GPU Architectures

A CPU Perspective

BRAD BECKMANN

Goals

Data Parallelism: What is it, and how to exploit it?
o Workload characteristics

Parallel Execution Models
o MIMD, SIMD, SIMT

GPU Compute Programming Models
° Intro to OpenCL
o | will slowly introduce new terminology

Modern GPU Microarchitectures
° i.e., programmable GPU pipelines, not their fixed-function predecessors

Advanced Topics: (time permitting)
> The Limits of GPUs: What they can and cannot do

> The Future of GPUs: Where do we go from here?

GPU ARCHITECTURES: A CPU PERSPECTIVE P

Data Parallel

Execution
on GPUs

Data Parallelism, Programming Models, SIMT

Graphics Workloads

Streaming computation

-0~k

Graphics Workloads

Streaming computation on pixels

-0

GPU ARCHITECTURES: A CPU PERSPECTIVE

Graphics Workloads

Identical, Streaming computation on pixels

GPU ARCHITECTURES: A CPU PERSPECTIVE 6

Graphics Workloads

Identical, Independent, Streaming computation on pixels

GPU ARCHITECTURES: A CPU PERSPECTIVE

Generalize: Data Parallel Workloads

Identical, Independent computation on multiple data inputs

0,7 »‘ coloryy,: = f(coloryy) o 7,0
1,7 ~{ color,,: = f(coloryy,) o 6,0
2,7 .{ color,,: = f(coloryy,) >
3,7 ~{ color,,; = f(coloryy,) a 4,0

GPU ARCHITECTURES: A CPU PERSPECTIVE 8

Naive Approach

Split independent work over multiple processors

CPUO

color,,: = f(coloryiy,)

CPU1

coloryy; = f(coloryy,)

CPU2

color,,; = f(coloryy,)

CPU3

color,,; = f(coloryy,)

Data Parallelism: A MIMD Approach

Multiple Instruction Multiple Data

Split independent work over multiple processors

Program o CPUO
= f(color,)
Program 1'7 CPU1
= f(coloryy,)
2,7
Program CPU2
= f(colorp)
3,7
Program CPU3
= f(colorp)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Data Parallelism: A MIMD Approach

Multiple Instruction Multiple Data

Split independent work over multiple processors

— 0’ cw W

coloT,y, When work is identical (same program):
= f(colory)

Program | Single Program Multiple Data (SPMD)

color,,;

— f(colors,) (Subcategory of MIMD)
2,7
Program CPU2
coloryy,
= f(coloryy,)

3,7
Program CPU3

= f(colory)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Data Parallelism: An SPMD Approach

Single Program Multiple Data

Split identical, independent work over multiple processors

Program o CPUO
= f(color,)
Program 1'7 CPU1
= f(coloryy,)
2,7
Program CPU2
= f(colorp)
3,7
Program CPU3
= f(colorp)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Data Parallelism: A SIMD Approach

Single Instruction Multiple Data

Split identical, independent work over multiple execution units (lanes)

More efficient: Eliminate redundant fetch/decode

Execute Writeback

Program Execute Writeback
color,y; :

= f(color;,) Execute Writeback

Execute Writeback

GPU ARCHITECTURES: A CPU PERSPECTIVE

SIMD: A Closer Look

One Thread + some Data Parallel (vector) Ops = single PC,
program explicitly manages scalar vs. vector instructions

ex. x86 SSE/AVX

CPU

Vector Pipeline

Program
coloryy;

= f(colorin)

Vector Register File

GPU ARCHITECTURES: A CPU PERSPECTIVE

Data Parallelism: A SIMT Approach

Single Instruction Multiple Thread

Split identical, independent work over multiple lockstep threads

Implicit data parallel > complete vector ops + some scalar ops
ex. HSAIL SMIT ISA compiled to AMD GCN ISA

GPU

Vector Pipeline

Program Exec{lt‘e\ \Vlemory/} Writeback
I \
io;(?gltor_) Execd{e‘{\\\lemorl Writeback
mn

Vector Register File

GPU ARCHITECTURES: A CPU PERSPECTIVE

Threads to hardware

SIMT Threads

SIMT Threads

Data Parallel Execution Models

MIMD SIMD/Vector SIMT

Multiple independent One thread with wide Multiple lockstep threads
threads execution datapath

GPU ARCHITECTURES: A CPU PERSPECTIVE

Execution Model Comparison

MIMD SIMD/Vector
Example ,
: E
Architecture Multicore CPUs x86 SSE/AVX
Pros More general: Optimize sequential
supports TLP & parallel code
Inefficient for data Gather/Scatter can
Cons

parallelism be awkward

GPU ARCHITECTURES: A CPU PERSPECTIVE

SIMT

GPUs

Easier to program
Gather/Scatter
operations

Performance
optimizations

GPUs and Memory

Recall: GPUs perform Streaming computation 2

Streaming memory access

-0~k

DRAM latency: 100s-1000s of GPU cycles

How do we keep the GPU busy (hide memory latency)?

GPU ARCHITECTURES: A CPU PERSPECTIVE

Hiding Memory Latency

Options from the CPU world:

Eactes %

> Need spatial/temporal locality

BeS/BynamicSeheduling €

> Need ILP

Multicore/Multithreading/SMT ‘/
o Need TLP

GPU ARCHITECTURES: A CPU PERSPECTIVE

Multicore Multithreaded SIMT

Many SIMT “threads” grouped together into GPU “Core”
o Note again GPUs support many more threads than CPUs

o The group hierarchy is exposed to programmers

Multiple GPU “Cores” in hardware

GPU

GPU “Core” GPU “Core”

GPU ARCHITECTURES: A CPU PERSPECTIVE

Multicore Multithreaded SIMT

Many SIMT “threads” grouped together into GPU “Core”
o Note again GPUs support many more threads than CPUs

o The group hierarchy is exposed to programmers

Multiple GPU “Cores” in hardware

This is a GPU Architecture (Whew!)

GPU

GPU “Core” GPU “Core”

ikt

GPU ARCHITECTURES: A CPU PERSPECTIVE

Generic GPU Hardware Terminology

Lane:
executes a

single thread

GPU Wave:
4 lanes
in lockstep
GPU “Core”

GPU Core:
supports multiple
SIMD Units

GPU

Group Group

% % % % GPU Chip

GPU ARCHITECTURES: A CPU PERSPECTIVE

SIMT Programming
Languages

GPUs Going Beyond Graphics

Motivation

Traditionally GPUs were only graphic ASICs

GPU can be more computational efficient for other applications
o Computer vision

o

Machine learning

o

Bioinformatics

o

Signal processing

o

Numerical methods

O

Network processing

o

Finance
o Scientific computing

Each generation GPUs become easier to program

GPU ARCHITECTURES: A CPU PERSPECTIVE

OpenCL

Early CPU languages were light abstractions of physical hardware
° E.g.,C

Early GPU languages are light abstractions of physical hardware
o OpenCL and CUDA

GPU ARCHITECTURES: A CPU PERSPECTIVE

How does OpenCL map to the HW

Hardware OpenCL
% Lane Work-item
Wavefront:
GPU Wave 4 work-items
in lock-step
GPU “Core” Work-group:

GPU Core 1 or more
wavefonts on the

same GPU Core

GPU Device:

Group Group

GPU Chip 1 or more
% % % % work-groups on the
same GPU Chip

GPU ARCHITECTURES: A CPU PERSPECTIVE

NDRange

N-Dimensional (N =1, 2, or 3) index space
o Partitioned into work-groups, wavefronts, and work-items

NDRange

Work-group Work-group

=)

GPU ARCHITECTURES: A CPU PERSPECTIVE

OpenCL Execution Hierarchy

Grid
Work-group
L
>
o
[72]
r r ,)')Q e /
T AN
O,)e
Dime¢nsion X
W
B

Work-item

o
<
L0 | Sub-group
[72] ape .
0’0) % (Hardware-specific size)
o,)e

Dimension X

GPU ARCHITECTURES: A CPU PERSPECTIVE

Kernel

Run an NDRange on a kernel (i.e., a function)

Same kernel executes for each work-item
o Maps well to SIMT

Kernel
\
{ \
% { " colotyy: = f(colory,) .
%{ .‘ coloryy: = f(coloryy) "
é{ " coloryy, = f(colory,) .
é{ " colotyy,e = f(coloryy) -

GPU ARCHITECTURES: A CPU PERSPECTIVE

Kernel

Work-group!

Run an NDRange on a kernel (i.e., a function)

Same kernel executes for each work-item
o Maps well to SIMT...but beware of the execution hierarchy

Kernel
\

color,y; = f(coloryy,)

color,,: = f(coloryy,)

color,,; = f(coloryy,)

=
~N
-y ¥y ¥V ¥V

color,,; = f(coloriy,)

GPU ARCHITECTURES: A CPU PERSPECTIVE

OpenCL Code

__kernel
void flip_and_recolor(__global float3 **in_image,
__global float3 **out_image,

int img_dim_x, int img_dim_y)

int X
int y

get_global_1d(1); // get work-item id in dim 1
get_global_1d(2); // get work-item id in dim 2

out_image[img_dim_x - x]J[img_dim_y - y] =
recolor(in_image[x][y]);

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU
Microarchitecture

AMD Graphics Core Next

GPU Hardware Overview

GPU
GDDR5

GPU
GPU “Core” GPU “Core”

L2 Cache

Local Memory Local Memory

GPU ARCHITECTURES: A CPU PERSPECTIVE

A GPU Core

GPU Core Hardware
o Contains 4 SIMD Units

> Picks one SIMD Unit per cycle for scheduling

SIMD Unit — Runs Wavefronts
o Each SIMD Unit has 10 wavefront instruction buffer %

o Takes 4 cycles to execute one wavefront

L1 Cache

10 Wavefront x 4 SIMD Units =
40 Active Wavefronts / GPU Core

. I. .5. 64 work-items / wavefront x 40 active wavefronts =
2560 Active Work-items / GPU Core

Local Memory

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU Timing Diagram

On average: fetch & commit one % wavefront / cycle

SIMDO SIMD1 SIMD?2 SIMD3
1
2
3
4
5
£l
— |7
8
9
10
11 WF11 0
12 WF11 1

<€

GPU ARCHITECTURES: A CPU PERSPECTIVE

SIMD Unit — A GPU Pipeline

Like a wide CPU pipeline — except one fetch for entire width

16-wide physical ALU
o Executes 64-wavefront over 4 cycles

64KB register state / SIMD Unit
o Compare to x86 (CPU): ~1KB of physical register file state (~1/64 size)

Address Coalescing Unit
o A key to good memory performance

SIMT

Registers &=
Registers &=
Registers ==
Registers ==
Registers &=
Registers &=
Registers ==
Registers &=
Registers &=
Registers &=
Registers ==
Registers ==

Registers &=

Registers =
Registers ==

Address Coalescing Unit

GPU ARCHITECTURES: A CPU PERSPECTIVE

Address Coalescing

Wavefront: Issue 64 memory requests

=)

NDRange

Workgroup

Workgroup

GPU ARCHITECTURES: A CPU PERSPECTIVE

Address Coalescing

Wavefront: Issue 64 memory requests

Common case:
o work-items in same wavefront touch same cache block

Coalescing:
o Merge many work-items requests into single cache block request

Important for performance:
o Reduces bandwidth to DRAM

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU Memory

GPUs have caches.

<

Not Your CPU’s Cache

By the numbers: Bulldozer — FX-8170 vs. GCN — Radeon HD 7970

S o utdoren) | 6Py (G

L1 data cache capacity 16KB 16 KB
Active threads (work-items) 1 2560
sharing L1 D Cache

L1 dcache capacity / thread 16KB 6.4 bytes
Last level cache (LLC) capacity 8MB 768KB
Active threads (work-items) 8 81,920
sharing LLC

LLC capacity / thread 1MB 9.6 bytes

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU Caches

Maximize throughput, not hide latency
> Not there for temporal locality

° |t is barely there for spatial locality

L1 Cache: Coalesce requests to same cache block by different work-items
° j.e., streaming thread locality?

o Keep block around just long enough for each work-item to hit once
o Ultimate goal: Reduce bandwidth to DRAM

L2 Cache: DRAM staging buffer + some instruction reuse
o Ultimate goal: Tolerate spikes in DRAM bandwidth

If there is any spatial/temporal locality:
o Use local memory (scratchpad)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Scratchpad Memory
GPUs have scratchpads (Local Memory)

o Separate address space

> Managed by software:

o Rename address

> Manage capacity — manual fill/eviction I.l.

Allocated to a workgroup

Local Memor
° j.e., shared by wavefronts in workgroup

GPU ARCHITECTURES: A CPU PERSPECTIVE

Example System: Radeon Fury X

High-end part from last year

64 Compute Units:
> 163,840 Active work-items
> 64 GPU Cores * 4 SIMT Units * 16 ALUs = 4096 Max FP ops/cycle

> 512 GB/s Max memory bandwidth (4 GB of HBM)

1 GHz engine clock
o 8.6 TFLOPS single precision (accounting trickery: FMA)

275W Max Power (Chip)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Radeon R9 Fury X - Cooking

GPU ARCHITECTURES: A CPU PERSPECTIVE

A Rose by Any
Other Name...

The GPU Decoder Ring

Terminology Headaches #2-5

|
L

GPU “Core”

L

GPU

Group Group

RE| R&

Nvidia/CUDA

CUDA Processor

CUDA Core

Streaming
Multiprocessor

GPU Device

AMD/OpenCL

Processing Element

SIMD Unit

Compute Unit

GPU Device

GPU ARCHITECTURES: A CPU PERSPECTIVE

CPU Analogy

Lane

Pipeline

Core

Device

Terminology Headaches #6-9

CUDA/Nvidia OpenCL/AMD Henn&Patt
Sequence of
Thread Work-item SIMD Lane
Operations
Thread of
Warp Wavefront SIMD
Instructions

Group

Body of
Block Work-group vectorized
loop

GPU

Group Group

% % % % Grid NDRange Vectorized
loop

GPU ARCHITECTURES: A CPU PERSPECTIVE

Terminology Headache #10
GPUs have scratchpads (Local Memory)

o Separate address space

> Managed by software:
° Rename address
> Manage capacity — manual fill/eviction

Allocated to a workgroup

Local Memor
° i.e., shared by wavefronts in workgroup .

Nvidia calls ‘Local Memory’ or
‘Shared Memory’.

AMD calls it ‘Group Memory’ or ‘LDS".

GPU ARCHITECTURES: A CPU PERSPECTIVE

Recap

Data Parallelism: Identical, Independent work over multiple data inputs
o GPU version: Add streaming access pattern

Data Parallel Execution Models: MIMD, SIMD, SIMT
GPU Execution Model: Multicore Multithreaded SIMT

OpenCL Programming Model
> NDRange over workgroup/wavefront

Modern GPU Microarchitecture: AMD Graphics Core Next (GCN)
o Compute Unit (“GPU Core”): 4 SIMD Units
o SIMD Unit (“GPU Pipeline”): 16-wide ALU pipe (16x4 execution)

°c Memory: designed to stream

GPUs: Massively multithread. Efficient throughput-oriented design.

GPU ARCHITECTURES: A CPU PERSPECTIVE

Advanced Topics

GPU Limitations, Future of GPGPU

1 ——

Choose Your Own Adventure!

SIMT Control Flow & Branch Divergence

Memory Divergence

When GPUs talk
o Wavefront communication

o> GPU coherence
° GPU consistency

Future of GPUs: What’s next?

o Task-based programming

SIMT Control Flow

Consider SIMT conditional branch:
° One PC

o Multiple data (i.e., multiple conditions)

SIMT Control Flow

Work-items in wavefront run in lockstep
o Don’t all have to commit

Branching through predication

Active lane: commit result Inactive lane: throw away result

All lanes active at start: 1111

Branch = set execution mask: 1000

Else = invert execution mask: 0111

Converge = Reset execution mask: 1111

SIMT Control Flow

Work-items in wavefront run in lockstep
o Don’t all have to commit

Branching through predication

% Active lane: commit result % Inactive lane: throw away result

Branch divergence

Branch = set execution mask: 1000

Else = invert execution mask: 0111

Converge = Reset execution mask: 1111

Branch Divergence

When control flow diverges, all lanes take all paths

Divergence Kills Performance

Beware!

Divergence isn’t just a performance problem:

__global int lock = 0;

void mutex_lock(..)

{

// acquire lock

while (test&set(lock, 1) == false) {
// spin

}

return;

GPU ARCHITECTURES: A CPU PERSPECTIVE

Beware!

Divergence isn’t just a performance problem:

__global int lock = 0;

void mutex_1ockimi

// acquire lock

while (test&set(lock, 1) == false) {
// spin

}

return;

GPU ARCHITECTURES: A CPU PERSPECTIVE

Memory Bandwidth

SIMT DRAM

v’ -- Parallel Access

GPU ARCHITECTURES: A CPU PERSPECTIVE

Memory Bandwidth

SIMT DRAM

¥ -- Sequential Access

Memory Bandwidth

Memory divergence

SIMT DRAM

¥ -- Sequential Access

Memory Divergence

One work-item stalls = entire wavefront must stall
o Cause: Bank conflicts, cache misses

Data layout & partitioning is important

GPU ARCHITECTURES: A CPU PERSPECTIVE

Memory Divergence

One work-item stalls = entire wavefront must stall
o Cause: Bank conflicts, cache misses

Data layout & partitioning is important

Divergence Kills Performance

GPU ARCHITECTURES: A CPU PERSPECTIVE

Communication and Synchronization

Work-items can communicate with:
o Work-items in same wavefront
> No special sync needed...they are lockstep!
o Work-items in different wavefront, same workgroup (local)

o Local barrier

> Work-items in different wavefront, different workgroup (global)
° OpenCL 1.x: Nope
o OpenCL 2.0: Yes, similar synchronization operations to CPUs
o CUDA x: Incrementally getting better

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU Consistency Models (ircazo13)

Very weak guarantee:
° Program order respected within single work-item

o All other bets are off

Safety net:
> Fence — “make sure all previous accesses are visible before proceeding”

o Built-in barriers are also fences

A wrench:
o GPU fences are scoped — only apply to subset of work-items in system

o E.g., local barrier

Take-away: confusion abounded

Read Hower et al. ASPLOS 2014

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU Coherence

Notice: GPU consistency model does not require strong coherence
° i.e., no Single Writer, Multiple Reader invariant

° i.e., no read-for-ownership

Don’t get caught up in the historical CPU definition of coherence

GPU coherence implementations:
> Nvidia: disable private caches

o AMD: flush/invalidate cache at fences

Read Hechtman et al. HPCA 2014

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU Architecture Research

The future is GPU compute
o Fundamentally more efficient than CPUs

o Simplifying GPU programmability is the challenge

Blending with CPU architecture:
o Dynamic scheduling / dynamic wavefront re-org

o Work-items have more locality than we think

Tighter integration with CPU on SOC:
o Fast kernel launch

o Exploit fine-grained parallel region: Remember Amdahl’s law

o Common shared memory

GPU ARCHITECTURES: A CPU PERSPECTIVE

Traditional Command and Dispatch Flow

' " User | - ' Kernel
App A M?de Queue M?de
Driver | Driver
A B
B
. - - - : C
Kerne
Soft |E| ;t
e m?"d; /
" User E ' o ' Kernel Task
- ueue
M(_)de = B Queue M?de Q
Driver | §| == Driver

hQ Command and Dispatch Flow

User-mode application talks directly to
the hardware

o HSA Architected Queuing Language
(AQL) defines vendor-independent
format

o No system call
o No kernel driver involvement

Hardware scheduling

Greatly reduced dispatch overhead
- less overhead to amortize
—> profitable to offload smaller tasks

GPU kernels can self-enqueue additional
tasks for dynamic parallelism

