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Theory & Algorithm

Experiments

* We construct a continuous maze environment, where an agent plans for 

continuous actions with MPPI

* Exploration is necessary to find the goal

* We compare random walk exploration to our method, with and without 

posterior sampling
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Maze

Benchmark Tasks with Random Features

* Benchmark tasks including MuJoCo environments from OpenAI Gym

* We use Random Fourier Features

* It is observed that the Thompson Sampling variant of our proposed 

algorithm with RFFs quickly increased reward in early stages, indicating low 

sample complexities empirically

* Our algorithm consistently performs well on simple continuous control 

tasks

Armhand Robotics System

* 33 degree of freedom robotic arm and hand system tasked with picking up 

an spherical object

* Learning model dynamics for the real world applications such as robotics 

requires sufficiently complex features

* We test our method with features created by six ensemble of MuJoCo 

models

* Each element of the ensemble is unable to complete the task in isolation 

We do NOT require bounded state space, bounded cost function or 
bounded feature map 

1. We develop a stopping time martingale to handle the unbounded nature 
of the (realized) cumulative costs

2. We develop a novel way to handle Gaussian smoothing through the chi-
squared distance function between two distributions

3. We utilize methods developed for the analysis of linear bandits and 
Gaussian process bandits (e.g. maximum information gain)

We address multi-step extension to RL settings

We prove a “self-bounding” regret bound that relates the instantaneous 
regret to the second moment of the stochastic process

Self-Bounding, Simulation Lemma
For any policy, model parameterization, and non-negative cost, and for any 
initial state, we have:

Assumption 1
  We have access to an oracle that implements Line 3 of Algorithm
  – One may use some effective heuristics such as DDP, MPPI etc.

Assumption 2
   For every episode, the cost function is non-negative and the realized 
cumulative cost has uniformly bounded second moments, i.e., 
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