CSE 548: Computer Systems Architecture

Metrics: Performance and Power
Spring 2017
Luis Ceze (Instructor)
Thierry Moreau (TA)

How do we measure computer performance?

Performance

 TwOo common measures

— Latency (how long to do something)
* Also called response time and execution time

— Throughput (how often can it do something)
* Example of car assembly line
— Takes 6 hours to make a car: latency is 6 hours

— A car leaves every 5 minutes: throughput is 12 cars per hour
— How can Throughput > 1/Latency

Comparing Performance

* Latency: “Xis n times faster than Y”
Execution time,

=n
Execution time,,
* Throughput: “Throughput of X is n times that of Y”
Tasks per unit time,, "

Tasks per unit time,,

What is the best way to choose system X versus Y?

If Only it Were That Simple

e “XisntimesfasterthanY on A”

Execution time of app A on machine Y

=n
Execution time of app A on machine X

* But what about different applications
(or even parts of the same application)

— Xis 10 times faster than Y on A, and 1.5 times on B, but Y is 2 times
faster than X on C, and 3 times on D, and...

Benchmarks

* Real applications and application suites
* E.g., SPEC CPU2000, SPEC2006, TPC-C, TPC-H, Rodinia (GPUs), MiBench
(embedded/mobile), GraphBench, ...
* Kernels

» “Representative” parts of real applications
* Easier and quicker to set up and run
e Often not really representative of the entire app

* Toy programs, synthetic benchmarks, etc.

* In general, not very useful for reporting

* Sometimes used to test/stress specific functions/features
— E.g., memory bandwidth.

SPEC CPU (integer)

Benchmark name by SPEC generation

SPEC2006 benchmark description SPEC2006 SPEC2000 SPECS95 SPEC92 SPEC89
GNU C compiler - gce
Interpreted string processing - perl < espresso
Combinatorial optimization - mcf < li
Block-sorting compression - bzip2 < compress eqgntott
Go game (Al) go vortex go SC

Video compression h264avc gzip jpeg

Games/path finding astar eon m88ksim

Search gene sequence hmmer twolf

Quantum computer simulation libquantum vortex

Discrete event simulation library omnetpp vpr

Chess game (Al) sjeng crafty

XML parsing xalancbmk parser

“Representative” applications keeps growing with time!

CPU Performance Equation (1)

CPU time = CPU Clock Cycles X Clock cycle time

A
/ N

CPU time = Instruction Count X Cycles Per Instruction X Clock cycle time

N\ \ /

Seconds Instructions » Clock Cycles » Seconds

CPU time = = :
Program Program Instruction ~ Clock Cycle

/A

What affects each of these?

CPU Performance Equation (1)

CPU time = CPU Clock Cycles X Clock cycle time

/\
/ N

CPU time = Instruction Count X Cycles Per Instruction X Clock cycle time

N\ \ /

Seconds Instructions » Clock Cycles » Seconds

CPU time = =
Program Program Instruction ~ Clock Cycle
ISA, Organization, Hardware
Compiler ISA Technology,
Technology CPT Organization

“Iron Law of Performance”

inst count Cycle time

What's a Clock Cycle?

Latch combinational
or logic
register —

e Old days: 10+ levels of gates

 Today: determined by numerous time-of-flight issues + gate
delays
— clock propagation, wire lengths, repeaters
— Can get super complicated -- design tools!!

e ~ 8-12 classic gate delays common

Example

* Program takes 33 billion instructions to run

* CPU processes insts at 2 cycles per inst
* Clock speed of 3GHz

Example

* Program takes 33 billion instructions to run

 CPU processes insts at 2 cycles per inst
* Clock speed of 3GHz

Seconds Instructions % Clock Cycles % Seconds

CPU time =

Program - Program Instruction Clock Cycle

= 22 seconds

12

CPU Performance Equation (2)

CPU time = CPU Clock Cycles X Clock cycle time
A

-

CPU time = (Z IC, X CPI ij X Clock cycle time

/ \ How many cycles it

For each kind takes to execute an
of instruction instruction of this kind

How many instructions
of this kind are there 1n
the program

13

Calculating CPI

 Computed from instruction mix and CPI of each instruction type
* Very important quantitative metric

N
CPI =) S cpr
— IC
ALU 50% 1
Branches 15% 2
Loads 20% 2
Stores 15% 1

CP|=.5x1+.15x2+.2x2+.15x1=1.35

Which processor would you buy?

* Processor A: CPl =2, clock =5 GHz

* Processor B: CPI =1, clock =3 GHz

Which processor would you buy?

Processor A: CPl = 2, clock =5 GHz

Processor B: CPI =1, clock = 3 GHz

Probably A, but B is faster... assuming same ISA and same
compiler.

Classic example
— 800 MHz Pentiumlll faster than 1 GHz Pentium4!
— Same ISA and compiler!

Meta-point: danger of partial performance metrics!

16

Summarizing Performance

* Arithmetic mean
— Average execution time
— Gives more weight to longer-running programs

 Weighted arithmetic mean
— More important programs can be emphasized

— But what do we use as weights?
— Different weight will make different machines look better

Speedup

Machine A Machine B
Program 1 5 sec 4 sec
Program 2 3 sec 6 sec

What is the speedup of A compared to B on Program 17
What is the speedup of A compared to B on Program 27
What is the average speedup?

What is the speedup of A compared to B on Sum(Program1, Program?2) ?

18

Speedup

Machine A Machine B
Program 1 5 sec 4 sec
Program 2 3 sec 6 sec

What is the speedup of A compared to B on Program 1? 0.8x
What is the speedup of A compared to B on Program 2? 2x
What is the average speedup? 1.4x

What is the speedup of A compared to B on Sum(Program1, Program?2) ? 1.2x

19

Mean (Average) Performance Numbers

Arithmetic: (1/N) * 5,_, \ Latency(P)
— For units that are proportional to time (e.g., latency)

You can add latencies (time), but not throughputs (rate/time)
— Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
— Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)
e 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
* Average is not 60 miles/hour
Harmonic: N/ >,_; y 1/Throughput(P)
— For units that are inversely proportional to time (e.g., throughput)

Geometric: NTT,_; Speedup(P)
— For unitless quantities (e.g., speedup ratios)

Sug%ested reading: Smith on Summarizing performance with a
single number... READ IT ©

Optimizing for performance

 What should you go after first?

— E.g., what part of your program should you parallelize?

* What is the limit of your performance optimization?

Amdahl’s Law (1)

Execution Time without Enhancement Execution Time

Speedup = =
P P Execution Time with Enhancement Execution Time__

What if enhancement does not enhance everything?

Execution Time without using Enhancement at all

Speedup = — . .
Execution Time using Enhancement when Possible
: : . : . Fraction Enhanced
Execution Time__ = Execution Time_, X (1 —Fractiong . .4) +
Sp cC dup Enhanced

1

OverallSpeedup =

Fraction
. Enhanced
1 -Fraction, .) +

Sp cC dup Enhanced

22

Amdahl’s Law (2)

e Make the Common Case Fast

1

X Fraction
[(1 - FraCtlon Enhanced) Enhanced j

OverallSpeedup =

+
Sp cC dup Enhanced

Sp eedup Enhanced — 2 O Fraction Enhanced — O 1 VS Sp eedup Enhanced — 1 2 FraCtion Enhanced — 09

1
Speedup = l):1]05 Speedup—(0.9 =1.176
(1—0.9)+'j

((1—0.1)+g-01

Important: Principle of locality
Approx. 90% of the time spent in 10% of the code

23

Amdahl’s Law (3)

* Diminishing Returns

Generation 1

. Total Execution Time . Speedup, =2
—>
Green Phase Blue Phase Fraction, :%
Generation 2 Speedup,,.,, =1.33 over Generation 1
. Total Execution Time Speedup,. . =
Green Blue — .
Fractiong_, =

D W(—

Generation 3 Speedup,,.., =1.2 over Generation
 Total Execution Time

Blue

A
rd

Rules of Thumb

e Make the common case fast

— driving force behind the RISC philosophy

» easier for compilers to optimize, simpler decoding
— Design for actual performance, not peak performance
— Amdahl’s law

* Locality of reference (90/10 rule)
— programs spend 90% of their time in 10% of the code
— main principle behind caches (spatial/temporal locality)

e Smaller is faster

— Why?
— main principle behind memory hierarchies
» give illusion of fast, large memory

Performance Trends

386 486 Pentium | PentiumIl | Pentium4 | Core2
Year 1985 1989 1993 1998 2001 2006
Technode (nm) 1500 800 350 180 130 65
Transistors (M) 0.3 1.2 3.1 5.5 42 291
Clock (MHz) 16 25 66 200 1500 3000
Pipe stages "1 5 5 10 22 ~15
(Peak) IPC 0.4 2 3 3 i
(Peak) MIPS 6 25 132 600 4500 24000

* Historically, clock provides 75%+ of performance gains...
— Achieved via both faster transistors and deeper pipelines

e ...that’s changing: 1GHz: ‘99, 2GHz: ‘01, 3GHz: ‘02, 4Ghz?

— Deep pipelining is not power efficient
— Physical scaling limits are approaching

Producing Wrong Data Without Doing Anything Obviously Wrong!

Todd Mytkowicz Amer Diwan Matthias Hauswirth Peter F. Sweeney
Department of Computer Science Faculty of Informatics IBM Research
University of Colorado University of Lugano Hawthorne, NY, USA
Boulder, CO, USA Lugano, CH pfs@us.ibm.com

{mytkowit,diwan } @colorado.edu Matthias.Hauswirth@unisi.ch

Power/Energy

 Why are they important?

Power/Energy: Increasingly Important

Battery life for mobile devices
— Laptops, phones, cameras
— Size too!

Tolerable temperature for devices without active cooling
— Power means temperature, active cooling means cost
— No room for a fan in a cell phone, no market for a hot cell phone

Electric bill for compute/data centers

— Pay for power twice: once in, once out (to cool)

Environmental concerns

— “Computers” account for growing fraction of energy consumption
29

Btw: Energy & Power

Energy: measured in Joules or Watt-seconds
— Total amount of energy stored/used
— Battery life, electric bill, environmental impact
— Instructions per Joule (car analogy: miles per gallon)

Power: energy per unit time (measured in Watts)
— Related to “performance” (which is also a “per unit time” metric)

— Power impacts power supply and cooling requirements (cost)
* Power-density (Watt/mm?): important related metric
— Peak power vs average power
* E.g., camera, power “spikes” when you actually take a picture
— Joules per second (car analogy: gallons per hour)

TwoO sources:

— Dynamic power: active switching of transistors
— Static power: leakage of transistors even while inactive

Trends in Power

386 486 Pentium | PentiumIl | Pentium4 | Core2
Year 1985 1989 1993 1998 2001 2006
Technode (nm) 1500 800 350 180 130 65
Transistors (M) 0.3 1.2 3.1 5.5 42 291
Voltage (V) 5 5 3.3 2.9 1.7 1.1
Clock (MHz) 16 25 66 200 1500 3000
Power (W) 1 5 16 35 80 75
Peak MIPS 6 25 132 600 4500 24000
MIPS/W 6 5 8 17 56 320

* Supply voltage decreasing over time

* Emphasis on power starting around 2000

— Resulting in slower frequency increases

31

Saving Power

DVFS
Power savings mode
Parallelism? Why?

Other software tricks?

— Embedded systems
— Data-centers

Other ideas?

Paper reading assignment: Power as first class concern

