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Virtualizing	Processors

• How	do	multiple	apps	(and	OS)	share the	processors?
– Goal:	applications	think	there	are	an	infinite	#	of	processors
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Virtualizing	Processors
• How	do	multiple	apps	(and	OS)	share the	processors?

– Goal:	applications	think	there	are	an	infinite	#	of	processors

• Solution:	time-share	the	resource
– Trigger	a	context	switch	at	a	regular	interval	(~1ms)

• Pre-emptive:	app	doesn’t	yield	CPU,	OS	forcibly	takes	it
+ Stops	greedy	apps	from	starving	others

– Architected	state:	PC,	registers
• Save	and	restore	them	on	context	switches
• Memory	state?

– Non-architected	state:	caches,	branch	predictor	tables,	etc.
• Ignore	or	flush

• OS	responsible	to	handle	context	switching
– Hardware	support	is	just	a	timer	interrupt
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Virtualizing	Main	Memory

• How	do	multiple	apps	(and	the	OS)	share	main	
memory?
– Goal:	each	application	thinks	it	has	infinite	memory	
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Virtualizing	Main	Memory

• How	do	multiple	apps	(and	the	OS)	share	main	memory?
– Goal:	each	application	thinks	it	has	infinite	memory	

• One	app	may	want	more	memory	than	is	in	the	system
– App’s	insn/data	footprint	may	be	larger	than	main	memory
– Requires	main	memory	to	act	like	a	cache	

• With	disk	as	next	level	in	memory	hierarchy	(slow)
• Write-back,	write-allocate,	large	blocks	or	“pages”

– No	notion	of	“program	not	fitting”	in	registers	or	caches	(why?)	
• Solution:	

– Part	#1:	treat	memory	as	a	“cache”
• Store	the	overflowed	blocks	in	“swap”	space	on	disk

– Part	#2:	add	a	level	of	indirection	(address	translation)
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Virtual	Memory	(VM)
• Programs	use	virtual	addresses	(VA)

– 0…2N–1
– VA	size	also	referred	to	as	machine	size
– E.g.,	Pentium4	is	32-bit,	Alpha	is	64-bit

• Memory	uses	physical	addresses	(PA)
– 0…2M–1	(typically	M<N,	especially	if	N=64)
– 2M is	most	physical	memory	machine	supports

• VA®PA	at	page granularity	(VP®PP)
– By	“system”
– Mapping	need	not	preserve	contiguity
– VP	need	not	be	mapped	to	any	PP
– Unmapped	VPs	live	on	disk	(swap)	(or	

unallocated)
• What	is	virtual	memory	used	for?
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Uses	of	Virtual	Memory
• Key	uses:	isolation and	multi-programming

– Each	app	thinks	it	has	2N B	of	memory,	its	stack	starts	
0xFFFFFFFF,…

– Apps	prevented	from	reading/writing	each	other’s	memory
• Can’t	even	address	the	other	program’s	memory!

• Protection
– Each	page	with	a	read/write/execute	permission	set	by	OS
– Enforced	by	hardware

• Inter-process	communication.
– Map	same	physical	pages	into	multiple	virtual	address	spaces
– Or	share	files	via	the	UNIX	mmap() call
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Address	Translation

• VA®PA mapping	called	address	translation
– Split	VA	into	virtual	page	number	(VPN) &	page	offset	(POFS)
– Translate	VPN	into	physical	page	number	(PPN)
– POFS	is	not	translated
– VA®PA	=	[VPN,	POFS]	® [PPN,	POFS]

• Example	above
– 64KB	pages	® 16-bit	POFS
– 32-bit	machine	® 32-bit	VA	® 16-bit	VPN	
– Maximum	256MB	memory	® 28-bit	PA	® 12-bit	PPN
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POFS[15:0]virtual address[31:0] VPN[31:16]

POFS[15:0]physical address[25:0] PPN[27:16]
translate don’t touch



Multi-Level	Page	Table	(PT)

• 20-bit	VPN
– Upper	10	bits	index	1st-level	table
– Lower	10	bits	index	2nd-level	table
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1st-level
“pointers”

2nd-level
PTEs

VPN[9:0]VPN[19:10]

struct {
union { int ppn, disk_block; } 
int is_valid, is_dirty;

} PTE;
struct {

struct PTE ptes[1024];
} L2PT;
struct L2PT *pt[1024];

int translate(int vpn) {
struct L2PT *l2pt = pt[vpn>>10];
if (l2pt && l2pt->ptes[vpn&1023].is_valid)

return l2pt->ptes[vpn&1023].ppn; 
}

pt “root”



Address	Translation	Mechanics	II

• Conceptually
– Translate	VA	to	PA	before	every	cache	access
– Walk	the page	table	before	every	load/store/insn-fetch

• Really?	Is	this	fast?
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Address	Translation	Mechanics	II

• Conceptually
– Translate	VA	to	PA	before	every	cache	access
– Walk	the page	table	before	every	load/store/insn-fetch
– Would	be	terribly	inefficient (even	in	hardware)

• In	reality
– Translation Lookaside Buffer	(TLB):	cache	translations
– Only	walk	page	table	on	TLB	miss

• Hardware	truisms
– Functionality	problem?	Add	indirection	(e.g.,	VM)
– Performance	problem?	Add	cache	(e.g., TLB)
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Translation	Buffer

• Translation	buffer	(TLB)
– Small	cache:	16–64	entries
– Associative	(4+	way	or	fully	
associative)	

+ Exploits	temporal	locality	in	page	
table

– What	if	an	entry	isn’t	found	in	the	
TLB?

• Invoke	TLB	miss	handler
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Serial	TLB	&	Cache	Access
• “Physical”	caches

– Indexed	and	tagged	by physical	addresses
+ Natural,	“lazy”	sharing	of	caches	between	apps/OS

• VM	ensures	isolation	(via physical	addresses)
• No	need	to	do	anything	on	context	switches
• Multi-threading	works	too

+ Cached	inter-process	communication	works
• Single	copy	indexed	by physical	address

– Slow:	adds	at	least	one	cycle	to	thit

• Note:	TLBs are	by	definition	virtual
– Indexed	and	tagged	by virtual	addresses
– Flush	across	context	switches
– Or	extend	with	process	id	tags

• Does	this	have	to	be	serial?
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Parallel	TLB	&	Cache	Access

• What	about	parallel	access?	
– What	if

(cache	size)	/	(associativity)	≤	page	size
– Index	bits	same	in	virt.	and	physical	addresses!

• Access	TLB	in	parallel	with	cache	
– Cache	access	needs	tag	only	at	very	end
+ Fast:	no	additional	thit cycles
+ No	context-switching/aliasing	problems	
– Dominant	organization	used	today
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TLB	Organization

• Like	caches:	TLBs also	have	ABCs
– Capacity
– Associativity	(At	least	4-way	associative,	fully-associative	
common)

– What	does	it	mean	for	a	TLB	to	have	a	block	size	of	two?
• Two	consecutive	VPs	share	a	single	tag

– Like	caches:	there	can	be	L2	TLBs
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TLB	Misses
• TLB	miss: translation	not	in	TLB,	but	in page	table

– Two	ways	to	“fill”	it,	both	relatively	fast

• Software-managed	TLB:	e.g.,	Alpha,	Embedded	PPC	
– Short	(~10	insn)	OS	routine walks	page	table,	updates	TLB
+ Keeps page	table	format	flexible
– Latency:	one	or	two	memory	accesses	+	OS	call	(pipeline	flush)

• Hardware-managed	TLB:	e.g., x86
– Page	table	root	pointer	in	hardware	register,	FSM	“walks” table
+ Latency:	saves	cost	of	OS	call	(pipeline	flush)
– Page	table	format	is	hard-coded

– TLB	misses	becoming	a	huge	problem	as	physical	memory	
grows
– Direct	Segments	[ISCA’13]
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Page	Faults

• Page	fault:	PTE	not	in TLB	or	page	table	
– ® page	not	in	memory
– Starts	out	as	a TLB	miss,	detected	by	OS/hardware	handler

• OS	software	routine:
– Choose	a	physical	page	to	replace

• “Working	set”:	refined	LRU,	tracks	active	page	usage
– If	dirty,	write	to	disk
– Read	missing	page	from	disk

• Takes	so	long	(~10ms),	OS	schedules	another	task
– Requires yet	another	data	structure:	frame	map (why?)
– Treat	like	a	normal	TLB	miss	from	here
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Ok,	now	how	do	we	provide	protection?
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Page-Level	Protection

• Page-level	protection
– Piggy-back	page-table	mechanism
– Map	VPN	to	PPN	+	Read/Write/Execute permission	bits
– Attempt	to	execute	data,	to	write	read-only	data?

• Exception	® OS	terminates	program
– When	are	protection	properties	checked?
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struct {
union { int ppn, disk_block; } 
int is_valid, is_dirty, permissions;

} PTE;
struct PTE pt[NUM_VIRTUAL_PAGES];

int translate(int vpn, int action) {
if (pt[vpn].is_valid && !(pt[vpn].permissions & action)) kill;   
…

}



What	could	we	use	protection	for?
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What	could	we	use	protection	for?

• Virtualization
• Software	distributed	shared	memory
• Garbage	collection?
• Optimizations?
• Control	program	execution	in	interesting	ways
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Virtualization
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Virtualization
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Singularity	OS [Larus et	al.]

• Can	we	have	a	single-address	space	OS	that	also	
supports	multiprogramming,	is	safe	etc.

• Exercise:	write	an	OS	in	a	managed	language
– No	explicit	pointer	computation

• Use	types	and	static	analysis	to	isolate	program	
executions

• Minimal	low-level	code	to	interact	with	devices
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