
CSE	548:	Computer	Systems	Architecture

Pipelining	Review
Luis	Ceze,	Spring	2017

(based	on	slides	lifted	from	friends	at	UPenn,	UIUC,	UW,	MIT).

1

(Scalar	In-Order)	Pipelining

• Basic	Pipelining
– Pipeline	control

• Data	Hazards
– Software	interlocks	and	scheduling
– Hardware	interlocks	and	stalling
– Bypassing

• Control	Hazards
– Branch	prediction

2

The	eternal	pipelining	metaphor

CIS	501:	Comp.	Arch.		|		Prof.	
Joe	Devietti		|		Pipelining 3

Datapath and	Control

• Datapath:	implements	execute	portion	of fetch/exec.	loop
– Functional	units	(ALUs),	registers,	memory	interface

• Control:	implements	decode	portion	of fetch/execute	loop
– Mux selectors,	write	enable	signals	regulate	flow	of	data	in	datapath
– Part	of	decode	involves	translating	insn opcode into	control	signals

PC I$ Register
File
s1 s2 d D$

+
4

control

Disclaimer:
RISC datapath

4

Single-Cycle	Datapath

• Single-cycle	datapath:	true	“atomic”	VonNeuman loop
– Fetch,	decode,	execute	one	complete	insn every	cycle
– “Hardwired	control”:	opcode to	control	signals	ROM
– What	is	the	CPI?	What	happens	to	the	clock	cycle	time?

PC I$ Register
File
s1 s2 d D$

+
4

5

Single-Cycle	Datapath

• Single-cycle	datapath:	true	“atomic”	VonNeuman loop
– Fetch,	decode,	execute	one	complete	insn every	cycle
– “Hardwired	control”:	opcode to	control	signals	ROM
+ Low	CPI:	1	by	definition
– Long	clock	period:	to	accommodate	longest	insn

– Does	all	this	work	need	to	be	done	in	one	shot?

PC I$ Register
File
s1 s2 d D$

+
4

6

Can	we	just	chop	this	up?

PC I$ Register
File
s1 s2 d D$

+
4

7

5	Stage	Pipelined	Datapath

• Temporary	values	(PC,IR,A,B,O,D)	re-latched	every	stage
– Why?

PC I$ Register
File
s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR

8

5	Stage	Pipelined	Datapath

• Temporary	values	(PC,IR,A,B,O,D)	re-latched	every	stage
– Why?	5	insns may	be	in	pipeline	at	once	with	different	PCs
– Pipelined	control:	one	single-cycle	controller

• Control	signals	themselves	pipelined

PC I$ Register
File
s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR

9

Pipeline	Terminology

• Five	stage:	Fetch,	Decode,	eXecute,	Memory,	Writeback
– Nothing	magical	about	the	number	5	(Pentium	4	has	22	stages)

• Latches	(pipeline	registers)	named	by	stages	they	separate
– PC,	F/D,	D/X,	X/M,	M/W

PC I$ Register
File
s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IRPC
F/D D/X X/M M/W

10

More	Terminology	&	Foreshadowing	

• Scalar	pipeline:	one	insn per	stage	per	cycle
– Alternative:	“superscalar”	(later)

• In-order	pipeline:	insns enter	execute	stage	in	program	order
– Alternative:	“out-of-order”	(later)

• Pipeline	depth:	number	of	pipeline	stages
– Nothing	magical	about	five
– Trend	has	been	to	deeper	pipelines

11

Pipeline	Example:	Cycle	1

• 3	instructions

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1

12

Pipeline	Example:	Cycle	2

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

lw $4,0($5) add $3,$2,$1

13

Pipeline	Example:	Cycle	3

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

14

Pipeline	Example:	Cycle	4

• 3	instructions

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

15

Pipeline	Example:	Cycle	5

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add

16

Pipeline	Example:	Cycle	6

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4(7) lw

17

Pipeline	Example:	Cycle	7

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw

18

Pipeline	Diagram

• Pipeline	diagram:	shorthand	for	what	we	just	saw
– Across:	cycles
– Down:	insns
– Convention:	Xmeans	lw $4,0($5) finishes	execute	stage	and	writes	

into	X/M	latch	at	end	of	cycle	4

1 2 3 4 5 6 7 8 9
add $3,$2,$1 F D X M W
lw $4,0($5) F D X M W
sw $6,4($7) F D X M W

19

Example	Pipeline	Perf.	Calculation

• Single-cycle
– Clock	period	=	50ns,	CPI	=	1
– Performance	=	50ns/insn

• 5-stage	pipelined?
– Clock	period	=	12ns	 (approx.	(50ns	/	5	stages)	+	overheads)
+ CPI	?
+ Performance?	___ns/insn

20

Example	Pipeline	Perf.	Calculation

• Single-cycle
– Clock	period	=	50ns,	CPI	=	1
– Performance	=	50ns/insn

• 5-stage	pipelined
– Clock	period	=	12ns	 (approx.	(50ns	/	5	stages)	+	overheads)
+ CPI	=	1 (each	insn takes	5	cycles,	but	1	completes	each	cycle)
+ Performance	=	12ns/insn
– Well	actually	…	CPI	=	1	+	some	penalty	for	pipelining	(next)

• CPI	=	1.5 (on	average	insn completes	every	1.5	cycles)
• Performance	=	18ns/insn

21

• Latches	add	delay
• Extra	“bypassing”	logic	adds	delay
• Pipeline	stages	have	different	delays,	

clock	period	is	max	delay

Q1:	Why	Is	Pipeline	CPI…

• … >	1?
– CPI	for	scalar	in-order	pipeline	is	1	+	stall	penalties
– Pipelining	is	not	always	smooth…
– Stalls	used	to	resolve	hazards

• Hazard:	condition	that	jeopardizes	pipeline	flow
• Stall: pipeline	delay	introduced	to	restore	pipeline	flow

• Calculating	pipeline	CPI
– Frequency	of	stall *	stall	cycles
– Penalties	add
– 1	+	stall-freq1*stall-cyc1 +	stall-freq2*stall-cyc2 +	…

• Correctness/performance/make	common	case	fast	(MCCF)
– Long	penalties	OK	if	they	happen	rarely,	e.g.,	1	+	0.01	*	10	=	1.1
– Stalls	also	have	implications	for	ideal	number	of	pipeline	stages

22

What	can	go	wrong in	pipelined	execution?

23

Dependences	and	Hazards

• Dependence:	relationship	between	two	insns
– Data:	two	insns	use	same	storage	location
– Control:	one	insn	affects	whether	another	executes	at	all
– Not	a	bad	thing,	programs	would	be	boring	without	them
– Enforced	by	making	older	insn	go	before	younger	one

• Happens	naturally	in	single-/multi-cycle	designs
• But	not	in	a	pipeline

• Hazard:	dependence	&	possibility	of	wrong	insn	order
– Effects	of	wrong	insn	order	cannot	be	externally	visible

• Stall:	for	order	by	keeping	younger	insn	in	same	stage
– Hazards	are	a	bad	thing:	stalls	reduce	performance

24

Why	Does	Every	Insn	Take	5	Cycles?

• Could/should	we	allow	add to	skip	M	and	go	to	W?

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1 lw $4,0($5)

25

Why	Does	Every	Insn	Take	5	Cycles?

• Could/should	we	allow	add to	skip	M	and	go	to	W?	No
– It	wouldn’t	help:	peak	fetch	still	only	1	insn per	cycle
– Structural	hazards:	add and	lw would	use	same	circuit

PC
Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1 lw $4,0($5)

26

Structural	Hazards

• Structural	hazards
– Two	insns trying	to	use	same	circuit	at	same	time

• E.g.,	structural	hazard	on	regfile write	port

• How	do	we	solve	this	issue?

27

Structural	Hazards

• Structural	hazards
– Two	insns trying	to	use	same	circuit	at	same	time

• E.g.,	structural	hazard	on	regfile write	port

• To	fix	structural	hazards:	proper	ISA/pipeline	design
– Each	insn uses	every	structure	exactly	once
– For	at	most	one	cycle

• Tolerate	structure	hazards
– Add	stall	logic	to	stall	pipeline	when	hazards	would	occur

28

Example	Structural	Hazard

• Structural	hazard:	resource	needed	twice	in	one	cycle
– Example: unified	instruction	&	data	cache
– Solutions?

1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
sub r1,r3,r5 F D X M W
st r6,0(r1) F D X M W

29

Example	Structural	Hazard

• Structural	hazard:	resource	needed	twice	in	one	cycle
– Example: unified	instruction	&	data	cache
– Solutions?

• Separate	instruction/data	caches
• Redesign	cache	to	allow	2	accesses	per	cycle	(slow,	expensive)
• Stall	pipeline

1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
sub r1,r3,r5 F D X M W
st r6,0(r1) F D X M W

30

Data	Hazards

• Let’s	forget	about	branches	and	the	control	for	a	while
• The	three	insn sequence	we	saw	earlier	executed	fine…

– Can	you	imagine	situations	when	it	will	not be	fine?

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($5)sw $6,0($7)

Data
Mem

a

d

O

D

IR

M/W

31

Data	Hazards

• Let’s	forget	about	branches	and	the	control	for	a	while
• The	three	insn	sequence	we	saw	earlier	executed	fine…

– But	it	wasn’t	a	real	program
– Real	programs	have	data	dependences

• They	pass	values	via	registers	and	memory

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($5)sw $6,0($7)

Data
Mem

a

d

O

D

IR

M/W

32

Dependent	Operations

• Independent	operations
add $3,$2,$1
add $6,$5,$4

• Would	this	program	execute	correctly	on	a	pipeline?
add $3,$2,$1
add $6,$5,$3

• What	about	this	program?
add $3,$2,$1
lw $4,0($3)
addi $6,1,$3
sw $3,0($7)

33

Data	Hazards

• Would	this	“program”	execute	correctly	on	this	pipeline?
add $3,$2,$1lw $4,0($3)sw $3,0($7) addi $6,1,$3

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

34

Data	Hazards

• Would	this	“program”	execute	correctly	on	this	pipeline?
– Which	insns would	execute	with	correct	inputs?

add $3,$2,$1lw $4,0($3)sw $3,0($7) addi $6,1,$3

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

35

Data	Hazards

• Would	this	“program”	execute	correctly	on	this	pipeline?
– Which	insns would	execute	with	correct	inputs?
– add is	writing	its	result	into	$3 in	current	cycle	
– lw read	$3 2	cycles	ago	® got	wrong	value
– addi read	$3 1	cycle	ago	® got	wrong	value
– sw is	reading	$3 this	cycle	®maybe	(depending	on	regfile design)

add $3,$2,$1lw $4,0($3)sw $3,0($7) addi $6,1,$3

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

36

Memory	Data	Hazards

• What	about	data	hazards	through	memory,	is	that	a	hazard?	
sw $5,0($1)lw $4,0($1)

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

37

Memory	Data	Hazards

• What	about	data	hazards	through	memory?	No
– lw following	sw to	same	address	in	next	cycle,	gets	right	value
– Why? Data	mem read/write always	take	place	in	same	stage

sw $5,0($1)lw $4,0($1)

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

38

Observation!

• Technically,	this	situation	is	broken
– lw $4,0($3) has	already	read	$3 from	regfile
– add $3,$2,$1 hasn’t	yet	written	$3 to	regfile

• But	…J

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

39

Observation!

• Technically,	this	situation	is	broken
– lw $4,0($3) has	already	read	$3 from	regfile
– add $3,$2,$1 hasn’t	yet	written	$3 to	regfile

• But	fundamentally,	everything	is	OK
– lw $4,0($3) hasn’t	actually	used	$3 yet
– add $3,$2,$1 has	already	computed	$3

• How	can	we	take	advantage	of	this?

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

40

Reducing	Data	Hazards:	Bypassing

• Bypassing
– Reading	a	value	from	an	intermediate	(µarchitectural)	source
– Not	waiting	until	it	is	available	from	primary	source
– Here,	we	are	bypassing	the	register	file
– Also	called	forwarding

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

41

What	about	this	situation?

• Would	the	bypassing	above	work?

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

42

WX	Bypassing

• Add	another	bypass	path	and	MUX	input
• First	one	was	an	MX bypass
• This	one	is	a	WX bypass

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

43

ALUinB	Bypassing

• Can	also	bypass	to	ALU	input	B

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1add $4,$2,$3

Data
Mem

a

d

O

D

IR

M/W

44

WM	Bypassing?

• Does	WM	bypassing	make	sense?

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)sw $3,0($4)

45

WM	Bypassing?

• Does	WM	bypassing	make	sense?
– Not	to	the	address	input	(why	not?)
– But	to	the	store	data	input,	yes

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)sw $3,0($4)

46

Bypass	Logic

• Each	MUX	has	its	own,	here	it	is	for	MUX	ALUinA
(D/X.IR.RegSource1	==	X/M.IR.RegDest)	=>	0
(D/X.IR.RegSource1	==	M/W.IR.RegDest)	=>	1
Else	=>	2

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

bypass

47

Pipeline	Diagrams	with	Bypassing

• If	bypass	exists,	“from”/“to”	stages	execute	in	same	cycle
– Example:	full	bypassing,	use	MX	bypass

1 2 3 4 5 6 7 8 9 10
add r2,r3èr1 F D X M W
sub r1,r4èr2 F D X M W

• Example: full bypassing, use WX bypass
1 2 3 4 5 6 7 8 9 10

add r2,r3èr1 F D X M W
ld [r7]èr5 F D X M W
sub r1,r4èr2 F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3èr1 F D X M W
? F D X M W

• Example: WM bypass

• Can you think of a code example that uses the WM bypass?

48

Have	We	Prevented	All	Data	Hazards?

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,4($2)
stall

nop

add $4,$2,$3

49

Have	We	Prevented	All	Data	Hazards?

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,4($2)
stall

nop

add $4,$2,$3

• No.		Consider	a	“load”	followed	by	a	dependent	“add”	insn
• Bypassing	alone	isn’t	sufficient
• Solution?		Detect	this,	and	then	stall	the	“add”	by	one	cycle

50

Loads	followed	by	use

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

51

Stalling	to	Avoid	Data	Hazards

• Prevent	F/D	insn from	reading	(advancing)	this	cycle
– Write	nop into	D/X.IR	(effectively,	insert	nop in	hardware)
– Also	reset	(clear)	the	datapath control	signals	
– Disable	F/D	latch	and	PC	write	enables	(why?)

• Re-evaluate	situation	next	cycle

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

hazard

nop

Data
Mem

a

d

O

D

IR

M/W

52

Loads	followed	by	use	stall

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch

A
LU DMem RegBubble

Ifetch

A
LU DMem RegBubble Reg

Ifetch A
LU DMemBubble Reg

53

54

