CSE 548: Computer Systems Architecture

Instruction Set Architectures
Luis Ceze, Spring 2017

(based on slides lifted from friends at UPenn, UIUC, UW, MIT, etc. but mostly from
Milo Martin at UPenn)

Announcements

* Power: A First-Class Architectural Design Constraint
— Critique due today

* Projects

— l|deas? Need a project partner?
— Sign up to talk to us!

* Next two lectures:
— Workshop on Approximate Computing

— Enabling In-network Computation with a Programmable Network
Middlebox

— Approximate Storage for Encrypted and Compressed Videos

What Is An ISA?

What Is An ISA?

e |SA (instruction set architecture)

— A precisely-defined hardware/software interface, a “contract”

* Functional definition of
— operations, modes, and storage locations supported by hardware

* Description of how to invoke operations

» defines the software-visible state of the system (what is part of this state?)
» defines how each instruction changes that state

» defines instructions and encodings

— Not in the “contract”: non-functional aspects
* How operations are implemented
* Which operations are fast and which are slow and when
* Which operations take more power and which take less

 Why separate architecture and implementation?

Martin/Roth

The Base Sequential Model

* Implicit model of all modern ISAs
— Often called VonNeuman, but in ENIAC before

e Basic feature: the program counter (PC)
— Defines total order on dynamic instruction
* Next PCis PC++ unless insn says otherwise
— Insn order and named storage define computation
* Value flows from insn X to Y via storage A iff...
* X names A as output, Y names A as input...
 AndY after X in total order
* Processor logically executes loop at left
— Instruction execution assumed atomic
— Instruction X finishes before insn X+1 starts

Martin/Roth

Classifying ISAs (Operand models)

e Basic differentiation: type of internal storage

(a) Stack (b) Accumulator (c) Register=memory (d) Register=register/loads=store

mEn amn
Processor
— —
-v—
ALU

add Rd,Rs,Rt;

Examples of Operand Models

* ARM

— Integer: 32 32-bit general-purpose registers (load/store)
— Floating point: same (can also be used as 16 64-bit registers)
— 16-bit displacement addressing

* X86
— Integer: 8 accumulator registers (reg-reg, reg-mem, mem-reg)
e Can be used as 8/16/32 bits
— Floating point: 80-bit stack (why x86 had slow floating point)

— Displacement, absolute, reg indirect, indexed and scaled addressing
* All with 8/16/32 bit constants (why not?)

— Note: integer push, pop for managing software stack
— Note: also reg-mem and mem-mem string functions in hardware

* x86-64 (i.e., IA32-EM64T)

— Integer: 16 64-bit accumulator registers
— Floating point: 16 128-bit accumulator registers

Instruction Length and Format

* Length
— Fixed length

Fetch[PC]
Decode

* Most common is 32 bits
+ Simple implementation (next PC often just PC+4)
— Code density: 32 bits to increment a register by 1

— Variable length

+ Code density
— x86 can do increment in one 8-bit instruction

— Complex fetch (where does next instruction begin?)

— Compromise: two lengths
 E.g., MIPS16 or ARM’s Thumb

* Encoding

— A few simple encodings simplify decoder
* x86 decoder one of nastiest pieces of logic

Martin/Roth

Examples Instruction Encodings

* MIPS

— Fixed length
— 32-bits, 3 formats, simple encoding
— (MIPS16 has 16-bit versions of common insn for code density)

R-type |Op(6) |Rs(5) | Rt(5) | Rd(5) | Sh(5) | Func(6)

I-type | Op(6) | Rs(5) | Rt(5) | Immed(16)

J-type | Op(6) | Target(26)

* Xx86
— Variable length encoding (1 to 16 bytes)

Prefix*(1-4JJOPR] OpExt* [ModRM* [SIB* Disp*(1-4) [Imm*(1-4)

Martin/Roth

Operations and Datatypes

* Datatypes
— Software: attribute of data
— Hardware: attribute of operation, data is just 0/1’s

e All processors support
— 2C integer arithmetic/logic (8/16/32/64-bit)
— |EEE754 floating-point arithmetic (32/64 bit)

* Intel has 80-bit floating-point

* More recently, most processors support
— “Packed-integer” insns, e.g., MMX
— “Packed-fp” insns, e.g., SSE/SSE?2
— For multimedia, more about these later

Martin/Roth

Where Does Data Live?

* Memory
— Fundamental storage space

* Registers
— Faster than memory, quite handy
Write Output — Most processors have these too

Read Inputs

* Immediates

— Values spelled out as bits in instructions,
* What does this imply?

— Input only
e Why?

Martin/Roth

How Much Memory? Address Size

e What does “64-bit” in a 64-bit ISA mean?

How Much Memory? Address Size

e What does “64-bit” in a 64-bit ISA mean”?

— Support memory size of 254
— Alternative definition: width of calculation operations

e Virtual address size

— Determines size of addressable (usable) memory

* Current 32-bit or 64-bit address spaces

* All ISAs moving to (if not already at) 64 bits
— Most critical, inescapable ISA design decision

* Too small? Will limit the lifetime of ISA

* May require nasty hacks to overcome (E.g., x86 segments)
— x86 evolution:

o 4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),

* 32-bit + protected memory (80386)

* 64-bit (AMD’s Opteron & Intel’s EM64T Pentium4)

How Many Registers?

* Registers faster than memory, have as many as possible?

 What can we put in registers?

* How are they addressed?

How Many Registers?

Registers faster than memory, have as many as possible?
— No
— One reason registers are faster is that there are fewer of them
e Small is fast (hardware truism)
— Another is that they are directly addressed (no address calc)
— More of them, means larger specifiers
— Fewer registers per instruction or indirect addressing
— Not everything can be put in registers
e Structures, arrays, anything pointed-to
* Although compilers are getting better at putting more things in
— More registers means more saving/restoring

— Upshot: trend to more registers: 8 (x86)—>32 (MIPS) —128 (1A64)
* 64-bit x86 has 16 64-bit integer and 16 128-bit FP registers

Registers vs Memory

 Whatis the fundamental difference in how they are used?

How Are Locations Specified?

* Registers are specified directly as immediates
— Register names are short, can be encoded in instructions
— Some instructions implicitly read/write certain registers

 How are addresses specified? As variables/expressions
— Addresses are long (64-bit)
— Addressing mode: how are insn bits converted to addresses?
— Think about: what high-level idiom addressing mode captures

Memory Addressing

Addressing mode: way of specifying address

Used in memory-memory or load/store instructions in register ISA

Examples

Register-Indirect: R1=mem|[R2]

Displacement: R1=mem[R2+immed]

Index-base: R1=mem[R2+R3]

Memory-indirect: R1=mem[mem[R2]]
Auto-increment: R1=mem[R2], R2= R2+1
Auto-indexing: R1=mem[R2+immed], R2=R2+immed
Scaled: R1=mem[R2+R3*immedl+immed2]
PC-relative: R1=mem[PC+imm]

What high-level program idioms are these used for?
What implementation impact? What impact on insn count?

Two More (Annoying) Addressing Issues

e Access alignment: address % size == 0?
— Aligned: load-word @XXXX00, load-half @XXXXXO0
— Unaligned: load-word @XXXX10, load-half @XXXXX1
— Question: what to do with unaligned accesses (uncommon case)?
e Support in hardware? Makes all accesses slow
* Trap to software routine? Possibility
* Use regular instructions
— Load, shift, load, shift, and
* MIPS? ISA support: unaligned access using two instructions
1wl @XXXX10; lwr @XXXX10

* Endian-ness: arrangement of bytes in a word
— Why little endian? To be different? To be annoying? Nobody knows

Why alignment matters: Example

e 32-bit word: one or two accesses?
Address N

00 01 10 11 b1b0
Aligned

Misaligned ¢

-

 What if it crosses pages?
* Some architecture have alignment exceptions!

* Aligned architecture can make b1b0 implicit
— important trick for instruction encoding too, why?

Byte Ordering

* Two Conventions
— Big Endian, specify address of most significant byte
— Little Endian, specify address of least significant byte

* No technical significance to distinction — just religious!

— Big Endian: Amiga, Macintosh, IBM RS6000, SGI, Sun
— Little Endian: DEC, IBM PC

Little Endian
— recently many processors are “bimodal”
* MIPS, PowerPC (both mostly Big Endian) ‘ 3 ‘ 2 ‘ 1 ‘ 0 ‘
N’ MSB LSB
 Names based on Gulliver’s Travels T 1513
http://www.wikipedia.org/wiki/Endianness ‘ ‘ ‘ ‘
Big Endian

Which one do you prefer? Why?

ISAs Also Include Support For...

Function calling conventions

— Which registers are saved across calls, how parameters are passed
Operating systems & memory protection

— Privileged mode

— System call (TRAP)

— Exceptions & interrupts

— Interacting with I/O devices

Multiprocessor support

— “Atomic” operations for synchronization

Data-level parallelism

— Pack many values into a wide register
« Intel’s SSE2: four 32-bit float-point values into 128-bit register

— Define parallel operations (four “adds” in one cycle)

22

Data-Level Parallel ISA Extensions

Aka, “multimedia” instructions.

Multiple favors

— ia32 family: MMX, SSE, SSE2
— PowerPC: Altivec
— sparc: VIS

What can we use them for?

Operand 1

Operand 2

Result

Operand 1

Operand 2

Result

64 bits

64 bits

ISA Implementability

* Every ISA can be implemented

— Not every ISA can be implemented efficiently

e C(Classic high-performance implementation techniques

— Pipelining, parallel execution, out-of-order execution (more later)

* Certain ISA features make these difficult
— Variable instruction lengths/formats: complicate decoding
— Implicit state: complicates dynamic scheduling
— Variable latencies: complicates scheduling
— Difficult to interrupt instructions: complicate many things

Architecture or Implementation?

No. of GP registers

Width of the data bus

Binary representation of the instruction
No. of cycles a floating point add takes

No. of cycles processor must wait after a load before it can
use the data

Floating point format supported

Size of the instruction cache

No. of instructions that issue each cycle
No. of addressing modes

Precise exceptions?

| Xx86

Ivy Bridge

RISC vs CISC in one slide

* Recall performance equation:
— (instructions/program) * (cycles/instruction) * (seconds/cycle)

* CISC (Complex Instruction Set Computing)

— Reduce “instructions/program” with “complex” instructions
* But...?

— Easy for assembly-level programmers, good code density

* RISC (Reduced Instruction Set Computing)

— Increases “instruction/program”, but hopefully not as much
 Why do it then? What happens to the poor compiler?

— What happens to cycles/instruction?

— And cycle time?

The RISC vs. CISC Debate

* RISCargument
— CISC is fundamentally handicapped

— For a given technology, RISC implementation will be better (faster)
* Current technology enables single-chip RISC
* When it enables single-chip CISC, RISC will be pipelined
 When it enables pipelined CISC, RISC will have caches
* When it enables CISC with caches, RISC will have next thing...

e CISC rebuttal
— CISC flaws not fundamental, can be fixed with more transistors

— Moore’s Law will narrow the RISC/CISC gap (true)
* Good pipeline: RISC = 100K transistors, CISC = 300K
* By 1995: 2M+ transistors had evened playing field

— Software costs dominate, compatibility is paramount

Current Winner (Volume): RISC

* ARM (Acorn RISC Machine — Advanced RISC Machine)
— First ARM chip in mid-1980s (from Acorn Computer Ltd).
— Billion of units sold yearly(>50% of all 32/64-bit CPUs)

— Low-power and embedded devices (iPod, for example)
 Significance of embedded? New ISAs easier to pull off

* 32-bit RISC ISA

— 16 registers, PCis one of them
— Many addressing modes, e.g., auto increment
— Condition codes, each instruction can be conditional

* Multiple implementations

— X-scale (design was DEC’s, bought by Intel, sold to Marvel)

— Others: Freescale (was Motorola), Texas Instruments, STMicroelectronics,
Samsung, Sharp, Philips, etc.

Current Winner (Revenue): CISC

* x86 was first 16-bit chip by ~2 years
— IBM put it into its PCs because there was no competing choice
— Rest is historical inertia and “financial feedback”
* x86 is most difficult ISA to implement and do it fast but...
* Because Intel sells the most non-embedded processors...
* It has the most money...
* Which it uses to hire more and better engineers...
e Which it uses to maintain competitive performance ...
* And given competitive performance, compatibility wins...
* So Intel sells the most non-embedded processors...
— AMD as a competitor keeps pressure on x86 performance

 Moore’s law has helped Intel in a big way
— Most engineering problems can be solved with more transistors

Martin/Roth

Intel’s Compatibility Trick: RISC Inside

e 1993: Intel wanted out-of-order execution in Pentium Pro
— 000 was very hard to do with a coarse grain ISA like x86

* Solution? Translate x86 to RISC pops in hardware
push $eax
becomes (we think, uops are proprietary)
store $eax [Sesp-4]
addi Sesp, Sesp, -4

+ Processor maintains x86 ISA externally for compatibility
+ But executes RISC nISA internally for implementability

— Given translator, x86 almost as easy to implement as RISC
e Result: Intel implemented OoO before any RISC company
* Also, 000 also benefits x86 more (because ISA limits compiler)

— |dea co-opted by other x86 companies: AMD and Transmeta

Martin/Roth

More About Micro-ops

Even better? Two forms of hardware translation

— Hard-coded logic: fast, but complex
— Table: slow, but “off to the side”, doesn’t complicate rest of machine

x86: average 1.6 pops / x86 insn
— Logic for common insns that translate into 1-4 pops
— Table for rare insns that translate into 5+ pops

x86-64: average 1.1 pops / x86 insn
— More registers (can pass parameters too), fewer pushes/pops
— Core2: logic for 1-2 pops, Table for 3+ pops?

More recent: “macro-op fusion” and “micro-op fusion”
— E.g., fuse address calculation and access
— E.g., fuse TEST/CMP with JMP into a single conditional jump instruction
— Intel’s recent processors fuse certain instruction pairs (ARM too!)

Potential Micro-op Scheme (1 of 2)

» Most instructions are a single micro-op
— Add, xor, compare, branch, etc.
— Loads example: mov -4(%rax), %ebx
— Stores example: mov %ebx, -4(%rax)

« Each memory operation adds a micro-op
— "add| -4(%rax), %ebx” is two micro-ops (load, add)
— “add| %ebx, -4(%rax)” is three micro-ops (load, add, store)

« What about address generation?

— Simple address generation is generally part of single micro-op
« Sometime store addresses are calculated separately
— More complicated (scaled addressing) might be separate micro-
op

Martin 33

Potential Micro-op Scheme (2 of 2)

Function call (CALL) — 4 uops

— Get program counter, store program counter to stack,
adjust stack pointer, unconditional jump to function start

Return from function (RET) — 3 uops

— Adjust stack pointer, load return address from stack,
jump to return address

Other operations

— String manipulations instructions
» For example STOS is around six micro-ops, etc.

Again, this is just a basic idea (and what we will use in our
assignments), the exact micro-ops are specific to each chip

Martin 34

Translation and Virtual ISAs

New compatibility interface: ISA + translation software
— Binary-translation: transform static image, run native
— Emulation: unmodified image, interpret each dynamic insn
* Typically optimized with just-in-time (JIT) compilation
— Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)
— Performance overheads reasonable (many recent advances)

Virtual ISAs: designed for translation, not direct execution
— Target for high-level compiler (one per language)
— Source for low-level translator (one per ISA)
— Goals: Portability (abstract hardware nastiness), flexibility over time
— Examples: Java Bytecodes, C# CLR (Common Language Runtime)

Transmeta’s Take: Code Morphing

* Code morphing: x86 translation in software

Crusoe/Astro are x86 emulators, no actual x86 hardware anywhere
Only “code morphing” translation software written in native ISA
Native ISA is invisible to applications and even OS

Different Crusoe versions have (slightly) different ISAs: can’t tell

* How was it done?

Code morphing software resides in boot read-only memory (ROM)
On startup, hijacks 16MB of main memory

Translator loaded into 512KB, rest is translation cache

Software starts running in interpreter mode

Interpreter profiles to find “hot” regions: procedures, loops

Hot region compiled to native, optimized, cached

Gradually, more and more of application starts running native

Exceed
Translation
Threshold?

no

Interpreter

Translator

yes

Interpret
Next
Instruction

(ﬁ Rollback

Translate Region
Store in Tcache

A4

fault

Je—

Execute <
Translation
from
Tcache

chain

no
chain

A

Next

found

Post-RISC: VLIW and EPIC

* |SAs explicitly targeted for multiple-issue (superscalar) cores
— VLIW: Very Long Insn Word
— Later rebranded as “EPIC”: Explicitly Parallel Insn Computing

* |Intel/HP IA64 (Itanium): 2000
— EPIC: 128-bit 3-operation bundles
— 128 64-bit registers

+ Some neat features: Full predication, explicit cache control
* Predication: every instruction is conditional (to avoid branches)

— But lots of difficult to use baggage as well: software speculation
* Every new ISA feature suggested in last two decades

— Relies on younger (less mature) compiler technology
— Not doing well commercially

Compiler Programmability

 What makes an ISA easy for a compiler to program in?

— Low level primitives from which solutions can be synthesized
* a=b*c+d
* Computers good at breaking complex structures to simple ones
- Requires traversal

* Not so good at combining simple structures into complex ones
— Requires search, pattern matching

* Easier to synthesize complex insns than to compare them

* What do compiler optimizations do?

Compiler Optimizations

* Primarily reduce dynamic insn count

— Eliminate redundant computation, keep more things in registers
+ Registers are faster, fewer loads/stores
— An ISA can make this difficult by having too few registers

e But also...
— Reduce branches and jumps
— Reduce cache misses

— Reduce dependences between nearby insns (for parallelism)
— An ISA can make this difficult by having implicit dependences

— Why?

 How effective are these?
+ Can give 4X performance over unoptimized code
— Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year
— Funny but ... shouldn’t leave 4X performance on the table

Quick motivating example for ISA extensions

|IA32 Linux Memo

Stack
— Runtime stack (8MB limit)

Heap
— Dynamically allocated storage

ry Layout

— When callmalloc (), calloc(), new()

Data
— Statically allocated data
— E.g., arrays & strings declared in

Text
— Executable machine instructions
— Read-only

code

Upper 2 hex digits
= 8 bits of address

FF

08
00

not drawn to scale

Stack

1

Heap

Data

Text

\

> 8MB

Vulnerable Buffer Code

/* Echo Line */

volid echo ()

{ why?
char buf[4d];
gets (buf) ;
puts (buf) ;

}

int main ()

{
printf ("Type a string:");

echo () ; unix>. /bufdemo
return 0; Type a string:1234567
} 1234567

unix>./bufdemo
Type a string:12345678
Segmentation Fault

unix>./bufdemo
Type a string:123456789ABC
Segmentation Fault

Buffer Overflow Stack

Before call to gets

Stack Frame
formain

Return Address

Saved $ebp

[3]f[2]][1]

Stack Frame
for echo

/* Echo Line */
void echo ()

{

— %ebp char buf(4]; /* Way too small! */
gets (buf) ;
puts (buf) ;
buf }
echo:
pushl %ebp # Save %ebp on stack
movl %esp, S%ebp
pushl %ebx # Save %ebx
leal -8(%ebp), %ebx # Compute buf as %ebp-8
subl $20, %esp # Allocate stack space
movl %ebx, (%esp) # Push buf addr on
stack
call gets # Call gets

Buffer Overflow Stack Example

Before call to gets

Stack Frame

formain

Return Address

Saved $ebp

[3]

[2]

[1]

buf

Stack Frame

for echo

Before call to gets

Stack Frame

formain

7

85

04

08

58

Cco

ff

ff

XX

XX

XX

XX

Stack Frame

for echo

80485f2:call 80484f0 <echo>

80485f7 : mov

Oxffffcob8

Oxffffco38

buf

Oxfffffffc (%ebp), $ebx # Return Point

Buffer Overflow Example #1

Before call to gets

Stack Frame
formain

£7185]04

03

58| co| ff

ff

XX XX | XX

XX

Stack Frame
for echo

Oxffffco58

Oxffffco38

buft

Overflow buf, but no problem

Input 1234567

Stack Frame
formain

iyl

85

04

08

58

CcoO

ff

£t

00

37

36

35

34

33

32

31

Stack Frame
for echo

Oxffffco658

Oxffffco638

buf

Buffer Overflow Example #2

Before call to gets Input 12345678
Stack Frame Oxffffc6o8 Stack Frame Oxffffc658
formain formain
£f7185]104]08 £f71851041]108
58|lco| ff| ££f|0Oxffffco38 58|lce | ££]100 |0Oxffffc638
3813713635
XX | xx | xx | xx | buf 3413313231]buf
Stack Frame Stack Frame
for echo for echo
Base pointer corrupted
804850a: 83 c4 14 add $0x14,%esp # deallocate space
804850d: b5b pop $ebx # restore %ebx
804850e: c9 leave # movl %ebp, %esp; popl %ebp
804850f: c3 ret # Return

Buffer Overflow Example #3

Before call to gets

Stack Frame
formain

Oxffffco58

£7185]04

03

58| co| ff

ff

Oxffffco38

XX XX | XX

XX

buft

Stack Frame
for echo

80485f2: call 80484f0 <echo>

80485f7: mov

Return address corrupted

Input 123456789ABC

Stack Frame
formain

£7185]104

00

43142141

39

3813736

35

34133132

31

Stack Frame
for echo

Oxfffffffc (%ebp), %sebx # Return Point

Oxffffco658

Oxffffco638

buf

Malicious Use of Buffer Overflow

Stack after call to gets ()

\
vold foo () { foo stack frame
bar () ; >
. .. <+—— return address A
} (B (was A) <
int bar() { data written pad
char buf[64d]; by gets () <
gets (buf) ;
exploit > bar stack frame
return ...; B —< RS
}
J

Input string contains byte representation of executable code

Stack frame must be big enough to hold exploit code

Overwrite return address with address of buffer (need to know B)
When bar () executes ret, will jump to exploit code (instead of A)
What is the big problem? How can no-execute help?

How could ISA extensions help with that problem?

ISA extensions

* Software needs often motivates new instructions
— No execute bit for security
— Short vectors (multimedia, games, etc)
— fmadd (floating point multiply and add)
— virtualization

 What would you like to see in the ISA?

e Careful: onceitisin, hard to take out!

— Backwards compatibility...

How much do ISAs really matter today?

 Consider:
— Lots of transistors available
— Lots of code run on managed environments/virtual ISAs

* Does it matter for performance?
* Does it still matter for compatibility?

Appears in the 19th IEEE International Symposium on High Performance Computer Architecture (HPCA 2013)

Power Struggles: Revisiting the RISC vs. CISC Debate
on Contemporary ARM and x86 Architectures
Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam

University of Wisconsin - Madison
{blem,menon karu} @cs.wisc.edu

N
o

Normalized Time
= =
o o

U

o

Performance

Mobile

SPEC - INT

53

SPEC - FP

Server

OA8
O Atom
B A9
@i7

Percent of psuedo-p0ps

100%

80%

60%

40%

20%

Instruction Mix

| | | | | | I 1
Other
Bl D SR
Load
] | | | | | | |
ARM x86 ARM x86 ARM x86 ARM x86
Mobile SPEC INT SPEC FP Server

54

Normalized Cycles

Cycle counts

(@)

92}

D

w

N

=
|

o

Mobile SPEC - INT SPEC - FP Server

55

B8 A8
O Atom

But ISAs matters a lot!

Hein? Why?

But ISAs matter a lot!

Transactional Memory support (more later)
Dataflow (WaveScalar, TRIPS)

Application-specific hybrid CISC/RISC (e.g., crypto)
Approximate operations for energy (e.g., Truffle)
Bounds-checking (e.g., HardBound)
Information-flow tracking

Neural networks

