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Classical work has viewed primary
motor cortex (M1) as a controller of
muscle and body dynamics. A
recent brain–computer interface
(BCI) experiment suggests a new,
complementary perspective: M1 is
itself a dynamical system under
active control of other circuits.

Even the simplest of behaviours require
concerted interactions among thou-
sands of neurons. However, of these
many neurons, only a fraction directly
determine behavioural outputs. For
example, reaching for a cup of coffee
can potentially be achieved by myriad
different activity patterns in primary
motor cortex (M1): as long as cortico-
spinal (or ‘output-potent’) neurons pro-
duce the correct activity, the activity of
other (‘output-null’) neurons appears
entirely unconstrained, or ‘redundant’.
Redundancy has attracted much atten-
tion lately due to its potential significance
for robust and flexible neural computa-
tions. Redundant representations
improve robustness to perturbations
[1,2], might allow multiple computations
to occur concurrently in the same circuit
[3,4], and could explain why behaviour
remains stable despite routine reorgan-
isation of neural representations [5].

Importantly, neural redundancy could
also hold important information concern-
ing the circuit implementation of motor
control. Indeed, although output-null
activity does not directly contribute to
behaviour, it is likely an essential cog in
the mechanism that produces correct
output-potent activity. Recently, Hennig
et al. used a BCI as a scientific tool to
uncover the principles by which the brain
chooses one pattern of output-null activ-
ity over another [6]. In monkeys, the
authors recorded the activity of �100
M1 neurons, used it as a control signal
to actuate a cursor moving on a screen,
and trained the animals to perform spe-
cific cursor movements. Critically, this BCI
setup allowed the authors to choose
which linear combinations of the action
potentials of the recorded neurons mat-
tered for the cursor velocity, and which
did not. In other words, they could arbi-
trarily create ‘output-potent’ and ‘output-
null’ directions in the state space of neural
activity, as illustrated in Figure 1A.

Hennig et al. used activity recorded during
the BCI task to systematically rule out and
rule in hypotheses regarding the structure
of output-null activity in M1 [6]. A first
possibility is that there is no predictable
structure: M1 might receive noisy or task-
unrelated inputs from other brain areas,
and leave uncorrected the contributions
of these inputs to output-null activity.
Hennig et al. tested two variants of this
hypothesis with their data, and found that
neither accurately predicted the distribu-
tions of activity along the output-null
directions, across various directions of
cursor movement.

A second hypothesis is inspired by previ-
ous work in motor neuroscience, in which
M1 is typically viewed as controlling the
dynamics of skeletal muscles (the ‘plant’)
using appropriate inputs (Figure 1B [7,8]).
According to well-established engineer-
ing wisdom, control inputs should ideally
be kept small (relative to some nominal
value) to ensure robustness of the control
solution. Strictly speaking, this principle
applies to potent activity only (input to
the muscular system). However, M1
might be implementing this principle more
liberally and constrain its activity to be as
‘small’ overall as the generation of correct
potent activity permits. Hennig et al.
Tre
considered two versions of this ‘minimal
firing’ hypothesis; again, neither made
accurate predictions [6].

Substantially better predictions of out-
put-null activity were obtained based
on a third hypothesis seemingly unre-
lated to previous work in motor control.
This ‘fixed distribution hypothesis’ pos-
tulates that M1 tends to produce pat-
terns of activity belonging to a fixed
repertoire, which does not depend on
the specific choice of potent directions.
Given a choice of potent directions,
activity is selected on a moment-by-
moment basis from this fixed repertoire,
on the condition that it elicits the right
cursor velocity. Mathematically, this cor-
responds to conditioning a fixed distribu-
tion of M1 activity on some desired value
of momentary potent activity (Figure 1D).
Thus, if one knew the fixed distribution,
one could predict the structure of output-
null activity for any choice of potent and/
or null directions. To test this hypothesis,
Hennig et al. used activity recorded for
one set of potent directions as an empir-
ical proxy for the (unknown) fixed distri-
bution, and used it to predict output-null
activity under a second choice of potent
directions. Remarkably, these predic-
tions were better than those of any other
hypothesis considered, and were as
good as finite samples would allow.

While Hennig et al.’s fixed distribution
hypothesis provides a compact,
thought-provoking description of M1
activity, it lacks a computational rationale.
What normative principle would account
for their observations, and illuminate the
role of M1 in motor control? Hints might
be found in recent experimental [9] and
theoretical [10] work, in which the com-
plex activity patterns of M1 are under-
stood as resulting from strong internal
dynamics. Accordingly, beyond thinking
of M1 as controlling muscles (Figure 1B),
one can view M1 as being part of the
‘plant’ [i.e., an extension of the muscles
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Figure 1. Neural Redundancy in Primary Motor Cortex (M1) Suggests a New View of M1 as a Controlled Dynamical System. (A) Illustration of neural
redundancy: the same behaviour (natural or BCI driven) could be produced by different trajectories in the state space of neural activity (three shown here). The activity
along ‘potent’ directions is constrained by the desired behaviour and, therefore, is the same for all candidate trajectories (top-right inset). By contrast, activity along ‘null’
directions has no direct effect on behaviour and, therefore, is free to vary (top-left inset). (B) M1-as-a-controller view. (C) M1-as-a-plant view. (D) Illustration of the fixed-
distribution hypothesis. At any time, output-null activity is selected as though drawn from some fixed distribution of neural activity (heat map), conditioned on a
momentary desired value of potent activity (white dot). (E) A two-unit neural network (i) is driven by optimal control inputs to generate some desired fluctuations along a
given potent direction. (ii) The distribution of network activity (dots) has the same structure irrespective of the potent direction being used (compare orange and green).
The black ellipse delineates the region of state space within which the network activity can be steered given a fixed input energy budget.
that also needs to be controlled (presum-
ably via control inputs from other brain
areas) Figure 1C]. Under this new per-
spective, the fixed distribution hypothesis
emerges naturally. We illustrate this using
a canonical model of cortical dynamics,
with two coupled populations of excit-
atory and inhibitory cells (Figure 1E). Both
populations receive inputs optimised for
the production of some desired activity
fluctuations along a chosen potent direc-
tion. From a control theoretic standpoint,
strong network interactions imply that
control inputs of fixed energy can steer
activity further along some ‘preferred
directions’ than along others, by exploit-
ing the tendency of the network to pro-
duce correlated activity patterns. Thus, if
control inputs to M1 are energy limited (as
they are in our example, and as robust-
ness demands), M1 activity under an opti-
mal control policy should remain confined
to a certain repertoire, or ‘fixed distribu-
tion’ (Figure 1E, black ellipse). Impor-
tantly, this repertoire is a reflection of
the dynamics of the network, and does
not depend on the specific choice of
potent directions. Therefore, as
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expected, the fixed distribution hypothe-
sis accurately predicts the statistical
structure of output-null activity in this
toy example. In other words, Hennig
et al.’s findings [6] are consistent with
optimal control of M1 dynamics under
energy constraints.

Going forward, we speculate that much
will be learned about the neural basis of
movement by thinking of M1 (and spinal
cord circuits) not only as a body control-
ler, but also as a dynamical system under
the control of other neural circuits. This
new perspective will suggest principled
ways of elucidating the role of motor
areas upstream of M1 (e.g., thalamic
nuclei, basal ganglia, and cerebellum).
Examining neural redundancy at each
level of the control hierarchy (e.g., using
BCI-inspired techniques) will continue to
bring useful insights: null ain’t dull under
the skull.
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