
CSE	548:	Computer	Systems	Architecture

Branch	Prediction,	Predication
Luis	Ceze,	Spring	2017

(based	on	slides	lifted	from	friends	at	UPenn,	UIUC,	UW,	MIT.

1

What	About	Branches?

PC
Insn
Mem

Register
File
s1 s2 d

+
4

<<
2

F/D D/X

X/M

PC

A

B

IR

O

B

IR

PC

IR

S
X

2

How	do	you	think	branches	work?
When	do	you	know	if	the	branch	is	taken?
When	do	you	continue	fetching?

What	About	Branches?

• Control	hazards	options
– Could	just	stall	to	wait	for	branch	outcome	(two-cycle	penalty)	
– Fetch	past	branch	insns before	branch	outcome	is	known	(prediction!)

• Default:	assume	“not-taken”	(at	fetch,	can’t	tell	it’s	a	branch)
• What	if	it	was	a	taken branch?

PC
Insn
Mem

Register
File
s1 s2 d

+
4

<<
2

F/D D/X

X/M

PC

A

B

IR

O

B

IR

PC

IR

S
X

3

Branch	Recovery	

• Branch	recovery:	what	to	do	when	branch	is	actually	taken
– Insns that	will	be	written	into	F/D	and	D/X	are	wrong
– Flush	them,	i.e.,	replace	them	with	nops
+ They	haven’t	had	written	permanent	state	yet	(regfile,	DMem)	
– Two	cycle	penalty	for	taken	branches

PC
Insn
Mem

Register
File
s1 s2 d

+
4

<<
2

F/D D/X

X/M

nopnop

PC

A

B

IR

O

B

IR

PC

IR

S
X

4

Branch	Performance

• Back	of	the	envelope	calculation
– Branch:	20%,	load:	20%,	store:	10%,	other:	50%
– Say,	75%	of	branches	are	taken

• CPI	=	1	+	20%	*	75%	*	2	=
1	+	0.20	*	0.75	*	2 =	1.3

– Branches	cause	30%	slowdown
• Even	worse	with	deeper	pipelines

– How	do	we	reduce	this	penalty?

5

Big	Idea:	Speculative	Execution

• Speculation:	“risky	transactions	on	chance	of	profit”

• Speculative	execution
– Execute	before	all	parameters	known	with	certainty
– Correct	speculation

+ Avoid	stall,	improve	performance
– Incorrect	speculation	(mis-speculation)

– Must	abort/flush/squash	incorrect	insns
– Must	undo	incorrect	changes	(recover	pre-speculation	state)

• The	“game”:	[%correct *	gain]	– [(1–%correct)	*	penalty]

• Control	speculation:	speculation	aimed	at	control	hazards
– Unknown	parameter:	are	these	the	correct	insns to	execute	next?

• We	will	see	lots	of	other	forms	of	speculation	in	computer	systems	design!

6

Branch	Prediction

• Dynamic	branch	prediction:
– Hardware	guesses	outcome
– Start	fetching	from	guessed	address

PC
Insn
Mem

Register
File

S
X

s1 s2 d

+
4

<<
2

TG
PC

IR

TG
PC

A

B

IR

O

B

IR

F/D D/X X/M

nopnop

BP

<>

7

Branch	Prediction	Performance

• Parameters
– Branch:	20%,	load:	20%,	store:	10%,	other:	50%
– 75%	of	branches	are	taken

• Dynamic	branch	prediction
– Branches	predicted	with	95%	accuracy
– CPI	=	1	+ 20%	*	5%	*	2	=	1.02

8

Why	are	branches	predictable?

9

Why	are	branches	predictable?

10

for (i=0; i<1000000; i++) { // Highly biased
if (i % 3 == 0) { // and this one?

// whatever
}
if (random() % 2 == 0) { // how about this one?

…
}

}

Dynamic	Branch	Prediction	Components

• Step	#1:	is	it	a	branch?
– Easy	after	decode...

• Step	#2:	is	the	branch	taken	or	not	taken?
– Direction	predictor	(applies	to	conditional	branches	only)
– Predicts	taken/not-taken

• Step	#3:	if	the	branch	is	taken,	where	does	it	go?
– Easy	after	decode…

regfile

DI

B
P

11

Branch	Direction	Prediction

• Learn	from	past,	predict	the	future
– Record	the	past	in	a	hardware	structure

• Direction	predictor	(DIRP)
– Map	conditional-branch	PC	to	taken/not-taken	(T/N)	decision
– Individual	conditional	branches	often	unbiased	or	weakly	biased

• 90%+	one	way	or	the	other	considered	“biased”
• Why?		Loop	back	edges,	checking	for	uncommon	conditions

• Branch	history	table	(BHT):	simplest	predictor
– PC	indexes	table	of	bits	(0	=	N,	1	=	T),	no	tags
– Essentially:	branch	will	go	same	way	it	went	last	time

– What	about	aliasing?
• Two	PC	with	the	same	lower	bits?

T	or	NT

[9:2] 1:0[31:10]

T	or	NT

PC BHT

Prediction	(taken	or	
not	taken)

12

13

Branch	History	Table	(BHT)

• Branch	history	table	(BHT):	simplest	
direction	predictor
– PC	indexes	table	of	bits	(0	=	N,	1	=	T),	no	

tags
– Essentially:	branch	will	go	same	way	it	went	

last	time
– Problem: inner	loop	branch below

for (i=0;i<100;i++)
for (j=0;j<3;j++)

// whatever
– Two	“built-in”	mis-predictions	per	inner	loop	
iteration

– Branch	predictor	“changes	its	mind	too	
quickly”

– How	can	we	do	better?

Tim
e		

State

Prediction

O
utcom

e	 Result?

1 N N T Wrong
2 T T T Correct
3 T T T Correct
4 T	 T N Wrong
5 N	 N T Wrong
6 T T T Correct
7 T T T Correct
8 T	 T N Wrong
9 N	 N T Wrong
10 T T T Correct
11 T T T Correct
12 T T N Wrong

14

Two-Bit	Saturating	Counters	(2bc)

• Two-bit	saturating	counters	(2bc)	[Smith	
1981]
– Replace	each	single-bit	prediction

• (0,1,2,3)	=	(N,n,t,T)
– Adds	“hysteresis”

• Force predictor	to	mis-predict	twice	before	
“changing	its	mind”

– One	mispredict each	loop	execution
(rather	than	two)
+ Fixes	this	pathology	(which	is	not	contrived,	by	
the	way)

• Can	we	do	even	better?

Tim
e		

State

Prediction

O
utcom

e	 Result?

1 N N T Wrong
2 n N T Wrong
3 t T T Correct
4 T	 T N Wrong
5 t T T Correct
6 T T T Correct
7 T T T Correct
8 T	 T N Wrong
9 t T T Correct
10 T T T Correct
11 T T T Correct
12 T T N Wrong

15

Correlated	Predictor

• Correlated	(two-level)	predictor	
[Patt 1991]
– Exploits	observation	that	branch	

outcomes	are	correlated
– Maintains	separate	prediction	per	

(PC,	BHR)	pairs
• Branch	history	register	(BHR):	recent	
branch	outcomes

– Simple	working	example:	assume	
program	has	one	branch
• BHT:	one	1-bit	DIRP	entry
• BHT+2BHR:	22 =	4 1-bit	DIRP	entries

– Why	didn’t	we	do	better?
• BHT	not	long	enough	to	capture	
pattern	

Tim
e		

“Pattern”

State
Prediction

O
utcom

e	 Result?NN NT TN TT

1 NN N	 N N N N T Wrong
2 NT T N N N N T Wrong
3 TT T T N N N T Wrong
4 TT T T N T T N Wrong
5 TN T T N N N T Wrong
6 NT T T T N T T Correct
7 TT T T T N N T Wrong
8 TT T T T T T N Wrong
9 TN T T T N T T Correct
10 NT T T T N T T Correct
11 TT T T T N N T Wrong
12 TT T T T T T N Wrong

16

Correlated	Predictor	– 3	Bit	Pattern

Tim
e		

“Pattern”

State
Prediction

O
utcom

e	 Result?NNN NNT NTN NTT TNN TNT TTN TTT
1 NNN N N N N N N N N N T Wrong
2 NNT T N N N N N N N N T Wrong
3 NTT T T N N N N N N N T Wrong
4 TTT T T N T N N N N N N Correct
5 TTN T T N T N N N N N T Wrong
6 TNT T T N T N N T N N T Wrong
7 NTT T T N T N T T N T T Correct
8 TTT T T N T N T T N N N Correct
9 TTN T T N T N T T N T T Correct
10 TNT T T N T N T T N T T Correct
11 NTT T T N T N T T N T T Correct
12 TTT T T N T N T T N N N Correct

• Try	3	bits	
of history

• 23 DIRP
entries
per
pattern

+ No	mis-predictions	after	predictor	learns	all	the	relevant	patterns!

Correlated	Predictor	Design	options

• Design	choice	I:	one	global BHR	or	one	per	PC	(local)?
– Each	one	captures	different	kinds	of	patterns
– Global	is	better,	why?

• Design	choice	II:	how	many	history	bits	(BHR	size)?
– Tricky	one
+ Given	unlimited	resources,	longer	BHRs	are	better,	but…
– BHT	utilization	decreases

– Many	history	patterns	are	never	seen
– Many	branches	are	history	independent	(don’t	care)
• PC	xor BHR	allows	multiple	PCs	to	dynamically	share	BHT
• BHR	length	<	log2(BHT	size)

– Predictor	takes	longer	to	train
– Typical	length:	8–12

17

Hybrid	Predictor

• Hybrid	(tournament)	predictor [McFarling]
– Attacks	correlated	predictor	BHT	utilization	problem
– Idea:	combine	two	predictors

• Simple	BHT predicts	history	independent	branches
• Correlated	predictor predicts	only	branches	that	need	history
• Chooser assigns	branches	to	one	predictor	or	the	other
• Branches	start	in	simple	BHT,	move	mis-prediction	threshold

+ Correlated	predictor	can	be	made	smaller,	handles	fewer	branches
+ 90–95%	accuracy

PC

BHR BH
T

BH
T

ch
oo

se
r

18

When	to	Perform	Branch	Prediction?

• During	Decode
– Look	at	instruction	opcode to	determine	branch	instructions
– Can	calculate	next	PC	from	instruction	(for	PC-relative	branches)
– One	cycle	“mis-fetch”	penalty	even	if	branch	predictor	is	correct

• During	Fetch?
– How	do	we	do	that?

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W

targ:add r4,r5,r4 F D X M W

19

Revisiting	Branch	Prediction	Components

• Step	#1:	is	it	a	branch?
– Easy	after	decode...	during	fetch:	predictor

• Step	#2:	is	the	branch	taken	or	not	taken?
– Direction	predictor	(as	before)

• Step	#3:	if	the	branch	is	taken,	where	does	it	go?
– Branch	target	predictor	(BTB)
– Supplies	target	PC	if	branch	is	taken

regfile

DI

B
P

20

Branch	Target	Buffer	(BTB)

• As	before:	learn	from	past,	predict	the	future
– Record	the	past branch	targets	in	a	hardware	structure

• Branch	target	buffer	(BTB):
– “guess”	the	future	PC	based	on past	behavior
– “Last	time	the	branch	X	was	taken,	it	went	to	address	Y”

• “So,	in	the	future,	if address	X	is	fetched,	fetch	address	Y	next”

• Operation
– Like	a	cache:	address	=	PC,	data	=	target-PC
– Access	at	Fetch	in	parallel with	instruction	memory

• predicted-target	=	BTB[PC]
– Updated	at	X	whenever	target	!=	predicted-target

• BTB[PC]	=	target
– Aliasing?		No	problem,	this	is	only	a	prediction

21

Branch	Target	Buffer	(continued)

• At	Fetch,	how	does	insn know	that	it’s	a	branch	&	should	read	
BTB?
– Answer:	it	doesn’t	have	to,	all	insns read	BTB

• Key	idea:	use	BTB	to	predict	which	insn are	branches
– Tag	each	entry	(with	bits	of	the	PC)

• Just	like	a	cache
– Tag	hit	signifies	instruction	at	the	PC	is	a	branch
– Update	only	on	taken	branches	(thus	only	taken	branches	in	table)

• Access	BTB	at	Fetch	in	parallel	with	instruction	memory

PC

+
4

BTB
tag

==

target
predicted	target

22

Why	Does	a	BTB	Work?

• Because	most	control	insns use	direct	targets
– Target	encoded	in	insn itself	® same	target	every	time

• What	about	indirect	targets?
– Target	held	in	a	register® can	be	different	each	time
– Indirect	conditional	jumps	are	not	widely	supported
– Two	indirect	call	idioms

+ Dynamically	linked	functions	(DLLs):	target	always	the	same
• Dynamically	dispatched	(virtual)	functions:	hard	but	uncommon

– Also	two	indirect	unconditional	jump	idioms
• Switches:	hard	but	uncommon
– Function	returns:	hard	and	common	but…

23

IMem

Return	Address	Stack	(RAS)

• Return	address	stack	(RAS)
– Call	instruction?	RAS[TOS++]	=	PC+4
– Return	instruction?	Predicted-target	=	RAS[--TOS]
– Q:	how	can	you	tell	if	an	insn is	a	call/return	before	decoding	it?

• Accessing	RAS	on	every	insn BTB-style	doesn’t	work
– Answer:	pre-decode	bits in	Imem,	written	when	first	executed

• Can	also	be	used	to	signify	branches

PC

+
4

BTB
tag

==

target
predicted	target

RAS

PD

24

Putting	It	All	Together

• BTB	&	branch	direction	predictor	during	fetch

• If	branch	prediction	correct,	no	taken	branch	penalty

IMem

PC

+
4

BTB
tag

==

target
predicted	target

RAS

PD

BHT taken/not-taken

is	ret?

25

Branch	Prediction	Performance

• Dynamic	branch	prediction
– Simple predictor	at	fetch;	branches	predicted	with	75%	accuracy

• CPI	=	1	+	(20%	*	25%	*	2)=	1.1
– More	advanced predictor	at	fetch:	95%	accuracy

• CPI	=	1	+	(20%	*	 5%	*	2)	=	1.02

• Branch	mis-predictions	still	a	big	problem	though
– Pipelines	are	long:	typical	mis-prediction	penalty	is	10+	cycles
– Pipelines	are	superscalar	(later)

26

Can	we	get	rid	of	(many)	branches?

27

A = Y[i];
if (A == 0)

A = W[i];
else

Y[i] = 0;
Z[i] = A*X[i];

Predication If-Conversion Example
0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=50% T=50%

A

B C

D

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

êUsing Predication

A = Y[i];
if (A == 0)

A = W[i];
else

Y[i] = 0;
Z[i] = A*X[i];

0: ldf Y(r1),f2
1: fbne f2,4
2: ldf W(r1),f2
3: jump 5
4: stf f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

Source code

Machine code

ISA Support for Predication

• Itanium: change branch 1 to set-predicate insn fspne

• Change insns 2 and 4 to predicated insns
– ldf.p performs ldf if predicate p1 is true
– stf.np performs stf if predicate p1 is false

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

Predication Performance
• Cost/benefit analysis

– Benefit: predication avoids branches
• Thus avoiding mis-predictions
• Also reduces pressure on predictor table (fewer branches to track)

– Cost: extra instructions (fetched, but not actually executed)
• As branch predictors are highly accurate…

– Might not help:
• 5-stage pipeline, two instruction on each path of if-then-else
• No performance gain, likely slower if branch predictable

– Or even hurt!
– But can help:

• Deeper pipelines, hard-to-predict branches, and few added insn

• Thus, prediction is useful, but not a panacea

Avoiding	Branches	via	ISA:	Predication

• Conventional	control
– Conditionally	executed	insns	also	conditionally	fetched

1 2 3 4 5 6 7 8 9
beq r3,targ F D X M W
sub r6,1,r5 F D -- -- --

targ:add r4,r5,r4 F -- -- -- --
targ:add r4,r5,r4 F D X M W

• If	beqmis-predicts,	both	sub and	addmust	be	flushed
– Waste:	add is	independent	of	mis-prediction

• Predication:	not	prediction,	predication
• ISA	support	for	conditionally-executed	unconditionally-fetched	insns
• If	beqmis-predicts,	annul	sub in	place,	preserve	add

• Example	is	if-then,	but	if-then-else	can	be	predicated	too
• How	is	this	done?	How	does	add get	correct	value	for	r5

flushed:	wrong	path
flushed:	why?

31

Full	Predication

• Full	predication
– Every	insn	can	be	annulled,	annulment	controlled	by…
– Predicate	registers:	additional	register	in	each	insn	(e.g.,	IA64)

1 2 3 4 5 6 7 8 9
setp.eq r3,p3 F D X M W
sub.p r6,1,r5,p3 F D X -- --

targ:add r4,r5,r4 F D X M W
annulled

• Predicate	codes:	condition	bits	in	each	insn	(e.g.,	ARM)	
1 2 3 4 5 6 7 8 9

setcc r3 F D X M W
sub.nz r6,1,r5 F D X -- --

targ:add r4,r5,r4 F D X M W
annulled

• Only	ALU	insn	shown	(sub),	but	this	applies	to	all	insns,	even	stores
• Branches	replaced	with	“set-predicate”	insns

32

Conditional	Register	Moves	(CMOVs)

• Conditional	(register)	moves
– Construct	appearance	of	full	predication	from	one	primitive

cmoveq r1,r2,r3 // if (r1==0) r3=r2;

– May	require	some	code	duplication	to	achieve	desired	effect
– Painful,	potentially	impossible	for	some	insn	sequences
– Requires	more	registers
– Only	good	way	of	retro-fitting	predication	onto	ISA	(e.g.,	IA32,	Alpha)

1 2 3 4 5 6 7 8 9
sub r6,1,r9 D X M W
cmovne r3,r9,r5 F D X M W

targ:add r4,r5,r4 F D X M W

33

Predication	Performance

• Predication	overhead	is	additional	insns
– Sometimes	overhead	is	zero

• Not-taken	if-then	branch:	predicated	insns executed
– Most	of	the	times	it	isn’t

• Taken	if-then	branch:	all	predicated	insns annulled
• Any	if-then-else	branch:	half	of	predicated	insns annulled
• Almost	all	cases	if	using	conditional	moves

• Calculation	for	a	given	branch,	predicate	(vs speculate)	if…
– Average	number	of	additional	insns >	overall	mis-prediction	penalty
– For	an	individual	branch

• Mis-prediction	penalty	in	a	5-stage	pipeline	=	2
• Mis-prediction	rate	is	<50%,	and	often	<20%
• Overall	mis-prediction	penalty	<1	and	often	<0.4

– So	when	is	predication	worth	it?

34

Predication	Performance

• What	does	predication	actually	accomplish?
– In	a	scalar	5-stage	pipeline	(penalty	=	2):	nothing
– In	a	4-way	superscalar	15-stage	pipeline	(penalty	=	60):	something

• Use	when	mis-predictions	>10%	and	insn	overhead	<6	
– In	a	4-way	out-of-order	superscalar	(penalty	~	150)

• Should	be	used	in	more	situations
– Still:	only	useful	for	branches	that	mis-predict	frequently

• Strange:	ARM	typically	uses	scalar	5-9	stage	pipelines
– Why	is	the	ARM	ISA	predicated	then?
– Low-power:	eliminates	the	need	for	a	large	branch	predictor
– Real-time:	predicated	code	performs	consistently
– Loop	scheduling:	effective	software	pipelining	requires	predication

35

36

Research:	Perceptron	Predictor

• Perceptron	predictor	[Jimenez]
– Attacks	BHR	size	problem	using	machine	learning	approach
– BHT	replaced	by	table	of	function	coefficients	Fi	(signed)
– Predict	taken	if	∑(BHRi*Fi)>	threshold
+ Table	size	#PC*|BHR|*|F|		(can	use	long	BHR:	~60	bits)

– Equivalent	correlated	predictor	would	be	#PC*2|BHR|

– How	does	it	learn?	Update	Fi when	branch	is	taken
• BHRi ==	1	?	Fi++	:	Fi– –;
• “don’t	care”	Fi bits	stay	near	0,	important	Fi bits	saturate

+ Hybrid	BHT/perceptron	accuracy:	95–98%

PC

BHR

F

∑	Fi*BHRi >	thresh

37

More	Research:	GEHL	Predictor

• Problem	with	both	correlated	predictor	and	perceptron
– Same	BHT	real-estate	dedicated	to	1st	history	bit	(1	column)	…
– …	as	to	2nd,	3rd,	10th,	60th…
– Not	a	good	use	of	space:	1st	bit	much	more	important	than	60th

• GEometric	History-Length	predictor	[Seznec,	ISCA’05]
– Multiple	BHTs,	indexed	by	geometrically	longer	BHRs	(0,	4,	16,	32)

• BHTs	are	(partially)	tagged,	not	separate	“chooser”
• Predict:	use	matching	entry	from	BHT	with	longest	BHR
• Mis-predict:	create	entry	in	BHT	with	longer	BHR

+ Only	25%	of	BHT	used	for	bits	16-32	(not	50%)
• Helps	amortize	cost	of	tagging

+ Trains	quickly
– 95-97%	accurate

38

Championship	Branch	Prediction

• CBP
– Workshop	held	in	conjunction with	MICRO
– Submitted	code	is	tested	on	standard	branch	traces
– Highest	prediction	accuracy	wins	

• Two	tracks
– Idealistic:	predictor	simulator	must	run	in	under	2	hours
– Realistic:	predictor	must	synthesize	into	32KB	+	256	bits	or	less

