
CSE	548:	Computer	Systems	Architecture

Metrics:	Performance	and	Power
Spring	2017

Luis	Ceze	(Instructor)
Thierry	Moreau	(TA)

1

How	do	we	measure	computer	performance?

2

Performance

• Two	common	measures
– Latency (how	long	to	do	something)

• Also	called	response	time	and	execution	time
– Throughput (how	often can	it	do	something)

• Example	of	car	assembly	line
– Takes	6	hours	to	make	a	car:	latency	is	6	hours
– A	car	leaves	every	5	minutes:	throughput	is	12	cars	per	hour
– How	can	Throughput	>	1/Latency

3

Comparing	Performance

• Latency: “X	is	n	times	faster	than	Y”

• Throughput: “Throughput	of	X	is	n	times	that	of	Y”

n
timeExecution
timeExecution

X

Y =

n
unit timeper Tasks
unit timeper Tasks

Y

X =

4

What	is	the	best	way	to	choose	system	X	versus	Y?

If	Only	it	Were	That	Simple

• “X	is	n times	faster	than	Y	on	A”

• But	what	about	different	applications
(or	even	parts	of	the	same	application)
– X	is	10	times	faster	than	Y	on	A,	and	1.5	times	on	B,	but	Y	is	2	times	

faster	than	X	on	C,	and	3	times	on	D,	and…

n
X machineon A app of timeExecution
Y machineon A app of timeExecution
=

5

Benchmarks

• Real	applications	and	application	suites
• E.g.,	SPEC	CPU2000,	SPEC2006,	TPC-C,	TPC-H,	Rodinia (GPUs),	MiBench
(embedded/mobile),	GraphBench,	…

• Kernels
• “Representative”	parts	of	real	applications
• Easier	and	quicker	to	set	up	and	run
• Often	not	really	representative	of	the	entire	app

• Toy	programs,	synthetic	benchmarks,	etc.
• In	general,	not	very	useful	for	reporting
• Sometimes	used	to	test/stress	specific	functions/features

– E.g.,	memory	bandwidth.

6

SPEC	CPU	(integer)

7

“Representative”	applications	keeps	growing	with	time!

CPU	Performance	Equation	(1)

 timecycleClock CyclesClock CPU timeCPU ́=

 timecycleClock nInstructioPer CyclesCount n Instructio timeCPU ´´=

CycleClock
Seconds

nInstructio
CyclesClock

Program
nsInstructio

Program
Seconds timeCPU ´´==

8

What	affects	each	of	these?

CPU	Performance	Equation	(1)

 timecycleClock CyclesClock CPU timeCPU ́=

 timecycleClock nInstructioPer CyclesCount n Instructio timeCPU ´´=

CycleClock
Seconds

nInstructio
CyclesClock

Program
nsInstructio

Program
Seconds timeCPU ´´==

Hardware
Technology,
Organization

Organization,
ISA

ISA,
Compiler
Technology

inst count

CPI

Cycle time

“Iron	Law	of	Performance”

9

What’s	a	Clock	Cycle?

• Old	days:	10+	levels	of	gates
• Today:	determined	by	numerous	time-of-flight	issues	+	gate	

delays
– clock	propagation,	wire	lengths,	repeaters
– Can	get	super	complicated	-- design	tools!!

• ~ 8-12	classic	gate	delays common

Latch
or

register

combinational
logic

10

Example

• Program	takes	33	billion	instructions	to	run
• CPU	processes	insts at	2	cycles	per	inst
• Clock	speed	of	3GHz

11

Example

• Program	takes	33	billion	instructions	to	run
• CPU	processes	insts at	2	cycles	per	inst
• Clock	speed	of	3GHz

CycleClock
Seconds

nInstructio
CyclesClock

Program
nsInstructio

Program
Seconds timeCPU ´´==

=	22	seconds

Sometimes	clock	cycle	time	given
instead	(ex.	cycle	=	333	ps)

IPC	sometimes	used	instead	of	CPI
12

CPU	Performance	Equation	(2)

 timecycleClock CyclesClock CPU timeCPU ́=

 timecycleClock CPI IC timeCPU
n

1i
ii ´´ ÷
ø

ö
ç
è

æ
= å

=

For each kind
of instruction

How many instructions
of this kind are there in
the program

How many cycles it
takes to execute an
instruction of this kind

13

Calculating	CPI

å
=

=
N

i
i

i CPI
IC
ICCPI

1

• Computed	from	instruction	mix	and	CPI	of	each	instruction	type
• Very	important	quantitative	metric

ALU 50% 1
Branches 15% 2
Loads 20% 2
Stores 15%				 1

CPI=.5´1+.15´2+.2´2+.15´1=1.35

14

Which	processor	would	you	buy?

• Processor	A:	CPI	=	2,	clock	=	5	GHz

• Processor	B:	CPI	=	1,	clock	=	3	GHz

15

Which	processor	would	you	buy?

• Processor	A:	CPI	=	2,	clock	=	5	GHz

• Processor	B:	CPI	=	1,	clock	=	3	GHz

• Probably	A,	but	B	is	faster…	assuming	same	ISA	and	same	
compiler.

• Classic	example
– 800	MHz	PentiumIII faster	than	1	GHz	Pentium4!
– Same	ISA	and	compiler!

• Meta-point:	danger	of	partial	performance	metrics!

16

Summarizing	Performance

• Arithmetic	mean
– Average	execution	time
– Gives	more	weight	to	longer-running	programs

• Weighted	arithmetic	mean
– More	important	programs	can	be	emphasized
– But	what	do	we	use	as	weights?
– Different	weight	will	make	different	machines	look	better

17

Speedup

Machine A Machine B

Program 1 5 sec 4 sec

Program 2 3 sec 6 sec

What	is	the	speedup	of	A	compared	to	B	on	Program	1?

What	is	the	speedup	of	A	compared	to	B	on	Program	2?

What	is	the	average	speedup?

What	is	the	speedup	of	A	compared	to	B	on	Sum(Program1,	Program2)	?

18

Speedup

Machine A Machine B

Program 1 5 sec 4 sec

Program 2 3 sec 6 sec

What	is	the	speedup	of	A	compared	to	B	on	Program	1?	0.8x

What	is	the	speedup	of	A	compared	to	B	on	Program	2?	2x

What	is	the	average	speedup?	1.4x

What	is	the	speedup	of	A	compared	to	B	on	Sum(Program1,	Program2)	?	1.2x

19

Mean	(Average)	Performance	Numbers

• Arithmetic:	(1/N)	*	∑P=1..N Latency(P)
– For	units	that	are	proportional	to	time	(e.g.,	latency)

• You	can	add	latencies	(time),	but	not	throughputs	(rate/time)
– Latency(P1+P2,A)	=	Latency(P1,A)	+	Latency(P2,A)
– Throughput(P1+P2,A)	!=	Throughput(P1,A)	+	Throughput(P2,A)

• 1	mile	@	30	miles/hour	+	1	mile	@	90	miles/hour
• Average	is	not 60	miles/hour

• Harmonic:	N	/	∑P=1..N 1/Throughput(P)
– For	units	that	are	inversely	proportional	to	time	(e.g.,	throughput)

• Geometric:	N√∏P=1..N Speedup(P)
– For	unitless quantities	(e.g.,	speedup	ratios)

• Suggested	reading:	Smith	on	Summarizing	performance	with	a	
single	number…	READ	IT	J

20

Optimizing	for	performance

• What	should	you	go	after	first?
– E.g.,	what	part	of	your	program	should	you	parallelize?

• What	is	the	limit	of	your	performance	optimization?

21

Amdahl’s	Law	(1)

What	if	enhancement	does	not	enhance	everything?
new

old

TimeExecution
TimeExecution

tEnhancemen with TimeExecution
tEnhancemen without TimeExecution Speedup ==

Possiblet when Enhancemen using TimeExecution
 allat t Enhancemen using without TimeExecution Speedup =

() ÷÷
ø

ö
çç
è

æ
+-= ´

Enhanced

Enhanced
Enhancedoldnew Speedup

FractionFraction1TimeExecution TimeExecution

() ÷÷
ø

ö
çç
è

æ
+-

=

Enhanced

Enhanced
Enhanced Speedup

FractionFraction1

1 Speedup Overall

Caution:	fraction
of	What?

22

Amdahl’s	Law	(2)

• Make	the	Common	Case	Fast

() ÷÷
ø

ö
çç
è

æ
+-

=

Enhanced

Enhanced
Enhanced Speedup

FractionFraction1

1 Speedup Overall

20 SpeedupEnhanced = 0.1 FractionEnhanced =

()
105.1

20
1.01.01

1 Speedup =
÷
ø
ö

ç
è
æ +-

=

1.2 SpeedupEnhanced = .90 FractionEnhanced =

()
176.1

2.1
9.09.01

1 Speedup =
÷
ø
ö

ç
è
æ +-

=

VS

Important: Principle of locality
Approx. 90% of the time spent in 10% of the code

23

Amdahl’s	Law	(3)

• Diminishing	Returns

2 SpeedupGreen =

2
1 FractionGreen =

33.1 SpeedupOverall =

Green Phase Blue Phase
Total Execution Time

Generation 1

2 SpeedupGreen =

3
1 FractionGreen =

2.1 SpeedupOverall =

Green Blue
Total Execution Time

Generation 2

Generation 3

Blue
Total Execution Time

over Generation 2

over Generation 1

24

Rules	of	Thumb

• Make	the	common	case	fast
– driving	force	behind	the	RISC	philosophy

• easier	for	compilers	to	optimize,	simpler	decoding
– Design	for	actual	performance,	not	peak	performance
– Amdahl’s	law	

• Locality	of	reference	(90/10	rule)
– programs	spend	90%	of	their	time	in	10%	of	the	code
– main	principle	behind	caches	(spatial/temporal	locality)

• Smaller	is	faster
– Why?
– main	principle	behind	memory	hierarchies

• give	illusion	of	fast,	large	memory

25

Performance	Trends

• Historically,	clock	provides	75%+	of	performance	gains…
– Achieved	via	both	faster	transistors	and	deeper	pipelines

• …	that’s	changing:	1GHz:	‘99,	2GHz:	‘01,	3GHz:	‘02,	4Ghz?	
– Deep	pipelining	is	not	power	efficient
– Physical	scaling	limits	are	approaching

386 486 Pentium PentiumII Pentium4 Core2
Year 1985 1989 1993 1998 2001 2006
Technode (nm) 1500 800 350 180 130 65
Transistors (M) 0.3 1.2 3.1 5.5 42 291
Clock (MHz) 16 25 66 200 1500 3000
Pipe stages “1” 5 5 10 22 ~15
(Peak) IPC 0.4 1 2 3 3 “8”
(Peak) MIPS 6 25 132 600 4500 24000

26

27

Producing Wrong Data Without Doing Anything Obviously Wrong!

Todd Mytkowicz Amer Diwan

Department of Computer Science
University of Colorado

Boulder, CO, USA

{mytkowit,diwan}@colorado.edu

Matthias Hauswirth

Faculty of Informatics
University of Lugano

Lugano, CH

Matthias.Hauswirth@unisi.ch

Peter F. Sweeney

IBM Research
Hawthorne, NY, USA

pfs@us.ibm.com

Abstract

This paper presents a surprising result: changing a seemingly
innocuous aspect of an experimental setup can cause a sys-
tems researcher to draw wrong conclusions from an experi-
ment. What appears to be an innocuous aspect in the exper-
imental setup may in fact introduce a significant bias in an
evaluation. This phenomenon is called measurement bias in
the natural and social sciences.

Our results demonstrate that measurement bias is signif-
icant and commonplace in computer system evaluation. By
significant we mean that measurement bias can lead to a per-
formance analysis that either over-states an effect or even
yields an incorrect conclusion. By commonplace we mean
that measurement bias occurs in all architectures that we
tried (Pentium 4, Core 2, and m5 O3CPU), both compilers
that we tried (gcc and Intel’s C compiler), and most of the
SPEC CPU2006 C programs. Thus, we cannot ignore mea-
surement bias. Nevertheless, in a literature survey of 133 re-
cent papers from ASPLOS, PACT, PLDI, and CGO, we de-
termined that none of the papers with experimental results
adequately consider measurement bias.

Inspired by similar problems and their solutions in other
sciences, we describe and demonstrate two methods, one
for detecting (causal analysis) and one for avoiding (setup
randomization) measurement bias.

Categories and Subject Descriptors C. Computer Systems
Organization [C.4 Performance of Systems]: Design studies

General Terms Experimentation, Measurement, Perfor-
mance

Keywords Measurement; Bias; Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
Copyright c⃝ 2009 ACM 978-1-60558-215-3/09/03. . . $5.00.

1. Introduction

Systems researchers often use experiments to drive their
work: they use experiments to identify bottlenecks and then
again to determine if their optimizations for addressing the
bottlenecks are effective. If the experiment is biased then a
researcher may draw an incorrect conclusion: she may end
up wasting time on something that is not really a problem
and may conclude that her optimization is beneficial even
when it is not.

We show that experimental setups are often biased. For
example, consider a researcher who wants to determine if
optimization O is beneficial for system S. If she measures
S and S + O in an experimental setup that favors S + O,
she may overstate the effect of O or even conclude that O
is beneficial even when it is not. This phenomenon is called
measurement bias in the natural and social sciences. This
paper shows that measurement bias is commonplace and
significant: it can easily lead to a performance analysis that
yields incorrect conclusions.

To understand the impact of measurement bias, we inves-
tigate, as an example, whether or not O3 optimizations are
beneficial to program performance when the experimental
setups differ. Specifically, we consider experimental setups
that differ along two dimensions: (i) UNIX environment size
(i.e., total number of bytes required to store the environment
variables) because it affects the alignment of stack allocated
data; and (ii) link order (the order of .o files that we give to
the linker) because it affects code and data layout. There are
numerous ways of affecting memory layout; we picked two
to make the points in this paper but we have found similar
phenomena with the others that we have tried.

We show that changing the experimental setup often leads
to contradictory conclusions about the speedup of O3. By
“speedup of O3” we mean run time with optimization level
O2 divided by run time with optimization level O3. To in-
crease the generality of our results, we present data from two
microprocessors, Pentium 4 and Core 2, and one simulator,
m5 O3CPU [2]. To ensure that our results are not limited to
gcc, we show that the same phenomena also appear when we
use Intel’s C compiler.

Power/Energy

• Why	are	they	important?

28

Power/Energy:	Increasingly	Important

• Battery	life for	mobile	devices
– Laptops,	phones,	cameras
– Size	too!

• Tolerable	temperature for	devices	without	active	cooling
– Power	means	temperature,	active	cooling	means	cost
– No	room	for	a	fan	in	a	cell	phone,	no	market	for	a	hot	cell	phone

• Electric	bill for	compute/data	centers
– Pay	for	power	twice:	once	in,	once	out	(to	cool)	

• Environmental	concerns
– “Computers”	account	for	growing	fraction	of	energy	consumption

29

Btw:	Energy	&	Power	

• Energy:	measured	in	Joules	or	Watt-seconds
– Total	amount	of	energy	stored/used
– Battery	life,	electric	bill,	environmental	impact
– Instructions	per	Joule	(car	analogy:	miles	per	gallon)

• Power:	energy	per	unit	time	(measured	in	Watts)	
– Related	to	“performance”	(which	is	also	a	“per	unit	time”	metric)
– Power	impacts	power	supply	and	cooling	requirements	(cost)

• Power-density	(Watt/mm2):	important	related	metric
– Peak	power	vs average	power

• E.g.,	camera,	power	“spikes”	when	you	actually	take	a	picture
– Joules	per	second	(car	analogy:	gallons	per	hour)

• Two	sources:
– Dynamic	power:	active	switching	of	transistors
– Static	power:	leakage	of	transistors	even	while	inactive

30

Trends	in	Power

• Supply	voltage	decreasing	over	time
• Emphasis	on	power	starting	around	2000

– Resulting	in	slower	frequency	increases

386 486 Pentium PentiumII Pentium4 Core2
Year 1985 1989 1993 1998 2001 2006
Technode (nm) 1500 800 350 180 130 65
Transistors (M) 0.3 1.2 3.1 5.5 42 291
Voltage (V) 5 5 3.3 2.9 1.7 1.1
Clock (MHz) 16 25 66 200 1500 3000
Power (W) 1 5 16 35 80 75
Peak MIPS 6 25 132 600 4500 24000
MIPS/W 6 5 8 17 56 320

31

Saving	Power

• DVFS
• Power	savings	mode
• Parallelism?	Why?
• Other	software	tricks?

– Embedded	systems
– Data-centers

• Other	ideas?

• Paper	reading	assignment:	Power	as		first	class	concern

32

