
An Introduction to FPGAs
Thierry Moreau
CSE548 17sp

Talk Overview

• What are FPGAs?

• How do you program FPGAs?

• What can you do with FPGAs?

Limitations of ASICs

Tape-out costs for ASICs is exorbitant
10x cost gap between 16nm and 65nm

Risky bet to design hardware
accelerators for ever-changing

applications (think ML, search etc.)

FPGA (Field Programmable Gate-Arrays)

FPGAs provide a sea of programmable logic
components that can be fully customizable.

Think of it as a virtual layer to implement any
ASIC design on top of a fixed ASIC design.

Stratix IV die photo

FPGA Architecture - High Level Structure

Stratix IV

…
…
…
…
…

…
…

… … … … … … … … … …

I/O Block

I/O Block

I/O
 BlockI/O

 B
lo

ck

Logic Block Interconnection Switch

Westmere Xeon for comparison

FPGA Architecture - Programmable LUTs

0/1

0/1

0/1

0/1

x₁

x₂

f

x₁ x₂

0 0

0

0

1

1

1 1

f₁

1

0

0

1

1

0

0

1

x₁

x₂

f₁

(a) Circuit for a two-input LUT (b) f₁ = x₁x₂ + x₁x₂ (c) Two-input LUT programmed to implement f₁

FPGA Architecture - Interconnection Fabric

0
0
0
1

x1

x2

f1

0
0
0
1

x1

x2

f1

0
0
0
1

x1

x2

f1

I/O pin

LUT

programmable
interconnection

point

1/0

wires

FPGA Architecture - Hard Components
Certain functions are commonly used across many designs:

thus it’s worth hardening those modules

FPGA Architecture - DSP blocks

Digital Signal Processing (DSP) blocks
provide dense fixed-point compute
capabilities.

Sometimes a small micro-
processor can help offload
simple book keeping tasks.

FPGA Architecture - Embedded Processors

FPGA example: Zynq Programmable SoC

General ARM Cortex-A9 Processor

Low-Power FPGA fabric that shares
the memory bus with the CPU

What is the FPGA-ASIC gap?
What is the cost of reprogrammability?

* Kuon et al. Measuring the Gap between FPGAs and ASICs. [FPGA06]

~40x area overhead based on LUT-only design*
~21x area overhead with of DSPs and Memory*

Corresponds to the area overhead of going from 14nm to 65nm!
Given that a 65nm tapeout it still expensive and time consuming, it is worth
going to FPGA for many custom designs!

Talk Overview

• What are FPGAs?

• How do you program FPGAs?

• What can you do with FPGAs?

FPGA Programming Basics

Verilog - funky hardware description language

Logic in Verilog

module foo (a,b,f,g);
 input wire a, b;
 output wire f;
 output reg g;
 
 assign f = a && b;
 always @(*)
 g = a && b;
endmodule

Module definition of two identical and
gates.

One gate declaration uses a continuous
assignment with assign, while the
other uses procedural assignment with
always.

Hardware Registers in Verilog

input wire nextFoo;
reg foo;  
 
always @(posedge clk)
 foo <= nextFoo;

Registers are used to hold state.

At every positive edge of the clock, the
register captures the input value and
holds it until the next positive edge of
the clock.

Don’t confuse registers in Verilog with
actual hardware registers!

Good crash-course in Verilog from MIT here and here

http://web.mit.edu/6.111/www/s2004/LECTURES/l3.pdf
http://web.mit.edu/6.111/www/s2004/LECTURES/l4.pdf

High-Level Synthesis
Verilog is an ugly language and is difficult to test and debug.

Is there a more approachable design entry language for software programmers?

Yes! It’s called high-level synthesis and the tools are maturing.
Intel (formerly Altera) offers an OpenCL compiler, and Xilinx offers a C compiler.

You’ll learn how to use HLS in your homework!

How do you go from a hardware
specification in Verilog to a bit stream

that configures the FPGA to implement
the desired hardware circuit?

FPGA Compilation: Overview

Logic Synthesis

Placement and Route

Bitstream Generation

Verilog file

High Level SynthesisOpenCL/C file

bit stream

FPGA Compilation: Logic Synthesis

Translation:
• Convert HDL to boolean equations and latches
Logic Optimization:
• Reduce area and delay of circuit performing

standard boolean optimization
Technology Mapping:
• Implement the equations and latches may

mapping those to LUTs and other components

Translation

Logic Optimization

Technology Mapping

verilog file

technology-mapped netlist

FPGA Compilation: Place & Route

Placement

Routing

Bit Stream Generation

Placement:
• Pin & gate assignment
• Optimizing position and orientation of cells
• Objective: minimize area (NP-complete)
Routing:
• Connect cells pins with wires
• Objective: minimize delay, area (NP-complete)
Bit-stream generation:
• Produces the bits that will configure the FPGA to do

what we want

technology-mapped netlist

bitstream

FPGA Compilation: Example
Step 1: Logic Synthesis for a 2-input LUT-based FPGA

f(x1, x2, x3) = x1x2 + ¬x2x3

f1 = x1x2

f2 = ¬x2x3

f = f1 + f2

module foo (a,b,f);
 input wire a, b, c;
 output wire f;
 
 assign f = a and b or (~b and c);
endmodule

FPGA Compilation: Example
Step 2: Placement

0
0
0
1

x1

x2

f1

0
0
0
1

x1

x2

f1

0
0
0
1

x1

x2

f1

FPGA Compilation: Example
Step 2: Placement

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

FPGA Compilation: Example
Step 3: Routing (connect x_1 to f_1)

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

FPGA Compilation: Example
Step 3: Routing (connect x_2 to f_1)

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

FPGA Compilation: Example
Step 3: Routing (connect x_2 to f_2)

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

FPGA Compilation: Example
Step 3: Routing (connect x_3 to f_2)

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

FPGA Compilation: Example
Step 3: Routing (connect f_1 to f)

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

FPGA Compilation: Example
Step 3: Routing (connect f_2 to f)

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

FPGA Compilation: Example
Step 3: Routing (connect f to pin)

0
0
0
1

x1

x2

f1

0
1
0
0

x2

x3

f2

0
1
1
1

f1

f2

f

x1

x2

x3 f

Talk Overview

• What are FPGAs?

• How do you program FPGAs?

• What can you do with FPGAs?

FPGAs provide a high degree of specialization

CPU GPU FPGA ASIC

higher specialization & power efficiency **

Specialization for Deep Learning

[1] Umuroglu et al., FINN: A Framework for Fast, Scalable, Binary Network Inference. [FPGA17]
[2] Nurvitadhi et al., Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks? [FPGA17]

Stratix 10 FPGA provide 2.3x better performance per watt over
a Titan X Pascal GPU with Ternary ResNet Deep Neural Net [2]

Zynq UltraScale+ can achieve 66 TOPS of binary operations,
a 2.5x increase over the Nvidia K-40 GPU [1]

Specialization in the Datacenter

* Putnam et al., A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services? [ISCA14]

FPGAs have been used in deployment to accelerate Bing search among
other things at Microsoft *

come to Andrew’s talk on how they
achieved this on Friday!

Homework 3 Overview
• You will implement your own ML classifier on a Zynq FPGA!

• Each one of you will get a PYNQ board and peripherals.

• I will provide you with scaffolding to generate a hardware design
(overlay) with HLS, and driver libraries to test your design on the
PYNQ.

• You will get to implement your own optimization that either improves
performance, or accuracy from the baseline design.

Homework 3: Pareto-Optimality

accuracy

performance

provided
implementation

Legend
worse accuracy and performance

better accuracy but worse performance
or

better performance but worse accuracy

same accuracy but better performance or same performance but better accuracy
better accuracy and better performance

Questions

