CSEP 548: Computer Systems Architecture

Transactional Memory
Luis Ceze, Spring 2017

(based on slides lifted from friends at UPenn, UIUC, UW, MIT, CMU)

Sequential Consistency for DRF Example

Some global ordering

Thr’Tad I Thread 2 :- llllllll ﬁld.ll.§li :- llllllll ﬁld.ll§li
. T L S S LS
Acquire (K)
FEEEEEEEEEEEEEN a JUEEEEEEEEEEEER a mEEEEEEEEEEEEEE a
Rd Y E ERd X Rd T
......... Wr X: = Wr T
Release(K) EV\I].:'..Z. = Rmmmmmmsmsmsaset
Rd T .- ﬁ.d...'il.. :,Rlalle lllllllll a
Wr T A " : ..
................ (.:.q.lfi_.r.e"(")" .""""v:h.:"'I.‘._ Wr 7
Acquj_re(L) 'Rd X - asssEEEEEEEEEEES
', Rd Y e o o : JEUSEEEEEEEEEEEER a FENEEEEEEEEEEEN a
: : Rd Y Rd Y
¢ oo :Wr A : -
Wr Y
EEEEEEEEEEEEEEE v Release(K) - Wr Y - - Wr Y&
Release(L) dESEEEEEEEEEEEESEN AEEEEEEEEEEEEEEN

|

sampa

Implementing a Lock

* Shared counter/sum update example
— Use a mutex variable for mutual exclusion

— Only one processor can own the mutex
* Many processors may call lock(), but only one will succeed (others block)

 The winner updates the shared sum, then calls unlock() to release the
mutex

* Now one of the others gets it, etc.
— But how do we implement a mutex?

* As ashared variable (1 — owned, 0 —free)

 How would you implement it?

1. while (lock var != 0);

2. lock var = 1;

Locking

* Releasing a mutex is easy
— JustsetittoO 1. while (lock var != 0);

* Acquiring a mutex is not so easy

— Easy to spin waiting for it to become 0

2. lock var = 1;

— But when it does, others will see it, too
— What invariant do we need?

Thread 1 Thread 2

... descheduled ... Line 1: lock _var ==

Line 2: Sets lock _var = 1 ... descheduled ...
(Thinks it has the lock)

Locking

Releasing a mutex is easy
— JustsetittoO

Acquiring a mutex is not so easy
— Easy to spin waiting for it to become O
— But when it does, others will see it, too
— Need a way to atomically see that the mutex is O and setitto 1

\
— How?

Atomic Read-Update Instructions

* Atomic exchange instruction

— E.g., EXCH R1,78(R2) will swap content of register R1
and mem location at address 78+R2

src =1
xchg lock var, src
— To acquire a mutex, 1 in R1 and EXCH Ifsrc == 0, you got the lock.

* Then look at R1 and see whether mutex acquired

e If R1is 1, mutex was owned by somebody else and we
will need to try again later

* |f R1is 0, mutex was free and we set it to 1, which
means we have acquired the mutex

 Other atomic read-and-update instructions
— E.g., Test-and-Set

Implementing Locks

* Asimple swap (or test-and-set) works

— But causes a lot of invalidations
e Every write sends an invalidation
* Most writes redundant (swap 1 with 1)

* More efficient: test-and-swap (or test-and-test-and-set ©)

— Read, do swap only if O
* Read of 0 does not guarantee success (not atomic)
e Butif 1 we have little chance of success

— Write only when good chance we will succeed

e Would either scale? What can we do?

Large-Scale Systems: Locks

Contention even with test-and-test-and-set
— Every write goes to many, many spinning procs

— Making everybody test less often reduces contention for high-
contention locks but hurts for low-contention locks
— Solution: exponential back-off
* If we have waited for a long time, lock is probably high-contention

e Every time we check and fail, double the time between checks
— Fast low-contention locks (checks frequent at first)
— Scalable high-contention locks (checks infrequent in long waits)

— Special hardware support

Queuing locks

Queue Locks

« Test-and-test-and-set locks can still perform poorly
— If lock is contended for by many processors

— Lock release by one processor, creates “free-for-all” by others
— Interconnect gets swamped with swap requests

« Software queue lock
— Each waiting processor spins on a different location (a queue)

— When lock is released by one processor...
« Only the next processors sees its location go “unlocked”
» Others continue spinning locally, unaware lock was released

— Effectively, passes lock from one processor to the next, in order
Greatly reduced network traffic (no mad rush for the lock)
Fairness (lock acquired in FIFO order)

— Higher overhead in case of no contention (more instructions)

— Poor performance if one thread is descheduled by O.S.

+ +

What Are the Problems With Locks?

* Mapping between data->locks
— Deadlocks
— Races
— Composability?

¢ Mmm, DB?

— Optimistic concurrency

What If you Had Multi-Word LL-SC?

* Plus the ability to execute stores speculatively
 =>Transactional Memory

— Speculative execution + monitor CC trafic

Transactional Memory: The Big Idea

* Bigidea I: no locks, just shared data
— Look ma, no locks

* Bigidea lI: optimistic (speculative) concurrency
— Execute critical section speculatively, abort on conflicts
— “Better to beg for forgiveness than to ask for permission”

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int 1d from,1d to,amt;

begin transaction();

if (accts[id from].bal >= amt) {
accts[id from].bal -= amt;
accts[id to].bal += amt; }

end transaction();

12

Transactional Memory: Read/Write Sets

e Read set: set of shared addresses critical section reads
— Example: accts[37] .bal, accts[241] .bal

 Write set: set of shared addresses critical section writes
— Example: accts[37] .bal, accts[241] .bal

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int 1d from,1d to,amt;

begin transaction();

if (accts[id from].bal >= amt) {
accts[id from].bal -= amt;
accts[id to].bal += amt; }

end transaction();

13

Transactional Memory: Begin

°* begin transaction

— Take a local register checkpoint

— Begin locally tracking read set (remember addresses you read)
* See if anyone else is trying to write it

— Locally buffer all of your writes (invisible to other processors)

+ Local actions only: no lock acquire

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int 1d from,1d to,amt;

begin transaction();

if (accts[id from].bal >= amt) {
accts[id from].bal -= amt;
accts[id to].bal += amt; }

end transaction();

14

Transactional Memory: End

* end transaction
— Check read set: is all data you read still valid (i.e., no writes to any)
— Yes? Commit transactions: commit writes
— No? Abort transaction: restore checkpoint

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int 1d from,1d to,amt;

begin transaction();

if (accts[id from].bal >= amt) {
accts[id from].bal -= amt;
accts[id to].bal += amt; }

end transaction();

15

Transactional Memory Hardware Support

(HTM)

Processor
A
Load/Store Violation
v Address
L]
Store :
Address
Data
FIFO
Cache W TAG DATA
\ L]
Commit Address l Data
v
Snoop Commit
Control Control
Iy
Commit Commit
Address In Address Out

Request Bus

Refill Bus

16

HTM

 Most hardware already exists
* Only small modification to cache needed

Regular
Accesses

Kumar et al. (Intel)

HTM

 Most hardware already exists
* Only small modification to cache needed

Transactional
Accesses

Regular
Accesses

Kumar et al. (Intel)

HTM Example

P1 Cache P2 Cache

g ldata |Tns |State Ty |data | Tans? |sate

Bus Messages:

atomic {
atomic { read B
read A
write B =1
}
Write A=2

HTM Example

g ldate |Tns |State Ty |data | Tans? |sate

B 0 Y S
Bus Messages: 2 read B
atomic {

atomic { read B

read A

write B =1
}

Write A=2

HTM Example

g ldate |Tns |State Ty |data | Tans? |sate
A 0 Y S

B 0 Y S
Bus Messages: 1 read A
atomic {

atomic { read B

read A

write B =1
}

Write A=2

HTM Example

g ldate |Tns |State Ty |data | Tans? |sate
A 0 Y S

B 1 Y M B 0 Y S

Bus Messages: NONE

atomic {
atomic { read B
read A
write B =1
}
Write A=2

Conflict, visibility on commit

g ldate |Tns |State Ty |data | Tans? |sate
A 0 N S

B 1 N M B 0 Y S

Bus Messages: 1 B modified

atomic {
atomic { read B
read A
write B =1
} ABORT
Write A=2

Thread 1 Thread 2
atomic {
rl = x; x =1;
r2 = X;

}

Canr1l!=r2?
(a) Non-repeatable reads

HTM —Strong isolation

Initially x==
Thread 1 Thread 2
atomic {

r = X; x = 10;

x =1 + 1;

}

Can x==17?
(b) Lost updates

Initially x is even
Thread 1 Thread 2

atomic {
X++; r = x;
X++;

o

Can r be odd?
(c) Dirty reads

HTM — False Sharing

g ldate |Tns |State Ty |data | Tans? |sate
C/D 0/0 Y S

Bus Messages: Read C/D

atomic {
atomic { read C
read A
write D=1
}
Write B =2

}

HTM — False Sharing

g ldate |Tns |State Ty |data | Tans? |sate
C/D 0/0 Y S

A/B 0/0 Y S

Bus Messages: Read A/B

atomic {
atomic { read C
read A
write D=1
}
Write B =2

}

HTM — False Sharing

g ldate |Tns |State Ty |data | Tans? |sate
C/D 0/1 Y M C/D 0/0 Y S

A/B 0/0 Y S

Bus Messages: Write C/D

atomic {
atomic { read C
read A
writeD=1
}

UH OH

HTM — Limited Size

g ldate |Tns |State Ty |data | Tans? |sate
A 0 Y M

Bus Messages: Read A

atomic {
read A
read B
read C
read D

}
Write C/

HTM — Limited Size

g ldate |Tns |State Ty |data | Tans? |sate
A 0 Y M

B 0 Y M

Bus Messages: Read B

atomic {
read A
read B
read C
read D

}

HTM — Limited Size

g ldate |Tns |State Ty |data | Tans? |sate
A 0 Y M

0 Y M
C 0 Y M

Bus Messages: Read C

atomic {
read A
read B
read C
read D

}

HTM — Limited Size

g ldate |Tns |State Ty |data | Tans? |sate
A 0 Y M

0 Y M
C 0 Y M

Bus Messages: ...

atomic {
read A
read B
read C
read D

UH OH

Can we just ignore locks and go ahead?

Speculative Lock Elision

Processor 0

acquire (accts[37].lock); // don' t actually set lock to 1
// begin tracking read/write sets

// CRITICAL SECTION

// check read set

// no conflicts? Commit, don t actually set lock to O
// conflicts? Abort, retry by acquiring lock
release (accts[37].1lock);

 Alternatively, keep the locks, but...

... speculatively transactify lock-based programs in hardware

— Speculative Lock Elision (SLE) [Rajwar+, MICRO’ 01]
« Captures most of the advantages of transactional memory...
+ No need to rewrite programs

+ Can always fall back on lock-based execution (overflow, I/0O, etc.)

Martin 33

Amdahl’s Law

* Restatement of the law of diminishing returns
— Total speedup limited by non-accelerated piece
— Analogy: drive to work & park car, walk to building

* Consider a task with a “parallel” and “serial” portion
— What is the speedup with N cores?

— Speedup(n, p, s) = (s+p) / (s + (p/n))
* pis “parallel percentage”, s is “serial percentage”
— What about infinite cores?

* Speedup(p,s)=(stp)/s =1/s
 Example: can optimize 50% of program A
— Even a “magic” optimization that makes this 50% disappear...

— ...onlyyields a 2X speedup

34

20.00

18.00

16.00

14.00

12.00

10.00

Speedup

8.00

6.00

4.00

2.00

0.00

Amdahl’s Law Graph

Amdahl’s Law

Number of Processors

35

——
/
pd
L~
/ Parallel Portion
7 50%
/ 75%
90%
/ 95%
/
/ —T
_—
A |
V4 //
’ /
//
-
- N < <o) ({=] AN <t 0 © AN < (o) ({=] N < 0 (=]
- o~ ({=] N n - AN < (2] (<] (2] (=] (32
- AN n o o o - (2] N~ n

Source: Wikipedia

Discussion

e Does cache coherence scale?

— Does message passing scale?

 What would you do with 1000 (or 1M) cores?

e Speculation for parallelism
* Fusing cores to form a larger one that better exploits ILP

e Continuous system improvement? (codegen, monitoring watchdogs,
etc)

Memory Consistency in GPUs/CPU+GPU

Main issue
— fences involve getting ACKs from whole system
— GPUs are “scoped” to avoid excessing control communication
What makes sense in this context?
— Often explicit kernels operating on large data sets/regions
— Explicit data partitioning/communication
— Sync barriers are frequent
Goal of a memory model in this context:
— Provide reasonable semantics for system software
— Enable optimizations
— Avoid excessive hardware complexity

Recent proposal from AMD: HRF, up next week

