CSE 548: Computer Systems Architecture

Pipelining Review
Luis Ceze, Spring 2017

(based on slides lifted from friends at UPenn, UIUC, UW, MIT).

(Scalar In-Order) Pipelining

e Basic Pipelining
— Pipeline control
* Data Hazards
— Software interlocks and scheduling
— Hardware interlocks and stalling
— Bypassing
* Control Hazards

— Branch prediction

The eternal pipelining metaphor

Datapath and Control
.:j Disclaimer:

RISC datapath

* Datapath: implements execute portion of fetch/exec. loop
— Functional units (ALUs), registers, memory interface

e Control: implements decode portion of fetch/execute loop
— Mux selectors, write enable signals regulate flow of data in datapath
— Part of decode involves translating insn opcode into control signals

Single-Cycle Datapath
o=

—y|

* Single-cycle datapath: true “atomic” VonNeuman loop
— Fetch, decode, execute one complete insn every cycle
— “Hardwired control”: opcode to control signals ROM
— What is the CPI? What happens to the clock cycle time?

Single-Cycle Datapath
o=

—y|

* Single-cycle datapath: true “atomic” VonNeuman loop
— Fetch, decode, execute one complete insn every cycle
— “Hardwired control”: opcode to control signals ROM
+ Low CPI: 1 by definition
— Long clock period: to accommodate longest insn

— Does all this work need to be done in one shot?

Can we just chop this up?

5
=)

5 Stage Pipelined Datapath

 Temporary values (PC,IR,A,B,O,D) re-latched every stage
— Why?

5 Stage Pipelined Datapath

 Temporary values (PC,IR,A,B,0,D) re-latched every stage
— Why? 5 insns may be in pipeline at once with different PCs

— Pipelined control: one single-cycle controller
* Control signals themselves pipelined

Pipeline Terminology

PC

F/D

* Five stage: Fetch, Decode, eXecute, Memory, Writeback
— Nothing magical about the number 5 (Pentium 4 has 22 stages)

* Latches (pipeline registers) named by stages they separate
— PC, F/D, D/X, X/M, M/W

10

More Terminology & Foreshadowing

* Scalar pipeline: one insn per stage per cycle
— Alternative: “superscalar” (later)

* In-order pipeline: insns enter execute stage in program order

— Alternative: “out-of-order” (later)

* Pipeline depth: number of pipeline stages
— Nothing magical about five
— Trend has been to deeper pipelines

11

Pipeline Example: Cycle 1
o=

)
-

add $3,$2,81

* 3 instructions

12

Pipeline Example: Cycle 2
o=

)
[

lw $4,0($5) add $3,$2,81

13

Pipeline Example: Cycle 3
o=

)
-

sw $6,4(S87) lw $4,0($5) add $3,$2,81

14

Pipeline Example: Cycle 4
o=

sw $6,4(87) lw $4,0(S$5) add $3,$2,81

* 3 instructions

15

Pipeline Example: Cycle 5
o=

sw $6,4(87) lw $4,0($5) add

16

Pipeline Example: Cycle 6
o=

sw $6,4(7) 1w

17

Pipeline Example: Cycle 7
o=

SwW

18

Pipeline Diagram

* Pipeline diagram: shorthand for what we just saw
— Across: cycles

— Down: insns

— Convention: X means 1w $4,0 ($5) finishes execute stage and writes
into X/M latch at end of cycle 4

112|134]5]6|7,8]9
add $3,52,51 FIDI X M| W
1w $4,0(85) F|ID| X M| W
sw $6,4(87) FID| X M| W

Example Pipeline Perf. Calculation

* Single-cycle
— Clock period =50ns, CPI =1
— Performance = 50ns/insn
e 5-stage pipelined?
— Clock period = 12ns (approx. (50ns / 5 stages) + overheads)
+ CPI?
+ Performance? ___ ns/insn

Example Pipeline Perf. Calculation

* Single-cycle
— Clock period =50ns, CPI =1
— Performance = 50ns/insn

e 5-stage pipelined
— Clock period = 12ns (approx. (50ns / 5 stages) + overheads)
+ CPI =1 (each insn takes 5 cycles, but 1 completes each cycle)
+ Performance = 12ns/insn
— Well actually ... CPI =1 + some penalty for pipelining (next)

e CPI=1.5(on average insn completes every 1.5 cycles)
* Performance = 18ns/insn

* Latches add delay

* Extra “bypassing” logic adds delay

* Pipeline stages have different delays,
clock period is max delay

Q1: Why Is Pipeline CPI...

L.>17
— CPI for scalar in-order pipeline is 1 + stall penalties
— Pipelining is not always smooth...
— Stalls used to resolve hazards

* Hazard: condition that jeopardizes pipeline flow
 Stall: pipeline delay introduced to restore pipeline flow

Calculating pipeline CPI
— Frequency of stall * stall cycles
— Penalties add
— 1 + stall-freq, *stall-cyc, + stall-freq,*stall-cyc, + ...

Correctness/performance/make common case fast (MCCF)
— Long penalties OK if they happen rarely, e.g., 1+ 0.01 * 10=1.1
— Stalls also have implications for ideal number of pipeline stages

22

What can go wrong in pipelined execution?

Dependences and Hazards

Dependence: relationship between two insns
— Data: two insns use same storage location
— Control: one insn affects whether another executes at all
— Not a bad thing, programs would be boring without them

— Enforced by making older insn go before younger one
* Happens naturally in single-/multi-cycle designs
* But notin a pipeline

Hazard: dependence & possibility of wrong insn order

— Effects of wrong insn order cannot be externally visible
 Stall: for order by keeping younger insn in same stage

— Hazards are a bad thing: stalls reduce performance

Why Does Every Insn Take 5 Cycles?
@

w

)
-

add $3,%$2,81

e Could/should we allow add to skip M and go to W?

lw $4,0(85)

25

Why Does Every Insn Take 5 Cycles?
o=

w

)
-

add $3,%$2,81

e Could/should we allow add to skip M and go to W? No

— It wouldn’t help: peak fetch still only 1 insn per cycle

lw $4,0(85)

— Structural hazards: add and 1w would use same circuit

26

Structural Hazards

Structural hazards

— Two insns trying to use same circuit at same time
e E.g., structural hazard on regfile write port

How do we solve this issue?

27

Structural Hazards

e Structural hazards

— Two insns trying to use same circuit at same time
e E.g., structural hazard on regfile write port

* To fix structural hazards: proper ISA/pipeline design
— Each insn uses every structure exactly once
— For at most one cycle

e Tolerate structure hazards

— Add stall logic to stall pipeline when hazards would occur

28

Example Structural Hazard

1 2 3 4 5 6 7 8 9
1d r2,0(rl) F D X M W
add rl,r3,r4 F D X M W
sub rl,r3,r5 F D X M W
st r6,0(rl) F D X M W

* Structural hazard: resource needed twice in one cycle
— Example: unified instruction & data cache
— Solutions?

29

Example Structural Hazard

1 2 3 4 5 6 7 8 9
1d r2,0(rl) F D X M W
add rl,r3,r4 F D X M W
sub rl,r3,r5 F D X M W
st r6,0(rl) F D X M W

* Structural hazard: resource needed twice in one cycle
— Example: unified instruction & data cache
— Solutions?

* Separate instruction/data caches

» Redesign cache to allow 2 accesses per cycle (slow, expensive)
 Stall pipeline

Data Hazards

L~

D/X

F/D X/M M/

sw $6,0($7) lw $4,0($5) add $3,%52,81

* Let’s forget about branches and the control for a while

 The three insn sequence we saw earlier executed fine...

— Can you imagine situations when it will not be fine?

31

Data Hazards

L~

D/X

F/D X/M M/

sw $6,0($7) lw $4,0($5) add $3,%52,81

* Let’s forget about branches and the control for a while

 The three insn sequence we saw earlier executed fine...

— But it wasn’t a real program

— Real programs have data dependences
* They pass values via registers and memory

32

Dependent Operations

Independent operations

add $3,$2,9%1
add $6,$5,%4

Would this program execute correctly on a pipeline?

add $3,82,9%1
add $6,85,5$3

What about this program?

add $3,%$2,81
1w $4,0($3)
addi $6,1,S$3
sw $3,0($7)

Data Hazards

L~

D/X

F/D X/M M/

sw $3,0($7) addi $6,1,$3 1w $4,0($3) add $3,$2,%1

—

* Would this “program” execute correctly on this pipeline?

34

Data Hazards

L~

D/X

F/D X/M M/

sw $3,0($7) addi $6,1,$3 1w $4,0($3) add $3,$2,%1

* Would this “program” execute correctly on this pipeline?
— Which insns would execute with correct inputs?

35

Data Hazards

L~

D/X

F/D X/M M/

sw $3,0($7) addi $6,1,$3 1w $4,0($3) add $3,$82,8%1

* Would this “program” execute correctly on this pipeline?
— Which insns would execute with correct inputs?
— add is writing its result into $3 in current cycle
— lwread $3 2 cycles ago — got wrong value
— addi read $3 1 cycle ago —»> got wrong value
— swis reading $3 this cycle - maybe (depending on regfile design)

36

Memory Data Hazards

L~

F/D M/

lw $4,0($1) sw $5,0($1)
 What about data hazards through memory, is that a hazard?

37

Memory Data Hazards

L~

F/D M/

lw $4,0($1) sw $5,0($1)
 What about data hazards through memory? No

— 1w following sw to same address in next cycle, gets right value
— Why? Data mem read/write always take place in same stage

38

Observation!

F/D

X/M

M/

lw $4,0($3) add $3,8$2,81

* Technically, this situation is broken
— 1w $4,0($3) hasalready read $3 from regfile
— add $3,$2,$1 hasn’t yet written $3 to regfile

e But..©

39

Observation!

F/D

X/M

M/

lw $4,0($3) add $3,8$2,81

Technically, this situation is broken

— 1w $4,0($3) hasalready read $3 from regfile

— add $3,$2,$1 hasn’t yet written $3 to regfile
But fundamentally, everything is OK

— 1lw $4,0($3) hasn’t actually used $3 yet

— add $3,$2,$1 has already computed $3
How can we take advantage of this?

40

Reducing Data Hazards: Bypassing

X/M M/

lw $4,0($3) add $3,$2,5%1

Bypassing

Reading a value from an intermediate (parchitectural) source
Not waiting until it is available from primary source

Here, we are bypassing the register file

Also called forwarding

41

What about this situation?

X/M

* Would the bypassing above work?

42

WX Bypassing

o
I

D/X

L~

X/M M/

lw $4,0($3) add $3,$2,51

 Add another bypass path and MUX input
* First one was an MX bypass
* This one is a WX bypass

43

ALUInB Bypassing

.

ud IR
/X X/M M/

L~

D

add $4,52,$3 add $3,%$2,81

* (Can also bypass to ALU input B

44

WM Bypassing?

.

1| i
D/X

ud

X/M

M/

Does WM bypassing make sense?

sw $3,0($4)

lw $3,0(82)

45

WM Bypassing?

.

.l

D/X X/M

M/

 Does WM bypassing make sense?
— Not to the address input (why not?)
— But to the store data input, yes

sw $3,0($4)

lw $3,0(82)

46

Bypass Logic

e Each MUX has its own, here it is for MUX ALUInA

(D/X.IR.RegSourcel == X/M.IR.RegDest) => 0
(D/X.IR.RegSourcel == M/W.IR.RegDest) => 1
Else => 2

47

Pipeline Diagrams with Bypassing

If bypass exists, “from”/“to” stages execute in same cycle

— Example: full bypassing, use MX bypass
1 2 3 4 5 6 7 8 9 10
F D X\M W

F DX M W

e Example: full bypassing, use WX bypass
1 2 3 4 5 6 7 8 9 10
add r2,r3=rl F D

X MW
1d [r7]r5 F D X \M W
sub rl,r4=>r2 F D X M W

add r2,r3=rl
sub rl,rd4=>r2

e Example: WM bypass

1 2 3 4 5 6 7 8 9 10
add r2,r3=9rl F D X M\W

? F D X M W
e Can you think of a code example that uses the WM bypass?

Have We Prevented All Data Hazards?

.

ud

X/M

add $4,$2,$3

1w $3,4($2)

49

Have We Prevented All Data Hazards?
9—0 @

ud

X/M

add $4,$2,$3 1w $3,4($2)

* No. Consider a “load” followed by a dependent “add” insn
* Bypassing alone isn’t sufficient
* Solution? Detect this, and then stall the “add” by one cycle

50

T -+ 0N S

'!NQ.'SO

Loads followed by use

Time (clock cycles)

1w rl, 0(r2)fe]
sub r4,rl,r6

and r6,rl,r7

or r8,rl,r9

] = |l>ﬁ
preren] 1| = ID4‘

1
o ok --:a
=1 nk31 e

v

51

Stalling to Avoid Data Hazards

F/D

j * nop—

* Prevent F/D insn from reading (advancing) this cycle
— Write nop into D/X.IR (effectively, insert nop in hardware)
— Also reset (clear) the datapath control signals
— Disable F/D latch and PC write enables (why?)

* Re-evaluate situation next cycle

3+ 0 s H

’SNQ_"SO

Loads followed by use stall

Time (clock cycles)

Iw r1, 0(r2)

sub r4,r1,ré

and r6,r1,r7

or r8,r1,r9

v

IIfe'rch

1:%9

IIfe'rch

53

The ARM1136JF-S processor features:

an integer unit with integral EmbeddedICE-RT logic

an eight-stage pipeline

branch prediction with return stack

low interrupt latency

external coprocessor interface and coprocessors 14 and 15

Instruction and Data Memory Management Units (MMUs), managed using
MicroTLB structures backed by a unified Main TLB

Instruction and data caches, including a non-blocking data cache with
Hit-Under-Miss (HUM)

the caches are virtually indexed and physically addressed

64-bit interface to both caches

a bypassable write buffer

level one Tightly-Coupled Memory (TCM) that can be used as a local RAM with
DMA, or as SmartCache

high-speed Advanced Microprocessor Bus Architecture (AMBA) level two
interfaces supporting prioritized multiprocessor implementations

Vector Floating-Point (VFP) coprocessor support
external coprocessor support

trace support

JTAG-based debug.

