case for our other configurations.

We report end-to-end runtime and system throughput (total
bytes accessed divided by average application runtime). These met-
rics can differ when some applications finish faster than others,
which can happen due to slight performance differences between
F1’s memory interfaces. Results are from an average of five runs.

We evaluate each workload using FSRF, Coyote and AmorphOS
address translation, and physical addressing.

FSRF is configured to use either a DRAM- or SRAM-based TLB
as indicated in Table 1. The SRAM TLB is configured to use the
same page sizes, capacity, and associativity as Coyote, making for
a fair comparison. When either TLB may be used, FSRF selects the
TLB with the best performance for the target workload size.

To obtain Coyote baselines, we port Coyote’s TLB [39] to FSRF,
and use it in lieu of FSRF’s TLBs for address translation.We replicate

562



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Joshua Landgraf, Matthew Giordano, Esther Yoon, and Christopher J. Rossbach

Table 1: Workloads used in our evaluation. Source indicates the primary source language, either (System)Verilog or Xilinx

C/C++ HLS. TLB indicates whether FSRF used SRAM or DRAM for TLB storage, or which was used if the choice was dependent

on dataset size. Small, large, and oversubscribed indicate the file sizes used in the respective experiments. Reuse reports how

much data was accessed relative to the file size. Finally, reads reports the percentage of data read out of the total data accessed.

Reuse and reads are data-dependent for PGRNK and reported as ranges for the datasets used.

Name Description Source TLB Dataset Sizes Reuse Reads

aes AES-256 crypto Verilog SRAM 32MiB 2GiB 32GiB 1x 50%
conv Image convolution Verilog SRAM 32MiB 2GiB 32GiB 1x 50%
dnn AI inference Verilog SRAM 32.2MiB 2.0GiB 32.0GiB 0.92x 96.7%
flow Image optical flow C HLS SRAM 32MiB 2GiB 32GiB 1x 100%
gups HPCC RandomAccess Verilog S/D/D 32MiB 2GiB 2GiB 4x 50%
hll HyperLogLog C HLS SRAM 32MiB 2GiB 32GiB 1x 100%
md5 MD5 hashing Verilog SRAM 32MiB 2GiB 32GiB 1x 100%
nw Needleman-Wunsch Verilog DRAM 32.2MiB 2.0GiB 32.0GiB 5.0x 80.0%
pgrnk Iterative PageRank C HLS S/S/D 54.2MiB 3.1GiB 35.5GiB 1.18 - 1.86x 86.0 - 98.5%
rng Random sequence Verilog S/D/D 32MiB 2GiB 32GiB 1x 0-100%
sha SHA-256 hashing Verilog SRAM 32MiB 2GiB 32GiB 1x 100%
sha hls SHA-256 hashing C HLS SRAM 32MiB 2GiB 32GiB 1x 100%
tri Triangle counting C HLS S/D/D 32MiB 2GiB 2GiB 177.x 100%

many details of their design based on its open source code, including
its latency and the default associativity and size of the TLB’s (4×1024
4 KiB entries and 2 × 64 2MiB entries). While Coyote allows for
resizing its TLB, we opt not to as limited on-chip SRAM prevents
expanding the 4 KiB TLB from having any benefit, and the 2MiB
TLB would need to be scaled up by 1-2 orders of magnitude for
meaningful improvement. We also implement Coyote’s striping
policy by splitting 2MiB regions across all 4 DIMMs. While not an
end-to-end replica of Coyote’s design, we believe these represent
key aspects of their design and enable comparisons to similar FPGA
virtualization systems that makes use of SRAM TLBs.

AmorphOS uses segment-based address translation to securely
partition FPGA DRAM among resident applications. Since Amor-
phOS does not implement demand paging support, data must be
loaded prior to use and memory cannot be oversubscribed. We repli-
cate this approach by adding support for 4GiB segments, which
are large enough to cover our small and large datasets that fit in
FPGA-local memory. We evaluate our AmorphOS baseline only on
these datasets due to the lack of support for oversubscription. To
simulate cold and warm data, we load the entire dataset on first
access, replicating AmorphOS’ requirement for preloading FPGA
DRAM with data before use. Since the AmorphOS Memory Inter-
face only allows fixed-size requests, we add hardware to convert
multi-word AXI transactions into unique memory requests before
forwarding them to the interconnect. Finally, since AmorphOS
stripes accesses across DIMMs, we also implement this behavior
and use the same striping granularity as our Coyote replica (2MiB)
for better comparison across the two systems.

Finally, our physical memory baseline elides virtual memory sup-
port for direct, unprotected access to FPGA-local DRAM, providing
an upper bound on performance comparable to native implementa-
tion. Our measurements of the physical baseline are for hot data
only, as demand paging and oversubscription require virtual mem-
ory to function.

6.3 Workload Results

Our results are shown in Table 2 and Figure 5, and reveal a num-
ber of trends and insights. For hot data, we find that FSRF con-
sistently outperforms Coyote in streaming workloads (geomean
+42%), despite using a similarly-configured SRAM TLB, and has al-
most double the performance of AmorphOS (geomean +95%). This
is primarily an artifact of striping policy for Coyote, which can lead
to FPGA DIMM collisions that FSRF’s policy avoids. AmorphOS in-
troduces additional inefficiencies with its memory interface, which
cannot efficiently encode streaming accesses like FSRF’s AXI4 inter-
face. FSRF also matches physical memory performance in this case
(geomean 98%) and achieves impressive levels of system throughput
(geomean 51GiB/s).

For large, non-streaming workloads, FSRF’s DRAM TLB provides
significant gains over Coyote (geomean +505%), moderate benefits
versus AmorphOS (geomean +39%), and a large fraction of physical
addressing performance (geomean 82%). These differences are more
pronounced in workloads like GUPS, which has a large working set,
low locality, and a small access size. On the other hand, PGRNK only
randomly accesses a small segment of its data, giving it a relatively
high SRAM TLB hit rate for a heavy random access workload.

For cold and warm data, FSRF performs similarly to Coyote
and AmorphOS on small datasets (geomean +5%, +15%), due to
high workload and system initiation overheads. However, large
datasets enable significant performance differences over Coyote in
non-streaming workloads (geomean +89%), due to FSRF’s DRAM
TLB again. We also find FSRF provides significant performance
gains when memory is oversubscribed, especially in PGRNK (ge-
omean +6, 114%) and non-streaming benchmarks in general (ge-
omean +264%). For PGRNK, this is mostly due to input weights
fitting in FPGA DRAM, enabling fast random access to frequently
reused data while other graph data is streamed to and from FPGA
memory. Other performance differences are largely due to FSRF’s
ability to dynamically adapt I/O batch size based on access patterns,
as well as faster access to data present in FPGA DRAM.
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Figure 5: Average throughput of 4 parallel workloads, normalized to that of Coyote. The Coyote baseline uses 4 KiB or 2MiB
pages, whichever performs better; AmorphOS uses segments that cover the entire dataset; FSRF uses our system with either a

DRAM or SRAM TLB; and physical accesses FPGA DRAM directly. Cold, warm, and hot denote whether file data starts on the

host SSD, host DRAM, or FPGA DRAM. Small, large, and oversubscribed indicate the dataset size, with the latter exceeding an

application’s share of FPGA DRAM. Geo shows the geometric mean of all our benchmarks.
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6.4 Performance Scaling and Fairness

Figure 6 shows how FSRF’s throughput scales with the number
of concurrent applications. We evaluate performance using AES
and RNG with large datasets, representing both streaming and non-
streaming workloads utilizing FSRF’s SRAM and DRAM TLBs. We
average data across 3 runs, normalize against the single-application
case, and only report RNG read results due to them being compara-
ble with RNG write ones.

We find that throughput scales almost linearly up to the point
that FSRF becomes limited by available bandwidth. Accessing warm
data limits performance gains beyond 3 concurrent applications,
and cold data limits gains beyond just one active application. We
also find that adding additional accelerators after throughput has
been saturated is not detrimental to overall performance, with
bandwidth being split between running applications.

To measure bandwidth-sharing fairness, we compute the stan-
dard deviation of individual application runtimes for each case, and
normalize against their average. We find the deviations to be very
low (geomean 1.1%), indicating fair sharing. While we do not find
a trend in fairness with the number of applications (geomean 2:
1.2%, 3: 1.8%, and 4: 0.7%), we do see trends in application / TLB
type (geomean AES: 0.7%, RNG read: 1.9%) and data “temperature”
(geomean cold: 0.9%, warm: 2.7%, hot: 2.9%). In the former case,
deviations are made worse by interleaving TLB accesses with ran-
dom application accesses. And in the latter case, at least some of
the unfairness, especially for hot data, is due to FSRF partitioning
FPGA DIMMs among applications along with one of the DIMMs
being roughly 6% slower than the others.
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Table 2: Average end-to-end runtime (RT) and system throughput (TP) of 4 parallel workloads in seconds and MiB/s. Geom

stream shows the geometric mean of our streaming workload results. Bolded values indicate whether FSRF, AmorphOS, or

Coyote is faster, which can differ based on the metric used (see § 6.2). Values suffixed with k and m indicate units of 1000 and

1/1000, respectively.

Cold Warm Hot

Small Large Oversub. Small Large Oversub. Small Large

Workload System RT/TP RT/TP RT/TP RT/TP RT/TP RT/TP RT/TP RT/TP

dnn

FSRF .20/632 12./661 222/573 .18/684 11./686 189/672 .17/750 11./748
Cy 4K .28/426 17./442 283/428 .21/551 14./550 224/539 .18/669 12./636
Cy 2M .20/602 12./621 208/592 .19/648 12./647 196/625 .17/705 11./703
AOS .26/465 16./479 .19/637 12./640 .17/690 11./689
Phys .16/785 10./784

gups

FSRF 1.0/1.0k 98./694 2.6k/26. .96/1.1k 94./727 2.6k/26. .94/1.1k 93./734
Cy 4K 42./24. 5.3k/12. 5.9k/11. 42./25. 5.4k/12. 5.9k/11. 42./25. 5.4k/12.
Cy 2M 1.0/980 8.9k/7.4 130k/.51 .98/1.0k 8.8k/7.4 133k/.49 .97/1.1k 8.8k/7.4
AOS 1.1/981 66./994 .99/1.0k 62./1.1k .97/1.1k 61./1.1k
Phys .95/1.1k 60./1.1k

nw

FSRF .19/11k 12./12k 225/10k .18/12k 11./12k 195/12k .17/13k 11./13k
Cy 4K .25/9.1k 15./9.4k 279/8.1k .23/9.5k 15./9.5k 272/8.3k .18/12k 12./12k
Cy 2M .19/11k 12./12k 219/10k .18/12k 11./12k 194/12k .17/13k 11./13k
AOS .37/6.1k 16./8.9k .30/7.3k 12./12k .28/7.7k 11./13k
Phys .17/13k 11./13k

page

rank

FSRF .16/1.9k 11./1.5k 139/2.0k .10/2.9k 9.1/1.7k 132/2.1k 76u/3.7k 7.9/2.0k
Cy 4K .29/1.0k 31./493 20k/14. .26/1.2k 28./539 20k/14. .19/1.5k 25./595
Cy 2M .18/1.6k 20./757 8.3k/33. .15/2.0k 19./787 8.2k/33. .13/2.3k 19./814
AOS .25/1.2k 24./636 .16/1.8k 18./824 .14/2.1k 17./886
Phys 68u/4.3k 5.7/2.8k

rng

read

FSRF .10/1.4k 5.2/1.6k 117/1.1k 27u/4.8k 1.0/8.1k 37./3.5k 13u/9.8k .16/54k
Cy 4K 1.6/81. 20./409 185/722 1.4/95. 5.8/1.4k 88./1.5k 1.4/98. 2.8/3.0k
Cy 2M .10/1.4k 7.4/1.1k 283/464 27u/4.8k 3.2/2.6k 214/613 13u/9.9k 2.4/3.5k
AOS 91u/1.6k 5.4/1.6k 27u/4.8k 1.6/5.7k 13u/9.9k .47/18k
Phys 7.2u/18k .15/57k

rng

write

FSRF .11/1.3k 5.2/1.6k 210/649 26u/4.9k 1.0/8.1k 78./1.8k 13u/9.9k .17/51k
Cy 4K 1.7/79. 20./415 221/612 1.4/97. 5.6/1.5k 126/1.1k 1.3/100 2.8/3.0k
Cy 2M .11/1.2k 7.5/1.1k 1.6k/91. 26u/4.9k 3.2/2.6k 1.7k/82. 13u/9.9k 2.5/3.4k
AOS .10/1.5k 5.5/1.6k 27u/4.8k 1.4/5.9k 13u/9.8k .54/15k
Phys 8.9u/15k .16/54k

tri

FSRF 3.7/1.6k 371/1.0k 472/802 3.7/1.6k 366/1.0k 465/814 3.7/1.6k 366/1.0k
Cy 4K 13./455 2.7k/135 2.7k/135 12./464 2.7k/135 2.7k/136 12./465 2.7k/135
Cy 2M 3.6/1.6k 2.0k/186 3.2k/115 3.6/1.6k 2.0k/185 3.2k/115 3.6/1.6k 2.0k/186
AOS 3.8/1.5k 244/1.5k 3.7/1.5k 239/1.5k 3.7/1.5k 239/1.5k
Phys 3.5/1.7k 226/1.7k

geom

stream

FSRF 86u/1.7k 5.4/1.6k 96./1.4k 16u/8.3k .91/9.0k 16./8.3k 2.8u/49k .15/55k
Cy 4K .11/1.3k 6.0/1.4k 108/1.2k 90u/1.5k 5.5/1.5k 93./1.4k 32u/4.2k 2.8/3.0k
Cy 2M 86u/1.7k 5.4/1.6k 97./1.4k 17u/7.6k 1.0/8.0k 18./7.3k 4.0u/34k .21/38k
AOS 90u/1.6k 5.6/1.5k 19u/6.8k 1.1/7.2k 5.5u/24k .29/29k
Phys 2.8u/49k .15/57k

6.5 Mixed Workload Fairness

We evaluate fairness for a heterogeneous configuration of work-
loads, representing an accelerator being shared concurrently by
different users. We use a diverse selection of memory-intensive
applications: AES, PGRNK, SHA HLS, and RNG. These are evalu-
ated with hot data from the large dataset for each. Since runtimes
between applications vary significantly, we measure throughput by

running PGRNK 25 times and then waiting for the other workloads
to finish, resulting in the system being fully saturated for at least
99.4% of the end-to-end runtime. To understand how performance
is affected by a mixture of concurrent workloads sharing the FPGA,
we report their throughput relative to it when running individually
under the same system. Results are shown in Figure 7.
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Figure 7: Relative per-workload throughput under contended,

heterogeneous operation vs. solitary execution.

Table 3: Resource utilization of FSRF’s main components,

vendor IPs, and workloads.

Entity LUT FF BRAM URAM

Xbar 17,455 968 0 0
D-TLB 3,310 1,150 0 0
S-TLB 1,402 247 14 0
DMA 4,629 1,263 8 8
XDMA 63,342 62,527 123 0
DDR4 26,216 25,691 25 0
aes 42,687 36,330 289 0
conv 9,453 32,715 0 16
dnn 8,781 4,587 6 0
flow 34,613 61,124 86 0
gups 966 651 0 0
hll 23,849 44,189 168 0
md5 10,282 12,757 0 0
nw 133,798 78,294 15 0
pgrnk 20,723 29,958 31 0
rng 1,612 1,303 0 0
sha 20,683 42,271 0 0
sha hls 28,739 57,439 8 0
tri 7,873 13,357 160 0
FPGA 1,182,240 2,364,480 2,160 960

We find that both FSRF and the physical baseline provide good
performance isolation relative to Coyote and AmorphOS, with ap-
plications enjoying similar performance regardless of what other
applications are running concurrently, due to DIMMs being parti-
tioned among applications. Coyote and AmorphOS’ striping poli-
cies result in unfair sharing that causes inconsistent performance
when the FPGA is loaded with different applications. With Coyote
(2MiB pages), for instance, AES achieves 66% of solitary perfor-
mance, while SHAHLS only achieves 39% of its throughput baseline.
With AmorphOS, PGRNK and RNG see very different performance
under contention relative to solitary operation (74% vs. 27%, respec-
tively). These results demonstrate the importance of flexible striping
policies when sharing access to memory resources, as more naive
approaches can result in unfairness, especially in heterogeneous
configurations.
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Figure 8: FSRFDRAMTLB performance for repeated accesses

of various sizes to cached data.

6.6 Resource Usage

We report the average resource usage of various FPGA components
in Table 3. Resources include look-up tables, flip-flops, block RAMs,
and UltraRAMs, with the final row indicating the total number
present in each F1 FPGA.

For FSRF, we measure our most significant components: the
custom crossbar for the interconnect, our DRAM and SRAM TLB
modules, and our custom DMA implementation. We also record
results for vendor IPs, including the vendor DMA module present
in the F1 shell and the DDR4 memory controllers we instantiate in
user logic. We include data for our various workloads as well.

We find that overall, FSRF introduces very reasonable overheads
for the functionality it provides. Our crossbar, 4 DRAM and SRAM
TLBs, and our DMAmodule only consume 3.5% of FPGA LUTs avail-
able, 0.3% of FFs, 3% of BRAMs, and 1% of URAMS. The 8 URAMs
aside, these use far fewer resources than a single vendor DMAmod-
ule, the cost paid for the 3 user-instantiated DDR4 controllers on
F1, or even just a single instance of AES.

6.7 AXI Access Size Microbenchmark

Figure 8 shows how access size, ranging from 64 B to 4KiB, af-
fects FSRF’s performance when performing a constant number of
accesses to cached data with a DRAM TLB. We find FSRF works
effectively in most cases, but is limited by memory performance
for smaller accesses, and memory capacity for larger footprints.

6.8 Transfer Size Microbenchmark

Figure 9 shows the transfer performance for various I/O sizes rang-
ing from 4 KiB to 2MiB for a random access pattern from a single
application. Data is shown for how quickly FSRF can fault in warm
and cold data at each size, along with how quickly the host can
read from the NVMe drive and DMA data to the FPGA. We find
that FSRF generally performs within 2× of whichever component
limits throughput, with file access and DMA dominating run time.

7 RELATEDWORK

FPGA OS and Virtualization. Research on FPGA OSes includes
sharing FPGA fabric [22, 27, 38, 63, 64, 113], multiplexing [28, 40,
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102, 111], context switch [70, 94], memory virtualization [1, 30,
75, 117], relocation [53], preemption [72], and heterogeneous ex-
ecution [20, 43, 102, 111]. FPGA OS abstractions [27, 36, 75, 78],
FPGA hypervisor support [35, 80, 87, 89], and FPGA virtualiza-
tion based on overlays [19, 56, 61, 62, 65, 115] are rich research
areas. ViTAL [118–120] supports a single-FPGA abstraction over
multiple FPGAs, but does not consider I/O through the OS. Amor-
phOS [60]and FOS [109] provide OS-level sharing of FPGAs among
mutually distrustful processes: I/O support is mediated with fixed
techniques that encapsulate existing interfaces. Coyote [66] sup-
ports communication and virtual memory management for FPGAs.
Like FSRF, Coyote customizes virtual memory implementation to
applications, but only by configuring TLB geometry, which can
limit performance (§6). Cascade [96] and Synergy [68] virtualize
FPGAs at the language interface: Synergy’s techniques could be
used to implement higher-level libc-like interfaces in device-side
code atop FSRF’s lower-level I/O interfaces.

Accelerators and OS-Managed Resources. Prior work has explored
exposing file systems [100] and the syscall interface [75, 100] to
FPGAs as well as memory virtualization for FPGAs [1, 30, 75, 117].
GPUfs [98] exposed the file system interface and page cache to
GPUs, and GAIA [21] used GPU memory to extend the page cache.
Vesely et al. further expanded on those techniques [110] to explore
the implications of supporting the entire system call interface to
GPUs. FSRF improves upon these techniques by using an mmap-
like interface to enable file system accesses to complete on-device
via virtual memory, and by using reconfigurability and adaptable
policies to tailor its implementation to application needs.

Accelerators and Virtual Memory. Address translation overheads
are well-understood for CPUs [2, 3, 14, 15, 17, 18, 41, 42, 54, 58,
76, 83, 85, 86, 95, 101, 105] and GPUs [31, 88, 90] MASK [12] is a
TLB-aware GPUmemory hierarchy design extended by Mosaic [11]
to provide application-transparent multiple page size support in
GPUs, further extended by ETC [73] to optimize oversubscription.
Modern GPUs automate GPU memory management: pages are
moved to/from GPU memory on-demand, and kernel execution
overlaps data transfer, based on techniques proposed by Zheng et

al. [122]. GPUswap [59] enables GPU memory oversubscription
by relocating GPU application data to CPU memory, keeping data
accessible from the GPU. FSRF uses similar techniques to move for
over-subscription, but our focus is on FPGAs.

8 CONCLUSION

FSRF demonstrates that FPGA I/O can be abstracted in a familiar,
performant, and portable way through mmap-style file access and
on-device virtual memory address translation. We address limita-
tions of current approaches by using reconfiguration and adaptable
software policies to dynamically customize FSRF’s implementa-
tion to application needs, even during runtime. We evaluate our
design with a wide variety of workloads and find it significantly
improves performance over state-of-the-art virtual memory tech-
niques and has minimal overheads relative to a physical addressing
upper-bound.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact appendix documents the requirements and instructions
for setting up FSRF and reproducing the results in this paper. FSRF
runs on Amazon AWS F1 cloud FPGA infrastructure. We provide
both code and scripts to setup and use FSRF, to download the openly-
available data used by PageRank, and to generate the inputs used
in our evaluation. We provide the source code for FSRF and scripts
to aid in system setup and evaluation at: https://github.com/utcs-
scea/amorphos-fsrf .

A.2 Artifact Checklist

Checklist details: https://ctuning.org/ae/checklist.html
• Algorithm: FPGA file-backed virtual-memory runtime.
• Program: Our repo includes assorted hardware workloads with corre-
sponding software drivers.

• Compilation: The AWS FPGADev AMI includes a C++ compiler for host
software and access to Xilinx Vivado for FPGA hardware compilation.

• Binary: Our code is compiled from source. FPGA software binaries are
provided by Amazon with their FPGA Dev AMI.

• Data set: PageRank uses datasets from the SuiteSparse Matrix Collection
and TRI uses generated graphs. We provide scripts to download and
generate binaries for these workloads, which use a total of ∼85GiB of
storage. Our other workloads use datasets generated directly on the
instance’s ephemeral SSD.

• Run-time environment: AWS FPGA Dev AMI 1.10.
• Hardware: AWS EC2 F1 instances.
• Run-time state: FSRF utilizes the host page cache. Our provided scripts
clear this cache when appropriate.

• Execution: Most workloads can be compiled in ∼4 hours, with a few
taking up to a couple hours longer. FPGA execution often takes seconds
to minutes, but can take hours when oversubscribed or simulating a
sub-optimal system.

567

https://github.com/utcs-scea/amorphos-fsrf
https://github.com/utcs-scea/amorphos-fsrf
https://ctuning.org/ae/checklist.html


Reconfigurable Virtual Memory for FPGA-Driven I/O ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

• Metrics: Application software reports data accessed, runtimes, and through-
put for each run. The FSRF daemon can also print runtime metadata.
Reports on design resource utilization can be obtained from Vivado for
FPGA builds.

• Output: Binaries provide data through the console. Our scripts log data
to a file and print condensed results.

• Experiments: We provide a README and scripts to cover much of the
setup and evaluation process.

• How much disk space required?: The AWS FPGA Dev AMI uses
∼50GiB. The graph files use 85GiB. FPGA builds can use ∼2GiB each.
Our code and binaries use ∼10 MiB.

• How much time is needed to prepare workflow?: Setting up the F1
environment takes about 1−2 hours. Sequentially compiling all bitstreams
should take around 3 − 4 days.

• How much time is needed to complete experiments?: Running all
the workloads in our main experiment once takes about 6 days. Our other
experiments could be run in an hour.

• Publicly available?: Yes.
• Code licenses?: BSD-2.
• Workflow framework used?: Our code provides interfaces to aid in
scripting our experiments.

A.3 Description

A.3.1 How to Access. Our artifact can be obtained by cloning the repository
in the abstract. The artifact does not require much space on its own, but
running the first-time setup script will require about 85GiB of data.

A.3.2 Hardware Dependencies. FSRF runs on AWS EC2 F1 instances, includ-
ing the f1.2xlarge. We recommend using f1.4xlarge instance for replicating
our oversubscription results, which utilize the additional RAM for caching
the large dataset.

A.3.3 Software Dependencies. The proprietary AWS FPGA Developer AMI
provides all the software tools needed to compile, manage, and interface
with FPGA applications. This toolkit is currently provided to AWS users at
no additional cost.

A.3.4 Datasets. We use open datasets from the SuiteSparse Matrix Collec-
tion [34]. These include the Matrix Market versions of webbase-1M [116],
mawi_201512020030 [8], and GAP-kron [16]. Users can download the data
via a provided script or obtain it from the SuiteSparse website directly.

A.4 Installation

The README in our repository covers the installation process for users
who are already set up to use AWS F1. We also include a first-time setup
script, which automates much of the process on new instances.

A.5 Experiment Workflow

The README documents our main experiment workflow, including how to
set up the input files, start the daemon, and run scripts that automate our
major experiments. It also includes information on our application software
for those who wish to run additional experiments.

A.6 Evaluation and Expected Results

We provide experiment scripts, which record their results to log files for
evaluation. Application binaries support even more run customization ar-
guments and print their data to the console to aid in running smaller exper-
iments. Applications report their runtime, throughput, and other metrics,
which can be compared with the data in this paper to verify results.

A.7 Experiment Customization

Most of our benchmarks can be modified to operate on different binary
inputs by changing the filename and dataset size in their software drivers.
The binaries also support a wide variety of input arguments for further
customization. Our artifact additionally includes HDL for those wishing to
utilize FSRF’s functionality with their own hardware accelerators.
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