CSEP 548: Computer Systems Architecture

Dark Silicon, Specialization, Systems for ML
Luis Ceze, Spring 2017

(based on slides lifted from Me, Hadi Esmaeilzadeh, Michael Taylor, Carlo Del Mundo,
Liang Luo and the interwebs at large)



What is the catch with Moore’s law?
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Dennard scaling:
Doubling the transistors; scale their power down

Transistor: 2D Voltage-Controlled Switch
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Dark silicon
What if you can’t power them anymore?
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Dark Silicon

Can’t turn all transistor on at the same time.
Part of the chip gets “dark”.




Looking back

Evolution of processors

Single-core Era Multicore Era

3.4 GHz

3.5 GHz

740 KHz

1971 2003

2004

Is parallelism long-term solution? 5
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What now?

| |
Unicore Era | Multicore Era |

Need at least 18%-40% per generation from
architecture alone without additional power



Do Nothing

Technology Breakthrough

Software Bloat Reduction

Possible paths forward

Specialization and

Co-design

Biological Computing

Quantum Computing

Approximate Computing




Specialization and efficiency

/ :
& More flexible... Dedicated HW

More efficient...
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Why?



CPU nVidia Fermi GPU
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CPU
GPU

— Portable OpenCL Imp

— Completely unrolled
double SHA256 hash

— AMD >> Nvidia

* instruction set match

e microarch (VLIW) match
* higher ALU density

* memory BW not used

FPGA

— verilog
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BTC Mining Computing Evolution
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— “gateway drug to ASIC”: boards, protocols, thermals, verilog

ASIC



Energy Costs and USD/BTC
Say when to unplug/plug HW

daily S per Gh/s falls as
technology advances and more
machines deployed

daily $/GH/s rises if USD/BTC
rises.

Today, CPUs, GPUs, and even
FPGAs do not recoup energy
costs

Rising USD/BTC: old machines
get fired up.

Steady state: cheap energy wins
(Iceland?)
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.. "Gets” GPU Mining
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Price for all three: $159.56

@ Add all three to Cart | | Add all three to Wish List |

These items are shipped from and sold by different sellers. Show details

# This item: Holmes HBF2010A-WM 20 Inch Box Fan, White by Holmes $22.59
™ ASRock MB-970EX4 Socket AM3+/ AMD 970/ AMD Quad CrossFireX& nVidia SLI/ SATA3&USB3.0/ A&GbE/ ... $99.99
# AMD Sempron 145 Processor (SDX145HBGMBOX) $36.98

Customers Who Bought This Item Also Bought

o

ASRock MB-970EX4

AMD Sempron 145

Seasonic SS-1250XM X-

Sterilite Plastic Storage

PCI-E PCI Express 16X to

‘ < Socket AM3+/ AMD 970/ Processor Series ATX PC Power Crates, Black 1X Riser Card Adapter
AMD Quad CrossFireX& (SDX145HBGMBOX) Supply Yo (7) Extender Flex Flexible
nVidia SLI/ ... Yook (35) Yor Aok (13) $4.26 Extension Cable
Fofohode - (39) $36.98 $254.99 RO (3)

$99.99
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HW design in one slide

* Declare compute components, memory elements,
interconnection

* “Place and route” distributes those in space

— And checks is timing works --- i.e., all signals can be stable for a target
clock frequency

— Assess HW resource utilization, power consumption, etc.

1l
/I Design Name : parity_using_assign
Il File Name : parity_using_assign.v
/I Function : Parity using assign

I/l Coder : Deepak Kumar Tala

1l
module parity_using_assign (
data_in , Il 8 bit data in
parity out // 1 bit parity out
)i

output parity out ;

input [7:0] data_in ;

wire parity out ;

assign parity out = (data_in[0] A data_in[1]) A
(data_in[2] A data_in[3]) A
(data_in[4] A data_in[5]) A
(data_in[6] A data_in[7]);

endmodule 15



Neural networks

neural network computing a single layer
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Systolic Arrays

computing a single layer
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Making it fast in HW

systolic array processing . . . .
unit 1 - processing elements in hardwired logic
6 — 48-Bit Accumulator/Logic Unit
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Scaling it up
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Google’s Tensor Processing Unit (TPU)

30-80x TOPS/watt
vs. 2015 CPUs and
GPUs.

8 GiB DRAM.
8-bit fixed point.

256x256 MAC
unit.

Support for data
reordering, matrix
multiply,
activation,
pooling, and
normalization.

e
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Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk in a server, but the card uses PCle Gen3 x16.
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TPU Block Diagram & Floor Plan
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Figure 1. TPU Block Diagram. The main computation part is the
yellow Matrix Multiply unit in the upper right hand corner. Its inputs
are the blue Weight FIFO and the blue Unified Buffer (UB) and its
output is the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB.

Figure 2. Floor Plan of TPU die. The shading follows Figure 1.
The light (blue) data buffers are 37% of the die, the light (yellow)
compute is 30%, the medium (green) I/O is 10%, and the dark
(red) control is just 2%. Control is much larger (and much more
difficult to design) in a CPU or GPU



Experimental Testbed

Die Benchmarked Servers
Model B Measured | TOPS/s On-Chip |,.. . Measured
(MHz|TDP GB/. D DRAM S TDP
| i Idle | Busy | 8b | FP s Memory res 1ze Idle | Busy
Egg?;;li:; 662 |22 [2300[145W|41W|145W| 2.6 [1.3| 51 | S1MiB | 2 256 GiB 504W [159WH55W
NVIDIA K80 . 256 GiB (host)
(2 dies/card) 561 (28 [ 560 |[150W|25W| 98W | -- [2.8| 160 | 8 MiB | 8 + 12GiBx 8 1838W [B57W|991W
TPU NA*|28 [ 700 |75W [28W|40W | 92 | -- | 34 | 28 MiB | 4 25_+_68G(1}I?B(};0:t) 861W R90W[84W

Table 2. Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs. Haswell has 18 cores, and the K80 has 13 SMX processors.
Figure 10 has measured power. The low-power TPU allows for better rack-level density than the high-power GPU. The 8 GiB DRAM per
TPU is Weight Memory. GPU Boost mode is not used (Sec. 8). SECDEC and no Boost mode reduce K80 bandwidth from 240 to 160. No
Boost mode and single die vs. dual die performance reduces K80 peak TOPS from 8.7 to 2.8. (*The TPU die is < half the Haswell die size.)

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk in a server, but the card uses PCle Gen3 x16.

8x K80 GPUs



Performance [GFLOPS]

The Roofline Model
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TeraOps/sec (log scale)

Performance

100 « TPU Roofline B cru/cru il TPucPU [ TPU/GPU | TPUY/CPU TPU/GPU
« K80 Roofline 196
200
« HSW Roofline
* LSTMO
* LSTM1
- * 150
* MLP1
* MLPO
% CNNO 100 86
* CNN1
A LSTMO
® A LSTM1 50 31 -
A MLP1 1714
A MLPO j [y
A CNNO 0

Total Perf./Watt GM Total Perf./Watt WM Incremental Incremental
A CNN1 Perf./Watt GM Perf./Watt WM

® LSTMO
@ LSTM1

1 10 100 1000

4
Operational Intensity: Ops/weight byte (log scale) o
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App breakdown by Performance Counters

Application MLPO MLP1 | LSTMO LSTMI |CNNO CNNI | Mean| Row
Array active cycles 12.7% 10.6% 82% 10.5%(78.2% 46.2% | 28%| 1
Useful MACs in 64K matrix (% peak) 125%  9.4% 82%  6.3%|78.2%[22.5%]) 23%| 2
Unused MACs 03% 1.2% 0.0% 42%| 0.0%\23.7% 5% 3
eight stall cycles 53.9% 442%)| 58.1% 62.1%4 0. 8.1%| 43%| 4
Weight shift cycles Stalls due 2 Memory 59% 134%| 158% 1719 70%| 12%| 5
Non-matrix cycles 17.5% 31.9%| 17.9% 10.3%|21.8% 18.7%| 20%| 6
RAW stalls 33% 84%| 146% 10.6%| 3. 5% 228%( 11%| 7
Input data stalls 6.1% 88%| S51%  24% 0.6%| 4% 8
TeraOps/sec Q2 Pea@ 123 9.7 37 2. 86.0 Al4.1 1 9

Table 3. Factors limiting TPU performance of the NN workload based on hardware performzi'n(;e counters. Rows 1,4, 5, and'6 total 100%
and are based on measurements of activity of the matrix unit. Rows 2 and 3 further break down fhg fraction of 64K welghls in the matrix
unit that hold useful weights on active cycles. Our counters cannot exactly explain the time when the, matrix unit is idle in Fow 6; rows 7 and
8 show counters for two possible reasons, including RAW pipeline hazards and PCle input stalls. Row9 (TOPS) is based pbn measurements
of production code while the other rows are based on performance-counter measurements, so they are not-perfectly consistent. Host server
overhead is excluded here. The MLPs and LSTMs are memory-bandwidth limited but CNNs are not. CNNT results are gxplained in the text.

’ ‘4 v
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Latency Results (99%ile)

Type | Batch |99th% Response|lnf/s (IPS)| % Max IPS
CPU | 16 7.2 ms 5,482 42%
CPU | 64 21.3 ms 13,194 100%
GPU | 16 6.7 ms 13,461 37%
GPU | 64 8.3 ms 36,465 100%
TPU | 200 7.0 ms 225,000 80%
TPU | 250 10.0 ms 280,000 100%

Table 4. 99-th% response time and per die throughput (IPS) for MLPO as batch size varies for MLPO. The longest allowable latency is 7
ms. For the GPU and TPU, the maximum MLPO throughput is limited by the host server overhead. Larger batch sizes increase throughput,
but as the text explains, their longer response times exceed the limit, so CPUs and GPUs must use less-efficient, smaller batch sizes (16 vs.

200).



TensorFlow
graph

TPU host
instructions

Programming the TPU

TPU
bitstream

Programming FPGAs

Description in
high-level
language

High-level
synthesis tool

FPGA vendor
RTL tools

Y
FPGA
bitstream




NVIDIA’s Rebuttal to the TPU

K80
2012
ferencesSec ux i x
Training TOPS 6 FP32 NA 12 FP32
Inference TOPS 6 FP32 90 INT8 48 INT8
On-chip Memory 16 MB 24 MB 11 MB
Power 300W 75W 250W

Bandwidth 320 GB/S 34 GB/S 350 GB/S

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/



Interesting quote

“CNNs constitute only about 5% of the representative NN
workload for Google. More attention should be paid to MLPs and
LSTMs. Repeating history, it’s similar to when many architects
concentrated on floating-point performance when most
mainstream workloads turned out to be dominated by integer
operations.”



Neural acceleration omasizaceh ol

- Find an approximate
program component

Compile the program
and train a neural network




Neural acceleration omasizaceh ol

_
i

Find an approximate
program component

Compile the program
and train a neural network

Execute on a fast Neural
Processing Unit (NPU)




Summary of NPU results

application domain error metric
blackscholes  |option pricing |MSE
fft DSP MSE
inversek2j robotics MSE = sigmod O L)
jmeint 3D-modeling  |miss rate 0.9x - 24x (37X mean) Speedup
ipeg compression  |image diff
A L mage diff 1.5x - 51x (6.8x mean) energy red.
sobel vision image diff
CPU

I CPU
T

1.3x - 38x (3.8x mean) speed
0.8x - 11.1x (8x mean) speedup X X (3.8 ) speedup

0.9x - 28x (2.8x mean) energy red.
1.1x - 21x (3x mean) energy red.



DNN Training Time

Batches, foreward and backward propagation
1. Abatch of samples are loaded into GPU.

2. The batch of samples does forward propagation
and prediction error is derived.

k 3. The batch of samples undergoes backward
propagation.

examples _
4. The model is updated and used for subsequent

traning.

x

RESNET
PANENS

8 GPUs

VGGNet
21 days
4 Titan Black

AlexNet ZFNet
EVS 12 days
2 GTX 580 GTX 580

2012 2013 2014 2015
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Parameter Server

2222
\Npha1 7

examples

Data Parallelism

1.

2.

Each device sees different parts of the data set.
Devices work independently of each other.

Local gradient is calculated per device, and are
communicated with parameter server during each
batch.

34



Distributed DNN Training (MXNET, TENSORFLOW...)

Parameter Server

Combine updates from all
workers

. Average and apply the
updates

Data Parallelism

1. Each device sees different parts of the data set.
Devices work independently of each other.

2. Local gradient is calculated per device, and are
communicated with parameter server during each
batch.

3. The parameter aggregates all updates and apply
changes to the next model.

Where is the bottleneck? How do we improve it?

35



