
CSE	548:	Computer	Systems	Architecture

Instruction	Set	Architectures
Luis	Ceze,	Spring	2017

(based	on	slides	lifted	from	friends	at	UPenn,	UIUC,	UW,	MIT,	etc.	but	mostly	from	
Milo	Martin	at	UPenn)

Announcements

• Power:	A	First-Class	Architectural	Design	Constraint
– Critique	due	today

• Projects
– Ideas?	Need	a	project	partner?
– Sign	up	to	talk	to	us!

• Next	two	lectures:
– Workshop	on	Approximate	Computing
– Enabling	In-network	Computation	with	a	Programmable	Network	

Middlebox
– Approximate	Storage	for	Encrypted	and	Compressed	Videos

What	Is	An	ISA?

3

What	Is	An	ISA?

• ISA	(instruction	set	architecture)
– A	precisely-defined	hardware/software	interface,	a	“contract”

• Functional	definition of	
– operations,	modes,	and	storage	locations	supported	by	hardware

• Description of	how	to	invoke	operations
• defines	the	software-visible	state of	the	system	(what	is	part	of	this	state?)
• defines	how	each	instruction	changes	that	state
• defines	instructions	and	encodings

– Not	in	the	“contract”:	non-functional	aspects
• How	operations	are	implemented
• Which	operations	are	fast	and	which	are	slow	and	when
• Which	operations	take	more	power	and	which	take	less

• Why	separate	architecture	and	implementation?

4Martin/Roth

The	Base	Sequential	Model

• Implicit	model	of	all	modern	ISAs
– Often	called	VonNeuman,	but	in	ENIAC	before

• Basic	feature:	the	program	counter	(PC)
– Defines	total	order on	dynamic	instruction

• Next	PC	is	PC++	unless	insn says	otherwise	
– Insn order	and	named	storage define	computation

• Value	flows	from	insn X	to	Y	via	storage	A	iff…
• X	names	A	as	output,	Y	names	A	as	input…
• And	Y	after	X	in	total	order

• Processor	logically	executes	loop	at	left
– Instruction	execution	assumed	atomic
– Instruction	X	finishes	before	insn X+1	starts

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC

Martin/Roth

Classifying	ISAs	(Operand	models)

• Basic	differentiation:	type	of	internal	storage

add; add M; add Rd,Rs,M; add Rd,Rs,Rt;

Examples	of	Operand	Models

• ARM
– Integer:	32	32-bit	general-purpose	registers	(load/store)
– Floating	point:	same	(can	also	be	used	as	16	64-bit	registers)
– 16-bit	displacement	addressing

• x86
– Integer:	8	accumulator	registers	(reg-reg,	reg-mem,	mem-reg)

• Can	be	used	as	8/16/32	bits
– Floating	point:	80-bit	stack	(why	x86	had	slow	floating	point)
– Displacement,	absolute,	reg indirect,	indexed	and	scaled	addressing

• All	with	8/16/32	bit	constants	(why	not?)
– Note:	integer	push,	pop for	managing	software	stack
– Note:	also	reg-mem and	mem-mem string	functions	in	hardware

• x86-64	(i.e.,	IA32-EM64T)
– Integer:	16 64-bit	accumulator	registers
– Floating	point:	16	128-bit	accumulator	registers

Martin/Roth

Instruction	Length	and	Format

• Length
– Fixed	length

• Most	common	is	32	bits
+ Simple	implementation	(next	PC	often	just	PC+4)
– Code	density:	32	bits	to	increment	a	register	by	1

– Variable	length
+ Code	density

– x86	can	do	increment	in	one	8-bit	instruction
– Complex	fetch	(where	does	next	instruction	begin?)

– Compromise:	two	lengths
• E.g.,	MIPS16	or	ARM’s	Thumb

• Encoding
– A	few	simple	encodings	simplify	decoder

• x86	decoder	one	of	nastiest	pieces	of	logic	

Fetch[PC]
Decode
Read	Inputs
Execute
Write	Output
Next	PC

Martin/Roth

Examples	Instruction	Encodings

• MIPS
– Fixed	length
– 32-bits,	3	formats,	simple	encoding
– (MIPS16	has	16-bit	versions	of	common	insn for	code	density)

• x86
– Variable	length	encoding	(1	to	16	bytes)

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type

Op OpExt* ModRM* SIB* Disp*(1-4) Imm*(1-4)Prefix*(1-4)

Martin/Roth

Operations	and	Datatypes

• Datatypes
– Software:	attribute	of	data
– Hardware:	attribute	of	operation,	data	is	just	0/1’s

• All	processors	support
– 2C	integer	arithmetic/logic	(8/16/32/64-bit)
– IEEE754	floating-point	arithmetic	(32/64	bit)

• Intel	has	80-bit	floating-point

• More	recently,	most	processors	support
– “Packed-integer”	insns,	e.g.,	MMX
– “Packed-fp”	insns,	e.g.,	SSE/SSE2
– For	multimedia,	more	about	these	later

Fetch
Decode
Read	Inputs
Execute
Write	Output
Next	Insn

Martin/Roth

Where	Does	Data	Live?

• Memory
– Fundamental	storage	space

• Registers
– Faster	than	memory,	quite	handy
– Most	processors	have	these	too

• Immediates
– Values	spelled	out	as	bits	in	instructions,	

• What	does	this	imply?
– Input	only

• Why?

Fetch
Decode
Read	Inputs
Execute
Write	Output
Next	Insn

Martin/Roth

How	Much	Memory?	Address	Size

• What	does	“64-bit”	in	a	64-bit	ISA	mean?

How	Much	Memory?	Address	Size

• What	does	“64-bit”	in	a	64-bit	ISA	mean?
– Support	memory	size	of	264
– Alternative	definition:	width	of	calculation	operations

• Virtual	address	size
– Determines	size	of	addressable	(usable)	memory

• Current	32-bit	or	64-bit	address	spaces
• All	ISAs	moving	to	(if	not	already	at)	64	bits

– Most	critical,	inescapable	ISA	design	decision
• Too	small?	Will	limit	the	lifetime	of	ISA
• May	require	nasty	hacks	to	overcome	(E.g.,	x86	segments)

– x86	evolution:
• 4-bit	(4004),	8-bit	(8008),	16-bit	(8086),	24-bit	(80286),	
• 32-bit	+	protected	memory	(80386)
• 64-bit	(AMD’s	Opteron	&	Intel’s	EM64T	Pentium4)	

Martin/Roth

How	Many	Registers?

• Registers	faster	than	memory,	have	as	many	as	possible?

• What	can	we	put	in	registers?

• How	are	they	addressed?	

How	Many	Registers?

• Registers	faster	than	memory,	have	as	many	as	possible?
– No
– One	reason	registers	are	faster	is	that	there	are	fewer	of	them

• Small	is	fast	(hardware	truism)
– Another	is	that	they	are	directly	addressed (no	address	calc)

– More	of	them,	means	larger	specifiers
– Fewer	registers	per	instruction	or	indirect	addressing

– Not	everything	can	be	put	in	registers
• Structures,	arrays,	anything	pointed-to
• Although	compilers	are	getting	better	at	putting	more	things	in

– More	registers	means	more	saving/restoring

– Upshot:	trend	to	more	registers:	8	(x86)®32	(MIPS)	®128	(IA64)
• 64-bit	x86	has	16	64-bit	integer	and	16	128-bit	FP	registers	

Registers	vs Memory

• What	is	the	fundamental difference	in	how	they	are	used?

How	Are	Locations	Specified?

• Registers	are	specified	directly	as	immediates
– Register	names	are	short,	can	be	encoded	in	instructions
– Some	instructions	implicitly	read/write	certain	registers	

• How	are	addresses	specified?	As	variables/expressions
– Addresses	are	long	(64-bit)
– Addressing	mode: how	are	insn bits	converted	to	addresses?
– Think	about:	what	high-level	idiom	addressing	mode	captures

Memory	Addressing

• Addressing	mode: way	of	specifying	address
– Used	in	memory-memory	or	load/store	instructions	in	register	ISA

• Examples
– Register-Indirect: R1=mem[R2]	
– Displacement: R1=mem[R2+immed]	
– Index-base: R1=mem[R2+R3]	
– Memory-indirect: R1=mem[mem[R2]]	
– Auto-increment: R1=mem[R2],	R2=	R2+1
– Auto-indexing: R1=mem[R2+immed],	R2=R2+immed
– Scaled: R1=mem[R2+R3*immed1+immed2]
– PC-relative: R1=mem[PC+imm]

• What	high-level	program	idioms	are	these	used	for?
• What	implementation	impact?	What	impact	on	insn	count?

Martin/Roth

Two	More	(Annoying)	Addressing	Issues

• Access	alignment:	address	%	size	==	0?
– Aligned:	load-word @XXXX00, load-half @XXXXX0
– Unaligned:	load-word @XXXX10, load-half @XXXXX1
– Question:	what	to	do	with	unaligned	accesses	(uncommon	case)?

• Support	in	hardware?	Makes	all	accesses	slow
• Trap	to	software	routine?	Possibility
• Use	regular	instructions

– Load,	shift,	load,	shift,	and
• MIPS?	ISA	support:	unaligned	access	using	two	instructions

lwl @XXXX10; lwr @XXXX10

• Endian-ness:	arrangement	of	bytes	in	a	word
– Why	little	endian?	To	be	different?	To	be	annoying?	Nobody	knows

Martin/Roth

Why	alignment	matters:	Example

• 32-bit	word:	one	or	two	accesses?

• What	if	it	crosses	pages?
• Some	architecture	have	alignment	exceptions!
• Aligned	architecture	can	make	b1b0 implicit

– important	trick	for	instruction	encoding	too,	why?

Misaligned

Aligned
00 01 10 11

Address

b1b0

• Two	Conventions
– Big	Endian,	specify	address	of	most	significant	byte
– Little	Endian,	specify	address	of	least	significant	byte

• No	technical	significance	to	distinction	– just	religious!
– Big	Endian:	Amiga,	Macintosh,	IBM	RS6000,	SGI,	Sun
– Little	Endian:	DEC,	IBM	PC
– recently	many	processors	are	“bimodal”

• MIPS,	PowerPC	(both	mostly	Big	Endian)

• Names	based	on	Gulliver’s	Travels
http://www.wikipedia.org/wiki/Endianness

Which one do you prefer? Why?

Byte	Ordering

3 2 1 0

0 1 2 3
MSB LSB

Big Endian

Little Endian

ISAs Also Include Support For…

• Function calling conventions
– Which registers are saved across calls, how parameters are passed

• Operating systems & memory protection
– Privileged mode
– System call (TRAP)
– Exceptions & interrupts
– Interacting with I/O devices

• Multiprocessor support
– “Atomic” operations for synchronization

• Data-level parallelism
– Pack many values into a wide register

• Intel’s SSE2: four 32-bit float-point values into 128-bit register
– Define parallel operations (four “adds” in one cycle)

22

Data-Level	Parallel	ISA	Extensions

• Multiple	favors
– ia32	family:	MMX,	SSE,	SSE2
– PowerPC:	Altivec
– sparc:	VIS

• What	can	we	use	them	for?

Aka,	“multimedia”	instructions.	

ISA	Implementability

• Every	ISA	can	be	implemented
– Not	every	ISA	can	be	implemented	efficiently

• Classic	high-performance	implementation	techniques
– Pipelining,	parallel	execution,	out-of-order	execution	(more	later)

• Certain	ISA	features	make	these	difficult
– Variable	instruction	lengths/formats:	complicate	decoding
– Implicit	state:	complicates	dynamic	scheduling
– Variable	latencies:	complicates	scheduling
– Difficult	to	interrupt	instructions:	complicate	many	things

Architecture	or	Implementation?

• No.	of	GP	registers
• Width	of	the	data	bus
• Binary	representation	of	the	instruction
• No.	of	cycles	a	floating	point	add	takes
• No.	of	cycles	processor	must	wait	after	a	load	before	it	can	

use	the	data
• Floating	point	format	supported
• Size	of	the	instruction	cache
• No.	of	instructions	that	issue	each	cycle
• No.	of	addressing	modes
• Precise	exceptions?

26RISC	 CISC	

x86

RISC	vs CISC	in	one	slide

• Recall	performance	equation:
– (instructions/program)	*	(cycles/instruction)	*	(seconds/cycle)

• CISC (Complex	Instruction	Set	Computing)
– Reduce	“instructions/program”	with	“complex”	instructions

• But…?
– Easy	for	assembly-level	programmers,	good	code	density

• RISC (Reduced	Instruction	Set	Computing)
– Increases	“instruction/program”,	but	hopefully	not	as	much

• Why	do	it	then?	What	happens	to	the	poor	compiler?
– What	happens	to	cycles/instruction?
– And	cycle	time?

Martin/Roth

The	RISC	vs.	CISC	Debate

• RISC	argument
– CISC	is	fundamentally	handicapped
– For	a	given	technology,	RISC	implementation	will	be	better	(faster)

• Current	technology	enables	single-chip	RISC
• When	it	enables	single-chip	CISC,	RISC	will	be	pipelined
• When	it	enables	pipelined	CISC,	RISC	will	have	caches
• When	it	enables	CISC	with	caches,	RISC	will	have	next	thing...

• CISC	rebuttal	
– CISC	flaws	not	fundamental,	can	be	fixed	with	more	transistors
– Moore’s	Law	will	narrow	the	RISC/CISC	gap	(true)

• Good	pipeline:	RISC	=	100K	transistors,	CISC	=	300K
• By	1995:	2M+	transistors	had	evened	playing	field

– Software	costs	dominate,	compatibility is	paramount

Martin/Roth

Current	Winner	(Volume):	RISC

• ARM	(Acorn	RISC	Machine	® Advanced RISC Machine)
– First	ARM	chip	in	mid-1980s	(from	Acorn	Computer	Ltd).
– Billion of	units	sold	yearly(>50%	of	all	32/64-bit	CPUs)
– Low-power	and	embedded devices	(iPod,	for	example)

• Significance	of	embedded?	New	ISAs	easier	to	pull	off

• 32-bit	RISC	ISA
– 16	registers,	PC	is	one	of	them
– Many	addressing	modes,	e.g.,	auto	increment
– Condition	codes,	each	instruction	can	be	conditional

• Multiple	implementations
– X-scale	(design	was	DEC’s,	bought	by	Intel,	sold	to	Marvel)
– Others:	Freescale (was	Motorola),	Texas	Instruments,	STMicroelectronics,	

Samsung,	Sharp,	Philips,	etc.

Martin/Roth

Current	Winner	(Revenue):	CISC

• x86	was	first	16-bit	chip	by	~2	years
– IBM	put	it	into	its	PCs	because	there	was	no	competing	choice
– Rest	is	historical	inertia	and	“financial	feedback”

• x86	is	most	difficult	ISA	to	implement	and	do	it	fast	but…
• Because	Intel	sells	the	most	non-embedded processors…
• It	has	the	most	money…	
• Which	it	uses	to	hire	more	and	better	engineers…
• Which	it	uses	to	maintain	competitive	performance	…
• And	given	competitive	performance,	compatibility	wins…
• So	Intel	sells	the	most	non-embedded processors…

– AMD	as	a	competitor	keeps	pressure	on	x86	performance

• Moore’s	law	has	helped	Intel	in	a	big	way
– Most	engineering	problems	can	be	solved	with	more	transistors

Martin/Roth

Intel’s	Compatibility	Trick:	RISC	Inside

• 1993:	Intel	wanted	out-of-order	execution	in	Pentium	Pro
– OoO	was	very	hard	to	do	with	a	coarse	grain	ISA	like	x86

• Solution?	Translate	x86	to	RISC µops in	hardware
push $eax
becomes	(we	think,	uops	are	proprietary)
store $eax [$esp-4]
addi $esp,$esp,-4

+ Processor	maintains	x86	ISA	externally	for	compatibility
+ But	executes	RISC	µISA	internally	for	implementability
– Given	translator,	x86	almost	as	easy	to	implement	as	RISC

• Result:	Intel	implemented OoO	before	any	RISC	company
• Also,	OoO	also	benefits	x86	more	(because	ISA	limits	compiler)

– Idea	co-opted	by	other	x86	companies:	AMD	and	Transmeta

Martin/Roth

More	About	Micro-ops

• Even	better?	Two	forms	of	hardware	translation
– Hard-coded	logic:	fast,	but	complex
– Table:	slow,	but	“off	to	the	side”,	doesn’t	complicate	rest	of	machine

• x86:	average	1.6	µops	/	x86	insn
– Logic	for	common	insns that	translate	into	1–4	µops
– Table	for	rare	insns that	translate	into	5+	µops

• x86-64:	average	1.1	µops	/	x86	insn
– More	registers	(can	pass	parameters	too),	fewer	pushes/pops
– Core2:	logic	for	1–2	µops,	Table	for	3+	µops?	

• More	recent:	“macro-op	fusion”	and	“micro-op	fusion”
– E.g.,	fuse	address	calculation	and	access
– E.g.,	fuse	TEST/CMP	with	JMP	into	a	single	conditional	jump	instruction
– Intel’s	recent	processors	fuse	certain	instruction	pairs	(ARM	too!)

Martin/Roth

Potential Micro-op Scheme (1 of 2)

• Most instructions are a single micro-op
– Add, xor, compare, branch, etc.
– Loads example: mov -4(%rax), %ebx
– Stores example: mov %ebx, -4(%rax)

• Each memory operation adds a micro-op
– “addl -4(%rax), %ebx” is two micro-ops (load, add)
– “addl %ebx, -4(%rax)” is three micro-ops (load, add, store)

• What about address generation?
– Simple address generation is generally part of single micro-op

• Sometime store addresses are calculated separately
– More complicated (scaled addressing) might be separate micro-

op

Martin 33

Potential Micro-op Scheme (2 of 2)

• Function call (CALL) – 4 uops
– Get program counter, store program counter to stack,

adjust stack pointer, unconditional jump to function start
• Return from function (RET) – 3 uops

– Adjust stack pointer, load return address from stack,
jump to return address

• Other operations
– String manipulations instructions

• For example STOS is around six micro-ops, etc.

• Again, this is just a basic idea (and what we will use in our
assignments), the exact micro-ops are specific to each chip

Martin 34

Translation	and	Virtual	ISAs

• New	compatibility	interface:	ISA	+	translation	software
– Binary-translation:	transform	static	image,	run	native
– Emulation:	unmodified	image,	interpret	each	dynamic	insn

• Typically	optimized	with	just-in-time	(JIT)	compilation
– Examples:	FX!32	(x86	on	Alpha),	Rosetta	(PowerPC	on	x86)
– Performance	overheads	reasonable	(many	recent	advances)

• Virtual	ISAs:	designed	for	translation,	not	direct	execution
– Target	for	high-level	compiler	(one	per	language)
– Source	for	low-level	translator	(one	per	ISA)
– Goals:	Portability	(abstract	hardware	nastiness),	flexibility	over	time
– Examples:	Java	Bytecodes,	C#	CLR	(Common	Language	Runtime)

Martin/Roth

Transmeta’s	Take:	Code	Morphing

• Code	morphing:	x86	translation	in	software
– Crusoe/Astro	are	x86	emulators,	no	actual	x86	hardware	anywhere
– Only	“code	morphing”	translation	software	written	in	native	ISA
– Native	ISA	is	invisible	to	applications	and	even	OS
– Different	Crusoe	versions	have	(slightly)	different	ISAs:	can’t	tell

• How	was	it	done?
– Code	morphing	software	resides	in	boot	read-only	memory	(ROM)
– On	startup,	hijacks	16MB	of	main	memory
– Translator	loaded	into	512KB,	rest	is	translation	cache
– Software	starts	running	in	interpretermode
– Interpreter	profiles	to	find	“hot”	regions:	procedures,	loops
– Hot	region	compiled	to	native,	optimized,	cached
– Gradually,	more	and	more	of	application	starts	running	native

Martin/Roth

Appeared in the Proceedings of the First Annual IEEE/ACM International Symposium on Code Generation and Optimization,

27-29 March 2003, San Francisco, California

- 2 -

© 2003 IEEE

important performance problems by waiting for the
code in question to be converted.

Section 2 provides background on Crusoe processor
features and CMS structure for the following discussion.
Section 3 describes how CMS uses speculation, recovery,
and adaptive retranslation to address a number of
challenges of full-system, high-performance dynamic
binary translation. Section 4 surveys related work.

2 Crusoe and CMS

The Crusoe processors have microarchitectures
designed for simplicity by moving complex but infrequent
tasks into the software. Although a full discussion of the
architecture is beyond the scope of this paper, we provide
some details here relevant to the following discussion.

The Crusoe TM5800 is a VLIW processor. Each
instruction (called a molecule) can issue two or four
RISC-like operations (called atoms) to a subset of five
functional units: two ALUs, a memory unit, a floating
point/media unit, and a branch unit. It has 64 general-
purpose registers and 32 floating point registers, allowing
the architectural x86 registers to be assigned to dedicated
native VLIW registers, with an ample set available for use
by CMS.

Transmeta VLIW hardware has very few hardware
interlocks. CMS guarantees correct operation by careful
scheduling, inserting no-ops if necessary. Only
unpredictably long-latency operations such as loads that
miss in the caches have their additional latency handled
automatically by the hardware. Because CMS can be
tailored to the processor, future generations of the
hardware can change operation latencies, or other aspects
of the native ISA or microarchitecture, without affecting
the visible x86 architecture.

In fact, the current TM5000 family evolved
significantly from the first TM3000 family Crusoe
processors, adding atoms to more efficiently implement
x86 segmentation, 16-bit operations, and indirect
branches, all without a change in the target ISA. The next
generation of Crusoe processors, the TM8000 family, will
make further native ISA changes, including a complete
re-design of the instruction formats; this will all be
invisible to x86 code executing on the processor.

CMS is structured like many other dynamic translation
systems. Initially, an interpreter decodes and executes
x86 instructions sequentially, with careful attention to
memory access ordering and precise reproduction of
faults, while collecting data on execution frequency,
branch directions, and memory-mapped I/O operations.
When the number of executions of a section of x86 code
reaches a certain threshold, its address is passed to the
translator.

The translator selects a region including that address,
produces native code to implement the x86 code from the
region identified, and stores the translation with various
related information in the translation cache. From then
on, until something invalidates the translation cache entry,
CMS executes the translation when the x86 flow of
control reaches the translated x86 code region.

Initially, the exits of a translation branch to a lookup
routine (the “no chain” path in Figure 1) that transfers
control either to an existing translation for the next
address or back to the interpreter. However, once the
branch target is identified as another translation, the
branch operation is modified to go directly there, a
process called chaining (Cmelik et al. [9]). Over time,
therefore, frequently executed regions of code begin to
execute entirely within the translation cache, without
overhead from interpretation, translation, or even branch-

target lookup.

A variety of exceptional events may interrupt this
typical control flow. This paper largely concerns the
treatment of these cases, represented by the “fault” path in
Figure 1.

The translator is the largest, most complex component
of CMS. It comprises modules that decode x86
instructions, select a region for translation, analyze x86
data and control flow within the region, generate native
VLIW code for the region, optimize it, and schedule it.

Figure 1: Typical CMS Control Flow

Interpreter

not
found

Start

Find
Next

Instruction
In

 Tcache?

Exceed
Translation
Threshold?

Interpret
Next

Instruction

no

Translate Region
Store in Tcache

Execute
Translation

from
Tcache

chain
Rollback

fault

found

yes

no
chain

Translator

Post-RISC:	VLIW	and	EPIC

• ISAs	explicitly	targeted	for multiple-issue	(superscalar)	cores
– VLIW:	Very	Long	Insn	Word
– Later	rebranded	as	“EPIC”:	Explicitly	Parallel	Insn	Computing

• Intel/HP	IA64	(Itanium):	2000
– EPIC:	128-bit	3-operation	bundles
– 128	64-bit	registers
+ Some	neat	features: Full	predication,	explicit	cache	control

• Predication:	every	instruction	is	conditional	(to	avoid	branches)
– But	lots	of	difficult	to	use	baggage	as	well:	software	speculation

• Every	new	ISA	feature	suggested	in	last	two	decades
– Relies	on	younger	(less	mature)	compiler	technology
– Not	doing	well	commercially

Martin/Roth

Compiler	Programmability

• What	makes	an	ISA	easy	for	a	compiler	to	program	in?
– Low	level	primitives	from	which	solutions	can	be	synthesized

• a	=	b*c+d
• Computers	good	at	breaking	complex	structures	to	simple	ones

– Requires	traversal
• Not	so	good	at	combining	simple	structures	into	complex	ones

– Requires	search,	pattern	matching
• Easier	to	synthesize	complex	insns than	to	compare	them

• What	do	compiler	optimizations	do?

Compiler	Optimizations

• Primarily	reduce dynamic	insn count	
– Eliminate	redundant	computation,	keep	more	things	in	registers

+ Registers	are	faster,	fewer	loads/stores
– An	ISA	can	make	this	difficult	by	having	too	few	registers

• But	also…
– Reduce	branches	and	jumps
– Reduce	cache	misses
– Reduce	dependences	between	nearby	insns (for	parallelism)

– An	ISA	can	make	this	difficult	by	having	implicit	dependences
– Why?

• How	effective	are	these?
+ Can	give	4X	performance	over	unoptimized code
– Collective	wisdom	of	40	years	(“Proebsting’s Law”):	4%	per	year
– Funny	but	…	shouldn’t	leave	4X	performance	on	the	table

Martin/Roth

Quick	motivating	example	for	ISA	extensions

IA32	Linux	Memory	Layout
• Stack

– Runtime	stack	(8MB	limit)
• Heap

– Dynamically	allocated	storage
– When	call	malloc(), calloc(), new()

• Data
– Statically	allocated	data
– E.g.,	arrays	&	strings	declared	in	code

• Text
– Executable	machine	instructions
– Read-only

Upper	2	hex	digits	
=	8	bits	of	address

FF

00

Stack

Text
Data
Heap

08

8MB

not	drawn	to	scale

Vulnerable	Buffer	Code

int main()
{

printf("Type a string:");
echo();
return 0;

}

/* Echo Line */
void echo()
{

char buf[4];
gets(buf);
puts(buf);

}

unix>./bufdemo
Type a string:1234567
1234567

unix>./bufdemo
Type a string:12345678
Segmentation Fault

unix>./bufdemo
Type a string:123456789ABC
Segmentation Fault

why?

Buffer	Overflow	Stack

echo:
pushl %ebp # Save %ebp on stack
movl %esp, %ebp
pushl %ebx # Save %ebx
leal -8(%ebp),%ebx # Compute buf as %ebp-8
subl $20, %esp # Allocate stack space
movl %ebx, (%esp) # Push buf addr on

stack
call gets # Call gets
. . .

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}

Return	Address
Saved	%ebp %ebp

Stack	Frame
for	main

Stack	Frame
for	echo

[3][2][1][0] buf

Before	call	to	gets

Buffer	Overflow	Stack	Example

80485f2:call 80484f0 <echo>
80485f7:mov 0xfffffffc(%ebp),%ebx # Return Point

0xffffc638

buf

0xffffc658

Return	Address
Saved	%ebp

Stack	Frame
for	main

Stack	Frame
for	echo

[3][2][1][0]

Stack	Frame
for	main

Stack	Frame
for	echo

xx xx xx xx buf

ff ffc658
080485f7

Before	call	to	gets Before	call	to	gets

Buffer	Overflow	Example	#1

Overflow	buf,	but	no	problem

0xffffc638

0xffffc658Stack	Frame
for	main

Stack	Frame
for	echo

xx xx xx xx buf

0xffffc638

0xffffc658Stack	Frame
for	main

Stack	Frame
for	echo

34 33 32 31 buf
00 37 36 35

Before	call	to	gets Input	1234567

ff ffc658
080485f7

ff ffc658
080485f7

Buffer	Overflow	Example	#2

Base	pointer	corrupted

0xffffc638

0xffffc658Stack	Frame
for	main

Stack	Frame
for	echo

xx xx xx xx buf

0xffffc638

0xffffc658Stack	Frame
for	main

Stack	Frame
for	echo

34 33 32 31 buf

00
38 37 36 35

Before	call	to	gets Input	12345678

. . .
804850a: 83 c4 14 add $0x14,%esp # deallocate space
804850d: 5b pop %ebx # restore %ebx
804850e: c9 leave # movl %ebp, %esp; popl %ebp
804850f: c3 ret # Return

ff ffc658
080485f7

ffc658
080485f7

Buffer	Overflow	Example	#3

Return	address	corrupted

0xffffc638

0xffffc658Stack	Frame
for	main

Stack	Frame
for	echo

xx xx xx xx buf

0xffffc638

0xffffc658Stack	Frame
for	main

Stack	Frame
for	echo

34 33 32 31 buf

43 42 41 39
00

38 37 36 35

Before	call	to	gets Input	123456789ABC

80485f2: call 80484f0 <echo>
80485f7: mov 0xfffffffc(%ebp),%ebx # Return Point

ff ffc658
080485f7 0485f7

Malicious	Use	of	Buffer	Overflow

• Input	string	contains	byte	representation	of	executable	code
• Stack	frame	must	be	big	enough	to	hold	exploit	code
• Overwrite	return	address	with	address	of	buffer	(need	to	know	B)
• When	bar() executes ret,	will	jump	to	exploit	code	(instead	of	A)
• What	is	the	big	problem?	How	can	no-execute	help?

int bar() {
char buf[64];
gets(buf);
...
return ...;

}

void foo(){
bar();
...

}

Stack	after	call	to	gets()

B	(was	A)
return	address A

foo stack	frame

bar stack	frame

B

exploit
code

paddata	written
by	gets()

How	could	ISA	extensions	help	with	that	problem?

ISA	extensions

• Software	needs	often	motivates	new	instructions
– No	execute	bit	for	security
– Short	vectors	(multimedia,	games,	etc)
– fmadd (floating	point	multiply	and	add)
– virtualization

• What	would	you	like	to	see	in	the	ISA?

• Careful:	once	it	is	in,	hard	to	take	out!
– Backwards	compatibility…

Martin/Roth

How	much	do	ISAs	really	matter	today?

• Consider:
– Lots	of	transistors	available
– Lots	of	code	run	on	managed	environments/virtual	ISAs

• Does	it	matter	for	performance?
• Does	it	still	matter	for	compatibility?

Performance

53

0

5

10

15

20

25

30

Mobile SPEC	- INT SPEC	- FP Server

N
or
m
al
ize

d	
Ti
m
e

A8

Atom

A9

i7

Instruction	Mix

54

0

1

2

3

4

5

6

Mobile SPEC	- INT SPEC	- FP Server

N
or
m
al
ize

d	
Cy
cl
es

A8

Atom

A9

i7

Cycle	counts

55

But	ISAs	matters	a	lot!

Hein?	Why?

But	ISAs	matter	a	lot!

• Transactional	Memory	support	(more	later)
• Dataflow	(WaveScalar,	TRIPS)
• Application-specific	hybrid	CISC/RISC	(e.g.,	crypto)
• Approximate	operations	for	energy	(e.g.,	Truffle)
• Bounds-checking	(e.g.,	HardBound)
• Information-flow	tracking
• Neural	networks

