CSE 548: Computer Systems Architecture

Branch Prediction, Predication
Luis Ceze, Spring 2017

(based on slides lifted from friends at UPenn, UIUC, UW, MIT.

What About Branches?

~

»

How do you think branches work?
When do you know if the branch is taken?
When do you continue fetching?

What About Branches?

»

~

‘

* Control hazards options
— Could just stall to wait for branch outcome (two-cycle penalty)

— Fetch past branch insns before branch outcome is known (prediction!)

» Default: assume “not-taken” (at fetch, can’t tell it’s a branch)
* What if it was a taken branch?

Branch Recovery

@

)
»

nop nop

o
Branch recovery: what to do when branch is actually taken
— Insns that will be written into F/D and D/X are wrong
— Flush them, i.e., replace them with nops
+ They haven’t had written permanent state yet (regfile, DMem)
— Two cycle penalty for taken branches

‘

/

Branch Performance

* Back of the envelope calculation
— Branch: 20%, load: 20%, store: 10%, other: 50%
— Say, 75% of branches are taken

e CPI=1+20% *75% * 2=
1+0.20*0.75*2=1.3
— Branches cause 30% slowdown
* Even worse with deeper pipelines

— How do we reduce this penalty?

Big Idea: Speculative Execution

(,h(}(to LOOK |NS|D
- 3 -
))

e Speculation: “risky transactions on chance of profit”

e Speculative execution

SPECULATIO

— Execute before all parameters known with certainty
— Correct speculation

+ Avoid stall, improve performance

— Incorrect speculation (mis-speculation)
— Must abort/flush/squash incorrect insns
— Must undo incorrect changes (recover pre-speculation state)

® The “game”: [%.o/rect * 8AIN] — [(1-%0,rect) * PENAlLY]

* Control speculation: speculation aimed at control hazards
— Unknown parameter: are these the correct insns to execute next?
* We will see lots of other forms of speculation in computer systems design!

Branch Prediction

—0

I

nop
* Dynamic branch prediction:

— Hardware guesses outcome

— Start fetching from guessed address

Branch Prediction Performance

* Parameters
— Branch: 20%, load: 20%, store: 10%, other: 50%
— 75% of branches are taken

 Dynamic branch prediction

— Branches predicted with 95% accuracy
— CPI=1+20% *5% *2=1.02

Why are branches predictable?

Why are branches predictable?

for (i=0; i<1000000; i++) { // Highly biased
if (i $ 3 == 0) { // and this one?
// whatever

}
if (random() % 2 == 0) { // how about this one?

}
}

Dynamic Branch Prediction Components

regfile |

e Step #1:isitabranch?
— Easy after decode...

e Step #2:is the branch taken or not taken?

— Direction predictor (applies to conditional branches only)
— Predicts taken/not-taken

e Step #3: if the branch is taken, where does it go?
— Easy after decode...

11

Branch Direction Prediction

* Learn from past, predict the future
— Record the past in a hardware structure
e Direction predictor (DIRP)
— Map conditional-branch PC to taken/not-taken (T/N) decision
— Individual conditional branches often unbiased or weakly biased
* 90%+ one way or the other considered “biased”
* Why? Loop back edges, checking for uncommon conditions
* Branch history table (BHT): simplest predictor
— PCindexes table of bits (0 =N, 1 =T), no tags
— Essentially: branch will go same way it went last time

PC [31:10] [9:2] 1:0 BHT

/-

— What about aliasing?
e Two PC with the same lower bits?

e

Prediction (taken or ,
not taken)

Branch History Table (BHT)

Branch history table (BHT): simplest
direction predictor

— PCindexes table of bits (0=N, 1=T), no
tags

— Essentially: branch will go same way it went
last time

— Problem: inner loop branch below
for (i=0;i<100;i++)

for (j3=0;3<3;j++)
// whatever

iteration

quickly”

— Two “built-in” mis-predictions per inner loop
— Branch predictor “changes its mind too

— How can we do better?

13

-
= @]
-
= g 8 o
3 = 9 3 Result?
TIN] INLAT] Wron
‘P" g
21T ITl|T| Correct
31Tl |Tl|T]| Correct
AT LN Wrong_
51N ‘L/ T| Wrong _
61Tl |T| |T]| Correct
71Tl IT] IT]| Correct
STl TN] Wrong_ |
9N NLaT WronL
&
10|t Tl IT]| Correct
11T | Tl | T| Correct
12/ 1] LT] IN|] Wrong

Two-Bit Saturating Counters (2bc)

* Two-bit saturating counters (2bc) [Smith S 0
o 5
1981] -2 2 0
: : . 3 8 o 3
— Replace each single-bit prediction > @ > @ Result?
¢ (0111213) = (NInItIT) 1 N N |~ T WronL
— Adds “hysteresis” 21n| INMAT] Wrong |
* Force predictor to mis-predict twice before 31t L TIA4T]| Correct
“changing its mind” 4T ‘ TIIN]| wrong
— One mispredict each loop execution S1t] | TLIT] Correct
417
(rather than two) 61T||T||T] Correct
+ Fixes this pathology (which is not contrived, by 71Tl 17l 1T]| Ccorrect
the way) 81T L+A1N Wrong
e Can we do even better? 9olel I TUdT! correct
10|T] |7 |T]| Correct
1117 | T] | T| Correct
12/ 1] LT] IN|] Wrong

14

Correlated Predictor

Correlated (two-level) predictor
[Patt 1991]

Exploits observation that branch
outcomes are correlated

Maintains separate prediction per
(PC, BHR) pairs

* Branch history register (BHR): recent
branch outcomes

Simple working example: assume
program has one branch

* BHT: one 1-bit DIRP entry

* BHT+2BHR: 22 = 4 1-bit DIRP entries

Why didn’t we do better?

* BHT not long enough to capture
pattern

15

In W o = owll

OO N o U

[EEY
o

11

=
N

'n__a'f State g g

o R S o

S, NNINTITNITT 8 3 Result?
NN NIN|N|N N T | Wrong
NT T|IN N N T | Wrong
1T TITIN|N N T | Wrong
1T TITIN|T T N | Wrong
2
NT TIT|TI|N T T |Correct
1T TIT|T|IN N T | Wrong
1T TIT|TI|T T N | Wrong
I T [xn] |7 [r]correct
NT TIT|T|N T T |Correct
1T TIT|T|IN N T | Wrong
T TIT|TI|T T N | Wrong

Correlated Predictor — 3 Bit Pattern

3 z O

e Try 3 bits 5 % State g §
ofhistory 3 3 NNNINNTINTNINTTITNNITNTITINITIT S 3 Result?
e 2°DIRP 1INNN[[N N N|IN|N]N]N|N]IN |T]wWong
entries 2NNt TN NI NI NN NN [N] [T] wrong
Per 3INTT| | T T|IN|IN|N]|N|N|N][IN| |[T]wrong
pattern afrr| vl TN TN NN N[N [N]correc
Slon] [Tt NTT NN NT] NN] wrong
6| TNT T T N T NIN|T N N T | Wrong
7 INTT T T N T N T T N T T | Correct
8| TTT T T N T N T T N N N | Correct
ofmn] [T TINTTN[TT T N]r] [t]corect
10] TNT T T N T N T T N T T | Correct
11| NTT T T N T N T T N T T | Correct
12 TTT T T N T N T T N N N | Correct

+ No mis-predictions after predictor learns all the relevant patterns!

Correlated Predictor Design options

* Design choice I: one global BHR or one per PC (local)?
— Each one captures different kinds of patterns
— Global is better, why?

* Design choice Il: how many history bits (BHR size)?
— Tricky one
+ Given unlimited resources, longer BHRs are better, but...

— BHT utilization decreases
— Many history patterns are never seen
— Many branches are history independent (don’t care)
e PC xor BHR allows multiple PCs to dynamically share BHT
* BHR length < log,(BHT size)
— Predictor takes longer to train

— Typical length: 8-12

Hybrid Predictor

* Hybrid (tournament) predictor [McFarling]
— Attacks correlated predictor BHT utilization problem
— ldea: combine two predictors
* Simple BHT predicts history independent branches
* Correlated predictor predicts only branches that need history
* Chooser assigns branches to one predictor or the other
* Branches start in simple BHT, move mis-prediction threshold

+ Correlated predictor can be made smaller, handles fewer branches

+ 90-95% accuracy
[BHR] A l =
C

PC

BHT
chooser

When to Perform Branch Prediction?

* During Decode
— Look at instruction opcode to determine branch instructions
— Can calculate next PC from instruction (for PC-relative branches)
— One cycle “mis-fetch” penalty even if branch predictor is correct

1 2 3 4 5 6 7 8

bnez r3,targ F D X M W
targ:add r4,r5,r4 F D X M W

* During Fetch?
— How do we do that?

Revisiting Branch Prediction Components

regfile |

e Step #1:isitabranch?
— Easy after decode... during fetch: predictor

e Step #2:is the branch taken or not taken?
— Direction predictor (as before)

e Step #3:if the branch is taken, where does it go?
— Branch target predictor (BTB)
— Supplies target PC if branch is taken

20

Branch Target Buffer (BTB)

* As before: learn from past, predict the future
— Record the past branch targets in a hardware structure

* Branch target buffer (BTB):

— “guess” the future PC based on past behavior

— “Last time the branch X was taken, it went to address Y”
* “So, in the future, if address X is fetched, fetch address Y next”

* QOperation
— Like a cache: address = PC, data = target-PC
— Access at Fetch in parallel with instruction memory
* predicted-target = BTB[PC]
— Updated at X whenever target !|= predicted-target
* BTB[PC] = target
— Aliasing? No problem, this is only a prediction

Branch Target Buffer (continued)

e At Fetch, how does insn know that it’s a branch & should read
BTB?

— Answer: it doesn’t have to, all insns read BTB

 Key idea: use BTB to predict which insn are branches

— Tag each entry (with bits of the PC)
* Just like a cache

— Tag hit signifies instruction at the PCis a branch

— Update only on taken branches (thus only taken branches in table)

* Access BTB at Fetch in parallel with instruction memory

predicted target

22

Why Does a BTB Work?

Because most control insns use direct targets

— Target encoded in insn itself — same target every time

What about indirect targets?

— Target held in a register — can be different each time
— Indirect conditional jumps are not widely supported
— Two indirect call idioms
+ Dynamically linked functions (DLLs): target always the same
* Dynamically dispatched (virtual) functions: hard but uncommon

— Also two indirect unconditional jump idioms
e Switches: hard but uncommon
— Function returns: hard and common but...

Return Address Stack (RAS)

£
=

e Return address stack (RAS)
— Call instruction? RAS[TOS++] = PC+4
— Return instruction? Predicted-target = RAS[--TOS]
— Q: how can you tell if an insn is a call/return before decoding it?
* Accessing RAS on every insn BTB-style doesn’t work
— Answer: pre-decode bits in Imem, written when first executed
e Can also be used to signify branches

predicted target

24

Putting It All Together

BTB & branch direction predictor during fetch

ta

target

T3

B

is ret?
e
i taken/not-taken

If branch prediction correct, no taken branch penalty

predicted target

25

Branch Prediction Performance

* Dynamic branch prediction
— Simple predictor at fetch; branches predicted with 75% accuracy
« CPl=1+(20% * 25% * 2)=1.1
— More advanced predictor at fetch: 95% accuracy
e CPI=1+(20% * 5% * 2) = 1.02

* Branch mis-predictions still a big problem though
— Pipelines are long: typical mis-prediction penalty is 10+ cycles
— Pipelines are superscalar (later)

Can we get rid of (many) branches?

A =Y[1i];
if (A == 0)

A =W[1];
else

Y[i] = O;
Z[i] = A*X[i];

Predication If-Conversion Example

Source code
A =Y[1i];
if (A == 0)
A= W[i];
else
Y[i] = O;
Z[i] = A*X[i];

Machine code

A|0: 1df Y(rl), £f2
1: fbne £2,4
NT=50%

T=50%
2: 1df W(rl), £2 4: stf £0,Y(rl)

: 1df Y(rl) ,h £2
: fbne £2,4

: 1df wW(rl) 6 £2
: Jump 5

: stf £0,¥Y(rl)

: 1df X(rl) ,f4
: mulf £4,£2,£f6
: stf £6,Z(rl)

<SNSNoodbkdk WMNBEO

D

5: 1df X(rl) , £f4
6: mulf £4,£f2,£f6
7: stf £6,Z(rl)

Using Predication ¥

0: 1df Y(rl),£f2

: fspne fZ@

: 1df(p pDW(rl) ,£2
: stfCap pD£0,Y(rl)
: 1df X(rl) ,b £4

. mulf f4,£f2,f6
. stf £6,Z(rl)

Soor s~

ISA Support for Predication

: 1df Y(rl) £2

: fspne £f2,pl

: 1df.p pl,W(rl) , £2
: stf.np pl,£0,Y(rl)
: 1df X(rl) , £4

: mulf £4,£2,£f6

: stf £6,Z2(rl)

oo s O

 Itanium: change branch 1 to set-predicate insn £spne

« Change insns 2 and 4 to predicated insns
— 1df.p performs 1d£f if predicate pl is true
— stf.np performs st£f if predicate pl is false

Predication Performance

« Cost/benefit analysis
— Benefit: predication avoids branches
« Thus avoiding mis-predictions
* Also reduces pressure on predictor table (fewer branches to track)
— Cost: extra instructions (fetched, but not actually executed)

 As branch predictors are highly accurate...

— Might not help:
« 5-stage pipeline, two instruction on each path of if-then-else
* No performance gain, likely slower if branch predictable

— Or even hurt!

— But can help:
» Deeper pipelines, hard-to-predict branches, and few added insn

« Thus, prediction is useful, but not a panacea

Avoiding Branches via ISA: Predication

e Conventional control

— Conditionally executed insns also conditionally fetched

1 2 3 4 5 6 / 8
beq r3,targ F D X M W
sub r6,1,r5 F D =-- == == flushed: wrong path
targ:add r4,r5,r4 F N flushed: why?
targ:add r4,r5,r4 F D X M W

e |f beq mis-predicts, both sub and add must be flushed
— Waste: add is independent of mis-prediction

e Predication: not prediction, predication

e |SA support for conditionally-executed unconditionally-fetched insns
e |f beq mis-predicts, annul sub in place, preserve add

e Example is if-then, but if-then-else can be predicated too

e How is this done? How does add get correct value for £5

31

Full Predication

* Full predication
— Every insn can be annulled, annulment controlled by...

— Predicate registers: additional register in each insn (e.g., IA64)
1 2 3 4 5 6 7 8 9

setp.eq r3,p3 F D X M W
sub.p r6,1,r5,p3 F D X - - annulled
targ:add r4,r5,r4 F D X M W

e Predicate codes: condition bits in each insn (e.g., ARM)
1 2 3 4 5 6 7 8 9

setcc r3 F D X M W
sub.nz r6,1,r5 F D X -— == annulled
targ:add r4,r5,r4 F D X M W

e Only ALU insn shown (sub), but this applies to all insns, even stores
e Branches replaced with “set-predicate” insns

32

Conditional Register Moves (CMOVs)

* Conditional (register) moves

— Co?struct appearance of full predication from one primitive
cmoveq rl,r2,r3 // if (r1==0) r3-r2

— May require some code duplication to achieve desired effect

— Painful, potentially impossible for some insn sequences
— Requires more registers

— Only good way of retro-fitting predication onto ISA (e.g., IA32, Alpha)

1 2 3 4 5 6 / 8 9
sub r6,1,r9 D X M W
cmovne r3,r9,r5 F D X M W
targ:add r4,r5,r4 F D X M W

33

Predication Performance

* Predication overhead is additional insns
— Sometimes overhead is zero
* Not-taken if-then branch: predicated insns executed
— Most of the times it isn’t
* Taken if-then branch: all predicated insns annulled
* Any if-then-else branch: half of predicated insns annulled
* Almost all cases if using conditional moves

e Calculation for a given branch, predicate (vs speculate) if...

— Average number of additional insns > overall mis-prediction penalty
— For an individual branch

* Mis-prediction penalty in a 5-stage pipeline = 2

* Mis-prediction rate is <50%, and often <20%

e Overall mis-prediction penalty <1 and often <0.4

— So when is predication worth it?

Predication Performance

 What does predication actually accomplish?
— In a scalar 5-stage pipeline (penalty = 2): nothing
— In a 4-way superscalar 15-stage pipeline (penalty = 60): something
e Use when mis-predictions >10% and insn overhead <6

— In a 4-way out-of-order superscalar (penalty ~ 150)
* Should be used in more situations

— Still: only useful for branches that mis-predict frequently

e Strange: ARM typically uses scalar 5-9 stage pipelines
— Why is the ARM ISA predicated then?
— Low-power: eliminates the need for a large branch predictor
— Real-time: predicated code performs consistently
— Loop scheduling: effective software pipelining requires predication

Research: Perceptron Predictor

Perceptron predictor [Jimenez]
— Attacks BHR size problem using machine learning approach
— BHT replaced by table of function coefficients F. (signed)
— Predict taken if 3(BHR,*F,)> threshold

+ Table size #PC*|BHR|*|F| (can use long BHR: ~60 bits)
— Equivalent correlated predictor would be #PC*2BHR|
— How does it learn? Update F. when branch is taken
* BHR,==17?F++:F——;
* “don’t care” F, bits stay near O, important F, bits saturate
+ Hybrid BHT/perceptron accuracy: 95-98%

PC |— F

Yy vy v Vv Vv Vv Vv v

T 1 1+ T § T 7%
BHR

More Research: GEHL Predictor

* Problem with both correlated predictor and perceptron
— Same BHT real-estate dedicated to 1st history bit (1 column) ...
— ...as to 2nd, 3rd, 10th, 60th...
— Not a good use of space: 1st bit much more important than 60th

 GEometric History-Length predictor [Seznec, ISCA'05]

— Multiple BHTs, indexed by geometrically longer BHRs (0, 4, 16, 32)
* BHTs are (partially) tagged, not separate “chooser”
* Predict: use matching entry from BHT with longest BHR
* Mis-predict: create entry in BHT with longer BHR
+ Only 25% of BHT used for bits 16-32 (not 50%)
* Helps amortize cost of tagging
+ Trains quickly
— 95-97% accurate

Championship Branch Prediction

 CBP
— Workshop held in conjunction with MICRO
— Submitted code is tested on standard branch traces
— Highest prediction accuracy wins

* Two tracks
— ldealistic: predictor simulator must run in under 2 hours
— Realistic: predictor must synthesize into 32KB + 256 bits or less

