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Population dynamics is emerging as a language for understanding high-dimensional neural recordings.
Remington et al. (2018) explore how inputs to frontal cortex modulate neural dynamics in order to implement
a computation of interest.
The original conception of reservoir

computing (Luko�sevi�cius et al., 2012)

came with an image of throwing a pebble

into a pond. Almost any dynamical sys-

tem, in this case the three-dimensional

physics of water in the pond, can be

used for computation or memory. For

example, by examining the current state

of the concentric waves created by a

pebble falling into a pond at an earlier

time, one can determine when and where

the pebble initially hit the water. The

reservoir computing literature is often

concerned with computing through the

dynamics of a fixed physical medium

(e.g., optical computers). But if one could

optimally specify a dynamical system that

was tailor-made for a specific computa-

tion or a set of related computations,

what would the dynamics of that system

look like? For example, what if one could

change the physics of the water to opti-

mally subserve the task of remembering

the time when the pebble dropped into

the water? How would such a dynamical

system be configured?

The motivation for these questions is

rooted in a growing body of experimental

and theoretical work (Carnevale et al.,

2015; Churchland et al., 2012; Kato

et al., 2015; Machens et al., 2005; Mante

et al., 2013; Mazor and Laurent, 2005)

that argues neural dynamics implement

computation. The dynamics are those of

the neural population state (e.g., binned

spike counts) evolving through time.

According to this ‘‘dynamical systems

hypothesis,’’ the dynamics describe how

a neural population moves between key

states. For example, a neural population

may move from an initial state that repre-

sents a question to a later state that repre-

sents the answer to that question, and
the transition of the neural population

from initial to final state implements the

computation. Input to the circuit recon-

figures the dynamics and thereby spec-

ifies the kind of answer desired. We are

thus describing a ‘‘computation through

dynamics.’’

Mathematically, the dynamical systems

hypothesis says that the neural popula-

tion state can be described by ẋ(t) =

F(x(t), u(t)), with x(t) the neural population

state, u(t) an input to the system, and

F(･) a nonlinear function. This equation

asserts that any change in the state of

the system can be calculated from the

current state of the neural population

and the inputs to that population. The

initial conditions, x(0), and the input, u(t),

are combined in the nonlinear function

F(･) to determine the state of the system

as it updates through time. Note that

u(t) has to be reasonably constrained;

otherwise, the equation is not particularly

useful as a dynamical model because

u(t) could completely drive the system

in arbitrary ways. In summary, a neural

computation could be configured through

dynamics by specifying both the initial

condition, x(0), and the input, u(t).

Remington et al. (2018) pose the key

question of how these initial conditions

and inputs are configured in dorsal medial

frontal cortex (DMFC) during a timing

task. To probe the role of DMFC, the Ja-

zayeri lab uses an experimental paradigm

called ‘‘Ready, Set, Go’’ (RSG). RSG re-

quires the subject to track and reproduce

various timing intervals. In this task, there

are two successive stimuli for ‘‘Ready’’

and ‘‘Set,’’ after which the subject must

respond ‘‘Go,’’ following a target wait

interval. Two key independent variables

of this task are the initial time interval be-
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interval, ts, and the desired delay between

Set and Go, called the target interval, tt.

The authors introduced seven conditions

to the task by allowing seven values

for ts. They further defined two contexts

by defining tt as tt = g ts, with g taking

values of either 1 or 1.5. According

to the dynamical systems hypothesis,

ts and g must enter the system through

an input to the system, as an initial condi-

tion, or a combination of both. The way in

which these independent variables are

fed into and represented by cortex results

in a particular organization of neural tra-

jectories for trials of this task. It is this or-

ganization of the resultant neural trajec-

tories that Remington et al. (2018) study.

There are complexities to studying

high-dimensional neural population state

trajectories. Imagine watching a play

from the far wing of the theater, where

you can only see the shadows of the ac-

tors projected onto the stage. You may

glean broad understanding of the play,

but your comprehension of the perfor-

mance will undoubtedly be impoverished.

So it is with neural trajectories, which

are almost always high-dimensional,

even when accounting for correlations

among neurons. Modern technology

such as multi-unit electrode arrays or

calcium imaging now allows us to record

higher-dimensional neural activity than

ever before. Yet our capacity to visualize

is limited by our three-dimensional phys-

ical reality. This disparity means that the

common technique of projecting data

down to three dimensions for visualization

is fundamentally problematic because

just as if we attempt to understand

the play from the shadows cast onto

the stage, visualizing low-dimensional
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projections of data can miss key features

of neural activity.

There are additional concerns when in-

terpreting low-dimensional visualizations

of neural data. We tend to think in ideal-

ized terms of straight lines in a noise-

free environment, but neural data are

not ideal. Neural trajectories are often

curved and contain variability not readily

explained by external covariates. Finally,

techniques that use optimization to

discover specific low-dimensional projec-

tions of interest must be used carefully;

otherwise, they may find projections

consistent with nearly any hypothesis.

These problematic features of low-dimen-

sional projections make it difficult to use

statistics to quantify the geometry of pro-

jections in two- and three-dimensional

spaces. Instead, one must find the appro-

priate number of dimensions to capture

the majority of neural variance (typically

90% or greater) and perform statistics

in these high-dimensional spaces (Afshar

et al., 2011; Ames et al., 2014). We then

have three relevant spaces to work in: (1)

two- or three-dimensional space for visu-

alization; (2) high-dimensional ‘‘denoised’’

space for statistics that explains the ma-

jority of neural variance, typically 10- to

20-dimensional; and (3) full dimensional

space of all recorded units. Below, we

use high-dimensional to refer to the last

two cases.

If we really believe that the geometry

of high-dimensional neural data has

meaning in terms of both behavior and

the computations that subserve that

behavior, then we are obligated to move

beyond three-dimensional projections

and attempt to rigorously quantify high-

dimensional neural geometry. In this

work, Remington et al. (2018) developed

a set of tools, called kinematic analysis

of neural trajectories (KiNeT), that is

used to measure features of trajectories

in high-dimensional population-activity

space. KiNeTmeasures timing, distances,

and angles between neural trajectories.

The teamusedKiNeT to analyze these tra-

jectories in their timing task to make infer-

ences about the dynamical structure of

the neural state space underlying the task.

Using KiNeT, the authors found that the

neural dynamics in frontal cortex for this

timing task were organized in a modular

structure such that the sample interval

(ts) and gain (g) variables were encoded
874 Neuron 98, June 6, 2018
on different axes in neural state space.

The flow of all neural trajectories through

time moved along roughly parallel paths

that were essentially orthogonal to axes

encoding the sample interval and gain.

The authors were able to rigorously

quantify this geometry using KiNeT. The

authors also excluded four additional

hypothetical organizations of the neural

trajectories. Finally, they showed that

location in neural state space had behav-

ioral implications. For example, the

average across neural trajectories with a

given sample interval that were closest

in neural state space to trajectories sub-

serving longer sample intervals was asso-

ciated with trials that were also slower

behaviorally on average. We emphasize

that the authors were working in a high-

dimensional space created by the ten

principal components that explained the

most variance of the neural data.

To further their study, the authors then

used trained recurrent neural networks

(RNNs) for hypothesis building. With the

growth of the computation through dy-

namics hypothesis, RNNs have gained

traction as learnable, high-dimensional

dynamical models that can explicitly test

hypotheses about how neural dynamics

might be structured when subserving

a computation (Carnevale et al., 2015;

Mante et al., 2013; Sussillo et al., 2015).

Broadly, the RNN is trained to perform

a task analogous to the one the animal

is required to perform. Concretely, given

particular inputs (stimuli), the RNN will

produce a corresponding target (a deci-

sion or motor output), which is designed

by the modeler. After training, the RNN

will produce novel outputs for novel inputs

that were not used in training. The real po-

wer of the trained RNN is that it provides

the modeler with a generative nonlinear

dynamical system that can be compared

to the neural data. Because modelers

have full access to a dynamical system

that performs the task of interest (e.g., un-

limited trial counts and novel trial types,

and access to the activations of all units

in the network and all model parameters),

trained RNNs can be extremely useful for

hypothesis generation and for developing

intuitions about the underlying computa-

tional dynamics that may subserve neural

data.

Remington et al. (2018) created a syn-

thetic version of the RSG task for the
RNNs. In order to test their hypothesis of

how the two independent variables, stim-

ulus time and gain, might influence the

computation in DFMC, they trained two

RNN variants on this synthetic RSG task.

The authors varied whether gain came

into the RNN as a transient input, thus

acting to influence only the initial condi-

tion of the RNN, or as a static, ‘‘contex-

tual’’ input that remained on during the

entirety of the trial. The two RNN variants

were then compared to the neural data

both visually and using KiNeT. Geometri-

cally, the neural data were quanti-

tatively more similar to the RNN variant

where g entered the RNN as a static input.

The authors thus argued that the RNN

studies provide evidence in support of

the hypothesis that g enters the neural

circuit as a static contextual input, which

is also consistent with how the visual

stimulus representing g was delivered to

the animal.

Thework of Remington et al. (2018) pre-

sents an opportunity to make two broader

points. First, the hypothesis that contex-

tual information is represented in neural

activity as a static input in the RSG task

suggests that cortical input may flexibly

reconfigure local cortical circuits. This

contextual input shifts the neural activity

in state space, thereby changing the

effective circuit by shifting each neuron’s

average operating point on its nonline-

arity. In this manner, a contextual input

may allow the same group of cortical neu-

rons to perform related computations

through a mild reconfiguration of the dy-

namics rather than requiring novel circuits

for each new task (see also Mante et al.,

2013). This result could have major impli-

cations for howbiological neural networks

are able to generalize across related tasks

with minimal task-specific training.

Second, trained RNNs can be

extremely useful for hypothesis genera-

tion and for developing intuitions about

the computations that implement various

algorithms. However, caution must be

used in drawing strong conclusions about

the relationship between an RNN and

neural data. An RNN merely provides

one example of how the computation

could be solved and does not prove that

the brain solves computations in the

same way. To gain the most meaningful

insight from RNN models, we as a com-

munity should strive to make our RNN
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models as precise as possible by iterating

through multiple input/output configura-

tions, hyper-parameters such as initializa-

tion schemes, and other augmentations

such as regularization methods. These

choices, which are not optimized, can

have profound effects on the dynamical

solution learned by an RNN. We should

also strive to orient our work with RNNs

to make testable predictions that can be

experimentally examined. In this way,

the systems community will be able to

more effectively utilize trained RNNs to

support or refute hypotheses about neural

computation in biological neural circuits.

In summary, Remington et al. (2018) ad-

vances the field by placing computation

through dynamics squarely at the center

of neuroscientific investigation and further

provides a set of quantitative tools to

rigorously interrogate the geometry of

high-dimensional neural dynamics. As

we move forward, cleverly chosen two-

and three-dimensional visualizations will

continue to be indispensable in devel-

oping basic intuitions about the structure
of population activity and the computa-

tions such structure subserves. However,

with new experimental methodologies

that allow increasingly large population

recordings, and with the development

of high-complexity behaviors, quantifica-

tion tools amenable to high-dimensional

spaces will become increasingly relevant.
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Many neuroscientists are excited regarding the potential of ultrasound to yield spatiotemporally precise and
noninvasive modulation of arbitrary brain regions. Here, Guo et al. (2018) and Sato et al. (2018) show that
applying ultrasound to rodent brains activates acoustic responses more prominently than eliciting neuromo-
dulation directly, suggesting potential confounds of ultrasound neuromodulation experiments.
Current techniques for noninvasive neu-

romodulation, such as transcranial mag-

netic stimulation (TMS) or either trans-

cranial alternating or direct current

stimulation (tcACS or tcDCS), show a

limiting trade-off between the spatial

resolution and depth of penetration of

the intervention (Deng et al., 2013). In

contrast, focused ultrasound can deliver

energy with millimeter-scale spatial reso-
lution to any point of the brain, with guid-

ance and real-time visualization of the

ultrasound focus with MRI, using hard-

ware that is already clinically available

(Elias et al., 2016; Hynynen and Clement,

2007). Since as early as the 1950’s, elec-

trophysiological, functional neuroimag-

ing, and behavioral effects have been

reported after applying focused ultra-

sound to the mammalian brain across a
range of species, including mice, rats,

cats, monkeys, and humans (reviewed in

depth in Tyler et al., 2018). These features

and data have led to a surge of recent in-

terest in developing focused ultrasound

as a tool for noninvasive neuromodula-

tion. However, the mechanism by which

ultrasound may interact with neural tissue

to drive these effects, as well as the

robustness of this mechanism, has been
018 ª 2018 Published by Elsevier Inc. 875
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