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Virtualizing Processors

* How do multiple apps (and OS) share the processors?
— Goal: applications think there are an infinite # of processors
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* How do multiple apps (and OS) share the processors?
— Goal: applications think there are an infinite # of processors

 Solution: time-share the resource

— Trigger a context switch at a regular interval (~1ms)

* Pre-emptive: app doesn’t yield CPU, OS forcibly takes it
+ Stops greedy apps from starving others

— Architected state: PC, registers
e Save and restore them on context switches
* Memory state?

— Non-architected state: caches, branch predictor tables, etc.
* |gnore or flush
* OS responsible to handle context switching
— Hardware support is just a timer interrupt



Virtualizing Main Memory

 How do multiple apps (and the OS) share main
memory?

— Goal: each application thinks it has infinite memory



Virtualizing Main Memory

 How do multiple apps (and the OS) share main memory?
— Goal: each application thinks it has infinite memory

* One app may want more memory than is in the system
— App’s insn/data footprint may be larger than main memory

— Requires main memory to act like a cache
e With disk as next level in memory hierarchy (slow)
* Write-back, write-allocate, large blocks or “pages”

— No notion of “program not fitting” in registers or caches (why?)

e Solution:

— Part #1: treat memory as a “cache”
* Store the overflowed blocks in “swap” space on disk

— Part #2: add a level of indirection (address translation)



Virtual Memory (VM)

Program * Programs use virtual addresses (VA)
— 0..2N-1

— VA size also referred to as machine size
— E.g., Pentium4 is 32-bit, Alpha is 64-bit

code heap stack
* Memory uses physical addresses (PA)

— 0...2M-1 (typically M<N, especially if N=64)
:il — 2Mis most physical memory machine supports

MainlMTmory  VA—PA at page granularity (VP—PP)

— By “system”

— Mapping need not preserve contiguity
— VP need not be mapped to any PP
— Unmapped VPs live on disk (swap) (or

Disk unallocated)
.  Whatis virtual memory used for?
g
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Uses of Virtual Memory

* Key uses: isolation and multi-programming

— Each app thinks it has 2N B of memory, its stack starts
OxFFFFFFFF,...

— Apps prevented from reading/writing each other’s memory
e Can’t even address the other program’s memory!

* Protection
— Each page with a read/write/execute permission set by OS
— Enforced by hardware

* Inter-process communication.

— Map same physical pages into multiple virtual address spaces

— Or share files via the UNIX mmap () call
0S App1 App2




Address Translation

virtual address[31:0] POFS[135:0]
translate | don’t touch

physical address[25:0] PPN[27:16] POFS[15:0]

* VA—PA mapping called address translation
— Split VA into virtual page number (VPN) & page offset (POFS)
— Translate VPN into physical page number (PPN)
— POFS is not translated
— VA—PA = [VPN, POFS] — [PPN, POFS]

 Example above
— 64KB pages — 16-bit POFS
— 32-bit machine — 32-bit VA — 16-bit VPN
— Maximum 256 MB memory — 28-bit PA — 12-bit PPN



Multi-Level Page Table (PT)
e 20-bit VPN [VBNESH0)] VPNI:0] | 2nd-level

PTEs
>

— Upper 10 bits index 1st-level table 1stlevel

ointers”

— Lower 10 bits index 2nd-level table pt “root”

struct { '
union { int ppn, disk block; } :
int is valid, is _dirty; -
} PTE;
struct {
struct PTE ptes[1024];
} L2PT;
struct L2PT *pt[1024];

int translate (int wvpn) { >
struct L2PT *12pt = pt[vpn>>10];
if (12pt && 1l2pt->ptes[vpné&l023].is valid)
return 12pt->ptes|[vpn&l023] .ppn;




Address Translation Mechanics Il

* Conceptually
— Translate VA to PA before every cache access
— Walk the page table before every load/store/insn-fetch

e Really? Is this fast?



Address Translation Mechanics Il

* Conceptually
— Translate VA to PA before every cache access
— Walk the page table before every load/store/insn-fetch
— Would be terribly inefficient (even in hardware)

* In reality
— Translation Lookaside Buffer (TLB): cache translations
— Only walk page table on TLB miss

 Hardware truisms
— Functionality problem? Add indirection (e.g., VM)
— Performance problem? Add cache (e.g., TLB)



CPU

A A

Main
Memory

Translation Buffer

* Translation buffer (TLB)

— Small cache: 16—64 entries

— Associative (4+ way or fully
associative)

+ Exploits temporal locality in page

“table

— Wﬁért\if an entry isn’t found in the
TLB?

» Invoke TLB thiss handler

“data?.
PPN
PPN
PPN

‘1’ 12




Main

Memory

Serial TLB & Cache Access

VA

PA

* “Physical” caches
— Indexed and tagged by physical addresses

+ Natural, “lazy” sharing of caches between apps/OS
® VM ensures isolation (via physical addresses)
®* No need to do anything on context switches
® Multi-threading works too
+ Cached inter-process communication works
* Single copy indexed by physical address

— Slow: adds at least one cycle to t,

* Note: TLBs are by definition virtual

— Indexed and tagged by virtual addresses
— Flush across context switches
— Or extend with process id tags

e Does this have to be serial?
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Parallel TLB & Cache Access

?

tag [31:12]
C

o 14

1$ [ D$ -\LA— * What about parallel access?
|

page offset [15:0]
page offset [15:0]

PPN[27:16]

PA
v 1 — What if
Lo (cache size) / (associativity) < page size
F — Index bits same in virt. and physical addresses!
v | * Access TLB in parallel with cache
Main — Cache access needs tag only at very end
Memory

+ Fast: no additional t,;, cycles
+ No context-switching/aliasing problems
— Dominant organization used today
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TLB Organization

* Like caches: TLBs also have ABCs
— Capacity

— Associativity (At least 4-way associative, fully-associative
common)

— What does it mean for a TLB to have a block size of two?

* Two consecutive VPs share a single tag
— Like caches: there can be L2 TLBs



TLB Misses

* TLB miss: translation not in TLB, but in page table
— Two ways to “fill” it, both relatively fast

* Software-managed TLB: e.g., Alpha, Embedded PPC
— Short (~10 insn) OS routine walks page table, updates TLB
+ Keeps page table format flexible
— Latency: one or two memory accesses + OS call (pipeline flush)

e Hardware-managed TLB: e.g., x86
— Page table root pointer in hardware register, FSM “walks” table
+ Latency: saves cost of OS call (pipeline flush)
— Page table format is hard-coded

— TLB misses becoming a huge problem as physical memory
grows
— Direct Segments [ISCA’13]
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Page Faults

* Page fault: PTE not in TLB or page table
— — page not in memory
— Starts out as a TLB miss, detected by OS/hardware handler

e OS software routine:

— Choose a physical page to replace
* “Working set”: refined LRU, tracks active page usage

— If dirty, write to disk

— Read missing page from disk
* Takes so long (*10ms), OS schedules another task

— Requires yet another data structure: frame map (why?)
— Treat like a normal TLB miss from here
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Ok, now how do we provide protection?



Page-Level Protection

* Page-level protection

— Piggy-back page-table mechanism
— Map VPN to PPN + Read/Write/Execute permission bits

— Attempt to execute data, to write read-only data?
* Exception — OS terminates program

— When are protection properties checked?

struct {

union { int ppn, disk block; }

int is valid, is dirty, permissions;
} PTE;
struct PTE pt[NUM VIRTUAL PAGES];

int translate(int vpn, int action) ({
if (pt[vpn].is valid && ! (pt[vpn].permissions & action)) kill;



What could we use protection for?



What could we use protection for?

Virtualization

Software distributed shared memory
Garbage collection?

Optimizations?

Control program execution in interesting ways



Virtualization

Host machine
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Virtualization
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Singularity OS [Larus et al.]

Can we have a single-address space OS that also
supports multiprogramming, is safe etc.

Exercise: write an OS in a managed language
— No explicit pointer computation

Use types and static analysis to isolate program
executions

Minimal low-level code to interact with devices



