CSE 548: Computer Systems Architecture

Cache Coherence
Luis Ceze, Spring 2017

(based on slides lifted from friends at UPenn, UIUC, UW, MIT, CMU)

Shared-Memory Multiprocessors

 Conceptual model

— The shared-memory abstraction

— Familiar and feels natural to programmers

— Life would be easy if systems actually looked like this...

— e — —

Shared-Memory Multiprocessors

...but systems actually look more like this

— Processors have caches

— Memory may be physically distributed

— Arbitrary interconnect

Router/interface

Router/interface

Router/interface

Router/interface

Problems with the Intuition

Intuition:
— Reading a shared location should return latest value written (by any
process) J(Y {
But “last” is not well-defined StA
. S 4 {
In sequential case: $ha
— “last” is defined in terms of program order, not time K\ | (2
— D,
In parallel case? _ [dA

Problems with the Intuition

Intuition:

— Reading a shared location should return latest value written (by any
process)

But “last” is not well-defined
In sequential case:

— “last” is defined in terms of program order, not time

In parallel case:

— program order defined within a thread, but need to make sense of orders
across thread

Must define a meaningful semantics

— the answer involves both “cache coherence” and an appropriate
“memory consistency model”

Formal Definition of Coherence

A memory system is coherent if the results of any execution of a
program are such that for each location, It’I_S,QQ_S_SIbJ_e_tO_COﬂSILU_CIi
bipothetlcal serial order of all operations to the location that is
consistent with the results of the executionand in which:

1. operations issued by any particular process occur in the order
issued by that thread, and

2. the value returned by a read is the value written by the last write
to that location in the serial order

* Two necessary conditions:
— Write propagation: value written must become visible to others eventually

— Write serialization: writes to location seen in same order by aft
* if | see wl after w2, you should not see w2 before wl
« do we need to worry about read order? -

How do we provide these guarantees?

Announcements

* Next lecture in room 305
— HW specialization/machine learning
— Joint with deep learning class

Shared-Memory Multiprocessors

 Conceptual model
— The shared-memory abstraction
— Familiar and feels natural to programmers

— Life would be easy if systems actually looked like this...

Memory

Formal Definition of Coherence

A memory system is coherent if the results of any execution of a
program are such that for each location, it is possible to construct a
hypothetical serial order of all operations to the location that is
consistent with the results of the execution and in which:

1. operations issued by any particular process occur in the order
issued by that thread, and

2. the value returned by a read is the value written by the last write
to that location in the serial order

* Two necessary conditions:

— Write propagation: value written must become visible to others eventually

— Write serialization: writes to location seen in same order by all
 if | see wl after w2, you should not see w2 before wl
* do we need to worry about read order?

How do we provide these guarantees?

Coherence

WrX\

Wr X

\ “Reading X gets the value of

Rd X the last write to X”

ni

Coherence

fo\

Wr X
\ 2) “Reading X gets the value
Rd X of the last write to X”

ni

Without Coherence

(The coherence invariants prevent this from happening)

\\Rdx

How to decide who wrote last?

ni

Coherence is Ordering

Wr X Wr X
\ OR /
Wr X

Wr X

Coherence defines the set of legal orders of
accesses to a single memory location

ni

Shared Caches

* Processors share a single cache, essentially punting the problem.

e Useful for very small machines.
— Problems are limited cache bandwidth and cache interference
— Benefits are fine-grain sharing and prefetch effects

m— T L

Intel Core 2 Duo (Conroe)

Shared Cache Implementation

v

Interconnect

{

Shared | Tag | Data
Cache

Memory| A 500

On-chip shared cache

Lacks per-core caches

— Shared cache becomes
bottleneck

Shared Cache Implementation

Load [A]

by

Interconnect

{

Shared | Tag ¢ Data
Cache

Memory \AL‘SOO
B

0

Shared Cache Implementation

Load [A] (500)

f

! ¢0/ o

Interconnect

{

Shared | Tag ¢ Data

Cache| A g
Memory \AL‘SOOI
B 0

Shared Cache Implementation

Store 400 -> [A]

! v\ L
Interco\mect
Shared | Tag Daxa_
Cache| A | 400 . Write into cache
Memory| A 500

Shared Cache Implementation

Store 400 -> [A]

\ 2 ¢' \ \ 2

Inte rco\mect

{ |\

Shared | Tag Daxa State
Cache| A | 400 Dirty a

$ « Mark as "dirty”
Memory| A 500 « Memory not updated

Adding Private Caches

Cache 5
Tag | Dat

Cache »
Tag | Dat

Cache !
Tag | Dat

d d d
{ {)
Interconnect

Add per-core caches
(write-back caches)

— Reduces latency
— Increases throughput
— Decreases energy

{

Shared | Tag | Data

State

Cache

Memory A

Cache

Tag

Dat

Adding Private Caches

Cach

e Load [A]

T

Dat
a

{

Tag

Dat

nterconnect

{

Shared

Data

State

Cache

Memory

\ALKSOO

Adding Private Caches

e Load [A] (500)
Cache

Cach Cache
Tag | Dat T y Tag | Dat

d

{ L \f {

ntefconnect

Shared ta State
Cache| A 00 Clean

0l 0
Memory| A 500/

Adding Private Caches

e Store 400 -> [A]

Cache Cach Cache

Tag | Dat Tag | Dat Tag | Dat
d d d
A 4%0 jt
Interconnect
Shared | Tag | Data State
Cache| A [500 Clean
Memory| A 500

Adding Private Caches

e Store 400 -> [A]
Cache Cach Cache

Tag | Dat T Dat | Stat Tag | Dat
d d e d

A 1400 | Dirty

{ { {

Interconnect

{

Shared | Tag | Data State
Cache| A | 500 Clean

Memory| A 500

Cache

Tag

Will It Always Work?

Cache »
Tag | Dat

Cache !
Tag | Dat

Dat Stat
d d e d
: S ;
Interconnect
» What happens shared [Tag [Data] _ State
when another Cache| A | 500 Clean
core tries to
read A? $
Memory| A 500

Cach

Private Cache Problem: Incoherence

e Load [A]

T

Cache 5
Tag | Dat

Cache !
Dat

Dat Stat
a a e
A 4%0 Dirty ;
Interconnect
Tag | Data State
Cache 500 Clean

Memory| A 500

Private Cache Problem: Incoherence

e Load [A] (500)
Cach Cache Cache
T: Dat

Dat y Tag | Dat | Stat
- d
A 500'\ A [400 | Dirty
© J)

d €

Interconnect
a —~Fag_| Data State
Cache 500 Clean

Memory| A 500

Private Cache Problem: Incoherence

e Load
Cach
IF 4 Dat
5(")

[A] (500!

e 5
Dat

Cache !
Dat

Cach
Q Stat
e
e A 4(5:0 Dirty It
Interconnect
a —~Fag_| Data State
- PO got the Cache 500 Clean
wrong value!)
Memory| A 500

Bus-based Multiprocessor

Simple multiprocessors use a bus
— All processors see all requests at the same time, same order

Memory
— Single memory module, -or-
— Banked memory module

29

Snoopy Hardware Cache Coherence

CPU

Coherence controller:
— Examines bus traffic (addresses and data)

— Executes coherence protocol

* What to do with local copy when you see different things
happening on bus

Protocol is a distributed algorithm: cooperating
state machines

— Set of states, state transition diagram, actions
Granularity of coherence is a cache block

Bus messages totally ordered and atomic (unless
split-transaction)

What should the protocol (s) look like?

25

VI (MI) Coherence Protocol

HBR/BW e VI (valid-invalid) protocol: aka M

— Two states (per block in cache)
* V (valid): have block
* | (invalid): don’t have block
+ Can implement with valid bit

* Protocol diagram (left)

— Convention: event=generated-event

— Summary
 |f anyone wants to read/write block
* Give it up: transition to | state
* Write-back if your own copy is dirty

* Thisis an invalidate protocol

>

R—BR, W—BW

BR/BW=SD, WB=>SD

v

Three processor-initiated events
R: read W: write WB: write-back
One response event: SD: send data
Two remote-initiated events
BR: bus-read, read miss from another processor
BW: bus-write, write miss from another processor

[
z
=

27

VI Protocol State Transition Table

This Processor

Other Processor

State Load Store | Load Miss Store Miss
. Miss Miss
Invalid (I) Y oV ---
. . . Send Data | Send Data
Valid (V) Hit Hit T o1

Rows are “states”

e JvsV

Columns are “events”

o Writeback events not shown
Memory controller not shown

e Responds with no other processor would respond

VI Protocol (Write-Back Cache)

Processor 0 Processor 1 Mem
0: addi $r3,Srl, &accts

1: 1w Sr4,0(S$Sr3)

2: blt $r4,Sr2,6

3: sub $r4,S5r4,Sr2

4: sw Sr4,0(Sr3)

5: jal dispense cash addi $r3,Srl, &accts

lw $Sr4,0(Sr3)

: blt $r4,S$r2,0

sub $r4,Sr4,S5r2
sw Sr4,0(Sr3)

Jal dispense cash

g B w N PO

1w by processor 1 generates a BR (bus read)

— processor 0 responds by sending its dirty copy, transitioning to |

Is this a good protocol? What is it actually doing? Can we do better? ©

29

VI — MSI

BR—,BW—> * VI protocol is inefficient
— Only one cached copy allowed in entire system
— Multiple copies can’t exist even if read-only!

* Not a problem in example
e Big problem in reality

 MSI (modified-shared-invalid)

— Fixes problem: splits “V” state into two states
* M (modified): local dirty copy
* S (shared): local clean copy

— Allows either
* Multiple read-only copies (S-state) --OR--

W=SD, WB=SD

* Single read/write copy (M-state)

R—=, W= u R—,BR=

30

MSI Protocol State Transition Table

This Processor

Other Processor

State Load Store | Load Miss Store Miss
vaia @] M55 [M T
Shared (S)| Hit | POt - =

Modified . . Send Data | Send Data
(M) Hit Hit S o1

e M => Stransition also updates memory, why?
o After which memory willl respond (as all processors will be in S)

MSI Protocol (Write-Back Cache)

Processor 0

oa s w N PO

addi S$r3,Srl, &accts
1w Sr4,0($Sr3)

: blt $r4,Sr2,0

sub $r4,Sr4d,$r2
sw Sr4,0(Sr3)
Jal dispense cash

Processor 1

Mem

g B w N PO

: blt $r4,S$r2,0

addi $r3,Srl, &accts
1w $Sr4d,0($Sr3)

400

sub S$r4,Sr4,S$r2
sw Sr4,0(Sr3)
Jal dispense cash 400

1w by processor 1 generates a BR

— Processor 0 responds by sending its dirty copy, transitioning to S
sw by processor 1 generates a BW

— Processor 0 responds by transitioning to |

32

Load A
Cache 5

MSI Example: Step #1

Cache 5

Cache »

State

Addr | Data | State Addr | Data | State Addr | Data
-- -- -- Miss! A |50 M -- --
Bus
Shared | Addr | Data State
Cache A (1000 Modified
B 0 Idle
Memory A 1000
B 0

MSI Example: Step #2

Cache 5

Load A

Cache Cache
Addr | Data | State Addr Data | State Addr | Data | State
-- -- -- 500 | M -- -- --
/\ CAdMVIiss: Addr=A 2 D
Shared Addr Data State
Cache A (1000 Modified
B 0 Idle
Memory A 11000
B 0

MSI Example: Step #3

Cache 5

Load A
Cache 5 Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
-- -- -- A | 500 S -- -- --
I Response: r=A, Data=500 I

«— Bus
Shared | Addr | Data State
Cache A (1000 Modified
B 0 Idle
Memory A 11000
B 0

Load A
Cache 5

MSI Example: Step #4

Cache 5

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A | 500 S A | 500 S -- -- --
fI Response:AijIjr=A, Data=500 I \
Shared | Addr | Data State
Cache A | 500 |Shared, Dirty

B 0 Idle
Memory A 11000
B 0

MSI Example: Step #5

Load A <- 500
Cache 5 Cache 5

Cache »

State

Addr | Data | State Addr | Data | State Addr | Data
A | 500 S A | 500 S -- --
Bus
Shared | Addr | Data State
Cache A | 500 | Shared, Dirty
B 0 Idle
Memory A 1000
B 0

MSI Example: Step #6

tore 400 -> A
Cache » Cache 5

Cache »

State

Addr | Data | State Addr | Data | State Addr | Data
A 500 S Miss! A 500 S -- --
Bus
Shared | Addr | Data State
Cache A | 500 |Shared, Dirty
B 0 Idle
Memory A 11000
B 0

MSI Example: Step #7

tore 400 -> A
Cache » Cache 5

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A | 500 S Miss! A | 500 S -- -- --
'%Upgmw.ss: Addr=A 2 I D
Shared | Addr | Data State
Cache A | 500 |Shared, Dirty

B 0 Idle
Memory A 11000
B 0

MSI Example: Step #8

tore 400 -> A
Cache » Cache 5

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A | 500 S Miss! A -- I -- -- --
'%Upgmw.ss: AGAr=A 2 I D
Shared | Addr | Data State
Cache A 500 Modified

B 0 Idle
Memory A 11000
B 0

MSI Example: Step #9

tore 400 -> A
Cache » Cache 5

Cache »

State

Addr | Data | State Addr | Data | State Addr | Data
A |500| M Miss! A -- I -- --
Bus
Shared | Addr | Data State
Cache A 500 Modified
B 0 Idle
Memory A 11000
B 0

tore 400 -> A
Cache » Cache 5

MSI Example: Step #10

Cache »

State

Addr | Data | State Addr | Data | State Addr | Data
A 1400 | M Miss! A -- I -- --
Bus
Shared | Addr | Data State
Cache A | 500 Modified
B 0 Idle
Memory A 1000
B 0

Cache Coherence and Cache Misses

 Coherence introduces two new kinds of cache misses

— Upgrade miss
« On stores to read-only blocks
» Delay to acquire write permission to read-only block

— Coherence miss
« Miss to a block evicted by another processor’s requests/invalidate

- Making the cache larger...
— Doesn't reduce these type of misses
— May increase these type of misses

33

Hmm.. What would happen in this case?

Processor 0

load A miss

store A

MESI (4-state) Invalidation Protocol

* Problem with MSI protocol
— Reading and modifying data is 2 bus transactions, even if no sharing
* e.g.even in sequential program
e BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

* Add exclusive state: write locally without transaction, but not

modified
— Main memory is up to date, so cache not necessarily owner

— States

* invalid
 exclusive or exclusive-clean (only this cache has copy, but not modified)

e shared (two or more caches may have copies)
* modified (dirty)
— | ->E on PrRd if no other processor has a copy

MESI Example

Processor 0 Processor 1

0: addi $r3,Srl, &accts
: 1w Sr4,0(Sr3)

: blt $r4,Sr2,0

: sub S$r4,S$r4,Sr2

: sw $r4,0(Sr3) (No miss!) [MA00]] 500 |

S w N

0: addi $r3,S$rl, &accts
1: 1w $Sr4,0($Sr3) 200
2: blt Sr4,5r2,6
3: sub Sr4,Sr4,Sr2
4: sw Sr4,0(Sr3)
400

« Most modern protocols also include E (exclusive) state
— Interpretation: "I have the only cached copy, and it's a clean copy”
— Why would this state be useful?

45

MESI Protocol State Transition Table

This Processor

Other Processor

State Load Store | Load Miss Store Miss
. Miss Miss . .
Invalid (I) CSorE| == M
: Upg Miss B
Shared (S)| Hit oM --- =>]
Exclusive Hit Hit Send Data | Send Data
(E) => M => 5 =>]
Modified . . Send Data | Send Data
(M) Hit Hit S o1

e Load misses lead to “"E” if no other processors is caching the block

47

Can we do better than MESI?

 What if we have a lot of producer-consumer?

Can we do better than MESI?

 What if we have a lot of producer-consumer?

* That would suck... you can’t shared cache-cache dirty data
without writing back...

 MOESI: Add yet another state “Owned”
* Owned means: | am responsible for write back

* (Can alternate between O and M without writing data back
to memory, hence useful for producer-consumer

Resel
INVD, WEINVD

Prabe Wtike Hil
Invalid | | Exclusive
Read Mis, Bxclushe

Read Hil
Probe Read Hil

Read Hil
Probe Read Hil

385226

Snooping Bandwidth Scaling Problems

» Coherence events generated on...
— L2 misses (and writebacks)

« Problem#1: N2 bus traffic

— All N processors send their misses to all N-1 other processors
— Assume: 2 IPC, 2 Ghz clock, 0.01 misses/insh per processor

— 0.01 misses/insn * 2 insn/cycle * 2 cycle/ns * 64 B blocks
= 2.56 GB/s... per processor
« With 16 processors, that's 40 GB/s! With 128 that’s 320 GB/s!!

— You can use multiple buses... but that complicates the protocol

« Problem#2: N2 processor snooping bandwidth
— 0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor

— 16 processors: 0.32 bus-side tag lookups per cycle
« Add 1 extra port to cache tags? Okay

— 128 processors: 2.56 tag lookups per cycle! 3 extra tag ports?
— Now add a GPU to the coherence domain, what happens?

Shared broadcast bus

Key: bus arbiter services one request at a time

Advantage: conceptually simple
Disadvantage: shared, difficult to scale

. .

Coherence events generated on...
— L2 misses (and writebacks)

Problem#1: N2 bus traffic

— All N processors send their misses to all N-1 other processc
— Assume: 2 IPC, 2 Ghz clock, 0.01 misses/insn per process
= 2.56 GB/s... per processor

Problem#2: N2 processor snooping bandwid
Q Q — 0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per pr¢
— 16 processors: 0.32 bus-side tag lookups per cycle
— 128 processors: 2.56 tag lookups per cycle! 3 extra tag po
— Now add a GPU to the coherence domain, what happens?

53

Shared broadcast bus

Key: bus arbiter services one request at a time

Advantage: conceptually simple
Disadvantage: shared, difficult to scale

. . . e

N ﬁ/@ - @\&

@ ¢ o000 000

54

point-to-point networks

i HE O

Advantages:
e better electrical behavior (shorter wires)
e coherence transaction parallelism

Problem: unordered network
Nodes may observe messages in different orders

Is this a problem?

55

Ordering — What is wrong here?

A B C

(&)

time

OO

ack R rd

@ data

\W

(O e
Final States @

()

W

How do we fix it?
56

Directory Coherence Protocols

Directories:
— Extend memory (or shared cache) to track caching information
— For each physical cache block, track:

e Owner: which processor has a dirty copy (l.e., M state)
* Sharers: which processors have clean copies (l.e., S state)

— Processor sends coherence event to directory
* Directory sends events only to processors as needed

— Avoids non-scalable broadcast used by snooping protocols, does not
require strong ordering properties from the network

— For multicore with shared L3 cache, put directory info in cache tags

For high-throughput, directory can be banked/partitioned

+ Use address to determine which bank/module holds a given block
* That bank/module is called the “home” for the block

Basic Scheme

Assume P processors

With each cache-block in memory:
e P sharer bits
] | e 1 dirty bit

Interconnection Network With each cache-block in cache:

) eee ©

Cache Cache

]] e 1 valid bit
Memory L LU pirectory e 1 dirty (owner) bit
sharer bits dirty bit

— Read from main memory by PE-i:
 if dirty-bit is OFF then { read from main memory; turn p[i] ON; }

e if dirty-bitis ON then { recall line from dirty PE (cache state to shared);
update memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to PE-

i; }
— Write to main memory by PE-i:

 if dirty-bit OFF then { supply data to PE-i; send invalidations to all PEs
caching that block; turn dirty-bit ON; turn P[i] ON; ... }

MSI Directory Protocol

LdMiss/St]
Miss * Processor side

— Directory follows its own protocol

* Similar to bus-based MSI

— Same three states
— Same five actions (keep BR/BW names)

— Minus red arcs/actions
« Events that would not trigger action anyway
+ Directory won't bother you unless you need to act

Store

tMiss, WB

LdMiss

ULoad, Store u Load, LdMiss

MSI Directory Protocol

PO P1 Directory

Processor 0 Processor 1
0: addi rl,accts, r3 __:_:500
1: 1d 0(r3),r4
2: blt r4,r2,done _5:0:500
3: sub rd4,r2,r4
4: st r4d,0(xr3)
0: addi rl,accts, r3 _M:OZSOO
1: 1d 0(r3),r4 (stale)
2: blt r4,r2,done
3: sub r4,r2,r4 _5:0’1:400
4: st rd4,0(r3)
lllllllllllhmlﬂoo

« 1d by P1 sends BR to directory

— Directory sends BR to PO, PO sends P1 data, does WB, goes to S
« st by P1 sends BW to directory

— Directory sends BW to PO, PO goes to I

Load A
Cache 5 Cache 5

Directory Example: Step #1

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
= [=T - Jwisss [A [500] M o I =
Point-to-Point Interconnect
Directory |Addr | Data State Sharers
A [1000 Modified P1
B 0 Idle --
Memory A 11000
B 0

Load A
Cache 5 Cache 5

Directory Example: Step #2

Data

State

Addr

Addr

Data

State

A

500

M

Cache »

Data

State

Addr

|Ldmiss: Addr=A | 1 |
PuiﬁHﬁI{oinyl-r’terconnect

l II LdMissForward: Addr=A, Req=P0

Directory |Addr | Data State Sharers
A 11000 Blocked P1
B 0 Idle --
Memory A 11000
B 0

Load A
Cache 5 Cache 5

Directory Example: Step #3

Addr

Cache »

Data | State Addr | Data | State Addr | Data | State
-- -- A | 500 S -- -- --
I Response: A(idr=A, Data=500 I

PotiTt=10- -5ointlnterconnect
Directory |Addr | Data State Sharers
A [1000 Blocked P1
B 0 Idle --
Memory A 11000
B 0

Load A
Cache 5 Cache 5

Directory Example: Step #4

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A | 500 S A | 500 S -- - --
I Response: A(idr=A, Data=500 I

Pott=10- -5ointlnterconnect
Directory |Addr | Data State Sharers
A [1000 Blocked P1
B 0 Idle --
Memory A 11000
B 0

Load A <- 500
Cache 5 Cache 5

Directory Example: Step #5

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A | 500 S A | 500 S -- -- --
Junblock: Addr=A, Data=500 | |

Puiﬁtrtﬁ{oint Interconnect
Directory |Addr | Data State Sharers
A | 500 |Shared, Dirty | PO, P1
B 0 Idle --
Memory A 11000
B 0

Store 400 -> A
Cache 5 Cache 5

Directory Example: Step #6

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A | 500 S Imiss! A | 500 S -- -- --
Point-to-Point Interconnect
Directory |Addr | Data State Sharers
A | 500 |Shared, Dirty | PO, P1
B 0 Idle --
Memory A 11000
B 0

Store 400 -> A
Cache 5 Cache 5

Directory Example: Step #7

Cache »

State

Addr | Data | State Addr | Data | State Addr | Data
A | 500 S A | 500 S -- --

&pgradel\/ﬁss: Addr=A

PuiﬁHﬁI{oinyl-r(terconnect

Directory

Memory

l I I Invalidate: Addr=A, Req=P0, Acks=1

Addr | Data State Sharers
A | 500 Blocked PO, P1
B 0 Idle --

A |1000
B 0

Store 400 -> A
Cache 5 Cache 5

Directory Example: Step #8

Addr

Data

State

A

500

S

Addr

Data

State

A

I

i

Cache »

Data

State

Addr

I

=

Ack: Addr=A, Acks=1 /|

- oin‘yl-r’terconnect

Directory |Addr | Data State Sharers
A | 500 Blocked PO, P1
B 0 Idle --
Memory A 11000
B 0

I I Invalidate: Addr=A, Req=P0, Acks=1

Store 400 -> A
Cache 5 Cache 5

Directory Example: Step #9

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A |500| M A -- I -- -- --
Point-to-Point Interconnect
Directory |Addr | Data State Sharers

A | 500 Blocked PO, P1

B 0 Idle --
Memory A 11000

B 0

Store 400 -> A
Cache 5 Cache 5

Directory Example: Step #10

Cache »

Addr | Data | State Addr | Data | State Addr | Data | State
A 400 | M A -- I -- -- --
IUanock: Addr=A I I

Puiﬁtrtﬁ{oint Interconnect
Directory |Addr | Data State Sharers
A | 500 Modified PO
B 0 Idle --
Memory A 11000
B 0

Directory Flip Side: Latency

Directory protocols
+ Lower bandwidth consumption — more scalable

— Longer latencies
2 hop miss 3 hop miss

Two read miss situations @ @ @
1

Unshared: get data from memory \

— Snooping: 2 hops (PO—memory—PO0) @ @

— Directory: 2 hops (PO—memory—PO0)

Shared or exclusive: get data from other processor (P1)
— Assume cache-to-cache transfer optimization
— Snooping: 2 hops (PO—P1—PO0)
— Directory: 3 hops (PO—memory—P1—PO0)
— Common, with many processors high probability someone has it

Directory Flip Side: Complexity

* Latency not only issue for directories
— Subtle correctness issues as well
— Stem from unordered nature of underlying inter-connect

* Individual requests to single cache must be ordered

— Point-to-point network: requests may arrive in different orders
* Directory has to enforce ordering explicitly
* Cannot initiate actions on request B...
* Until all relevant processors have completed actions on request A
* Requires directory to collect acks, queue requests, etc.

* Directory protocols
— Obvious in principle
— Complicated in practice

Best of Both Worlds?

 Can we combine best features of snooping and directories?
— From snooping: fast two-hop cache-to-cache transfers
— From directories: scalable point-to-point networks
— In other words...

 Can we use broadcast on an unordered network?
— Yes, and most of the time everything is fine
— But sometimes itisn’t ... protocol race
— Example: IBM Power servers (ring network, no directory)

DS/IS coherence issues?

CPU

e Can DS and IS ever be incoherent?

* When would that be a problem?

77

Performance danger

for(i=0; i<n; i++)
ali] = bli];
e Let’s assume we parallelize code:
— p=2
— element of a takes 4 words
— cache line has 32 words

cache line

Written by processor 1

78

False Sharing

Two or more processors sharing parts of the same block
But not the same bytes within that block (no actual sharing)
Creates pathological “ping-pong” behavior

Careful data placement may help, but is difficult

— It can happen every where and in different type: intra-
object and inter-object, heap, globals.

False sharing discussion

* False sharing rate

— Larger block? int count[8]; //Global array

— Larger cache? thread_func(int id) {
* Impact of false sharing for(i=0; i < M; i++)
, , count[id]++;
— As miss penalty increases? }
— Traffic?

M Reality ™ Expectation
— Overall effects on performance?

—
W 120

* How can we reduce it? E . L l I_
— Data layout? & x
1 2 4 8

0

— Compiler optimizations? Number of threads

— HW support?
— Tools (e.g., Sherif from UMass)

Coherence on Real Machines

Many uniprocessors designed with on-chip snooping logic
— Can be easily combined to form multi-processors
* E.g., Intel Pentium4 Xeon
— Multi-core

Xeon Phi (MESI, directory-based)

— 60 cores, bi-directional ring bus
— Minor extension to support modified-shared to avoid broadcast storms

ARM Corelink
— MOESI

Larger scale (directory) systems built from smaller MPs
— E.g., Sun Wildfire, NUMA-Q, IBM Summit

Some shared memory machines are not cache coherent
— E.g., CRAY-T3D/E
— Shared data is un-cacheable
— If you want to cache shared data, copy it to private data section
— Basically, cache coherence implemented in software
* Have to really know what you are doing as a programmer

Cache Coherence in Heterogeneous Systems

 E.g., CPU+GPU sharing address space in a cache-coherent way

* GPUs touch a lot of data, have very different access pattern
— How to isolate traffic and still provide coherence

e Several approaches:
— Self-invalidation
— Traffic filtering
e Learn from traffic what each node cares about, filter based on that

— Region Coherence

Do it at a coarse grain, then fine-grain

* A-priori configuration of what each node cares about
— Heterogeneous System Coherence

* Directory-based region coherence
» Use direct access as opposed to coherent interface

"BY MILO M.K. MARTIN, MARIC D. HILL, AND DANIEL J. SORIN
Why On-Chip
Cache

Coherence Is

Here to Stay

SHARED MEMORY IS the dominant low-level
communication paradigm in today’s mainstream
multicore processors. In a shared-memory system,

Cache col
natethenr
for legacy
ware cacl
formance
achievabli
coherence
advantage
compatib:
ware, inc
written f
memory s

Althou
in today’s
ventional
coherence
number o
on future
ence’s all
es from c
and inter
and conce
Such clair
cores in ft
employw
nicate wil
ence, exp
memories
(without s

Here, 1
ventional
way to sc:
in which

fin otnram

sappa

