CSE 548: Computer Systems Architecture

Superscalar Processors
Luis Ceze, Spring 2017

(based on slides lifted from friends at UPenn, UIUC, UW, MIT)

Announcements

This Unit: Superscalar Execution

e Superscalar scaling issues
— Multiple fetch and branch prediction
— Dependence-checks & stall logic
— Wide bypassing
— Register file & cache bandwidth

 Multiple-issue designs
— “Superscalar”
— VLIW and EPIC (Itanium)

How to make our pipelined design faster?

regfile |

 What happens if we make the pipeline deeper? (more stages)

Scalar Pipeline and the Flynn Bottleneck

regfile |

e So far we have looked at scalar pipelines
— One instruction per stage
* With control speculation, bypassing, etc.
— Performance limit (aka “Flynn Bottleneck”) is CPI = IPC=1
— Limit is never even achieved (hazards)
— Diminishing returns from “super-pipelining” (hazards + overhead)

Multiple-lIssue Pipeline

regfile |

 Overcome this limit using multiple issue
— Also called superscalar
— Two instructions per stage at once, or three, or four, or eight...
— “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81]

* Today, typically “4-wide” (Intel Core i7, AMD Opteron)
— Some more (Power5 is 5-issue; Itanium is 6-issue)
— Some less (dual-issue is common for simple cores)

Superscalar Pipeline Diagrams - Ideal

scalar
lw 0(rl)=>r2

lw 4 (rl)=>r3

lw 8(rl)=>r4
add rl4,r15=9ré6
add rl2,rl13=>r7
add rl7,rl6=>r8
lw 0(rl8)=>r9

2-way superscalar 1

lw 0(rl)=>r2
lw 4 (rl)=>r3
lw 8(rl)=>r4
add rl4,r15=>ré6
add rl2,rl13=9r7
add rl7,rl6=>r8
lw 0(rl8)=>r9

1 2 3 4 5 6 7 8 9 10 11 12
F D X M W
F D X M W
F D X M W
F D X M W
F D X MW
F D X M W
F D X M W
2 3 4 5 6 7 8 9 10 11 12
F D X M W
F D X M W
F D X M W
F D X M W
F D X MW
F D X M W
F D X M W

Superscalar Pipeline Diagrams - Realistic

scalar
lw 0(rl)=>r2

lw 4 (rl)=>r3
lw 8(rl)=>r4
add r4,r5=29r6
add r2,r3=9r7
add r7,r6=>rS8
lw 0(r8)=>r9

2-way superscalar

lw 0(rl)=>r2
lw 4 (rl)=>r3
lw 8(rl)=>r4
add r4,r5=29r6
add r2,r3=r7
add r7,r6=>r8
lw 0(r8)=>r9

1 2 3 4 5 6 7 8 9 10 11 12
F D X M W
F D X M W
F D X M W
F d& D X M W
F D X M W
F D X M W
F D X M W
1 2 3 4 5 6 7 8 9 10 11 12
F D X M W
F D X M W
F D X M W
F da*xd* D X M W
F d D X M W
F D X M W
F d& D X M W

A Typical Dual-Issue Pipeline

regfile

<

* Fetch an entire 16B or 32B cache block
— 4 to 8 instructions (assuming 4-byte fixed length instructions)

— Predict a single branch per cycle
* Parallel decode

— Need to check for conflicting instructions

— Output of I, isaninput to |,

— Other stalls, too (for example, load-use delay)
 What are the added costs of this design?

A Typical Dual-Issue Pipeline

regfile |e

* Multi-ported register file

— Larger area, latency, power, cost, complexity
* Multiple execution units

— Simple adders are easy, but bypass paths are expensive
* Memory unit

— Single load per cycle (stall at decode) probably okay for dual issue

— Alternative: add a read port to data cache
* Larger area, latency, power, cost, complexity

Superscalar Challenges - Front End

Wide instruction fetch

— Modest: need multiple instructions per cycle

— Aggressive: predict multiple branches, trace cache
Wide instruction decode

— Replicate decoders

Wide instruction issue (submit for execution)
— Determine when instructions can proceed in parallel
— Not all combinations possible
— More complex stall logic - order N2 for N-wide machine

Wide register read

— One port for each register read
e Each port needs its own set of address and data wires

— Example, 4-wide superscalar =2 8 read ports

Superscalar Challenges - Back End

Wide instruction execution
— Replicate arithmetic units
— Multiple cache ports
Wide instruction register writeback
— One write port per instruction that writes a register
— Example, 4-wide superscalar = 4 write ports
Wide bypass paths

— More possible sources for data values
— Order (N2 * P) for N-wide machine with execute pipeline depth P

Fundamental challenge:
— Amount of ILP (instruction-level parallelism) in the program
— Compiler must schedule code and extract parallelism

Superscalar Execution

Superscalar Decode and Register Read

regfile

What is involved in decoding multiple (N) insns per cycle?
Actually doing the decoding?

— Easy if fixed length (multiple decoders), doable if variable length
Reading input registers?

— 2N register read ports (latency oc #ports)

+ Actually less than 2N, most values come from bypasses
— More about this in a bit

What about the stall logic? (i.o.w., what happens to dependence
check?)

N2 Dependence Cross-Check

* Stall logic for 1-wide pipeline with full bypassing
— Full bypassing — load/use stalls only
X/M.op==LOAD && (D/X.rs1==X/M.rd | | D/X.rs2==X/M.rd)
— Two “terms”

* Now: same logic for a 2-wide pipeline
X/M,.op==LOAD && (D/X;.rs1==X/M.rd || D/X;.rs2==X/M,.rd)
X/M;.op==LOAD && (D/X,.rs1==X/M.rd || D/X,.rs2==X/M,.rd)
X/M,.op==LOAD && (D/X;.rs1==X/M,.rd | | D/X;.rs2==X/M,.rd)
X/M,.op==LOAD && (D/X,.rs1==X/M,.rd | | D/X,.rs2==X/M,.rd)
— Eight “terms”: oc 2N?
* N2 dependence cross-check

— Not quite done, also need
* D/X,.rs1==D/X,.rd | | D/X,.rs2==D/X,.rd

Superscalar Execute

 What is involved in executing N insns per cycle?

Superscalar Execute

 What is involved in executing N insns per cycle?

* Multiple execution units ... N of every kind?
— N ALUs? OK, ALUs are small
— N FP dividers? No, FP dividers are huge and £diwv is uncommon
— How many branches per cycle? How many loads/stores per cycle?

— Typically some mix of functional units proportional to insn mix
* Intel Pentium: 1 any+ 1 ALU
* Alpha 21164: 2 integer (including 2 loads) + 2 FP

Superscalar Memory Access

* What about multiple loads/stores per cycle?
— Probably only necessary on processors 4-wide or wider— why?

— More important to support multiple loads than multiple stores
* Insn mix: loads (~20-25%), stores (~*10—15%)

DS Bandwidth: Multi-Porting, Replication

* How to provide additional DS bandwidth?
— Have already seen split IS/DS, but that gives you just one DS port
— How to provide a second (maybe even a third) DS port?

* Option#1: multi-porting
+ Most general solution, any two accesses per cycle
— Expensive in terms of latency, area (cost), and power

* Option #2: replication
— Additional read bandwidth only, but writes must go to all replicas
+ General solution for loads, no latency penalty

— Not a solution for stores (that’s OK), area (cost), power penalty
* Is this what Alpha 21164 does?

RAM vs CAM

 Random Access Memory
— Read/write specific index
— Get/set value there

 Content Addressable Memory
— Search for a value
— Find matching indices

* One structure can have ports of both types

RAM vs CAM: RAM

17

22

Read index 4

47

17

19

19

12

13

42

RAM: read/write specific index

RAM vs CAM: CAM

Index O

17

22

_ 47 Index 3
Find 17

17

19

12

13

42

CAM: search for value

Superscalar Register Read/Write

regfile

* How many register file ports to execute N insns per cycle?

— Nominally, 2N read + N write (2 read + 1 write per insn)
— Latency, area o #ports?

— In reality, fewer than that
e Read ports: many values come from bypass network
* Write ports: stores, branches (35% insns) don’t write registers

e Replication works great for regfiles (used in Alpha 21164)
* Banking? Not so much

Superscalar Bypass

* N2 bypass network

N+1 input muxes at each ALU input
N? point-to-point connections
Routing lengthens wires

Expensive metal layer crossings
Heavy capacitive load

And this is just one bypass stage (MX)!
®* There is also WX bypassing
®* Even more for deeper pipelines

One of the big problems of superscalar

Superscalar Fetch

|

22

1 10
=1 1023

4

 What s involved in fetching multiple instructions per cycle?
* Insame cache block? — no problem

— Favors larger block size (independent of hit rate)
 Can compilers help? How?

* |In multiple blocks? Hmm, how?

Superscalar Fetch

|

22 | 1023
®

4

 What s involved in fetching multiple instructions per cycle?
* Insame cache block? — no problem
— Favors larger block size (independent of hit rate)
» Compilers align basic blocks to IS lines (.align assembly directive)
— Reduces IS capacity
+ Increases fetch bandwidth utilization (more important)
* In multiple blocks? — Fetch block A and A+1 in parallel
— Banked IS + combining network
— May add latency (add pipeline stages to avoid slowing down clock)

Wide Non-Sequential Fetch

* Two related questions
— How many branches predicted per cycle?
— Can we fetch across the branch if it is predicted “taken”?

Wide Non-Sequential Fetch

 Two related questions
— How many branches predicted per cycle?
— Can we fetch across the branch if it is predicted “taken”?

* Simplest, most common organization: “1” and “No”
— One prediction, discard post-branch insns if prediction is “taken”
— Lowers effective fetch width and IPC

— Average number of instructions per taken branch?
* Assume: 20% branches, 50% taken — ~10 instructions

— Consider a 10-instruction loop body with an 8-issue processor
* Without smarter fetch, ILP is limited to 5 (not 8)

 Compiler can help
— Reduce taken branch frequency (e.g., unroll loops)

Branch Prediction and Wide Execution

 What happens to the cost of a branch misprediction in a
superscalar processor?

Impact of Branch Prediction

Base CPI for scalar pipeline is 1

Base CPI for N-way superscalar pipelineis 1/N
— Amplifies stall penalties
— Assumes no data stalls (an overly optimistic assumption)

Example: Branch penalty calculation
— 20% branches, 75% taken, 2 cycle penalty, no branch prediction

Scalar pipeline

— 1+ 0.2%0.75*2 = 1.3 — 1.3/1 = 1.3 - 30% slowdown
2-way superscalar pipeline

— 0.5 + 0.2%0.75*2 = 0.8 — 0.8/0.5 = 1.6 — 60% slowdown

4-way superscalar
— 0.25 + 0.2*0.75*2 = 0.55 — 0.55/0.25 = 2.2 —» 120% slowdown

Multiple-lIssue Implementations

Statically-scheduled (in-order) superscalar

+ Executes unmodified sequential programs

— Hardware must figure out what can be done in parallel

— E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)
Very Long Instruction Word (VLIW)

+ Hardware can be dumb and low power

— Compiler must group parallel insns, requires new binaries

— E.g., TransMeta Crusoe (4-wide)

Explicitly Parallel Instruction Computing (EPIC)

— A compromise: compiler does some, hardware does the rest
— E.g., Intel Itanium (6-wide)

Dynamically-scheduled superscalar

— Pentium Pro/Il/lll (3-wide), Alpha 21264 (4-wide)

VLIW

Hardware-centric multiple issue problems
— Wide fetch+branch prediction, N? bypass, N?* dependence checks
— Hardware solutions have been proposed: clustering, trace cache

Software-centric: very long insn word (VLIW)

— Effectively, a 1-wide pipeline, but unit is an N-insn group

— Compiler guarantees insns within a VLIW group are independent
* If noindependent insns, slots filled with nops

— Group travels down pipeline as a unit
+ Simplifies pipeline control (no rigid vs. fluid business)
+ Cross-checks within a group un-necessary
* Downstream cross-checks still necessary

— Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.
+ Further simplification

What Does VLIW Actually Buy You?

+ Simpler IS/branch prediction
+ Slightly simpler dependence check logic

 Doesn’t help bypasses or regfile
— Which are the much bigger problems
— Although clustering and replication can help VLIW, too

— Not compatible across machines of different widths
— Is non-compatibility worth all of this?

* How did TransMeta deal with compatibility problem?

— Dynamically translates x86 to internal VLIW

Trends in Single-Processor Multiple Issue

486 Pentiu Pentiu | Pentiu | Itanium | Itanium | Core2 | Core i/ Core M
m mII m4 I1 (Sandy B) | (Broadwell)
Year | 1989 1993 1998 2001 2002 2004 | 2006 | 2011 2015
Widt 1 2 3 3 3 6 4 F6/4 4
h

* |ssue width has saturated at 4-6 for high-performance cores
— Canceled Alpha 21464 was 8-way issue
— No justification for going wider
— Out-of-order execution (or EPIC) needed to exploit 4-6 effectively
* For high-performance/power cores, issue width is ~2
— OQut-of-order execution not needed
— Multi-threading (a little later) helps cope with cache misses

