
CSEP	548:	Computer	Systems	
Architecture

Hardware	Multithreading	(SMT)
Luis	Ceze,	Spring	2017

based	on	slides	from	friends	at	UPenn,	UIUC,	UW,	MIT.

1



Out-of-order	pipeline
Fe

tc
h

D
ec

od
e

R
en

am
e

D
is

pa
tc

h

C
om

m
it

Buffer of instructions

Is
su

e

R
eg

-re
ad

Ex
ec

ut
e

W
rit

eb
ac

k

In-order front end
Out-of-order execution

2

How does this tolerate latencies?



What	is	multithreading?

• In	SW?

• In	HW?	How?

3



Superscalar	Under-utilization
• Time	evolution	of	issue	slot

– 4-issue	processor

Superscalar

cache
miss

4



Simple	Multithreading
• Time	evolution	of	issue	slot

– 4-issue	processor

• Where	do	the	threads	come	from?		
Superscalar

cache
miss

Multithreading

Fill in with instructions
from another thread

tim
e

5



“The”	Multithreading	Picture
• Time	evolution	of	issue	slots

– Color	=	thread

CGMT FGMT SMTSuperscalar

tim
e

6



Vertical	and	Horizontal	Under-Utilization
• FGMT	and	CGMT	reduce	vertical	under-utilization

– Loss	of	all	slots	in	an	issue	cycle
• Do	not	help	with	horizontal	under-utilization

– Loss	of	some	slots	in	an	issue	cycle	(in	a	superscalar	processor)

CGMT FGMT SMT

tim
e

7



Simultaneous	Multithreading	(SMT)

• How	can	we	issue	insns from	multiple	threads	in	one	cycle?

8



Simultaneous	Multithreading	(SMT)

regfile

D$
I$
B
P

map table

9

regfile

D$
I$
B
P

+



Simultaneous	Multithreading	(SMT)
• What	can	issue	insns from	multiple	threads	in	one	cycle?

– Same	thing	that	issues	insns from	multiple	parts	of	same	
program…

– …out-of-order	execution

• Simultaneous	multithreading	(SMT):	OOO	+	FGMT
– Aka	“hyper-threading”
– Observation:	once	insns are	renamed,	scheduler	doesn’t	care	
which	thread	they	come	from	(well,	for	non-loads	at	least)

– Some	examples
• IBM	Power5:	4-way	issue,	2	threads
• Intel	Pentium4:	3-way	issue,	2	threads
• Intel	“Nehalem”:	4-way	issue,	2	threads
• Alpha	21464:	8-way	issue,	4	threads	(canceled)
• Notice	a	pattern?	#threads	(T)	*	2	=	#issue	width	(N)

10



Simultaneous	Multithreading	(SMT)

• SMT
– Replicate	map	table,	share	(larger)	physical	register	file

regfile

D$
I$
B
P

map table

map tables

I$
B
P

D$

thread scheduler

regfile

11



SMT	Resource	Partitioning
• Physical	regfile and	insn buffer	entries	shared	at	fine-grain

– Physically	unordered	and	so	fine-grain	sharing	is	possible

• How	are	physically	ordered	structures	(ROB/LSQ)	shared?
– Fine-grain	sharing	(below)	would	entangle	commit	(and	squash)
– Allowing	threads	to	commit	independently	is	important

map tables

I$
B
P

D$

thread scheduler

regfile

12



Static	&	Dynamic	Resource	Partitioning

• Static	partitioning (below)
– T	equal-sized	contiguous	partitions
± No	starvation,	sub-optimal	utilization	(fragmentation)

• Dynamic	partitioning
– P	>	T	partitions,	available	partitions	assigned	on	need	basis
± Better	utilization,	possible	starvation
– ICOUNT:	fetch	policy	prefers	thread	with	fewest	in-flight	insns

• Couple	both	with	larger	ROBs/LSQs

I$
B
P

D$

regfile

13



Multithreading	Issues
• Shared	soft	state	(caches,	branch	predictors,	TLBs,	etc.)
• Key	example:	cache	interference

– General	concern	for	all	MT	variants
– Can	the	working	sets	of	multiple	threads	fit	in	the	caches?
– Shared	memory	SPMD	threads	help	here

+ Same	insns® share	I$
+ Shared	data	® less	D$	contention
• MT	is	good	for	workloads	with	shared	insn/data

– To	keep	miss	rates	low,	SMT	might	need	a	larger	L2	(which	is	OK)
• Out-of-order	tolerates	L1	misses

• Large	physical	register	file	(and	map	table)
– physical	registers	=	(#threads *	#arch-regs)	+	#in-flight	insns
– map	table	entries	=	(#threads *	#arch-regs)

14



Sharing	Soft	State

• BTBs?
• BHT	(branch	history	table)?
• Branch	History	Register	(BHR)?
• Return	Address	Stack	(RAS)?
• Caches	are	shared	naturally…
• TLBs	need	explicit	thread	IDs	to	be	shared,	Why?

• More	on	this	later…

15



Multithreading	or	Multicore?
• If	you	wanted	to	run	multiple	threads	would	you	build	a…

– A	multicore:	multiple	separate	pipelines?
– A	multithreaded	processor:	a	single	larger	pipeline?

16



Multithreading	vs.	Multicore
• If	you	wanted	to	run	multiple	threads	would	you	build	a…

– A	multicore:	multiple	separate	pipelines?
– A	multithreaded	processor:	a	single	larger	pipeline?

• Both	will	get	you	throughput	on	multiple	threads
– Multicore	core	could	be	simpler,	possibly	faster	clock
– SMT	will	get	you	better	performance	(IPC)	on	a	single	thread

• SMT	is	basically	an	ILP	engine	that	converts	TLP	to	ILP
• Multicore	is	mainly	a	TLP	(thread-level	parallelism)	engine

• Do	both
– Sun’s	Niagara	(UltraSPARC T1)
– 8	processors,	each	with	4-threads	(non-SMT	threading)
– 1Ghz	clock,	in-order,	short	pipeline	(6	stages	or	so)
– Designed	for	power-efficient	“throughput	computing”

17



Research:	Speculative	Multithreading

• Speculative	multithreading
– Use	multiple	threads/processors	for	single-thread	performance
– Speculatively	parallelize	sequential	loops,	that	might	not	be	parallel

• Processing	elements	(called	PE)	arranged	in	logical	ring
• Compiler	or	hardware	assigns	iterations	to	consecutive	PEs
• Hardware	tracks	logical	order	to	detect	mis-parallelization

– Techniques	for	doing	this	on	non-loop	code	too
• Detect	reconvergence points	(function	calls,	conditional	code)

– Effectively	chains	ROBs of	different	processors	into	one	big	ROB
• Global	commit	“head”	travels	from	one	PE	to	the	next
• Mis-parallelization	flushes	one	PEs,	but not	all PEs

– Also	known	as	split-window	or	“Multiscalar”
– Not	commercially	available	yet…	

• But	it	is	one	of	the	“big	idea”	from	academia	not	yet	adopted	

18



Research:	Multithreading	for	Reliability

• Can	multithreading	help	with	reliability?
– Design	bugs/manufacturing	defects?	
– Gradual	defects,	e.g.,	thermal	wear?	
– Transient	errors?	

• Staggered	redundant	multithreading	(SRT)
– Run	two	copies	of	program	at	a	slight	stagger
– Compare	results,	difference?	Flush	both	copies	and	
restart

– Significant	performance	overhead

19


