CSEP 548: Computer Systems Architecture

Memory Consistency Models and Synchronization
Luis Ceze, Spring 2017

(based on slides lifted from friends at UPenn, UIUC, UW, MIT, CMU)

Coherence vs. Consistency

A=0 flag=0

Processor 0 Processor 1
A=1; while (!flag); // spin
flag=1; print A;

« Intuition says?

87

Coherence vs. Consistency

A=0 flag=0

Processor 0 Processor 1
A=1; while (!flag); // spin
flag=1; print A;

« Intuition says? P1 prints A=1
- Coherence says?

87

Coherence vs. Consistency

A=0 flag=0

Processor 0 Processor 1
A=1; while (!flag); // spin
flag=1; print A;

Intuition says: P1 prints A=1
Coherence says: absolutely nothing
— P1 can see PO’ s write of £1ag before write of Al!l

Imagine trying to figure out why this code sometimes “works”
and sometimes doesn’ t

Real systems are allowed to act in this strange manner
— What is allowed? defined as part of the ISA and/or language

OMG, Why???

88

What is Going On?

« Reordering of memory operations to different addresses!

« In the compiler

— Compiler is generally allowed to re-order memory operations to
different addresses

— Many other compiler optimizations also cause problems

 In the hardware

— To tolerate write latency
« Processes don’ t wait for writes to complete
« Write coalescing, etc..
« And why should they? No reason on a uniprocessors

— To simplify out-of-order execution

85

Memory Consistency

 Memory coherence
— Creates globally uniform (consistent) view...
— Of a single memory location (in other words: cache blocks)

— Not enough
« Cache blocks A and B can be individually consistent...
« But inconsistent with respect to each other

 Memory consistency
— Creates globally uniform (consistent) view...
— Of all memory locations relative to each other

* Who cares? Programmers/Compiler writers/HW Designers
— Globally inconsistent memory creates mystifying behavior
— Reordering is key to performance

86

What is Sequential Consistency?

Sequential Consistency (SC)

P1 P2 . Global Order
P1 P2 P3 | (PN
st A

st A :
st A st C 1d C 1d A st A st A
1 st C
S r AE— > dC 1d ¢
........ st C 1d D st C
.......... st C
(A

= Simple machine model, intuitive behavior

- J

Per-processor program order: memory operations from individual
processors maintain program order

Single sequential order: the memory operations from all processors

maintain a single sequential order
[Lamport’79]

Pop Quiz! (assume SC)

Answer the following questions:
Initially: all variables zero (thatis, xis 0, y is O, flag is 0, A is 0)
What value pairs can be read by the two loads? (x, y) pairs:

thread 1 thread 2
1d x st 1 2y
1d vy st 1 2x
e What value pairs can be read by the two loads? (x, y) pairs:
thread 1 thread 2
st 1 2vy st 1 2x
1d x 1d vy
e What value can be read by the load A?
thread 1 thread 2
st 1 2A while(flag == 0) { }

st 1 —>flag 1d A

109

Pop Quiz Again! (assume SC)

e Answer the following questions:
e |nitially: all variables zero (that is, xis 0, y is O, flag is O, A is 0)
e What value pairs can be read by the two loads? (x, y) pairs:

thread 1 thread 2
1d x st 1 2y
H bout (1,0)?
1d v st 1 > x ow about (1,0
e What value rt%alrs can be read by the two loads? (x, y) pairs:
read thread
st 1 %Y st 1 =X How about (0,0)?
1d x 1d vy
e What value can be read by the load A?
thread 1 thread 2
st 1 -2 A while(flag == 0) { }
st 1 —>flag 1d A

110

Online "game”

What about this test?

PO | P1
rl <- [A] | [B] <-1
r2 <- [B] | [A] <-1

Outcome: rl=1 /\ r2=0

Allowed Forbidden Start Again

Detecting Violations of SC

x=y=0
thread 1 thread 2
1d x st 1 2y
1d vy st 1 2x

x=1,y=07?

111

Is Sequential Consistency Practical?

* Why? Why not?

Is Sequential Consistency Practical?

Well...

* SC constrains all memory operations:

 Write — Read, Write
* Read — Read, Write

But: Modern microprocessors reorder operations all the time to obtain
performance (write buffers, overlapped writes,non-blocking reads...).

14

Reordering #1: Write Buffers

CPU can read its write

CPU CPU buffer, but not others’

Wr|te Buffer =1 Write Buffer

Buffered writes eventually end up in coherent
shared memory

Reordering #1: Write Buffers

Program
Initially X ==Y ==

X1 ¥=l

ri=y r2=X

Is rl==r2==0
a valid result?

Reordering #1: Write Buffers

Program
Initially X ==Y ==
X=1 Y=1
— — ri=Y r2=X

4 , Is rl==r2==0

a valid result?

rl ==r2 ==0is not SC, but it can happen with write buffers

Reordering #1: Write Buffers

Program

Initially X ==Y ==
X=1 Y=1

ri=y r2=X

Reordering #1: Write Buffers

Program

|:| Initially X == Y ==

ri=y r2=X

Reordering #1: Write Buffers

Program

|:| Initially X == Y ==

ri=y r2=X

Reordering #1: Write Buffers

Program

|:| Initially X == Y ==

r2=X

Reordering #1: Write Buffers

Program
Initially X ==Y ==

Reordering #1: Write Buffers

Program
Initially X ==Y ==
r2=X
X=1 | — Y=1—
4 Exocul

r1=Y [r1 <- O]

Reordering #1: Write Buffers

Program
|:| Initially X == Y ==
X=1 | — Y=1—
4 yocuti
r1=Y [r1 <- O]

r2=X [r2 <- 0]

Reordering #1: Write Buffers

Program

D |:| Initially X == Y == 0

M e Y - ecuti

r1=Y [r1 <- O]
WBs let reads finish r2=X [r2 <- 0]
before older writes X=1 (Not SC!)

Y=1

Reordering #2: Write

Combining
| | - Program
Coalescing Write Buffer X,Z in same $ line
X=1
Y=1

4 word cache line

/=1

Reordering #2: Write

Combining
| | -~ Program
oal Write B
C%mg_m =L XZinsame $ line
X=1
v=1

/=1

X=1

Reordering #2: Write

Coalescing Write Buffer

Combining
Program
X,Z in same S line
o

/=1

X=1

Reordering #2: Write

Coalescing Write Buffer

/=1

Combining
Program
X,Z in same S line
Y=1 X=1
Y=1
/=1

X=1

Reordering #2: Write

Combining

Coalescing Write Buffer

Y=1

/=1

Combining the write to X & Z saves bandwidth,

ICoalesce >

but reorders Z=1 and Y=1

X=1

/=1

Coalescing Write Buffer

Y=1

Reordering #3: Compilers

Been hoisted!
X=0

for (i .. 100) X=1
X =1 X=0 ICompiler for (i . 100) X =0

print x print X

The compiler hoists the write out of the loop, permitting
new (non-SC) results (e.g., “1000000...")

What else may break SC?

Instruction scheduling?

DCE?

Common sub-expression elimination?
Load scheduling?

<anything else?>

Enforcing SC

e What does it take to enforce SC?

— Definition: all loads/stores globally ordered
— Use ordering of coherence events to order all loads/stores

 When do coherence events happen naturally?
— On cache access
— For stores: retirement —> in-order —> good
* No write buffer? Yikes, but OK with write-back DS
— For loads: execution —> out-of-order —> bad
— No out-of-order execution? Double yikes

* How about make multiprocessors inorder?
— That would be really bad
— Out-of-order is needed to hide cache miss latency
— And multi-processors not only have more misses...
— ... but miss handling takes longer (coherence actions)

101

| want SC, and | want it to be fast! Hmmm..

- When do we really care that operations are done in order?
- Always?

- What if we had more information about the program?

What is a data-race?

Many intuitive definitions, but one technical definition for
memory model purposes: two accesses from different
threads; at least one a write; accessing the same location;
without explicit happens-before ordering via synchronization.

Thread | Thread 2

Acqulre(K)

e

Release(K) \%, Acquire(M)
§Rd X '
Wey oo
Release(M)

Y

Thread |
I
Acqulre(K)

Release(K)I. HB

Thread 2

cqulre(K)

105

Relaxing Program Orders

Divide memory operations into and

Synchronization operations act like a

- All data operations before synch in program order must complete before
synch is executed

- All data operations after synch in program order must wait for synch to
complete

- Synchs are performed in program order

Implementation of fence: processor has counter that is incremented
when data op is issued, and decremented when data op is completed

- A fence is a effectively a local passive operation

Major implications on language-level memory models (more later)

Fences aka Memory Barriers

* Fences (memory barriers): special insns
— Ensure that loads/stores don’ t cross acquire release boundaries
— Very roughly
acquire
fence
critical section
fence
release

* How do they work?

— fence insn must commit before any younger insn dispatches
. This also means write buffer is emptied
— Makes lock acquisition and release slow(er)

 Use synchronization library, don’ t write your own

108

Weak Ordering

SC for data-race-free (properly synchronized) programs...
..only acquires/releases must be strictly ordered

Why? acquire-release pairs define critical sections
— Between critical-sections: data is private
* Globally unordered access OK
— Within critical-section: access to shared data is exclusive
* Globally unordered access also OK
— Implication: compiler or dynamic scheduling is OK
* Aslong as re-orderings do not cross synchronization points

Weak Ordering (WO): Alpha, Itanium, ARM, PowerPC

— |ISA provides fence fence to indicate scheduling barriers
— Proper use of fences is somewhat subtle
— Use synchronization library, don’ t write your own

107

Sequential Consistency for DRF Example

Some global ordering

Thr’Tad I Thread 2 :- llllllll ﬁld.ll.§li :- llllllll ﬁld.ll§li
. TR L S S LS
Acquire(K)
FEEEEEEEEEEEEER JEEEREEEREEEEEER a S EEEEEEEEEEEEER da
Rd Y Rd X Rd T
lllllllll er;lz(ll :. Wr T
Release(K) E\'/\.'[]E'..Z. LI
Rd T .- ﬁ.d...'il.. :,Rlalle lllllllll a
Wr T A K : e o o
................ c.q.lfi_.r.e"(.)" """".v:h.:"'I.‘._ Wr 7
Acqulre(L) 'Rd X . AEEEEEEEEEEEEEESE
: ﬁ (.i..§. e o o : JEUNEEEEEEEEEEEN a JENEEEEEEEEENENEN a
: : Rd Y Rd Y
e o o :Wr 7 : .
Wr Y
A - Release(K) . Wr Y@ Wr Y-
Release(L) A EEEEEEEEEEEEEEY JAESEEEEEEEEEEEEEEN

|

sampa

Another model: Release consistency

Further relaxation of weak consistency
Synchronization accesses are divided into
. operations like lock
: operations like unlock
Semantics of acquire:

Semantics of release:

- but accesses after release in program order do not have to wait for
release

- operations which follow release and which need to wait must be
protected by an acquire

LOAD

LOAD

STORE

STORE

LOAD

LOAD

STORE

|

|

]

LOAD

STORE

LOAD

STORE

LOAD

STORE

LOAD

Sequential Consistency (SC)

Weak Consistency (WC)

ACQUIRE A

1

LOAD/STORE

.
e 2

LOAD/STORE

1

RELEASE A

1

LOAD/STORE

*
o 4

LOAD/STORE

1

ACQUIRE B

|

LOAD/STORE
.

e O
LOAD/STORE

1

RELEASE B

ACQUIRE A | 1

Processor Consistency (PC)

D

R

ACQUIRE B |5

LOAD/STORE LOAD/STORE
. .
] 2 o 4

LOAD/STORE LOAD/STORE
'

RELEASE A|3

N

LOAD/STORE
* 6

.
LOAD/STORE

RELEASE B|7

Release Consistency (RC)

v cannot perform
‘ until u is performed

v

LOAD/STORE

LOAD/STORE

LOADs and STORES can
perform in any order as long
as local data and control
dependences are observed

STORE

STORE

Processor Consistency

 What does st->Id relaxation buy?

A
(o

S" B s 4OKPS

oy d

1A

Why are fences expensive?

 How can you speed up fences?
— (or other delays caused by the enforcement of a consistency model)

Tolerating Consistency Delays

* Prefetching

— Make consistency-delayed accesses faster

e Speculation
— overlap accesses speculatively
— checkpoint state in program order
— rollback in case processors interacted (race?)
— Bottomline: if no one saw it, it never happened

* Current machinery in out-of-order processors?

Where should the fences go?

Producer @

Rai Riail \Rhead R
Producer posting Item x: Consumer:
Load R.,;, (tail) Load R..q, (head)
Store (Re.i), X spin: Load Ry, (tail)
Riail=Reail t1 If Rhead™ =Rtail gOto spin
Store (tail), Rij Load R, (Ricaq)

Rhead=Rheadt1
Store (head), Ry caq
process(R)

117

Using Memory Fences

Rtail Rtail \Rhead R
_ onsumer:
Producer posting Item x: Load R, “d”@
_ eads
Load Ry, (tail) spin: Load Ry, (tail)

Store (Rta”)l X |f Rhead==RtaiI gOtO Spln
fence fence

Store (tail), Rig Rhead=|ih

ensures that tail ptr Store (hiad)r Rhead
is not updated before | ensures that R is process(R)

x has been stored not loaded before
— X has been stored

118

C/C++ Standard on Memory Model

*Sequential Consistency...

-for Data-Race Free programs

C/C++ Standard on Memory Model

* What does that buy?

* A *lot* of freedom to compiler and hardware

* e.g., HW buffers, loop-inv code motion, CSE, etc.

* Pretty much can do whatever reordering as long as it does not cross
synchronization

*Key is to determine if there is a race...

* very hard to do statically

It is all about the interfaces

Language
.. Strong Strong Weak Weak
("\ -reordering has to -reordering has to -room for reorderin)
obey language model | obey language model g | -room for reordering
. -not much room for | -needs to insert fences -no worries about
Compiler | rerdrns | o maplomapemodc |32
-not much room for
_ Y, reordering
-- Strong Weak Strong Weak
(A
-reordering has to -reordering may be -reordering has to -reordering may be
obey ISA or not be visible to SW obey ISA or not be | visible to SW
visible to SW ¢ deri visible to SW p deri
-room for reordering -room for reordering
Hardware

Quick aside: General concurrency errors...

* Does free of data-races mean “correct’ concurrency-wise?

// shared wvariable
// protected by lock L

int counter;

void increment () ({
int temp; Bad interleavings of
remote thread
The read and lock (L) $\‘\~_\\ lock (L) ;
update of counter temp = counter; 7] temp = counter;
should have unlock (L); _ -~ [|unlock (L);
happened inside the |\ "
same critical section ‘\ temp++; temp++;
\ lock (L) ~._ |lock (L);
counter = temp; 7] counter = temp;
unlock (L); _ -~ |unlock (L);

}

» Atomicity violations aren’ t races necessarily

Memory Consistency in Real Systems

* Processor consistency (PC) (x86, SPARC)
— Allows a in-order (FIFO) store buffer
« Stores can be deferred, but must be put into the cache in order
- Release consistency (RC) (ARM, Itanium, PowerPC)

— Allows an un-ordered coalescing store buffer
 Stores can be put into cache in any order

— Loads re-ordered, too.

120

Memory Consistency in GPUs/CPU+GPU

Main issue
— fences involve getting ACKs from whole system
— GPUs are “scoped” to avoid excessing control communication
What makes sense in this context?
— Often explicit kernels operating on large data sets/regions
— Explicit data partitioning/communication
— Sync barriers are frequent
Goal of a memory model in this context:
— Provide reasonable semantics for system software
— Enable optimizations
— Avoid excessive hardware complexity

Recent proposal from AMD: HRF, up next week

Implementing a Lock

* Shared counter/sum update example
— Use a mutex variable for mutual exclusion

— Only one processor can own the mutex
* Many processors may call lock(), but only one will succeed (others block)

 The winner updates the shared sum, then calls unlock() to release the
mutex

* Now one of the others gets it, etc.
— But how do we implement a mutex?

* As ashared variable (1 — owned, 0 —free)

 How would you implement it?

1. while (lock var != 0);

2. lock var = 1;

Locking

* Releasing a mutex is easy
— JustsetittoO 1. while (lock var != 0);

* Acquiring a mutex is not so easy

— Easy to spin waiting for it to become 0

2. lock var = 1;

— But when it does, others will see it, too
— What invariant do we need?

Thread 1 Thread 2

... descheduled ... Line 1: lock _var ==

Line 2: Sets lock _var = 1 ... descheduled ...
(Thinks it has the lock)

Locking

Releasing a mutex is easy
— JustsetittoO

Acquiring a mutex is not so easy
— Easy to spin waiting for it to become O
— But when it does, others will see it, too
— Need a way to atomically see that the mutex is O and setitto 1
— How?

Atomic Read-Update Instructions

* Atomic exchange instruction

— E.g., EXCH R1,78(R2) will swap content of register R1
and mem location at address 78+R2

src =1
xchg lock var, src
— To acquire a mutex, 1 in R1 and EXCH Ifsrc == 0, you got the lock.

* Then look at R1 and see whether mutex acquired

e If R1is 1, mutex was owned by somebody else and we
will need to try again later

* |f R1is 0, mutex was free and we set it to 1, which
means we have acquired the mutex

 Other atomic read-and-update instructions
— E.g., Test-and-Set

RISC Test-And-Set

« swap: a load and store in one insn is not very “RISC”
— Broken up into micro-ops, but then how is it made atomic?

« “Load-link” / “store-conditional” pairs

— Atomic load/store pair
label:
load-1link rl,0(&lock)
// potentially other insns
store-conditional r2,0 (&lock)
branch-not-zero label // check for failure

— On load-1link, processor remembers address...

« ...And looks for writes by other processors
« If write is detected, next store-conditional will fail
— Sets failure condition

« Used by ARM, PowerPC, MIPS, Itanium

Martin 57

Using LL & SC

Atomic Exchange Atomic Test&Set
swap: movR3, R4 té&s: movR3,1
11 R2,0(R1) 11 R2,0(R1)
sc R3,0(R1) sc R3,0(R1)
begz R3,swap bnez R2,té&s
mov R4 ,R2 beqz R3, té&s

Atomic Add to Shared Variable

upd: 11 R2,0(R1)
addR3,R2 ,R4
sc R3,0(R1)
beqz R3,upd

Implementing Locks

* Asimple swap (or test-and-set) works

— But causes a lot of invalidations
e Every write sends an invalidation
* Most writes redundant (swap 1 with 1)

* More efficient: test-and-swap (or test-and-test-and-set ©)

— Read, do swap only if O
* Read of 0 does not guarantee success (not atomic)
e Butif 1 we have little chance of success

— Write only when good chance we will succeed

e Would either scale? What can we do?

Large-Scale Systems: Locks

Contention even with test-and-test-and-set
— Every write goes to many, many spinning procs

— Making everybody test less often reduces contention for high-
contention locks but hurts for low-contention locks
— Solution: exponential back-off
* If we have waited for a long time, lock is probably high-contention

e Every time we check and fail, double the time between checks
— Fast low-contention locks (checks frequent at first)
— Scalable high-contention locks (checks infrequent in long waits)

— Special hardware support

Queuing locks

Queue Locks

« Test-and-test-and-set locks can still perform poorly
— If lock is contended for by many processors

— Lock release by one processor, creates “free-for-all” by others
— Interconnect gets swamped with swap requests

« Software queue lock
— Each waiting processor spins on a different location (a queue)

— When lock is released by one processor...
« Only the next processors sees its location go “unlocked”
» Others continue spinning locally, unaware lock was released

— Effectively, passes lock from one processor to the next, in order
Greatly reduced network traffic (no mad rush for the lock)
Fairness (lock acquired in FIFO order)

— Higher overhead in case of no contention (more instructions)

— Poor performance if one thread is descheduled by O.S.

+ +

Martin 61

