
CSEP	548:	Computer	Systems	
Architecture

NVRAM
Luis	Ceze,	Spring	2017

1



Phase-change	memory	(PCM)

2



Properties

• Fast	reads	(~2-3x	slower	than	DRAM)
• Slower	writes
• Endurance:	10^8	write	cycles
• Byte-addressable



Canonical	NVRAM	uses
• Density
– Use	PCM	for	its	density	characteristics	only
– Topic	of	most	architecture	research

• Durability
– Expose	non-volatility	characteristics	to	SW
– Spectrum	of	HW/SW	interface	choices:

Disk DRAM

CPU

DRAM

CPUNVM
file 

system DRAM

CPU

NVRAM

CPU

NVRAM

A. Current System C. Shared Address
Space

B. Replace Disk D. Entirely NVRAM



Implications	on	OS	Design
• Assumptions	(far	out):	Entire	memory	is	fast,	non-volatile	(D)
• OS	components

– Virtual	Memory
– File	systems

• Execution	models
– Application	installation	and	launch
– Software	faults
– Software	updates
– Recycling	OS	state/reboot

• System	properties
– Reliability
– Security,	Privacy	and	Forensics



OS	Components

• Virtual	Memory
– No	more	paging/swapping?,	page	granularity?
– Unify	memory	protect	and	file	system	access	control?
– Reconsider	single-address-space	designs?

• File	systems
– Most	straightforward use	of	NVM
– Should	we	rethink	FS	interface in	this	context?

• Most	past	research	on	NVM-based	FS	keeps	current	
interface

– Perhaps	have	in-memory	DB	services?



Execution	Models

• Applications	and	Processes
– Does	the	concept	of	install	and	launch	apply?
• Always	a	“running”	image	(e.g.,	see	iOS)

– How	to	deal	corrupted	state	during	faults?
– How	is	application	code	updated?

• OS	operations
–What	does	a	reboot	do?
– Do	we	still	need	reboots?



System	Properties
• Reliability
– Data	corruption

• Dangling	pointers	might	corrupt	durable	objects
• Implicit	data	“sanitization”	in	two-level	store

– Data	portability
• Big	deal	that	we	can’t	move	data	physically	between	
systems?

• Security,	Privacy	and	Forensics
– Device	theft	worse?
– Cold	boot	attacks	worse?
– Better	forensics	with	NVM	gave	fast	and	frequent	
checkpoints?



New	Uses	for	NVM

• New	programming	models
– Expose	durable	data-structures	more	directly

• Continuous	copy-on-write
– Remember	the	entire	execution	history

• High-frequency	power	on/off
– Better	power	proportionality

• <Anything	else?>


