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Ooops	--- The	“Memory	Wall”
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• Yet,	need	to	get	data	in-and-out	of	processors!
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Bandwidth
SRAM	- 10-1000GB/sec
DRAM	- ~10GB/sec
Disk	- 100MB/sec	(0.1	GB/sec)	- sequential	access	only	



Known	From	the	Beginning

“Ideally,	one	would	desire	an	infinitely	large	memory	
capacity	such	that	any	particular	word	would	be	
immediately	available	…	We	are	forced	to	recognize	the	
possibility	of	constructing	a	hierarchy	of	memories,	each	of	
which	has	a	greater	capacity	than	the	preceding	but	which	
is	less	quickly	accessible.”

Burks,	Goldstine,	VonNeumann	
“Preliminary	discussion	of	the	logical	design	of	an	electronic	

computing	instrument”
IAS	memo	1946	
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Memory	Hierarchy
• 0th	level:	Registers
• 1st	level:	Primary	caches

– Split	instruction	(I$)	and	data	(D$)	(SMC?)
– Typically	8KB	to	64KB	each

• 2nd	level:	Second-level	cache (L2$)
– On-chip,	certainly	on-package	(with	CPU)
– Made	of	SRAM	(same	circuit	type	as	CPU)
– Typically	512KB	to	16MB

• 3rd	level:	main	memory
– Made	of	DRAM	(“Dynamic” RAM)

• 4th	level:	disk	(swap	and	files)
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How	does	execution	time	grow	
with	SIZE?
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int array[SIZE];  
int A = 0;  

for (int i = 0 ; i < 200000 ; ++ i) {         
for (int j = 0 ; j < SIZE ; ++ j) {                
A += array[j];         
}  

}
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Actual	Data
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How	do	programs	use	the	
memory	hierarchy?
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Locality	to	the	Rescue
• Locality	of	memory	references

– Property	of	real	programs,	few	exceptions

• Temporal	locality
– Recently	referenced	data	is	likely	to	be	referenced	again	soon
– Reactive:	cache	recently	used	data	in	small,	fast	memory

• Spatial	locality
– More	likely	to	reference	data	near	recently	referenced	data
– Proactive:	fetch	data	in	large	chunks	to	include	nearby	data,	how?

• Holds	for	data	and	instructions.	
• Why?	Where	does	it	come	from?
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Example:	Locality?

• Data:
– Temporal:	sum referenced	in	each	iteration
– Spatial:	array	a[] accessed	in	stride-1	pattern

• Instructions:
– Temporal:	cycle	through	loop	repeatedly
– Spatial:	reference	instructions	in	sequence

• Being	able	to	assess	the	locality	of	code	is	a	crucial	skill	for	
a	programmer

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;
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Basic	Memory	Array	Structure
• Number	of	entries

– 2n,	where	n	is	number	of	address	bits
– Example:		1024	entries,	10	bit	address
– Decoder	changes	n-bit	address	to	

2n bit	“one-hot” signal
– One-bit	address	travels	on	“wordlines”

• Size	of	entries
– Width	of	data	accessed
– Data	travels	on	“bitlines”
– 256	bits	(32	bytes)	in	example

• How	do	we	use	a	cache	entry?	
– Divide	up	memory	in	blocks	too.
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Caches:	Finding	Data	via	Indexing
• Basic	cache:	array	of	lines

– Example:	32KB	cache	(1024	frames,	32B	blocks)
– “Hash	table	in	hardware”

• To	find	frame:	decode	part	of	address
– Which	part?
– 32-bit	address
– 32B	blocks	® 5	lowest	bits	locate	byte	in	block

• These	are	called	offset	bits
– 1024	frames	® next	10	bits	find	frame

• These	are	the	index	bits
– Note:	nothing	says	index	must	be	these	bits
– But	these	work	best	(think	about	why)

• How	do	you	know	you	are	getting	the	right	data?
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Knowing	that	You	Found	It:	Tags
• Each	frame	can	hold	one	of	217 blocks

– All	blocks	with	same	index	bit	pattern
• How	to	know	which	if	any	is	currently	there?

– To	each	frame	attach	tag and	valid	bit	(why	do	we	need	valid	bits?)
– Compare	frame	tag	to	address	tag	bits

• No	need	to	match	index	bits	(why?)

• Lookup	algorithm
– Read	frame	indicated	by	index	bits
– “Hit” if	tag	matches	and	valid	bit	is	set
– Otherwise,	a	“miss”.		Get	data	from	next	level
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Block	Size
• Increasing	block	size

– Exploit	spatial	locality
– Notice	index/offset	bits	change
– Tag	remain	the	same

• Ramifications
+ Reduce	%miss

+ Reduce	tag	overhead	(why?)
– Potentially	useless	data	transfer
– Premature	replacement	of	useful	data
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A	puzzle.
• What	can	you	infer	from	this:

• Cache	starts	empty
• Access	(addr,	hit/miss)	stream:

• (10,	miss),	(11,	hit),	(12,	miss)
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block	size	>=	2	bytes block	size	<	8	bytes



Where	can	data	go	?
• The	cache	is		essentially	a	table	with	a	tag.
• Where	can	data	go	in	this	table?	
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Set-Associativity
– Block	can	reside	in	one	of	few	
frames

– Frame	groups	called	sets
– Each	frame	in	set	called	a	way
– This	is	2-way	set-associative	(SA)
– 1-way	® direct-mapped	(DM)
– 1-set	® fully-associative	(FA)

+ Reduces	conflicts
– Increases	latencyhit:	

• additional	tag	match	&	muxing

– Note:	valid	bit	not	shown
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Cache	(or	set)	is	full,	now	what?

• Random
• FIFO	(first-in	first-out)
• LRU	(least	recently	used)

– Fits	with	temporal	locality,	LRU	=	least	likely	to	be	used	in	
future

• NMRU	(not	most	recently	used)	
– An	easier	to	implement	approximation	of	LRU
– Is	LRU	for	2-way	set-associative	caches

• Belady’s:	replace	block	that	will	be	used	furthest	in	
future

• Unachievable	optimum
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Another	puzzle.
• What	can	you	infer	from	this:

• Cache	starts	empty
• Access	(addr,	hit/miss)	stream

• (10,	miss);	(12,	miss);	(10,	miss)
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Impact	of	Cache	and	Block	Size

• Cache	Size
– Effect	on	miss	rate?

– Effect	on	hit	time?

• Block	Size
– Effect	on	miss	rate?

– Effect	on	miss	penalty?



Block	Size	and	Miss	Penalty
• Does	increasing	block	size	increase	tmiss?

– Don’t	larger	blocks	take	longer	to	read,	transfer,	and	fill?
– They	do,	but…	

• tmiss of	an	isolated	miss	is	not	affected	
– Critical	Word	First	/	Early	Restart	(CRF/ER)
– Requested	word	fetched	first,	pipeline	restarts	immediately
– Remaining	words	in	block	transferred/filled	in	the	background

• tmiss’es of	a	cluster	of	misses	will	suffer
– Reads/transfers/fills	of	two	misses	can’t	happen	at	the	same	time
– Latencies	can	start	to	pile	up
– This	is	a	bandwidth	problem

21



Impact	of	Associativity

– Direct-mapped,	set	associative,	or	fully	associative?

• Total	Cache	Size	(tags+data)?

• Miss	rate?

• Hit	time?

• Miss	Penalty?



Associativity	And	Performance

• Higher	associative	caches	
+ Have	better	(lower)	%miss

• Diminishing	returns
– However	thit increases

• The	more	associative,	the	slower
– What	about	tavg?

• Block-size	and	number	of	sets	should	be	powers	of	two
– why?

• What	about	set-associativity	(e.g.,	3,	5-way)	?	

Associativity

%miss ~5
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Classifying	Misses:	3C	Model	(Hill)
• Divide	cache	misses	into	three	categories

– Compulsory	(cold):	never	seen	this	address	before
• Would	miss	even	in	infinite	cache

– Capacity:	miss	caused	because	cache	is	too	small
• Would	miss	even	in	fully	associative	cache

– Conflict:	miss	caused	because	cache	associativity	is	too	low
– (Coherence):	miss	due	to	external	invalidations

• Only	in	shared	memory	multiprocessors	(later)
• Calculated	by	multiple	simulations

– Simulate	infinite	cache,	fully-associative	cache,	normal	cache
– Subtract	to	find	each	count	
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Miss	Rate:	ABC
• Why	do	we	care	about	3C	miss	model?

– So	that	we	know	what	to	do	to	eliminate	misses
– If	you	don’t	have	conflict	misses,	increasing	associativity	won’t	help

• Associativity
+ Decreases	conflict	misses
– Increases	latencyhit

• Block	size
– Increases	conflict/capacity	misses	(fewer	frames)
+ Decreases	compulsory/capacity	misses	(spatial	locality)
– No	significant	effect	on	latencyhit

• Capacity
+ Decreases	capacity	misses
– Increases	latencyhit
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Reducing	Conflict	Misses:	Victim	Buffer
• Conflict	misses:	not	enough	associativity

– High-associativity	is	expensive,	but	also	rarely	needed
• 3	blocks	mapping	to	same	2-way	set	and	accessed	(XYZ)+

• Victim	buffer	(VB):	small	fully-associative	cache
– Sits	on	I$/D$	miss	path
– Small	so	very	fast	(e.g.,	8	entries)
– Blocks	kicked	out	of	I$/D$	placed	in	VB
– On	miss,	check	VB:	hit?	Place	block	back	in	I$/D$
– 8	extra	ways,	shared	among	all	sets

+ Only	a	few	sets	will	need	it	at	any	given	time
+ Very	effective	in	practice
– Does	VB	reduce	%miss or	latencymiss?	

I$/D$

L2

VB
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Tolerating	Latencies	Again

• What	would	happen	if	you	could	have	only	
one	outstanding	cache	miss?	
– Inorder,	single-issue

– Out-of-order,	wide-issue

• How	about	not	even	hits?
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Overlapping	Misses:	Lockup	Free	Cache
(aka	Memory-Level	Parallelism)

• Lockup	free:	allows	other	accesses	while	miss	is	pending
– Consider:	Load	[r1]	->	r2;			Load	[r3]	->	r4;				Add	r2,	r4	->	r5
– Handle	misses	in	parallel

• “memory-level	parallelism”
– Makes	sense	for…

• Processors	that	can	go	ahead	despite	D$	miss	(out-of-order)
– Implementation:	miss	status	holding	register	(MSHR)

• Remember:	miss	address,	chosen	frame,	requesting	instruction
• When	miss	returns	know	where	to	put	block,	who	to	inform

– Common	scenario:	“hit	under	miss”
• Handle	hits	while	miss	is	pending
• Easy

– Less	common,	but	common	enough:	“miss	under	miss”
• A	little	trickier,	but	common	anyway
• Requires	multiple	MSHRs:	search	to	avoid	frame	conflicts
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Is	There	A	Performance	Difference?

int x[NROWS][NCOLS];

for (i = 0; i<NROWS; i++)
for (j = 0; j<NCOLS; j++)

x[i][j] = 0;

for (j = 0; j<NCOLS; j++)
for (i = 0; i<NROWS; i++)

x[i][j] = 0;

• Is	there	a	performance	in	these	loops	difference?		If	so,	
why?		
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Is	There	A	Performance	Difference?

int x[NROWS][NCOLS];

for (i = 0; i<NROWS; i++)
for (j = 0; j<NCOLS; j++)

x[i][j] = 0;

for (j = 0; j<NCOLS; j++)
for (i = 0; i<NROWS; i++)

x[i][j] = 0; ~5X slower!
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Tolerating	Cache	Miss	Latencies

• What	can	the	hardware	do	to	avoid	miss	
penalties	in	this	case?

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
sum += A[i][j];



Prefetching:	Start	moving	data	close	to	the	
processor	before it	is	needed

• Prefetching	allows	cache	misses	to	be	overlapped	with:
– computation,	and
– other	cache	misses.
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Prefetching
• Key:	anticipate	upcoming	miss	addresses	accurately

• Can	do	in	software	or	hardware

• Simple	example:	next	block	prefetching
• Miss	on	address	X® anticipate	miss	on	X+block-size
+ Works	for	insns:	sequential	execution
+ Works	for	data:	arrays

– Timeliness:	initiate	prefetches	sufficiently	in	advance
– Coverage:	prefetch	for	as	many	misses	as	possible
– Accuracy:	don’t	pollute	with	unnecessary	data

• It	evicts	useful	data

I$/D$

L2

prefetch logic
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Software	Prefetching
• Use	a	special	“prefetch” instruction

– Tells	the	hardware	to	bring	in	data,	doesn’t	actually	read	it
– Just	a	hint	

• Inserted	by	programmer	or	compiler
• Example

for (i = 0; i<NROWS; i++)
for (j = 0; j<NCOLS; j+=BLOCK_SIZE) {

prefetch(&X[i][j]+BLOCK_SIZE);
for (jj=j; jj<j+BLOCK_SIZE-1; jj++)

sum += x[i][jj];
}

• Multiple	prefetches	bring	multiple	blocks	in	parallel
– Using	lockup-free	caches
– “Memory-level” parallelism
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Prefetches vs.	Memory	Loads?

• What	is	similar?
• What	is	the	different?



Prefetches vs.	Memory	Loads?
• Similarities:

– both	are	given	a	data	address	as	an	argument
– if	that	location	is	not	in	the	L1	data	cache,	then	a	cache	miss	is	

triggered,	and	the	data	is	moved	into	the	cache

• Differences:
– prefetches	do	not	have	a	register	destination

• Hence	they	are	“non-binding”
– prefetches	are	non-blocking

• i.e.	the	processor	does	not	stall:	it	keeps	executing
– prefetches	do	not	trigger	memory	exceptions

• it	is	ok	to	prefetch	invalid	memory	addresses



Hardware	Prefetching
• What	to	prefetch?

– Stride-based	sequential	prefetching
• Can	also	do	N	blocks	ahead	to	hide	more	latency
+ Simple,	works	for	sequential	things:	insns,	array	data
+ Works	better	than	doubling	the	block	size

– Address-prediction
• Needed	for	non-sequential	data:	lists,	trees,	etc.
• Use	a	hardware	table	to	detect	strides,	common	patterns

– Other	ideas?

• When	to	prefetch?
– On	every	reference?
– On	every	miss?
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More	Advanced	Address	Prediction
• “Next-block” prefetching	is	easy,	what	about	other	

options?
• Correlating	predictor

– Large	table	stores	(miss-addr	® next-miss-addr)	pairs
– On	miss,	access	table	to	find	out	what	will	miss	next

• It’s	OK	for	this	table	to	be	large	and	slow
• Content-directed	or	dependence-based	prefetching

– Greedily	chases	pointers	from	fetched	blocks
• Jump	pointers

– Augment	data	structure	with	prefetch	pointers
• Make	it	easier	to	prefetch:	cache-conscious	layout/malloc

– Lays	lists	out	serially	in	memory,	makes	them	look	like	array
• Active	area	of	research
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Waittaminute,	What	about	writes?
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Write	Propagation
• When	to	propagate	new	value	to	(lower	level)	memory?

• Option	#1:	Write-through:	immediately
– On	hit,	update	cache
– Immediately	send	the	write	to	the	next	level

• Option	#2:	Write-back:	when	block	is	replaced
– Requires	additional	“dirty” bit	per	block

• Replace	clean	block:	no	extra	traffic
• Replace	dirty	block:	extra	“writeback” of	block

• What	are	the	trade-offs?
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Write	Propagation	Comparison
• Write-through

– Requires	additional	bus	bandwidth
• Consider	repeated	write	hits

– Next	level	must	handle	small	writes	(1,	2,	4,	8-bytes)
+ No	need	for	valid	bits	in	cache
+ No	need	to	handle	“writeback” operations

• Simplifies	miss	handling	(no	WBB)
– Sometimes	used	for	L1	caches	(for	example,	by	IBM)

• Write-back
+ Key	advantage:	uses	less	bandwidth
– Reverse	of	other	pros/cons	above
– Used	by	Intel	and	AMD
– Second-level	and	beyond	are	generally	write-back	
caches
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Write	Miss	Handling
• Should	we	bring	the	data	to	the	cache	on	a	write	miss?
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Write	Miss	Handling
• How	is	a	write	miss	actually	handled?

• Write-allocate:	fill	block	from	next	level,	then	write	it
+ Decreases	read	misses	(next	read	to	block	will	hit)	
– Requires	additional	bandwidth
– Commonly	used	(especially	with	write-back	caches)

• Write-non-allocate:	just	write	to	next	level,	no	allocate
– Potentially	more	read	misses
+ Uses	less	bandwidth
– Use	with	write-through
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Write	misses	latency
• Read	miss?

– Load	can’t	go	on	without	the	data,	it	must	stall
• Write	miss?

– What	happens	to	the	store	instruction	when	it	reaches	the	head	of	the	
ROB?

– What	can	we	do	about	it?



Write	Misses	and	Write	Buffers
• Read	miss?

– Load	can’t	go	on	without	the	data,	it	must	stall
• Write	miss?

– Technically,	no	instruction	is	waiting	for	data,	why	stall?

• Write	buffer:	a	small	buffer
– How	does	it	help?

• Write	buffer	vs.	writeback-buffer
– Write	buffer:	“in	front” of	D$,	for	hiding	store	misses
– Writeback buffer:	“behind” D$,	for	hiding	writebacks

• Forwarding	again??	J

Cache

Next-level
cache

WBB

WB

Processor
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Local	vs	Global	Miss	Rates
• Local	hit/miss	rate:

– Percent	of	references	to	cache	hit	(e.g,	90%)
– Local	miss	rate	is	(100%	- local	hit	rate),	(e.g.,	10%)

• Global	hit/miss	rate:
– Misses	per	instruction	(1	miss	per	30	instructions)
– Instructions	per	miss	(3%	of	instructions	miss)
– Above	assumes	loads/stores	are	1	in	3	instructions

• Consider	second-level	cache	hit	rate
– L1:	2	misses	per	100	instructions
– L2:	1	miss	per	100	instructions	
– L2	“local	miss	rate” ->	50%
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