CSE 548: Computer Systems Architecture

Virtual Memory
Luis Ceze, Spring 2017

based on slides from friends at UPenn, UIUC, UW, MIT.

Virtualizing Processors

* How do multiple apps (and OS) share the processors?
— Goal: applications think there are an infinite # of processors

Virtualizing Processors

* How do multiple apps (and OS) share the processors?
— Goal: applications think there are an infinite # of processors

 Solution: time-share the resource

— Trigger a context switch at a regular interval (~1ms)

* Pre-emptive: app doesn’t yield CPU, OS forcibly takes it
+ Stops greedy apps from starving others

— Architected state: PC, registers
e Save and restore them on context switches
* Memory state?

— Non-architected state: caches, branch predictor tables, etc.
* |gnore or flush
* OS responsible to handle context switching
— Hardware support is just a timer interrupt

Virtualizing Main Memory

 How do multiple apps (and the OS) share main
memory?

— Goal: each application thinks it has infinite memory

Virtualizing Main Memory

 How do multiple apps (and the OS) share main memory?
— Goal: each application thinks it has infinite memory

* One app may want more memory than is in the system
— App’s insn/data footprint may be larger than main memory

— Requires main memory to act like a cache
e With disk as next level in memory hierarchy (slow)
* Write-back, write-allocate, large blocks or “pages”

— No notion of “program not fitting” in registers or caches (why?)

e Solution:

— Part #1: treat memory as a “cache”
* Store the overflowed blocks in “swap” space on disk

— Part #2: add a level of indirection (address translation)

Virtual Memory (VM)

Program * Programs use virtual addresses (VA)
— 0..2N-1

— VA size also referred to as machine size
— E.g., Pentium4 is 32-bit, Alpha is 64-bit

code heap stack
* Memory uses physical addresses (PA)

— 0...2M-1 (typically M<N, especially if N=64)
:il — 2Mis most physical memory machine supports

MainlMTmory VA—PA at page granularity (VP—PP)

— By “system”

— Mapping need not preserve contiguity
— VP need not be mapped to any PP
— Unmapped VPs live on disk (swap) (or

Disk unallocated)
. Whatis virtual memory used for?
g

SN~—

Uses of Virtual Memory

* Key uses: isolation and multi-programming

— Each app thinks it has 2N B of memory, its stack starts
OxFFFFFFFF,...

— Apps prevented from reading/writing each other’s memory
e Can’t even address the other program’s memory!

* Protection
— Each page with a read/write/execute permission set by OS
— Enforced by hardware

* Inter-process communication.

— Map same physical pages into multiple virtual address spaces

— Or share files via the UNIX mmap () call
0S App1 App2

Address Translation

virtual address[31:0] POFS[135:0]
translate | don’t touch

physical address[25:0] PPN[27:16] POFS[15:0]

* VA—PA mapping called address translation
— Split VA into virtual page number (VPN) & page offset (POFS)
— Translate VPN into physical page number (PPN)
— POFS is not translated
— VA—PA = [VPN, POFS] — [PPN, POFS]

 Example above
— 64KB pages — 16-bit POFS
— 32-bit machine — 32-bit VA — 16-bit VPN
— Maximum 256 MB memory — 28-bit PA — 12-bit PPN

Multi-Level Page Table (PT)
e 20-bit VPN [VBNESH0)] VPNI:0] | 2nd-level

PTEs
>

— Upper 10 bits index 1st-level table 1stlevel

ointers”

— Lower 10 bits index 2nd-level table pt “root”

struct { '
union { int ppn, disk block; } :
int is valid, is _dirty; -
} PTE;
struct {
struct PTE ptes[1024];
} L2PT;
struct L2PT *pt[1024];

int translate (int wvpn) { >
struct L2PT *12pt = pt[vpn>>10];
if (12pt && 1l2pt->ptes[vpné&l023].is valid)
return 12pt->ptes|[vpn&l023] .ppn;

Address Translation Mechanics Il

* Conceptually
— Translate VA to PA before every cache access
— Walk the page table before every load/store/insn-fetch

e Really? Is this fast?

Address Translation Mechanics Il

* Conceptually
— Translate VA to PA before every cache access
— Walk the page table before every load/store/insn-fetch
— Would be terribly inefficient (even in hardware)

* In reality
— Translation Lookaside Buffer (TLB): cache translations
— Only walk page table on TLB miss

 Hardware truisms
— Functionality problem? Add indirection (e.g., VM)
— Performance problem? Add cache (e.g., TLB)

CPU

A A

Main
Memory

Translation Buffer

* Translation buffer (TLB)

— Small cache: 16—64 entries

— Associative (4+ way or fully
associative)

+ Exploits temporal locality in page

“table

— Wﬁért\if an entry isn’t found in the
TLB?

» Invoke TLB thiss handler

“data?.
PPN
PPN
PPN

‘1’ 12

Main

Memory

Serial TLB & Cache Access

VA

PA

* “Physical” caches
— Indexed and tagged by physical addresses

+ Natural, “lazy” sharing of caches between apps/OS
® VM ensures isolation (via physical addresses)
®* No need to do anything on context switches
® Multi-threading works too
+ Cached inter-process communication works
* Single copy indexed by physical address

— Slow: adds at least one cycle to t,

* Note: TLBs are by definition virtual

— Indexed and tagged by virtual addresses
— Flush across context switches
— Or extend with process id tags

e Does this have to be serial?

13

Parallel TLB & Cache Access

?

tag [31:12]
C

o 14

1$ [D$ -\LA— * What about parallel access?
|

page offset [15:0]
page offset [15:0]

PPN[27:16]

PA
v 1 — What if
Lo (cache size) / (associativity) < page size
F — Index bits same in virt. and physical addresses!
v | * Access TLB in parallel with cache
Main — Cache access needs tag only at very end
Memory

+ Fast: no additional t,;, cycles
+ No context-switching/aliasing problems
— Dominant organization used today

14

TLB Organization

* Like caches: TLBs also have ABCs
— Capacity

— Associativity (At least 4-way associative, fully-associative
common)

— What does it mean for a TLB to have a block size of two?

* Two consecutive VPs share a single tag
— Like caches: there can be L2 TLBs

TLB Misses

* TLB miss: translation not in TLB, but in page table
— Two ways to “fill” it, both relatively fast

* Software-managed TLB: e.g., Alpha, Embedded PPC
— Short (~10 insn) OS routine walks page table, updates TLB
+ Keeps page table format flexible
— Latency: one or two memory accesses + OS call (pipeline flush)

e Hardware-managed TLB: e.g., x86
— Page table root pointer in hardware register, FSM “walks” table
+ Latency: saves cost of OS call (pipeline flush)
— Page table format is hard-coded

— TLB misses becoming a huge problem as physical memory
grows
— Direct Segments [ISCA’13]

16

Page Faults

* Page fault: PTE not in TLB or page table
— — page not in memory
— Starts out as a TLB miss, detected by OS/hardware handler

e OS software routine:

— Choose a physical page to replace
* “Working set”: refined LRU, tracks active page usage

— If dirty, write to disk

— Read missing page from disk
* Takes so long (*10ms), OS schedules another task

— Requires yet another data structure: frame map (why?)
— Treat like a normal TLB miss from here

17

Ok, now how do we provide protection?

Page-Level Protection

* Page-level protection

— Piggy-back page-table mechanism
— Map VPN to PPN + Read/Write/Execute permission bits

— Attempt to execute data, to write read-only data?
* Exception — OS terminates program

— When are protection properties checked?

struct {

union { int ppn, disk block; }

int is valid, is dirty, permissions;
} PTE;
struct PTE pt[NUM VIRTUAL PAGES];

int translate(int vpn, int action) ({
if (pt[vpn].is valid && ! (pt[vpn].permissions & action)) kill;

What could we use protection for?

What could we use protection for?

Virtualization

Software distributed shared memory
Garbage collection?

Optimizations?

Control program execution in interesting ways

Virtualization

Host machine

22

Virtualization

P
guest | guest | guest guest guest guest
process |process | process Process| process| Process
Guest OS Guest OS2
VMM VMM
~ J Y
Host machine

EPT Base Pointer

Guest
Linear
Address

Guest
Physica
Address

Intel® 64
Page
Tables

EPT
Page
Tables

Host
Physical
Address

23

Singularity OS [Larus et al.]

Can we have a single-address space OS that also
supports multiprogramming, is safe etc.

Exercise: write an OS in a managed language
— No explicit pointer computation

Use types and static analysis to isolate program
executions

Minimal low-level code to interact with devices

