CSE 548: Computer Systems Architecture

Memory Hierarchy
Luis Ceze, Spring 2017

based on slides from friends at UPenn, UIUC, UW, MIT, CMU.

77

Ooops --- The “Memory Wall

100,000

10,000 = vereerremsemr s s

100_ e e e e e

Performance

1995 2000 2005 2010

Year

* Yet, need to get data in-and-out of processors!

1980 1985 1990

MAIN MEMORY SYSTEM HIGH PERFORMANCE DISK SYSTEM

------------------------- I

L1 CACHE LAST LEVEL CACHE ! E : :
SRAM EDRAM : DRAM PCM * FLASH HARD DRIVE |
L § | g l
. O =
21 23 25 27 : 29 211 213 215 217 219 221 223

--

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

Bandwidth
SRAM - 10-1000GB/sec
DRAM - ~10GB/sec
Disk - 100MB/sec (0.1 GB/sec) - sequential access only

Known From the Beginning

“Ideally, one would desire an infinitely large memory
capacity such that any particular word would be
immediately available ... We are forced to recognize the
possibility of constructing a hierarchy of memories, each of
which has a greater capacity than the preceding but which
is less quickly accessible.”

Burks, Goldstine, VonNeumann

“Preliminary discussion of the logical design of an electronic
computing instrument”

IAS memo 1946

Memory Hierarchy

Processor

Regs

L]

15

DY

|

Y

y

L2$

1

Y

l

Main
Memo

l
B

]

’

<

Compiler
Managed

Hardware
Managed

Software
Managed
(by OS)

 Oth level: Registers

e 1stlevel: Primary caches
— Split instruction (IS) and data (DS) (SMC?)
— Typically 8KB to 64KB each

e 2nd level: Second-level cache (L2S)
— On-chip, certainly on-package (with CPU)
— Made of SRAM (same circuit type as CPU)
— Typically 512KB to 16 MB

* 3rd level: main memory
— Made of DRAM (“Dynamic” RAM)

e 4th level: disk (swap and files)

How does execution time grow
with SIZE?

int array|[SIZE];
int A = 0;

for (int 1 = 0 ; 1 < 200000 ; ++ 1) {
for (int j =0 ; j < SIZE ; ++ j) {
A += array[j];
}

} 4

TIME

Plot

SIZE

Actual Data

Time

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

SIZE

How do programs use the
memory hierarchy?

Locality to the Rescue

Locality of memory references
— Property of real programs, few exceptions

Temporal locality
— Recently referenced data is likely to be referenced again soon
— Reactive: cache recently used data in small, fast memory

Spatial locality
— More likely to reference data near recently referenced data
— Proactive: fetch data in large chunks to include nearby data, how?

Holds for data and instructions.
Why? Where does it come from?

spatial temporal

Example: Locality?

sum = 0;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

* Data:

— Temporal: sumreferenced in each iteration

— Spatial: array a[] accessed in stride-1 pattern
* |nstructions:

— Temporal: cycle through loop repeatedly
— Spatial: reference instructions in sequence

* Being able to assess the locality of code is a crucial skill for
a programmer

10

Basic Memory Array Structure

* Number of entries A0 1024-256bit
— 2", where n is number of address bits 1 SRAM
— Example: 1024 entries, 10 bit address 2
— Decoder changes n-bit address to 3
2" bit “one-hot" signal w i
— One-bit address travels on “wordlines” Sl
10 bits | [
* Size of entries SO
— Width of data accessed :
— Data travels on “bitlines” 1021
— 256 bits (32 bytes) in example 1022
\1 1023
* How do we use a cache entry? u """ u

— Divide up memory in blocks too. bitlines

Caches: Finding Data via Indexing

Basic cache: array of lines /‘ 1024*
— Example: 32KB cache (1024 frames, 32B blocks) 256bit
— “Hash table in hardware” SRAM

To find frame: decode part of address
— Which part?

— 32-bit address

— 32B blocks — 5 lowest bits locate byte in block
* These are called offset bits —>

— 1024 frames — next 10 bits find frame
* These are the index bits

— Note: nothing says index must be these bits
— But these work best (think about why)

wWIN]—~]0O

wordlines

1021
1022

\ 1023

How do you know you are getting the right data? bitlines

[31:15] index [14:5]

address data -

Knowing that You Found It: Tags

* Each frame can hold one of 217 blocks /
— All blocks with same index bit pattern

 How to know which if any is currently there?
— To each frame attach tag and valid bit (why do we need valid bits?)

WIN]|=~]10

— Compare frame tag to address tag bits
* No need to match index bits (why?)

* Lookup algorithm >
— Read frame indicated by index bits

wordlines

— “Hit” if tag matches and valid bit is set

— Otherwise, a “miss”. Get data from next level

index [14:5]

address data hi ’?13

Block Size

Increasing block size
— Exploit spatial locality

— Notice index/offset bits change

— Tag remain the same

Ramifications

+

+

Reduce %

Reduce tag overhead (why?)

miss

Potentially useless data transfer
Premature replacement of useful data

512*512bit
SRAM

Ao

- 510

> 511
9_&'[51

block size®

—

[cot,

address data@i‘

t?

A puzzle.

 What can you infer from this:

* Cache starts empty
e Access (addr, hit/miss) stream:

* (10, miss), (11, hit), (12, miss)

block size >= 2 bytes block size < 8 bytes

15

Where can data go ?

* The cacheis essentially a tab
 Where can data go in this tab

e with a tag.
e’

Anywhere? That would be nice!

Memory I

Fully
associative

2-way

Direct mapped

16

Set-Associativity ways

— Block can reside in one of few Ao

frames RE 513
— Frame groups called sets > 2 514
— Each frame in set called a way B I S
— This is 2-way set-associative (SA) S S N S
— 1-way — direct-mapped (DM) i 21?
— 1-set — fully-associative (FA) N
+ Reduces conflicts
— Increases latency, . obi

e additional tag match & muxing
_‘

ﬂ -

a ociativifyT
— Note: valid bit not showr ﬁmﬁ] -—> Y

address data 1pit?

Cache (or set) is full, now what?

Random
FIFO (first-in first-out)

LRU (least recently used)

— Fits with temporal locality, LRU = least likely to be used in
future

NMRU (not most recently used)
— An easier to implement approximation of LRU
— |s LRU for 2-way set-associative caches

Belady’ s: replace block that will be used furthest in
future
* Unachievable optimum

18

Another puzzle.

What can you infer from this:

e (Cache starts empty
* Access (addr, hit/miss) stream

e (10, miss); (12, miss); (10, miss)

12 is not in the same 12’s block replaced 10’s block
block as 10

direct-mapped cache

19

Impact of Cache and Block Size

e Cache Size

— Effect on miss rate?

— Effect on hit time?

e Block Size

— Effect on miss rate?

— Effect on miss penalty?

Block Size and Miss Penalty

* Does increasing block size increase t_,...?
— Don’ t larger blocks take longer to read, transfer, and fill?
— They do, but...
* t. . of anisolated miss is not affected
— Critical Word First / Early Restart (CRF/ER)
— Requested word fetched first, pipeline restarts immediately
— Remaining words in block transferred/filled in the background
« t_. esofa cluster of misses will suffer
— Reads/transfers/fills of two misses can’ t happen at the same time
— Latencies can start to pile up
— This is a bandwidth problem

Impact of Associativity

— Direct-mapped, set associative, or fully associative?
Total Cache Size (tags+data)?

Miss rate?
Hit time?

Miss Penalty?

Associativity And Performance

 Higher associative caches
+ Have better (lower) %

miss

* Diminishing returns Yomiss ~9
— However t,;, increases :
* The more associative, the slower .
— What about t,? Associativity

* Block-size and number of sets should be powers of two
— why?
 What about set-associativity (e.g., 3, 5-way) ?

Classifying Misses: 3C Model (Hill)

* Divide cache misses into three categories

— Compulsory (cold): never seen this address before
* Would miss even in infinite cache

— Capacity: miss caused because cache is too small
* Would miss even in fully associative cache

— Conflict: miss caused because cache associativity is too low
— (Coherence): miss due to external invalidations
e Only in shared memory multiprocessors (later)
* Calculated by multiple simulations
— Simulate infinite cache, fully-associative cache, normal cache
— Subtract to find each count

Miss Rate: ABC

Why do we care about 3C miss model?
— So that we know what to do to eliminate misses
— If you don’ t have conflict misses, increasing associativity won' t help

Associativity
+ Decreases conflict misses
— Increases latency,
Block size
— Increases conflict/capacity misses (fewer frames)
+ Decreases compulsory/capacity misses (spatial locality)
— No significant effect on latency,;
Capacity
+ Decreases capacity misses
— Increases latency,,

Hmm, what if we had “on-demand” associativity? How?

Reducing Conflict Misses: Victim Buffer

e Conflict misses: not enough associativity

— High-associativity is expensive, but also rarely needed

* 3 blocks mapping to same 2-way set and accessed (XYZ)+

* Victim buffer (VB): small fully-associative cache

— Sits on IS/DS miss path
— Small so very fast (e.g., 8 entries)

— Blocks kicked out of IS/DS placed in VB
— On miss, check VB: hit? Place block back in IS/DS

— 8 extra ways, shared among all sets

+ Only a few sets will need it at any given time

+ Very effective in practice

— Does VB reduce %

miss

or latency,;..?

VB

L2

26

Tolerating Latencies Again

* What would happen if you could have only
one outstanding cache miss?
— Inorder, single-issue

— QOut-of-order, wide-issue

e How about not even hits?

Overlapping Misses: Lockup Free Cache

(aka Memory-Level Parallelism)
* Lockup free: allows other accesses while miss is pending
— Consider: Load [r1] ->r2; Load [r3]->rd4; Addr2,r4->r5
— Handle misses in parallel
* “memory-level parallelism”
— Makes sense for...
* Processors that can go ahead despite DS miss (out-of-order)

— Implementation: miss status holding register (MSHR)
* Remember: miss address, chosen frame, requesting instruction
* When miss returns know where to put block, who to inform
— Common scenario: ~hit under miss”
* Handle hits while miss is pending
* Easy
— Less common, but common enough: “miss under miss”

* A little trickier, but common anyway
e Requires multiple MSHRs: search to avoid frame conflicts

28

Is There A Performance Difference?

int x[NROWS] [NCOLS] ;

for (1 = 0; i<NROWS; i++)
for (j = 0; Jj<NCOLS; j++)
x[1][3] = O;

for (j = 0; j<NCOLS; j++)
for (i = 0; i<NROWS; i++)
x[1][3] = O;

Is there a performance in these loops difference? If so,
why?

Is There A Performance Difference?

int x[NROWS] [NCOLS] ;

for (1 = 0; i<NROWS; 1i++)
for (jJ = 0; jJ<NCOLS; j++)
x[1][]] 0;

for (j = 0; j<NCOLS; j++)

for (i = 0; i<NROWS; i++)|_ '
x[i]1[3j] = O; 5X slower!

Tolerating Cache Miss Latencies

for (i = 0; 1 < N; i++)
for (7 = 0; 7 < N; J++)
sum += A[1]1[3]1;

e What can the hardware do to avoid miss
penalties in this case?

Prefetching: Start moving data close to the
processor before it is needed

Without Prefetching With Prefetching
Time T
. N Fetch A T
Load A —H | FeEch B
Fetch A Load A > —
E2 Load B —»
Load B—f= -+
Fe’ich B

* Prefetching allows cache misses to be overlapped with:

— computation, and
— other cache misses.

Prefetching

* Key: anticipate upcoming miss addresses accurately
e Can doin software or hardware

* Simple example: next block prefetching

* Miss on address X — anticipate miss on X+block-size
+ Works for insns: sequential execution
+ Works for data: arrays

— Timeliness: initiate prefetches sufficiently in advance
— Coverage: prefetch for as many misses as possible

— Accuracy: don’ t pollute with unnecessary data -

e |t evicts useful data r

prefetch logic|,

Y

L2

33

Software Prefetching

Use a special “prefetch” instruction
— Tells the hardware to bring in data, doesn’ t actually read it
— Just a hint

Inserted by programmer or compiler

Example

for (i = 0; i<NROWS; i++)
for (j = 0; j<NCOLS; j+=BLOCK SIZE) {
__prefetch(&X[i] [j]+BLOCK SIZE) ;

for (jj=3j; jJI<J+BLOCK SIZE-1; jj++)
sum += x[1][]]]’

}
Multiple prefetches bring multiple blocks in parallel

— Using lockup-free caches
(11 7 o
— "Memory-level parallelism

34

Prefetches vs. Memory Loads?

e What is similar?
e What is the different?

Prefetches vs. Memory Loads?

e Similarities:
— both are given a data address as an argument

— if that location is not in the L1 data cache, then a cache miss is
triggered, and the data is moved into the cache

e Differences:

— prefetches do not have a register destination

* Hence they are “non-binding”
— prefetches are non-blocking

* i.e. the processor does not stall: it keeps executing
— prefetches do not trigger memory exceptions

* itis ok to prefetch invalid memory addresses

Hardware Prefetching

 What to prefetch?

— Stride-based sequential prefetching
* Can also do N blocks ahead to hide more latency
+ Simple, works for sequential things: insns, array data
+ Works better than doubling the block size

— Address-prediction
* Needed for non-sequential data: lists, trees, etc.
* Use a hardware table to detect strides, common patterns

— Other ideas?

 When to prefetch?
— On every reference?
— On every miss?

37

More Advanced Address Prediction

“Next-block™ prefetching is easy, what about other
options?
Correlating predictor

— Large table stores (miss-addr — next-miss-addr) pairs

— On miss, access table to find out what will miss next
* It’ s OK for this table to be large and slow

Content-directed or dependence-based prefetching
— Greedily chases pointers from fetched blocks

Jump pointers
— Augment data structure with prefetch pointers

Make it easier to prefetch: cache-conscious layout/malloc
— Lays lists out serially in memory, makes them look like array

Active area of research

Waittaminute, What about writes?

Write Propagation

When to propagate new value to (lower level) memory?

Option #1: Write-through: immediately
— On hit, update cache
— Immediately send the write to the next level

Option #2: Write-back: when block is replaced

— Requires additional “dirty” bit per block
* Replace clean block: no extra traffic
 Replace dirty block: extra “writeback” of block

What are the trade-offs?

40

Write Propagation Comparison
* Write-through
— Requires additional bus bandwidth
e Consider repeated write hits
— Next level must handle small writes (1, 2, 4, 8-bytes)
+ No need for valid bits in cache

+ No need to handle “writeback” operations
e Simplifies miss handling (no WBB)

— Sometimes used for L1 caches (for example, by IBM)

e Write-back

+ Key advantage: uses less bandwidth
— Reverse of other pros/cons above
— Used by Intel and AMD

— Second-level and beyond are generally write-back
caches

Write Miss Handling

* Should we bring the data to the cache on a write miss?

Write Miss Handling

* How is a write miss actually handled?

* Write-allocate: fill block from next level, then write it
+ Decreases read misses (next read to block will hit)
— Requires additional bandwidth
— Commonly used (especially with write-back caches)

* Write-non-allocate: just write to next level, no allocate
— Potentially more read misses
+ Uses less bandwidth
— Use with write-through

Write misses latency

* Read miss?
— Load can’ t go on without the data, it must stall
* Write miss?

— What happens to the store instruction when it reaches the head of the
ROB?

— What can we do about it?

Write Misses and Write Buffers

Read miss?
— Load can’ t go on without the data, it must stall

Write miss?
— Technically, no instruction is waiting for data, why stall?

Write buffer: a small buffer
— How does it help?

Write buffer vs. writeback-buffer

— Write buffer: “in front” of D$, for hiding store misses \wgRB
— Writeback buffer: “behind” DS, for hiding writebacks

Y

Forwarding again?? © Next-level
cache

45

Local vs Global Miss Rates

* Local hit/miss rate:
— Percent of references to cache hit (e.g, 90%)
— Local miss rate is (100% - local hit rate), (e.g., 10%)

* Global hit/miss rate:
— Misses per instruction (1 miss per 30 instructions)
— Instructions per miss (3% of instructions miss)
— Above assumes loads/stores are 1 in 3 instructions

* Consider second-level cache hit rate
— L1: 2 misses per 100 instructions
— L2: 1 miss per 100 instructions
— L2 “local miss rate” ->50%

Memory Price ($/MB)

Memory Price ($/MB)

Historical Cost of Computer Memory and Storage

1.00E+09
+
1.00E+08 +
1 00E+07 #Flip-Flops
==
1.00E+06 il g
F .AA
i A AICs on
1.00E+05 7 boards
i %‘x -SIMMs
1.00E+04 —o— + Fes
: 5—o = + 4 DIMMs
1.00E+03 L o +
: =F A
] 5 = X X OBig Drives
1.00E+02 - x
] e Y- +Floppy
1.00E+01 X = Drives
xSmaII
1.00E+00 b
=-Flash
1.00E-01 Memory
: +SSD
1.00E-02
1.00E-03 +
1.00E-04
1.00E-05
1.00E-06 +———

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

