
CSEP	548:	Computer	Systems	Architecture

Memory	Consistency	Models	and	Synchronization
Luis	Ceze,	Spring	2017

(based	on	slides	lifted	from	friends	at	UPenn,	UIUC,	UW,	MIT,	CMU)

1

87

Coherence vs. Consistency

• Intuition says?

A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

87

Coherence vs. Consistency

• Intuition says? P1 prints A=1
• Coherence says?

A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

88

Coherence vs. Consistency

• Intuition says: P1 prints A=1
• Coherence says: absolutely nothing

– P1 can see P0’s write of flag before write of A!!!
• Imagine trying to figure out why this code sometimes “works”

and sometimes doesn’t
• Real systems are allowed to act in this strange manner

– What is allowed? defined as part of the ISA and/or language
– OMG, Why???

A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

What is Going On?

• Reordering of memory operations to different addresses!

• In the compiler
– Compiler is generally allowed to re-order memory operations to

different addresses
– Many other compiler optimizations also cause problems

• In the hardware
– To tolerate write latency

• Processes don’t wait for writes to complete
• Write coalescing, etc..
• And why should they? No reason on a uniprocessors

– To simplify out-of-order execution

85

86

Memory Consistency

• Memory coherence
– Creates globally uniform (consistent) view…
– Of a single memory location (in other words: cache blocks)
– Not enough

• Cache blocks A and B can be individually consistent…
• But inconsistent with respect to each other

• Memory consistency
– Creates globally uniform (consistent) view…
– Of all memory locations relative to each other

• Who cares? Programmers/Compiler writers/HW Designers
– Globally inconsistent memory creates mystifying behavior
– Reordering is key to performance

What	is	Sequential	Consistency?

91

Sequential Consistency (SC)

8

Per-processor program order: memory operations from individual
processors maintain program order
Single sequential order: the memory operations from all processors
maintain a single sequential order

P1 P2 P3 PN...

Memory

st A st C ld C ld A

Global	OrderP1

st A
ld C
st C

P2

st A
st C
ld D

st A

ld C

st C

st A

st C

ld D

[Lamport’79]

➡Simple	machine	model,	intuitive	behavior

109

Pop	Quiz!	(assume	SC)
• Answer	the	following	questions:

• Initially:	all	variables	zero	(that	is,	x	is	0,	y	is	0,	flag	is	0,	A	is	0)	
• What	value	pairs	can	be	read	by	the	two	loads?	(x,	y)	pairs:

• What	value	pairs	can	be	read	by	the	two	loads?	(x,	y)	pairs:

• What	value	can	be	read	by	the	load	A?

st 1 →	y
st 1 →	x

thread	1 thread	2
ld x
ld y

st 1 →	x
ld y

thread	1 thread	2
st 1 →	y
ld x

while(flag == 0) { }
ld A

thread	1 thread	2
st 1 →	A
st 1 →	flag

110

Pop	Quiz	Again!	(assume	SC)

• Answer	the	following	questions:
• Initially:	all	variables	zero	(that	is,	x	is	0,	y	is	0,	flag	is	0,	A	is	0)	
• What	value	pairs	can	be	read	by	the	two	loads?	(x,	y)	pairs:

• What	value	pairs	can	be	read	by	the	two	loads?	(x,	y)	pairs:

• What	value	can	be	read	by	the	load	A?

st 1 →	y
st 1 →	x

thread	1 thread	2
ld x
ld y

st 1 →	x
ld y

thread	1 thread	2
st 1 →	y
ld x

while(flag == 0) { }
ld A

thread	1 thread	2
st 1 →	A
st 1 →	flag

How	about	(1,0)?

How	about	(0,0)?

Online	”game”

11

Detecting	Violations	of	SC

111

x	=	y	=	0

st 1 →	y
st 1 →	x

thread	1 thread	2
ld x
ld y

x	=	1,	y	=	0?

Is	Sequential	Consistency	Practical?

• Why?	Why	not?

13

Is	Sequential	Consistency	Practical?

• Well…
• SC	constrains	all	memory	operations:

• Write	-> Read,	Write
• Read	-> Read,	Write

• But:	Modern	microprocessors	reorder	operations	all	the	time	to	obtain	
performance	(write	buffers,	overlapped	writes,non-blocking	reads…).

14

Reordering	#1:	Write	Buffers
Execution

M M

CPU	can	read	its	write	
buffer,	but	not	others’

Buffered	writes	eventually	end	up	in	coherent	
shared	memory

Coherent

CPU CPU

Write	BufferWrite	Buffer

Reordering	#1:	Write	Buffers
Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is	r1==r2==0
a	valid	result?

Initially	X	==	Y	==	0

Reordering	#1:	Write	Buffers
Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is	r1==r2==0
a	valid	result?

Initially	X	==	Y	==	0

r1	==	r2	==	0	is	not SC,	but	it	can	happen	with	write	buffers

Reordering	#1:	Write	Buffers

Execution

r1=Y

Y=1

r2=X

M M

Program
Initially	X	==	Y	==	0

X=1

Reordering	#1:	Write	Buffers

Execution

r1=Y r2=X

M M

Program
Initially	X	==	Y	==	0

X=1

Y=1

Reordering	#1:	Write	Buffers

Execution

r1=Y r2=X

M M

Program
Initially	X	==	Y	==	0

X=1 Y=1

Reordering	#1:	Write	Buffers

Execution

r2=X

M M

Program
Initially	X	==	Y	==	0

X=1 Y=1

r1=Y

Reordering	#1:	Write	Buffers

ExecutionM M

Program
Initially	X	==	Y	==	0

r1=Y r2=X

X=1 Y=1

Reordering	#1:	Write	Buffers

ExecutionM M

Program
Initially	X	==	Y	==	0

r1=Y	[r1	<- 0]

r2=X

X=1 Y=1

Reordering	#1:	Write	Buffers

ExecutionM M

Program
Initially	X	==	Y	==	0

r2=X	[r2	<- 0]
r1=Y	[r1	<- 0]

X=1 Y=1

Reordering	#1:	Write	Buffers

ExecutionM M

Program
Initially	X	==	Y	==	0

X=1
Y=1

r2=X	[r2	<- 0]
r1=Y	[r1	<- 0]

WBs	let	reads	finish	
before	older	writes (Not	SC!)

Reordering	#2:	Write	
Combining

Coalescing	Write	Buffer

X=1

Program
X,Z	in	same	$	line

Y=1
Z=1

4	word	cache	line

Reordering	#2:	Write	
Combining

Coalescing	Write	Buffer

X=1

Program
X,Z	in	same	$	line

Y=1
Z=1

X=1

Reordering	#2:	Write	
Combining

Coalescing	Write	Buffer

X=1

Program
X,Z	in	same	$	line

Y=1
Z=1

X=1

Y=1

Reordering	#2:	Write	
Combining

Coalescing	Write	Buffer

X=1

Program
X,Z	in	same	$	line

Y=1
Z=1

X=1
Y=1

Z=1

Reordering	#2:	Write	
Combining

Coalescing	Write	Buffer
X=1

Y=1

Z=1

Coalescing	Write	Buffer
X=1

Y=1
Z=1

Coalesce

Combining	the	write	to	X	&	Z	saves	bandwidth,
but	reorders Z=1	and	Y=1

Reordering	#3:	Compilers

for	(i	..	100)
X	=	1 X	=	0
print	x

X	=	0

Compiler for	(i	..	100)
X	=	1

X	=	0
print	x

Been hoisted!

The	compiler	hoists	the	write	out	of	the	loop,	permitting	
new	(non-SC)	results	(e.g.,	“1	0	0	0	0	0	0...”)

What	else	may	break	SC?

• Instruction	scheduling?
• DCE?
• Common	sub-expression	elimination?
• Load	scheduling?
• <anything	else?>

99

101

Enforcing	SC

• What	does	it	take	to	enforce	SC?
– Definition:	all	loads/stores	globally	ordered
– Use	ordering	of	coherence	events	to	order	all	loads/stores

• When do	coherence	events	happen	naturally?
– On	cache	access
– For	stores:	retirement	-> in-order	-> good

• No	write	buffer?	Yikes,	but	OK	with	write-back	D$
– For	loads:	execution	-> out-of-order	-> bad

– No	out-of-order	execution?	Double	yikes
• How	about	make	multiprocessors	inorder?

– That	would	be	really	bad
– Out-of-order	is	needed	to	hide	cache	miss	latency
– And	multi-processors	not	only	have	more	misses…
– …	but	miss	handling	takes	longer	(coherence	actions)

I	want	SC,	and	I	want	it	to	be	fast!	Hmmm..

- When	do	we	really	care	that	operations	are	done	in	order?
- Always?

- What	if	we	had	more	information	about	the	program?

What	is	a	data-race?

105

Many intuitive definitions, but one technical definition for
memory model purposes: two accesses from different
threads; at least one a write; accessing the same location;
without explicit happens-before ordering via synchronization.

Relaxing	Program	Orders

- Divide	memory	operations	into	data	operations and	synchronization	
operations

- Synchronization	operations	act	like	a	fence:
- All	data	operations	before	synch	in	program	order	must	complete	before	

synch	is	executed
- All	data	operations	after	synch	in	program	order	must	wait	for	synch	to	

complete
- Synchs	are	performed	in	program	order

- Implementation	of	fence:	processor	has	counter	that	is	incremented	
when	data	op	is	issued,	and	decremented	when	data	op	is	completed
- A	fence	is	a	effectively	a	local	passive operation

- Major	implications	on	language-level	memory	models	(more	later)

108

Fences	aka	Memory	Barriers

• Fences	(memory	barriers):	special	insns
– Ensure	that	loads/stores	don’t	cross	acquire	release	boundaries
– Very	roughly

acquire
fence
critical section
fence
release

• How	do	they	work?	
– fence insn	must	commit	before	any	younger	insn	dispatches

• This	also	means	write	buffer	is	emptied
– Makes	lock	acquisition	and	release	slow(er)

• Use	synchronization	library,	don’t	write	your	own

107

Weak	Ordering

• SC	for	data-race-free	(properly	synchronized)	programs…
• …only	acquires/releasesmust	be	strictly	ordered
• Why?	acquire-release pairs	define	critical	sections

– Between	critical-sections:	data	is	private	
• Globally	unordered	access	OK

– Within	critical-section:	access	to	shared	data	is	exclusive
• Globally	unordered	access	also	OK

– Implication:	compiler	or	dynamic	scheduling	is	OK
• As	long	as	re-orderings	do	not	cross	synchronization	points

• Weak	Ordering	(WO):	Alpha,	Itanium,	ARM,	PowerPC
– ISA	provides	fence	fence to	indicate	scheduling	barriers
– Proper	use	of	fences	is	somewhat	subtle
– Use	synchronization	library,	don’t	write	your	own

Sequential Consistency for DRF Example

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Thread 1

Acquire(K)

Release(K)

Rd X

Wr Z
...

Thread 2 Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...

Some global ordering

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...

Another	model:	Release	consistency

- Further	relaxation	of	weak	consistency
- Synchronization	accesses	are	divided	into	

- Acquires:	operations	like	lock
- Release:	operations	like	unlock

- Semantics	of	acquire:
- Acquire	must	complete	before	all	following	memory	accesses

- Semantics	of	release:	
- all	memory	operations	before	release	are	complete
- but	accesses	after	release	in	program	order	do	not	have	to	wait	for	

release
- operations	which	follow	release	and	which	need	to	wait	must	be	

protected	by	an	acquire

Processor	Consistency

• What	does	st->ld	relaxation	buy?

Why	are	fences	expensive?

• How	can	you	speed	up	fences?
– (or	other	delays	caused	by	the	enforcement	of	a	consistency	model)

Tolerating	Consistency	Delays

• Prefetching
– Make	consistency-delayed	accesses	faster

• Speculation
– overlap	accesses	speculatively
– checkpoint	state	in	program	order
– rollback	in	case	processors	interacted	(race?)
– Bottomline:	if	no	one	saw	it,	it	never	happened

• Current	machinery	in	out-of-order	processors?

117

Where	should	the	fences	go?

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store (tail), Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store (head), Rhead
process(R)

Producer Consumer
tail head

Rtail Rtail
Rhead R

118

Using	Memory	Fences

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
fence
Rtail=Rtail+1
Store (tail), Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
fence
Load R, (Rhead)
Rhead=Rhead+1
Store (head), Rhead
process(R)

Producer Consumer
tail head

Rtail Rtail
Rhead R

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

C/C++ Standard on Memory Model

•Sequential Consistency...

• for Data-Race Free programs

C/C++ Standard on Memory Model

•What does that buy?

• A *lot* of freedom to compiler and hardware

• e.g., HW buffers, loop-inv code motion, CSE, etc.

• Pretty much can do whatever reordering as long as it does not cross
synchronization

•Key is to determine if there is a race...

• very hard to do statically

It	is	all	about	the	interfaces

Quick	aside:	General	concurrency	errors…

• Does	free	of	data-races	mean	“correct” concurrency-wise?

» Atomicity	violations aren’t	races	necessarily

int counter; // shared variable
 // protected by lock L

void increment() {
 int temp;

 lock (L);
 temp = counter;
 unlock (L);

 temp++;

 lock (L);
 counter = temp;
 unlock (L);
}

The read and

update of counter

should have

happened inside the

same critical section

Bad interleavings of

remote thread

Figure 1. A simple example of an atomicity violation. The read
and update of counter from two threads may interleave such
that the counter is incremented only once.

ent threads that breaks the atomicity assumptions made by the pro-
grammer. The chance of an atomicity violation manifesting itself
depends on the chance of such an unfortunate interleaving. In Fig-
ure 2(a), we show the four opportunities where interleavings can
happen in traditional systems with fine-grain interleaving. In con-
trast, Figure 2(b) shows where interleavings can happen when the
memory operations of the atomicity violation happen to be inside
the same chunk. In these cases, the atomicity violation is hidden.
In Section 3, we explain and analyze this observation in detail.

...

lock(L)

ld $R1�[counter]

unlock(L)

inc $R1

lock(L)

st [counter]�$R1

unlock(L)

...

...

lock(L)

ld $R1�[counter]

unlock(L)

inc $R1

lock(L)

st [counter]�$R1

unlock(L)

...

(a)

Opportunities

for interleaving

(b)

Implicit atomic blocks

arbitrarily defined by

the processor

Figure 2. Opportunities for interleaving. (a) shows where inter-
leaving from other threads can happen in a traditional system.
(b) shows where such interleavings can happen in systems that
provide implicit atomicity.

This paper makes two contributions. First, we make the funda-
mental observation that systems with implicit atomicity can natu-
rally hide some atomicity violations. We justify this observation
with a probability analysis and empirical evidence. Second, we
propose Atom-Aid, an architecture that uses hardware signatures
to detect likely atomicity violations and dynamically adjust chunk
boundaries, making the system both detect and survive atomic-
ity violations without requiring any program annotation. To the
best of our knowledge, this is the first paper on surviving atom-
icity violations without requiring global checkpointing and recov-
ery [21, 25, 30]. Since we do not want atomicity violations to go un-
noticed by the programmer, Atom-Aid is also able to report where
atomicity violations may exist in the code, providing resilience and
debuggability. Finally, we provide an evaluation using buggy code
from real applications which shows that Atom-Aid is able to reduce

the chances that an atomicity violation will lead to wrong program
behavior by several orders of magnitude (98.7% to 100% reduc-
tion).

This paper is organized as follows. Section 2 gives background
information on implicitly atomic systems and atomicity violations.
In Section 3, we explain our observation with a probability study.
Section 4 presents the Atom-Aid algorithm and architectural com-
ponents. We present our evaluation infrastructure and results in
Sections 5 and 6, respectively. Finally, Section 7 discusses related
work and Section 8 concludes.

2. Background
2.1. Implicit Atomicity

In systems that support implicit atomicity, memory operations in
the dynamic instruction stream are arbitrarily grouped into atomic
chunks. This way, consistency enforcement can be supported at the
coarse grain of chunks, as opposed to being supported at the gran-
ularity of individual instructions. Examples of such systems are
BulkSC [6], Atomic Sequence Ordering (ASO) [29], and Implicit
Transactions [26], all of them proposed recently. We say these sys-
tems provide implicit atomicity because chunks do not follow any
annotation in the program, in contrast to explicit atomic transac-
tions in TM. In essence, systems with implicit atomicity take peri-
odic checkpoints (e.g., every 2,000 dynamic instructions) to form
chunks of dynamic instructions that appear to execute atomically
and in isolation. It is important to note that chunks are not program-
ming constructs as transactions are in TM. Other systems, such as
the TCC prototype [12, 28], use periodic transaction commits to
support legacy code, showing that implicit atomicity can be imple-
mented as a direct extension of hardware-based TM systems. TM
systems will soon be available commercially [1].

The goal of supporting consistency enforcement at a coarse
grain is to bridge the performance gap between strict and relaxed
memory models, while keeping hardware complexity low. Enforc-
ing memory consistency at the granularity of chunks and complet-
ing chunks atomically allows the processor to fully reorder instruc-
tions within a chunk while preserving the ordering requirements
of the memory consistency model, since the order of instructions
within a chunk is not exposed to remote processors. As a result,
BulkSC [6], ASO [29] and Implicit Transactions [26] can all offer
sequential consistency with the performance of more relaxed mem-
ory models such as release consistency [11].

Supporting coarse-grain consistency enforcement with implicit
atomicity has two interesting properties, which we leverage in cre-
ating Atom-Aid. First, coarse-grain memory ordering reduces the
amount of interleaving of memory operations from different pro-
cessors — they can only interleave at the granularity of chunks.
This implies that the effects of remote threads are only visible at
chunk boundaries. Figure 3 contrasts fine with coarse-grain inter-
leaving. In Figure 3(a), interleaving can happen in between any
instructions (shown on the left side) and there are six possible in-
terleavings (shown on the right side), whereas in Figure 3(b), in-
terleaving opportunities only happen between chunks, and there are
far fewer possible interleavings — only two in this example. The
second interesting property is that the software is oblivious to the
granularity of consistency enforcement, allowing the system to ar-
bitrarily choose chunk boundaries and adjust the size of chunks dy-

2

Memory	Consistency	in	Real	Systems	

• Processor consistency (PC) (x86, SPARC)
– Allows a in-order (FIFO) store buffer

• Stores can be deferred, but must be put into the cache in order
• Release consistency (RC) (ARM, Itanium, PowerPC)

– Allows an un-ordered coalescing store buffer
• Stores can be put into cache in any order

– Loads re-ordered, too.

120

Memory	Consistency	in	GPUs/CPU+GPU

• Main	issue
– fences	involve	getting	ACKs	from	whole	system
– GPUs	are	“scoped” to	avoid	excessing	control	communication

• What	makes	sense	in	this	context?
– Often	explicit	kernels	operating	on	large	data	sets/regions
– Explicit	data	partitioning/communication
– Sync	barriers	are	frequent

• Goal	of	a	memory	model	in	this	context:
– Provide	reasonable	semantics	for	system	software
– Enable	optimizations
– Avoid	excessive	hardware	complexity

• Recent	proposal	from	AMD:	HRF,	up	next	week

121

Implementing	a	Lock

• Shared	counter/sum	update	example
– Use	a	mutex	variable	for	mutual	exclusion
– Only	one	processor	can	own	the	mutex

• Many	processors	may	call	lock(),	but	only	one	will	succeed	(others	block)
• The	winner	updates	the	shared	sum,	then	calls	unlock()	to	release	the	
mutex

• Now	one	of	the	others	gets	it,	etc.
– But	how	do	we	implement	a	mutex?

• As	a	shared	variable	(1	– owned,	0	–free)

• How	would	you	implement	it?

Spinlocks

•  States of a spinlock:
•  Zero when unlocked
•  Non-zero when locked

•  Proposed implementation:
1. while (lock_var != 0);!
2. lock_var = 1;!

2/5/15 CS161 Spring 2015 2

Locking

• Releasing	a	mutex	is	easy
– Just	set	it	to	0

• Acquiring	a	mutex	is	not	so	easy
– Easy	to	spin	waiting	for	it	to	become	0
– But	when	it	does,	others	will	see	it,	too
– What	invariant	do	we	need?

Spinlocks: Race Condition!

•  Proposed implementation:
1. while (lock_var != 0);!
2. lock_var = 1;!

2/5/15 CS161 Spring 2015 3

Thread 1 Thread 2
Line1: lock_var == 0

… descheduled … Line 1: lock_var == 0

Line 2: Sets lock_var = 1
(Thinks it has the lock.)

Line 2: Sets lock_var = 1
(Thinks it has the lock)

… descheduled …

Spinlocks

•  States of a spinlock:
•  Zero when unlocked
•  Non-zero when locked

•  Proposed implementation:
1. while (lock_var != 0);!
2. lock_var = 1;!

2/5/15 CS161 Spring 2015 2

Locking

• Releasing	a	mutex	is	easy
– Just	set	it	to	0

• Acquiring	a	mutex	is	not	so	easy
– Easy	to	spin	waiting	for	it	to	become	0
– But	when	it	does,	others	will	see	it,	too
– Need	a	way	to	atomically see	that	the	mutex	is	0	and set	it	to	1
– How?

Atomic	Read-Update	Instructions

• Atomic	exchange	instruction
– E.g.,	EXCH	R1,78(R2)	will	swap	content	of	register	R1	

and	mem	location	at	address	78+R2

– To	acquire	a	mutex,	1	in	R1	and	EXCH
• Then	look	at	R1	and	see	whether	mutex	acquired
• If	R1	is	1,	mutex	was	owned	by	somebody	else	and	we	
will	need	to	try	again	later

• If	R1	is	0,	mutex	was	free	and	we	set	it	to	1,	which	
means	we	have	acquired	the	mutex

• Other	atomic	read-and-update	instructions
– E.g.,	Test-and-Set

Hardware Primitive: TAS
•  Interrupts are a big hammer; we can do better with an atomic

instruction.
•  Test-and-set (TAS)

•  Provides an atomic instruction equivalent to:
1.  return_value = lock_var;
2.  lock_var = 1;

•  If return value is 0, then you succeeded in acquiring the test-and-set.
•  If return value is non-0, then you did not succeed.
•  How do you "unlock" a test-and-set?

•  Test-and-set on Intel:
!xchg dest, src!

•  Exchanges destination and source.
•  How do you use it?

2/5/15 CS161 Spring 2015 7

src = 1
xchg lock_var, src!
If src == 0, you got the lock.

Martin 57

RISC Test-And-Set

• swap: a load and store in one insn is not very “RISC”
– Broken up into micro-ops, but then how is it made atomic?

• “Load-link” / “store-conditional” pairs
– Atomic load/store pair

label:
load-link r1,0(&lock)
// potentially other insns
store-conditional r2,0(&lock)
branch-not-zero label // check for failure

– On load-link, processor remembers address…
• …And looks for writes by other processors
• If write is detected, next store-conditional will fail

– Sets failure condition

• Used by ARM, PowerPC, MIPS, Itanium

Using	LL	&	SC

swap: mov R3, R4
ll R2,0(R1)
sc R3,0(R1)
beqz R3,swap
mov R4,R2

Atomic Exchange

upd: ll R2,0(R1)
add R3,R2,R4
sc R3,0(R1)
beqz R3,upd

Atomic Add to Shared Variable

t&s: mov R3,1
ll R2,0(R1)
sc R3,0(R1)
bnez R2,t&s
beqz R3,t&s

Atomic Test&Set
Swap	R4	w/	0(R1) Test	if	0(R1)	is	zero,	set	to	one

Implementing	Locks

• A	simple	swap	(or	test-and-set)	works
– But	causes	a	lot	of	invalidations

• Every	write	sends	an	invalidation
• Most	writes	redundant	(swap	1	with	1)

• More	efficient:	test-and-swap	(or	test-and-test-and-set	J)
– Read,	do	swap	only	if	0

• Read	of	0	does	not	guarantee	success	(not	atomic)
• But	if	1	we	have	little	chance	of	success

– Write	only	when	good	chance	we	will	succeed

• Would	either	scale?	What	can	we	do?

Large-Scale	Systems:	Locks

• Contention	even	with	test-and-test-and-set
– Every	write	goes	to	many,	many	spinning	procs
– Making	everybody	test	less	often	reduces	contention	for	high-

contention	locks	but	hurts	for	low-contention	locks
– Solution:	exponential	back-off

• If	we	have	waited	for	a	long	time,	lock	is	probably	high-contention
• Every	time	we	check	and	fail,	double	the	time	between	checks

– Fast	low-contention	locks	(checks	frequent	at	first)
– Scalable	high-contention	locks	(checks	infrequent	in	long	waits)

– Special	hardware	support

• Queuing	locks

Martin 61

Queue Locks

• Test-and-test-and-set locks can still perform poorly
– If lock is contended for by many processors
– Lock release by one processor, creates “free-for-all” by others
– Interconnect gets swamped with swap requests

• Software queue lock
– Each waiting processor spins on a different location (a queue)
– When lock is released by one processor...

• Only the next processors sees its location go “unlocked”
• Others continue spinning locally, unaware lock was released

– Effectively, passes lock from one processor to the next, in order
+ Greatly reduced network traffic (no mad rush for the lock)
+ Fairness (lock acquired in FIFO order)
– Higher overhead in case of no contention (more instructions)
– Poor performance if one thread is descheduled by O.S.

