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Cortical preparatory activity indexes 
learned motor memories

Xulu Sun1,2,9 ✉, Daniel J. O’Shea2,3,9, Matthew D. Golub2,3, Eric M. Trautmann2,3, 
Saurabh Vyas2,4, Stephen I. Ryu3,5,6 & Krishna V. Shenoy2,3,4,6,7,8 ✉

The brain’s remarkable ability to learn and execute various motor behaviours 
harnesses the capacity of neural populations to generate a variety of activity patterns. 
Here we explore systematic changes in preparatory activity in motor cortex that 
accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task1 
in a curl force field that elicited new muscle forces for some, but not all, movement 
directions2,3. We found that in a neural subspace predictive of hand forces, changes in 
preparatory activity tracked the learned behavioural modifications and reassociated4 
existing activity patterns with updated movements. Along a neural population 
dimension orthogonal to the force-predictive subspace, we discovered that 
preparatory activity shifted uniformly for all movement directions, including those 
unaltered by learning. During a washout period when the curl field was removed, 
preparatory activity gradually reverted in the force-predictive subspace, but the 
uniform shift persisted. These persistent preparatory activity patterns may retain a 
motor memory of the learned field5,6 and support accelerated relearning of the same 
curl field. When a set of distinct curl fields was learned in sequence, we observed a 
corresponding set of field-specific uniform shifts which separated the associated 
motor memories in the neural state space7–9. The precise geometry of these uniform 
shifts in preparatory activity could serve to index motor memories, facilitating the 
acquisition, retention and retrieval of a broad motor repertoire.

Motor learning encompasses a wide range of phenomena, from 
low-level calibration of movement parameters to high-level cognitive 
decisions in action selection10. Motor adaptation is a form of motor 
learning by which motor commands are modified to achieve desired 
movements in a new environment. Decades of studies have explored 
the behavioural principles of motor adaptation, describing the process 
of error-driven movement calibration, the generalization of learned 
skills across contexts, memory retention and savings, and interfer-
ence between multiple skills2,3,7,8,10–13. However, the neural mechanisms 
that support these diverse motor learning phenomena remain poorly 
understood.

One emerging approach to understanding these neural computa-
tions is through the study of neural population dynamics, which has 
provided insight into complex activity patterns that defy understand-
ing at the level of individual neurons14–16. Recently, this framework 
has begun to elucidate the neural foundation of motor learning at the 
population level17–20. Preparatory neural activity that precedes move-
ment serves to initialize the pattern-generating neural population 
dynamics that control movement. To support motor learning, prepara-
tory neural states and the subsequent neural population dynamics 
must adapt to modify outgoing motor commands. Consequently, 
we expect that some changes in preparatory activity that accompany 
motor learning would be tethered to changes in motor output18,20. 

Moreover, we propose that additional changes in neural preparatory 
activity, not directly coupled to movement output, might also emerge 
during learning. Such changes might facilitate learning and retention 
by organizing the population dynamics that implement new motor 
behaviours. We sought to test these hypotheses using a curl force field 
motor learning task.

Motor adaptation in a curl field task
We trained two rhesus monkeys (U and V) to perform an instructed-delay 
reaching task that elicited adaptation to counteract a curl force field 
(Fig. 1a, Extended Data Fig. 1a). Before learning, monkeys made straight 
centre-out reaches towards each of 12 targets by controlling a haptic 
device. In the learning block, monkeys reached towards a single trained 
target while the device applied a curl force field that was perpendicular 
to movement direction and proportional to hand speed. Late in learn-
ing, the curl field remained active for reaches to the trained target, 
which were interleaved with reaches to all 12 targets with an error clamp 
rendered by the device. The error clamp constrained movements to 
a straight line towards the target, hence clamping error feedback to 
zero to assess the feed-forward learning of the curl field. Finally, in the 
washout block, the curl field and error clamp were removed to probe 
the after-effects of learning and de-adaptation.
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Monkeys displayed gradual behavioural learning and washout, per-
forming straighter reaches with reduced lateral deviation (Fig. 1b, c). 
The error clamp revealed a bell-shaped spatial pattern of generaliza-
tion where the strength of learning-induced force changes fell off with 
increasing angular distance from the trained target (Fig. 1d), consistent 
with human behavioural studies2,3,11.

A neural subspace tracks generalization
We recorded neural activity in dorsal premotor (PMd) and primary 
motor (M1) cortices using Neuropixels probes, Utah arrays and V-probe 
linear arrays. Single-neuron activity during learning and washout was 
heterogeneous and complex, consistent with previous reports5,19. To 
search for structured changes in preparatory neural population activ-
ity accompanying learning14,15,21, we applied targeted dimensionality 
reduction22 (TDR) on before-learning trials, which identified a neural 
subspace in which preparatory states were predictive of initial hand 
forces in the upcoming movement. In this force-predictive subspace, 
before-learning neural states were radially organized by reach direc-
tions18,23 (Fig. 2a); during learning, preparatory states of the trained 
target rotated towards the preparatory state of the adjacent target 
opposite to the curl field direction (Fig. 2a, top-right inset). This rota-
tory progression probably reflected the preparation of initial com-
pensatory forces to counter the curl field. Preparatory states in this 
subspace predicted the observed hand forces with high accuracy 
(Fig. 2a, bottom inset, Extended Data Fig. 2a, b).

Following learning, preparatory states for nearby, untrained tar-
gets also rotated towards the adjacent preparatory states (Fig. 2b). 

These rotatory neural state shifts followed a similar spatial profile 
as behavioural generalization (Fig. 2c, Extended Data Fig. 2c), which 
was bell-shaped around the trained target with spatial asymmetry 
(Extended Data Fig. 1c) and thereby constituted a neural correlate of 
motor learning generalization, as predicted by previous work24. These 
neural changes may reflect the state of an adapting internal model 
that maps between desired movements and neural commands. In this 
framework, generalization may result from a neural population code in 
which spatial basis functions are shared by reaches to nearby targets25. 
Adapting to a curl field at the trained target modifies this shared basis, 
thereby influencing untrained reaches in a spatially localized manner.

The learning-induced changes in preparatory states within this 
force-predictive subspace were closely coupled to changes in 
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Fig. 1 | Task design and behavioural performance. a, Block schematic of the 
curl force field learning task (blue, workspace centre; green, reach targets). A curl 
field (small white arrows) was applied at a single trained target; generalization of 
learning to other targets was probed via error clamp. Bottom left, an illustration 
of a monkey controlling a haptic device. b, Hand trajectories during learning and 
washout from two representative sessions. CW, clockwise; ACW, anticlockwise. 
c, Behavioural learning and washout measured as lateral hand deviation.  
d, Perpendicular hand force difference between error-clamp trials and 
before-learning trials showed local generalization (orange), in contrast to 
no-learning control sessions (black). Data are mean ± s.e.m. across sessions.
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Fig. 2 | Changes in preparatory neural states accompanying learning.  
a, In the force-predictive TDR subspace, single trial (small circles) and 
condition-averaged (large circles) before-learning preparatory states were 
radially organized. Inset shows progression of preparatory states during 
learning (grey to black) in two example learning sessions with anticlockwise and 
clockwise fields. Bottom right, preparatory states within this space predicted 
initial hand forces. AU, arbitrary units. b, c, Neural correlates of generalization in 
this TDR subspace probably reflected compensatory initial forces. Preparatory 
states for the trained target (0°) and nearby targets (within 45°) shifted after curl 
field learning but not in no-learning control sessions. Neural states visualized in 
b and angular shifts quantified in c. Error bars: s.e.m. across sessions.  
d, After-learning preparatory states for all targets shifted away from their 
before-learning states, visualized in the leading principal components (PCs). 
Grey circles, preparatory states for the trained target during learning.  
e, After-learning preparatory states comprised a new neural repertoire for all 
targets near and far from the trained target, in contrast to a lack of repertoire 
change in no-learning control sessions. f, g, Preparatory states shifted uniformly 
(f) and comprised a new neural repertoire (g) following learning but not during 
control reaches with random force perturbations (perturb). ***P < 0.001; NS, not 
significant. See Supplementary Table 1 for statistics.
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movement output. These changes are similar to the re-aiming strategy 
reported in visuomotor rotation (VMR) learning tasks, in which motor 
preparatory activity rotates in the opposite direction of the rotated 
visual feedback18,26,27. They are also consistent with a more general 
‘reassociation’ strategy observed during short-term brain-computer 
interface (BCI) learning4. Within this neural subspace, the motor system 
may repurpose existing activity patterns, reflecting a common strategy 
across different motor learning contexts4,18,26–30.

A uniform shift of neural population activity
We next applied principal component analysis (PCA) to preparatory 
activity to probe for additional changes during learning. The first two 
principal components largely overlapped with the force-predictive 
subspace (Extended Data Fig. 3a); however, along the third principal 
component, preparatory states shifted uniformly during learning 
for all targets, including those far from the trained target (Fig. 2d). 
To determine a neural axis that captures this uniform shift in the 
full-dimensional neural space, we defined the uniform-shift axis as the 
vector connecting the centroid of before-learning states to the centroid 
of after-learning states (subtracting a consistently small component 
within the force-predictive TDR subspace; Extended Data Fig. 3a). Along 
this uniform-shift axis, preparatory states of the trained target shifted 
gradually during learning (Fig. 2d, Extended Data Fig. 2d). We performed 
a variety of control analyses that demonstrated that the uniform shift 
could not be attributed to learning-unrelated changes in behaviour, 
including speed, muscle activation, stiffness, posture and error-clamp 
movements (Extended Data Figs. 1d, 3–5), or to changes in neural tuning, 
including preferred direction and background drift31 (Supplementary 
Table 2, Supplementary Note 2). The uniform shift therefore may facili-
tate learning itself rather than mirror behavioural changes.

This uniform shift reflected the emergence of new preparatory activ-
ity patterns that were not used before learning. These new patterns 
were identified using a neural repertoire metric4 (Fig. 2e, Extended Data 
Fig. 2e), which revealed that these changes were specific to learning, 
compared to control sessions without curl fields or with random pulse 
perturbation forces that simulated the magnitude of the curl field but did 
not admit learning (Fig. 2f, g). Moreover, we did not observe a uniform 
shift or repertoire change during VMR learning (Extended Data Fig. 2f, g) 
where reassociation was observed, consistent with previous studies18,20.

Uniform shifts index motor memories
Next, we tested whether distinct uniform shifts might accompany learn-
ing multiple curl fields. We trained monkeys to learn different curl 
fields sequentially within the same session or over multiple sessions. 
To compare learning over multiple sessions, we tracked a stable neural 
population with highly similar cross-session waveforms (Extended Data 
Fig. 6a, b). We then identified the uniform-shift axis for each learned 
field and computed the dot product between each pair of axes. For two 
opposite curl fields applied to the same target, the uniform-shift axes 
were nearly antiparallel, such that preparatory neural states shifted in 
opposite directions with respect to the before-learning states (Fig. 3a, 
Extended Data Fig. 6c). For curl fields trained at different reach direc-
tions (up, right or down), the uniform-shift axes were nearly orthogo-
nal (Fig. 3b, c, Extended Data Fig. 6c). Curl-field identity was reliably 
decoded above chance on the basis of the shifted post-learning pre-
paratory states (Fig. 3d). These geometric relationships suggest that 
uniform shifts index specific curl fields, mapping motor memories to 
distinct, precisely arranged locations in neural state space.

Uniform-shift geometry and interference
This contrast between orthogonal uniform shifts at well-spaced trained 
targets and opposing shifts at the same target suggests a connection 

between uniform-shift geometry and interference. Interference is a 
slowing of learning that can occur when adapting to opposing fields 
simultaneously3,7,8,10. When two fields interfere, the associated uniform 
shifts might be oriented so that trial-by-trial changes partially oppose 
each other. To test this, we designed an interference experiment which 
interleaved reaches to two targets separated by 30° (within the effect 
of spatial generalization, Fig. 1d) with opposite curl fields applied 
(Fig. 4a). Hand deviation errors decreased over hundreds of trials 
(Fig. 4b, Extended Data Fig. 7a); however, more trials were required 
to learn either field (more than 400 trials) versus when learning each 
field individually (fewer than 200 trials; Fig. 5g), indicating that simul-
taneous learning was slowed by partial interference. In a subsequent 
sequential-learning block, both fields were trained separately and hand 
deviation errors further decreased (Fig. 4b, Extended Data Fig. 7a).

Within a force-predictive TDR subspace, preparatory states for the 
two trained targets gradually rotated in opposite directions during 
simultaneous learning, and this progression continued during sequen-
tial learning, mirroring behavioural performance (Fig. 4d, Extended 
Data Fig. 7c). At nearby targets, we observed behavioural and neu-
ral generalization from learning both fields (Fig. 4c, Extended Data 
Fig. 7b). We then identified uniform-shift axes for the two fields using 
preparatory states during sequential learning, which were oriented 
127° (monkey U) and 128° (monkey V) apart. This angle is intermediate 
between orthogonal uniform-shift axes for fields applied at targets 90° 
apart (Fig. 3b), and antiparallel axes for opposing fields applied at the 
same target (Fig. 3a). During simultaneous learning, shifts of prepara-
tory states along these axes partially opposed each other, suggesting 
a neural mechanism of interference (Fig. 4e, Extended Data Fig. 7d).

We conducted a second interference experiment with opposite 
fields applied at the same reach target on randomly interleaved trials 
(Extended Data Fig. 8a). As expected, monkeys were unable to learn the 
two fields simultaneously, indicating complete interference7, but subse-
quently learned both fields sequentially (Extended Data Fig. 8b). As the 
uniform-shift axes associated with opposing fields at a single target were 
antiparallel (Fig. 3a), we predicted little net progress along this shared 
dimension during simultaneous learning. Indeed, preparatory neural 
states for the two fields remained unseparated within the force-predictive 
subspace and along the shared uniform-shift axis (Extended Data Fig. 8c, 
e). Subsequently, preparatory states shifted along the antiparallel 
uniform-shift axes during sequential learning (Extended Data Fig. 8e). 
Collectively, these findings indicate a correspondence between interfer-
ence and the geometry of uniform-shift axes during motor preparation.

Additionally, in both interference experiments, we observed a resid-
ual neural shift that accompanied interference during simultaneous 
learning, orthogonal to the field-specific uniform shifts during sequen-
tial learning (Fig. 4f, Extended Data Figs. 7d, 8e). Notably, the residual 
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interference shift occurred even when no net learning was observed. 
We speculate that this residual shift probably relates to an attempt to 
index neural activity patterns specific to the interference context, which 
might facilitate strategies tailored to adapting to an unpredictable 
environment (for example, impedance control to stabilize the limb32,33).

Uniform shift may retain a motor memory
Finally, we examined whether learning-induced shifts in prepara-
tory activity persisted after de-adaptation as a motor memory5,24,34. 
Over hundreds of washout trials without the field, monkeys gradu-
ally reverted to their before-learning reaching behaviour (Fig. 1b, c,  
Extended Data Fig. 4a). Washout preparatory states in the force- 
predictive subspace correspondingly rotated back towards the 
before-learning states (Fig. 5a, c, Extended Data Fig. 9a). By contrast, 
along the uniform-shift axis, washout states remained separated 
from before-learning states (Fig. 5b, d, Extended Data Fig. 9b). Fur-
thermore, preparatory states shifted uniformly again during wash-
out along a second, nearly orthogonal dimension (Fig. 5e, Extended 
Data Fig. 9e). Before-learning, late-learning, and late-washout condi-
tions could be reliably decoded from single-trial preparatory states 
(Fig. 5f). Collectively, these results underscore that washout is not 
simply the reverse of learning and suggest that the persistent uniform 
shift of preparatory activity potentially retains a motor memory of 
the learned field.

Furthermore, we performed a relearning experiment in which mon-
keys were exposed to the same field again after washout within the 
same session10. Monkeys relearned the curl field faster than the initial 
learning, a hallmark of motor memory retention (Fig. 5g, Extended 
Data Fig. 9c). Neural trajectories during relearning approached the 
late-learning neural trajectory faster than during initial learning 
(Fig. 5h, Extended Data Fig. 9d). Moreover, preparatory states after 
relearning were indistinguishable from the initial learning states within 
each session (Fig. 5i). We also observed that uniform shifts for the same 
field in two sessions 18 days apart were close to parallel (Extended Data 
Fig. 9f). These results support the hypothesis that the uniform shift 
indexes and stores a field-specific motor memory.

We also assessed the relationship between distances neural states 
progressed along the uniform-shift learning axis and behavioural 

learning rates. Within a session, uniform-shift distances were signifi-
cantly smaller during relearning than during initial learning (Fig. 5j). 
Across five sessions with a consistent neural population, uniform-shift 
distances were strongly correlated with behavioural learning rates 
(Fig. 5k), suggesting that if preparatory states begin further along a 
given uniform-shift axis, learning will proceed faster.

Uniform shift is specific to motor preparation
The uniform shift emerged during motor preparation and our results 
were largely insensitive to the preparatory time window analysed 
(not shown) owing to relatively stationary neural activity during the 
preparatory period (Extended Data Fig. 10a). By contrast, we did not 
find repertoire changes in baseline activity (Extended Data Fig. 10b) 
or uniform shifts in peri-movement activity. Shifts of peri-movement 
states during learning were local and matched the profile of behav-
ioural generalization (Extended Data Fig. 10c–f). Peri-movement states 
reverted to before-learning patterns after washout (Extended Data 
Fig. 10g, h), mirroring the de-adapted movement. Correspondingly, 
late-washout neural trajectories were more similar to before-learning 
neural trajectories during the peri-movement period than the prepara-
tory period (Extended Data Fig. 9g, h). Taken together, the uniform shift 
was a learning-related feature of neural population activity specific to 
motor preparation.

Discussion
Through the lens of curl field learning, we identified structured changes 
in cortical preparatory activity that reflected distinct components of 
motor learning. We found reassociation-like changes in preparatory 
activity in a movement-predictive neural subspace closely coupled to 
changes in movement parameters, similar to those reported in VMR 
and short-term BCI learning4,18,26,27,29,30 (see Supplementary Discus-
sion). Notably, we discovered a shift of preparatory states along an 
orthogonal neural dimension that occurred uniformly for all reach 
targets, including those with unaltered movement. In a series of 
learning experiments with multiple curl fields, we established that 
these uniform shifts were arranged in neural state space with a pre-
cise geometry that appeared to index distinct motor memories and 
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reduce interference. Following washout, the uniform shift persisted 
even as reaching behaviour de-adapted. This persistent uniform shift 
correlated with faster relearning and may serve to retain a short-term 
memory of recent learning.

Cortical preparatory states provide the initial condition of the 
dynamical system whose evolution generates activity patterns that drive 
movement14,21,23,35–37. Uniform shifts that separate these initial states 
may serve to isolate learning-induced modifications to the subsequent 
neural dynamics, thus separating motor memories to facilitate adaptive 
behavioural improvements in a specific context7,8. Conversely, when the 
motor system is unable to engage separate indices, such as when oppos-
ing curl fields are randomly interleaved3,13, opposing modifications 
to neural dynamics adjust the neural trajectory originating from the 
shared preparatory state, resulting in interference. Recent behavioural 
studies demonstrate that when certain contextual cues or movement 
components are added to differentiate movements, opposing fields can 
be learned without interference7,8. Our results suggest that the motor 
system leverages the shifts of preparatory states along orthogonal 
neural dimensions to index distinct motor memories, consistent with 
the central role of movement preparation reported in these studies.
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Extended Data Fig. 1 | Additional information for task design, recording 
sites and behavioural performance. a, Spatial arrangements of the 12 
reaching targets. The target density near the trained target (down, up or right) 
was higher in order to sample more neural states for reaches that were more 
likely to be altered by learning, for the purpose of studying generalization of 
learning3. Ideally, one would like to have equally-spaced reach targets as dense 
as possible, but because monkeys could perform a limited number of trials 
each day, a compromise solution was to increase the density of targets near the 
trained target. Note that the curl field can be either clockwise (CW) or 
counterclockwise (CCW). Here we show CW fields as an example. b, Utah-array 
implant locations in monkey U and recording sites in monkey V. Recordings 
were performed in PMd and M1 in the hemisphere contralateral to the reaching 
arm. Top panel: an intraoperative photo of three Utah-array implants in 
monkey U. Bottom panel: a schematic map illustrating the approximate 
locations of recording sites in monkey V based on stereotactic coordinates; 
data in this work included units recorded from multi-electrode V-probes and 

Neuropixels probes. Histology has not yet been done on either monkey.  
Using the cortical landmarks, we estimated that the recording sites in monkey 
V largely overlapped with the lateral half of the area covered by the three Utah 
arrays in monkey U. AS: Spur of arcuate. CS: central sulcus. PCD: precentral 
dimple. c, We computed behavioural (top panel) and neural generalization 
(bottom panel) with the sign of the effects flipped for CCW fields to match the 
effects of CW fields, compared to Fig. 1d and Fig. 2c. We found a spatial 
asymmetry in behavioural and neural generalization, with more learning in the 
‘push’ direction (i.e., the direction to oppose the curl field). Error bars, s.e.m. 
across sessions (monkey U, n = 4, 3; monkey V, n = 5, 3). d, Top panel: 
trial-averaged hand speed in different blocks over multiple learning sessions. 
Shaded area, s.e.m. across sessions (monkey U, n = 4; monkey V, n = 5). Bottom 
panel: compensatory hand force perpendicular to the reach direction in one 
example session. Hand force in late-learning trials (dark red) showed a more 
stereotypical, less variable temporal pattern with an earlier onset than in 
early-learning trials (light red). Time zero, movement onset.
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Extended Data Fig. 2 | Additional results of neural activity patterns during 
curl field learning and VMR learning. a, Initial hand forces predicted by the 
2D TDR preparatory states were correlated with real forces of the upcoming 
movement (the slope is 0.41 and the intercept is 0.02 with R2 = 0.59 and  
P = 6.06 x 10−9). The sign of hand force indicates its direction. Lighter dots, 
earlier learning trials; darker dots, later learning trials. b, Single-trial prediction 
MSE of initial hand forces was significantly smaller using original data than 
shuffled data (two-sided Wilcoxon rank-sum test: P = 0.0006 for both training 
and test sets of monkey U and P = 0.008 for both training and test sets of 
monkey V). Training set: before-learning trials. Test set: learning trials. Control 
results (blue) were forces predicted by models built from training sets that had 
neural and behavioural data shuffled. One datapoint per session. c, Changes of 
preparatory states in the force-predictive TDR subspace reflected 
generalization of learning, quantified as the rotatory angle from 
before-learning to error-clamp neural states. Zero degree on the x axis, the 
trained target. Error bars, s.e.m. across sessions (n = 5, 3). d, Normalized 
single-trial neural shift during learning along the uniform-shift learning axis. 
Solid line: linear-log regression (n = 1200, 900). e, Preparatory neural 
repertoires changed similarly for trained and untrained reaches. Black: 

no-learning control results (n =36). Blue: far targets more than 45 degrees from 
the trained target (n = 15). Red: near targets within 45 degrees from the trained 
target (n = 21). One-sided Wilcoxon rank-sum test: Pblack vs. blue = 2.33 x 10−7,  
Pblack vs. red = 4.74 x 10−8, Pblue vs. red = 0.059. f, g, VMR learning results. f, Preparatory 
neural states projected to PCs 1-3. After-learning states (diamonds) were mixed 
with before-learning states (circles). One example session. g, Preparatory and 
peri-movement neural activity patterns did not show repertoire change during 
VMR learning. One-sided Wilcoxon rank-sum test: P > 0.1 for all comparisons. 
Three learning sessions (n = 24) and three control sessions (n = 24) for both 
monkeys. h, i, Neural preparatory states in the 3D TDR subspace. The 3D 
subspace was constructed by TDR capturing the variance due to initial hand 
forces and a binary indicator of trial conditions (an indicator of before-learning 
versus after-learning). One example session. h, In the force-predictive TDR 
subspace, rotatory shifts of preparatory neural states were similar to Fig. 2b.  
i, Along the TDR 3 axis (the binary indicator axis), this 3D model revealed a 
uniform shift similar to what we observed along PC 3 in the PCA subspace 
(Fig. 2d). For all the box plots, the central line indicates the median, the bottom 
and top edges indicate the 25th and 75th percentiles of the data, and the 
whiskers extend to the 5th and 95th percentiles of the data.



Extended Data Fig. 3 | Relationships between neural population 
dimensions and total neural variance explained by different dimensions.  
a, Pairwise dot products between neural population dimensions. Values close 
to 1 indicate that two dimensions are closely aligned and values close to 0 indicate 
that two dimensions are nearly orthogonal. In each session, we calculated the 
dot product of TDR 1 and PC 1 and the dot product of TDR 1 and PC 2, and took 
the larger value of the two dot products (TDR 1 vs. PC 1 / 2). We then calculated 
the dot product of TDR 2 and the PC axis not used for multiplying with TDR 1 
(TDR 2 vs. PC 1 / 2). The PC 1 / 2 plane largely overlapped with the TDR 1 / 2 plane 
(black). The TDR 1, TDR 2, and hand-speed TDR axes were all nearly orthogonal 
to the uniform-shift learning axis (blue and red). PC 3 largely overlapped with 

the uniform-shift learning axis (yellow). Two-sided Wilcoxon rank-sum test: 
monkey U, **P = 4.04 x 10−3, *P = 0.029; monkey V, ***P = 6.66 x 10−4, **P = 7.94 x 10−3. 
Right panel: a schematic illustration of projecting data points from axis α to 
axis β and the corresponding dot product. b, c, The portion of total neural 
activity variance explained by the TDR 1 and TDR 2 (hand force) axes, 
hand-speed TDR axis, uniform-shift axis and PCs 1-3. b, Two-sided Wilcoxon 
rank-sum test: monkey U, *P = 0.029, n.s. P = 1; monkey V, *P = 0.016 and 0.032, 
n.s. P = 0.42. a–c, n = 4 (monkey U) and n = 5 (monkey V). For all the box plots,  
the central line indicates the median, the bottom and top edges indicate the 
25th and 75th percentiles of the data, and the whiskers extend to the 5th and 
95th percentiles of the data.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | EMG signals of 6 upper limb muscles (bicep, radialis 
flexor, radialis extensor, pectoralis, posterior deltoid, lateral deltoid). 
Time zero, movement onset. One example condition (CW curl field applied to 
down reaches). Shaded area, s.e.m. across trials. a, EMG signals in before-
learning, late-learning, error-clamp and late-washout blocks. Muscle activity 
did not show signs of muscle co-contraction during learning (red). Muscle 
activity during the preparatory period remained flat and around the same level 
across all blocks (two-sided rank-sum test: P < 0.0001 for comparing late-
learning or error-clamp bicep activity with before-learning or late-washout 
bicep activity during the preparatory period; P > 0.3 for all the other pairs of 

comparison during the preparatory period). Muscle activity patterns in before-
learning (black) and late-washout trials (blue) were very similar. Muscle activity 
patterns in late-learning (red) and error-clamp trials (purple) were very similar. 
b, EMG signals in before-learning (black) and error-clamp (purple) blocks did 
not show a uniform shift across all 12 reaching targets. For all six muscles, EMG 
activity after learning increased in some directions and decreased in other 
directions. Muscle activity of reaching to the target 135 degrees away from the 
trained target (i.e., far targets with almost no behavioural generalization, see 
Fig. 1c) in before-learning and error-clamp trials showed similar temporal 
patterns.
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Extended Data Fig. 5 | The uniform shift is not due to the error clamp.  
a, Preparatory states in error-clamp (diamonds) and no-clamp (circles) trials 
were not significantly different in no-learning control sessions (Hotelling’s T2 
test: P > 0.5 for all control sessions of monkeys U and V). One example session is 
shown. b, In the error-clamp block (block iii) of learning sessions, the 
late-learning preparatory state and error-clamp state of the trained target were 
not significantly different (Hotelling’s T2 test: P > 0.05 for all learning sessions 
of monkey U and P > 0.1 for all learning sessions of monkey V). Arrows point to 
the before-learning state (purple circle) and error-clamp state (purple 
diamond) of the trained target. One example session is shown. c, Late-learning 
preparatory states comprised a new neural repertoire following learning but 
not during control reaches with random force perturbations. One-sided 
Wilcoxon rank-sum test: ***P = 1.83 x 10−5, n.s. P = 0.99 (n = 12 per box). The 
results are similar to Fig. 2g where we used after-learning, error-clamp trials to 
compute the repertoire change. d–f, The uniform shift was not due to 
reorientation of the TDR plane in error-clamp trials. d, TDR axes using only 
error-clamp trials (TDR-EC) and TDR axes using only before-learning trials 

(TDR-BL) were largely aligned. The error-clamp TDR 1 axis and before-learning 
TDR 1 axis were highly aligned, and same for TDR 2 axes (black). The 
error-clamp TDR axes were nearly orthogonal to the uniform-shift axis (red), 
similar to the before-learning TDR axes shown in Extended Data Fig. 3a. 
One-sided Wilcoxon rank-sum test: monkey U, n = 4 and *P = 0.014; monkey V, 
n = 5 and **P = 4.0 x 10−3. e, In the interference experiments, the force-predictive 
TDR planes constructed from only before-learning (BL) trials, only error-clamp 
(EC) trials, and both (BL+EC) were significantly aligned. One-sided signed-rank 
test comparing dot products to 0.8: n = 8 from monkeys U + V, **P = 3.9 x 10−3.  
f, In the interference experiments, preparatory neural states showed similar 
patterns in the force-predictive TDR plane built from only before-learning (BL) 
trials, only error-clamp (EC) trials, or both (BL+EC). One example session. Small 
black arrows point to the before-learning states of trained targets. For all the 
box plots, the central line indicates the median, the bottom and top edges 
indicate the 25th and 75th percentiles of the data, and the whiskers extend to 
the 5th and 95th percentiles of the data.



Extended Data Fig. 6 | Stability of multi-session recordings and the 
geometric relationship between uniform-shift axes for learning multiple 
curl fields. a, b, Spike waveforms and peristimulus time histograms (PSTHs) of 
three example neurons across sessions. The same 71 neurons from monkey U 
Utah-array recordings were selected post-hoc by comparing waveform 
correlations and tracked over five successive sessions. a, All selected neurons 
had nearly-identical waveforms. b, Like the three example neurons, most 
selected neurons had similar direction-tuning properties for before-learning 
reaches across sessions. Go, go cue. Move, movement onset. c, Distribution of 

dot products between uniform-shift axes for learning two opposite fields 
applied at one reach target sequentially (green) or two distinct fields applied at 
different reach targets sequentially (purple). We compared them with 
simulated distributions of dot products between uniform shifts predicted by 
‘orthogonal’ (red, around 0), ‘parallel’ (blue, around 1) and ‘antiparallel’ (black, 
around -1) relationships (see Measurement of geometric relationships between 
uniform-shift axes in Methods). Top inset, the zoom-in view of each simulated 
distribution.
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Extended Data Fig. 7 | Interference and sequential learning of opposite curl 
fields applied at two targets 30 degrees apart, monkey V results.  
a, Behavioural learning quantified by lateral hand deviation. Lateral hand 
deviation in both curl fields decreased slowly during simultaneous learning 
(blue) and further reduced during sequential learning (red). One-sided 
Wilcoxon rank-sum test: PCCW = 1.30 x 10−10, PCW = 1.51 x 10−11. b, Behavioural and 
neural generalization of simultaneously learning two fields. Behavioural 
generalization was measured by perpendicular hand force differences between 
error-clamp and before-learning trials, and neural generalization was 
measured by the rotatory angle between before-learning and error-clamp 
neural states. Zero degree on the x axis, the middle target between the two 
trained targets. Error bars, s.e.m. from resampling (100 repeats). c, Preparatory 
neural states in the force-predictive TDR subspace. Before-learning states 
(circles) spatially organized corresponding to reach directions. Error-clamp 
states (diamonds) rotated counterclockwise for reach targets near the CW field 
and clockwise for targets near the CCW field. Preparatory states of the two 
trained targets (triangles) rotated opposite their curl field directions in blocks 
ii and iii (left panel), and further separated in the sequential-learning block 

(right panel). Small yellow arrows point to the before-learning states of trained 
targets. Neural states of seven nearest targets are visualized in c, and 
quantified neural changes for all 11 targets are shown in b. d, Left panel: 
preparatory activity projected into the subspace spanned by the two 
field-specific uniform shifts. Without orthogonalization, these two uniform 
shifts were 128 degrees apart. The uniform shifts were orthonormalized before 
projection such that: x axis = field 1 uniform shift, y axis = field 2 uniform  
shift – the projection of field 2 uniform shift on field 1 uniform shift. During 
simultaneous learning (blocks ii and iii), preparatory states of each field 
(orange and pink) moved in its specific uniform-shift direction while also 
progressing in the other uniform-shift direction, and were significantly 
separated (Hotelling’s T2 test: P = 2.58 x 10−6). Grey arrows illustrate the 
hypothesized trial-by-trial progression of preparatory states for both fields 
during simultaneous learning. During sequential learning, preparatory states 
of each field (green and purple) further separated (Hotelling’s T2 test: P = 0). 
Right panel: A residual interference shift orthogonal to the field-specific 
uniform shifts occurred during simultaneous learning. Neural states in the left 
panel are the projection of neural states into the grey plane in the right panel.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Interference and sequential learning of opposite curl 
fields applied to the same target. a, Block design of the interference 
experiment. Same as in Fig. 4a except that two opposite curl fields were applied 
to the same reach target. b, Behavioural learning quantified by lateral hand 
deviation. Hand lateral deviation in both curl fields only slightly decreased 
during simultaneous learning (blue), and significantly reduced during 
sequential learning (red). One-sided rank-sum test: monkey U, ***P = 1.51 x 10−11; 
monkey V, ***P = 1.51 x 10−11. c, Preparatory neural states in the force-predictive 
TDR subspace. In blocks ii and iii (left panel), preparatory states of the two curl 
fields (triangles) were mixed together around the before-learning state (circle). 
Error-clamp states (diamonds) of most targets shifted from their corresponding 
before-learning states. These shifts did not show coherent patterns across 
targets or monkeys and were likely unrelated to learning. In the sequential-
learning block (right panel), preparatory states of the two curl fields (triangles) 
gradually rotated opposite their curl field directions. The small arrow points to 
the before-learning state of the reach target that later had curl fields (trained 
target). Neural states for seven nearest targets are shown. d, Perpendicular 
hand force differences between error-clamp and before-learning trials  
(top panel), and the rotatory angle from before-learning to error-clamp neural 

states (bottom panel), did not show coherent patterns across targets or 
monkeys. Zero degree on the x axis, the trained target. Error bars, s.e.m. from 
resampling (100 repeats). e, Uniform shifts for learning two curl fields and the 
residual interference shift were defined in the same way as in Fig. 4e, f. The two 
field-specific uniform shifts were close to antiparallel (monkey U, dot 
product = - 0.79; monkey V, dot product = -0.64), and so we could visualize 
preparatory neural states in a 2D plane spanned by the field 1 uniform shift and 
the residual interference shift. In blocks ii and iii, preparatory states of the two 
curl fields (orange and pink) shifted away from the before-learning centroid 
(grey circle) along the residual interference axis, but they remained close to 
each other (Hotelling’s T2 test: monkey U, P = 0.66; monkey V, P = 0.98). During 
sequential learning, preparatory states of the two curl fields (green and purple) 
were separated by opposite uniform shifts (Hotelling’s T2 test: monkey U, 
P = 2.49 x 10−4; monkey V, P = 2.90 x 10−5). b–e, One session per monkey. Though 
just one session of this interference experiment was performed with each 
monkey, the results were consistent across monkeys and complimentary to 
findings when monkeys learned multiple fields sequentially, which supported 
the indexing hypothesis (Fig. 3).



Extended Data Fig. 9 | Monkey V washout results and additional 
information on the neural population correlate of motor memory 
retention. a, The angular difference between washout states and the 
before-learning state gradually decreased on a single-trial basis (grey dots: 
single-trial data points from all sessions; solid line: linear regression). 
Normalized against the maximum in each session. b, Distance between 
washout states and the before-learning state along the uniform-shift learning 
axis did not show a significant trend of increase or decrease (solid line: linear 
regression). Each dot is a single trial. c, Hand deviation was smaller during 
relearning than during initial learning (one-sided Wilcoxon rank-sum test: 
P = 0.0015). d, Neural trajectories approached late-learning trajectories faster 
during relearning than initial learning. One-sided rank-sum test: P = 6.18 x 10−4. 
c, d, Shaded area, s.e.m. across sessions (n = 3). e, Distribution of dot products 
between uniform-shift learning and washout axes (purple), compared to 
simulated distributions of dot products between uniform-shift axes predicted 
by orthogonal (red), parallel (blue) and antiparallel (black) relationships.  
f, Distribution of dot products between uniform-shift axes for learning the 
same curl field in two sessions 18 days apart (green, close to 1). g, Neural 

trajectories of before-learning, late-learning, late-washout and late-relearning 
conditions (−150 to +150 ms from target onset, covered by the grey circle; −50 to 
+50 ms from the go cue, covered by the grey ellipse; and −200 to +400 ms from 
movement onset). Movement preparation and execution periods are noted on 
the trajectories. Black arrows show the direction of neural trajectories.  
The late-washout trajectory (green) was less similar to the before-learning 
trajectory (black) during movement preparation than execution. TO: target 
onset. GC: go cue. One example session. h, During preparatory period (prep), 
the similarity between late-washout and before-learning neural trajectories 
was significantly lower than the similarity between before-learning neural 
trajectories. During movement period (move), the similarity between 
late-washout and before-learning neural trajectories could compare to the 
similarity between before-learning neural trajectories. One-sided rank-sum 
test: seven sessions from monkeys U + V, **P = 0.0012, n.s. P = 0.50. For each 
box, the central line indicates the median, the bottom and top edges indicate 
the 25th and 75th percentiles of the data, and the whiskers extend to the 5th and 
95th percentiles of the data.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Neural population activity patterns in other time 
windows. a, PCs 1-4 during -100 to +100 ms from target onset (TO), -100 to +100 
ms from go cue (GC), and -200 to +400 ms from movement onset (MOO).  
We applied PCA to trial-averaged neural activity for different reach directions 
in the before-learning and error-clamp blocks. Across all learning sessions in 
both monkeys, PC 1 explained 30 – 40% of the total variance, PC 2 explained  
10 - 20%, PC 3 explained 8 - 10%, and PC 4 explained 6 - 8%. Neural trajectories in 
PCs 1-4 were bundled together around the target onset time window and 
diverged around the go cue time window (preparatory period). Error-clamp 
neural trajectories all shifted from their corresponding before-learning 
trajectories in PC 3. The time window −50 to +50 ms from go cue (grey shadow) 
we chose for preparatory neural state analysis was within the preparatory 
period and had stronger neural tuning than earlier time windows (e.g., the first 
100 ms after target onset). Top left inset: color-coded reach directions. b, No 
significant neural repertoire change of baseline neural activity (before target 
onset on each trial) after learning the curl field. Black: no-learning control 
results (n = 36, 36). Red: learning results (n = 48, 36). One-sided Wilcoxon rank-
sum test: monkey U, P = 0.999; monkey V, P = 0.595. c–i, Patterns of peri-
movement neural population states. c, Peri-movement states of before-
learning (color circles), learning (grey circles) and after-learning error-clamp 
(diamonds) reaches projected to PCs 1-3. After-learning states of the trained 
target and its nearby untrained targets left the before-learning states. One 
example session. d, Quantification of neural shift during learning along the 
‘peri-movement shift axis’ that connected the before-learning and error-clamp 

states of the trained target, normalized against the distance between these  
two states. n = 4 (monkey U), 5 (monkey V). Cuzick’s test: monkey U, P = 0.032; 
monkey V, P = 3.92 x 10−5. e, The Euclidian distance between before-learning and 
after-learning peri-movement states showed bell-shaped local generalization. 
Error bars, s.e.m. across sessions (monkey U: n = 4, 3; monkey V: n = 5, 3).  
f, Peri-movement activity patterns showed significantly greater repertoire 
change for the trained target and near targets than far targets (monkey U: 
n = 28, 20; monkey V: n = 21, 15). Black: no-learning control sessions (n = 36 for 
both monkeys). One-sided Wilcoxon rank-sum test: monkey U, Pblack vs. blue = 0.26, 
Pblack vs. red = 4.52 x 10−6, Pblue vs. red = 0.002; monkey V, Pblack vs. blue = 3.70 x 10−7,  
Pblack vs. red = 6.02 x 10−9, Pblue vs. red = 5.29 x 10−4. g, Peri-movement states in the same 
PCA subspace during washout. h, Distance between washout and before-
learning states decreased significantly along the peri-movement shift axis. 
Normalized against the distance between the before-learning and after-
learning states of the trained target. n = 4 (monkey U), 5 (monkey V). Cuzick’s 
test: monkey U, P = 0.0077; monkey V, P = 0.0028. i, Pairwise dot products 
between peri-movement neural dimensions. PCs 1-3 significantly overlapped 
with the peri-movement shift (one-sided signed-rank test compared to 0: 
monkeys U + V, n = 9 and P = 0.002 for all comparisons). TDR 1 / 2 axes also 
significantly overlapped with the peri-movement shift (one-sided signed-rank 
test compared to 0: monkeys U + V, n = 18 and P = 1.07 x 10−4). For all the box 
plots, the central line indicates the median, the bottom and top edges indicate 
the 25th and 75th percentiles of the data, and the whiskers extend to the 5th and 
95th percentiles of the data.
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Data collection Central software (v 7.0.2) was used for Blackrock Microsystems (https://www.blackrockmicro.com/technical-support/software-
downloads/) during Utah array, V-probe, and EMG recordings; SpikeGLX software (Imec v 4.3) was used for Neuropixels recordings 
(http://billkarsh.github.io/SpikeGLX/).

Data analysis For Neuropixels recordings, the original data were automatically spike sorted with the Kilosort spike sorting software and then manually 
curated with the ‘phy’ gui (https://github.com/kwikteam/phy); for V-probe and Utah-array recordings, spike sorting was performed 
offline using a custom software package (available online as MKsort; https://github.com/ripple-neuro/mksort/). The behavioral, EMG, 
and neural data were analyzed offline using MATLAB 2017b and 2019a (MathWorks). Code for the repertoire change analysis is available 
on github (https://github.com/mattgolub/bci_learning); code for the TDR and uniform-shift analyses is available on github (https://
github.com/xlsun79/TDRandUniformShiftAnalyses); all other MATLAB codes are available from the corresponding author upon 
reasonable request.
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Sample size Results were replicated in two rhesus monkeys, as widely practiced in the primate research field. Sample size (e.g., number of recorded 
neurons, number of trials per experimental condition) was determined based on our lab's experience and standards in the field, which was 
also consistent with prior electrophysiological studies with similar motor tasks (Li el al., 2001; Perich et al., 2018).

Data exclusions Recording days in which monkeys did not perform enough trials (defined as at least 10 trials/condition) were excluded from all analysis 
because these did not permit reliable estimation of trial-average firing rates.

Replication Results were replicated in two rhesus monkeys, as widely practiced in the primate research field. We also repeated the same task setup for 
multiple days per monkey. And in each day, the same task condition had at least 10 repeated trials. All attempts at replication were successful.

Randomization Random allocation of animals to different groups was not relevant to this study, because we studied the learning behavior of all animals and 
did within-animal comparison (i.e., before-learning vs. after-learning). The allocation of trial conditions was randomized when necessary such 
that animals could not anticipate the upcoming trial, which was critical for studying movement preparation in this study. The task setup was 
also randomized across sessions to encourage animals to learn new behavior each day.

Blinding Blinding was not relevant for this study because trial parameters within each experiment session were automatically randomly assigned and 
interleaved without cues for each task block (subjects could not anticipate the parameters imposed on a given trial), and experimenter did not 
manually control the parameters used on a given trial. Task blocks were automatically switched once the subjects achieved a minimal trial 
count for that block.
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Laboratory animals Two adult male rhesus macaques (Macaca mulatta) U (14 kg, 8 years old) and V (10 kg, 8 years old) were trained on the major 
tasks and control experiments. Two additional male adult rhesus macaques (Macaca mulatta), R (15 kg, 12 years old) and J (16 
kg, 15 years old), were used in control experiments.

Wild animals No wild animals were used in the study. 

Field-collected samples No field collected samples were used in the study.

Ethics oversight All training, recording, surgical and animal care procedures were performed in accordance with National Institutes of Health 
guidelines and were approved by the Stanford University Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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