CSEP 548: Computer Systems
Architecture

Scheduling (O00)
Luis Ceze, Spring 2017

(based on slides from friends at UPenn, UIUC, UW, MIT)

Scheduling (Static + Dynamic)

* Previously:
— Pipelining
* Multiple stages
e Different instructions each stage

— Superscalar

* Multiple instructions in each stage
e “N-wide”

* Now:

— Compiler (static) scheduling
— Hardware (dynamic) scheduling

Review Example

loop: 1/2(3|4|5|6|7|8|9|A|B
Id [r1] ->r2 FID| XM |W

add r2 +r3->r2| |Flplg*| xIM Iw

st r2 ->[r1] Flp*| D| X[MW
addirt1 +4 ->r1 FID|X|M|W
subr1,r5->r6 FID|XM|W
Inz r6, loop FID| XMW

On a single-issue, 5-stage pipeline,
How many cycles does each loop iteration take?

Assume all cache hits and perfect branch prediction

Review Example

loop: 1

Id [r1] -> r2

F
add r2 + r3 ->r2| el plg* | ¢*

st r2 ->[r1]

mimMmo|l|Ul N

addir1 +4 ->r1

subr1, r5->r6

nmloloXx| S| o
Slolx|x|E
Ux|=|Z|s
XEI=s=

Inz ro, loop

What if the pipeline is 2-wide?

Would we get any more performance by going 4-wide?

Un-optimized code

loop:
Id [r1] -> r2
do { add r2 +r3 ->r2
D ="p+X; st r2 ->[r1]
p++; addirt +4 ->r1
} sub r1, r5 -> r6
while (p != &a[N])); jnz 6, loop

Compiler has taken the code and just emitted assembly
In the order statements appear

Can we do better?

Scheduling Code

* Compiler can re-order instructions
— Eliminate RAW stalls

— Place independent instructions near each other

* Called static scheduling

* Must be careful to preserve program behavior
in all cases!

Dataflow graph

Id [r1] ->rTN
addr2 +r3 -> r2jY

st r2 ->[r1]
addir1 + 4 -> r1\y
subr1, r5-> rG\Y

jne r6, loop

Optimization

Id [r1] ->r
addirl1 +4 ->r1
add r2 +r3 ->r2
subr1, r5->r6 ﬁy
st r2 -> [r1]

jne r6, loop

A problem with that

- !
id [r1] ->r Now st r2->[r1] gets wrong value!

addir1 + 4 -> r1 \
add r2 +r3 ->r2
subr1,r5->r6 ﬁy !

st r2 -> [r1]

jne r6, loop

Fixed

Id [r1] ->r
addirl1 +4 ->r1
add r2 +r3 ->r2
subr1, r5->r6 ﬁy
st r2 -> -4(r1]

jne r6, loop

Optimized code

loop:
Id [r1] -> r2
addir1 + 4 ->r1 do {
add r2 +r3 ->r2 P=Tp X
subr1, r5->r6 pt++]
st r2 -> [r1] }
jnz 6, loop while (p != &a[N]);

Now pieces of each statement are interleaved.

(Aside: why debugging optimized code is confusing)

11

How fast now?

]o
loop: 112|3/4|5|6|7|8|9|A|B
Id [r1] -> r2 FID| XM |W
addir1 +4 ->r1 FID|XM|W
-add2 +r3 ->r2 F| D X|M | W
subr1, r5->ro FID|X|M|W
st r2 -> -4[r1] FID| XM |W
Inz r6, loop FI DI XMW

How fast is this on a 1-wide machine?

How fast now?

loop: 1

Id [r1] -> r2

<

F
addirt +4 ->r1|€

o

add r2 + r3 ->r2

Mmoo N

subr1, r5->r6

st r2 -> -4[r1]

MM o|loXx|x]| w
oo x|x|s|Z| o

M | W
M | W
XM [W
Inz r6, loop XM | W

How fast is this on a 2-wide machine?

What about 4-wide”? 87 167

Performance vs width

Millions of cycles for 1M
iterations

© = N O b 01 O N O®
||
||

Machine Width

—— Unoptimized
-=— Scheduled

14

Room to improve?

 Code is much better
— 2-wide performance greatly improved
— 4-wide now useful

e Can we do better?
— What is limiting us?

Room to improve?

* Code is much better
— 2-wide performance greatly improved
— 4-wide now useful

 Can we do better?

— With the scheduling scope shown: no
— Larger scheduling scope: yes

Scheduling Scope

e Window of instructions we can re-order in
— Larger => better schedules

— Compiler: theoretically whole program
* Not practical for many reasons...

e How?
— One way: Loop un-rolling
— Others exist: | wish | had time...

Loop un-rolling

* Take 2 (or more) iterations
* Remove extra loop control

— Getting rid of extra instructions saves time!

* Re-schedule both together
— Larger scope to schedule from
— Register names may need changing

Id [r1] -=> r2
addr2 +r3 ->r2
st r2 ->[r1]
addir1 +4 ->r1
subr1,r5->r6
jnz r6, loop

Id [r1] -=> r2

add r2 +r3 ->r2
st r2 ->[r1]
addir1 +4 -> r1
subr1, r5->r6
jnz r6, loop

Loop unrolling

id [r1] -> 12 d [F1] -> 12
2002 T2 addirt +8->r1
str2 ->[r1] id -4[r1] -> r7

subr1, r5->r6
add r2 +r3 ->r2
»add r7 + r3 ->r7

Id 4[r1] -> r2 st r2 -> -8[r1]
add r2 + r3 ->r2 st r7 -> -4[r1]
st r2 -> 4[r1] jnz r6, loop

addir1 + 8 -> r1
subr1,r5->r6
jnz r6, loop

19

Dependence types

 RAW (Read After Write) = “true dependence”
Id [r1] ->r2
addr2+r3->r4
« WAW (Write After Write) = “output dependence”
Id [r1] ->r2
addrl+r3->r2
 WAR (Write After Read) = “anti-dependence”
Id [r1] ->r2
addr3+r4d->rl

Performance vs width

iterations

'\ —— Unoptimized
A

\ = Unrolled 8x

Millions of cycles for 1M
© = N O b 01 O N O

—¥ X

L
- Scheduled
\.\- Unrolled 2x
- - Unrolled 4x

1 2 4 8 16
Machine Width

21

Why not unroll 1K times?

Why not unroll 1K times?

* More unrolling => more performance
— Fewer dynamic instructions
— Better scheduling

* Downsides / limiting factors?

— Number of registers
— More static instructions => S| pressure

Limitations of static scheduling?

Limitations of static scheduling

e Assumes cache hits
— Common case
— Miss? Different schedule maybe better

 Compiler must be conservative

— Needs to guarantee correctness
— Sometimes tough to tell if re-ordering is legal

 Examples?

Re-ordering barrier: branches

loop:
jzrl, not_fouD
Id [r1] ->r2

subrl, r2->r2

Legal to move load up?
jz r2, found

d4[rl] ->rl
jmp loop

No: if r1 is null, will cause a fault

Re-ordering barrier: Id/st

Id [r1] ->r2
st r3 -> [r4]

Re-ordering barrier: Id/st

Id [r1] ->r2
st r3 -> [r4]

Can these be switched?
No: r1 and r4 may be same value

* Technical term: alias
— Two names for same memory location

An example

void f(int * a, int *b, int *c, int N) {
for (inti=0;i<N;i++) {
ali] = b[i] + c[i];

}
} Id [r1] ->r5
Id [r2] -=> r6
add r5+r6 ->r7

st r7 ->[r3]

29

Loop unrolled 2x

Id [r1] -> 5
Id [r2] -> r6
addr5+r6 ->r7 What can we re-order here?

st r7 -> [r3]

ld 4[r1] ->r5

Id 4[r2] ->r6

add r5 +r6 ->r7

st r7 -> 4[r3]

// loop control here

Loop unrolled 2x

Id [r1] ->r5

Id [r2] ->r6

add r5+r6 ->r7
st r7 ->[r3] / Can we move this load up?
Id 4[r1] ->r5 No: r1+4 might equal r3

ld 4[r2] ->r6

add r5+r6 ->r7

st r7 -> 4[r3]
//add 8torl, r2, and r3

Aliasing problems

* Must be conservative
— f (ptr+4, ptr, ptr) not common case
— but is possible

* |f only we could speculate....

— Allow re-ordering in the common case
— Get correctness in the rare case

* Anything software can do, hardware can do
better..

Out-of-order execution

* Hardware can speculate
— Load/store ordering
— Branches

* DS misses?
— Compiler: no idea

— Hardware: knows when they happen

 QOut-of-order execution
— Aka dynamic scheduling

Out-of-order execution

* Execute out of program order

— Execute oldest ready instruction
e Ready: all input values available

— Reduce RAW stalls
* Retain appearance of in-order

— Maintain correctness

Out-of-order pipeline

| eutwotiematons
N

In-order front end

Out-of-order execution

35

Register renaming

* Recall static scheduling:
xorrl/Ar2->r3
addr3+rd->r4
subr5-r2->r3
addir3+1->rl

xorr1?r2->r3
> subrd5-r2->r7
addr3+r4 ->r4
addi r7 + 1 ->r1

— sub/add can be re-ordered
— Must change register of sub

Register renaming

 Same principle applies to hardware
— Might re-order anything
— Create unique names

* Logical registers => physical registers

— Map table: holds translation
* Indexed by logical register
* Holds physical register numbers

Register renaming steps

* Read input numbers from map table
* Allocate new physical register

— None available? => stall

 Update map table with destination reg

Renaming example

xorr17Ar2->r3
addr3+r4 ->r4
subr5-r2->r3
addir3d +1->r1

r1 p1 PG
r2 P2 p7
3 | p3 P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorrl1”Ar2->r3 > xor p1/p2->
addr3+r4d->r4
subrd5-r2->r3
addir3 + 1 ->r1

r1 p1 PG
2 | p2 p7
r3 p3 P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorrl1”Ar2->r3 > xor p1/p2->p6
addr3+r4d->r4
subrd5-r2->r3
addir3 + 1 ->r1

r1 p1 PG
2 | p2 p7
r3 p3 P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 > xor p1/p2->p6
add r3 +r4 ->r4
subrd-r2->r3
addir3 + 1 ->r1

r1 p1

2 | p2 p7
r3 | pb P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 " p2->p6
addr3 +r4 ->r4 > add p6 + p4 ->
subrd-r2->r3

addir3 + 1 ->r1

r1 p1

2 | p2 p7
r3 | pb P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 " p2->p6
addr3+r4d->r4 > add p6 + p4 -> p7
subrd5-r2->r3
addir3 +1->r1

r1 p1

2 | p2 p7
r3 | pb P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 " p2->p6
addr3+r4d->r4 > add p6 + p4 -> p7
subrd5-r2->r3
addir3 +1->r1

r1 p1

2 | p2

r3 | pb P8
4 | p/ P9
5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 7 p2->pb6
addr3+r4d->r4 add p6 + p4 -> p7
subrd5-r2->r3 > sSub p5-p2->
addir3 + 1 ->r1

r1 p1

2 | p2

r3 | pb P8

4 | p/ P9

5 | p5 p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 7 p2->pb6
addr3+r4d->r4 add p6 + p4 -> p7
subrb5-r2->r3 > sub p5-p2->p8
addir3 + 1 ->r1

r1 p1

2 | p2

r3 po6 P8

4 | p/ P9

5 | pS p10

Map table Free-list

Renaming example

xorrl1”Ar2->r3 xor p1 7 p2->pb6
addr3+r4d->r4 add p6 + p4 -> p7
subrb5-r2->r3 > sub p5-p2->p8
addir3 + 1 ->r1

r1 p1

2 | p2

r3 | p8

4 | p/ P9

5 | pS p10

Map table Free-list

Renaming example

xorrl1”Ar2->r3 xor p1 7 p2->pb6
addr3+r4d->r4 add p6 + p4 -> p7
subrb5-r2->r3 sub p5 - p2 -> p8
addir3 + 1 ->r1 > addip8+1->

r1 p1

2 | p2

r3 | p8

4 | p/ P9

5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 7 p2->pb6
addr3+r4d->r4 add p6 + p4 -> p7
subrb5-r2->r3 sub p5 - p2 -> p8
addir3 +1->r1 > addip8+1->p9

r1 p1

2 | p2

r3 | p8

4 | p/ P9

5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 7 p2->pb6
addr3+r4d->r4 add p6 + p4 -> p7
subrb5-r2->r3 sub p5 - p2 -> p8
addir3 +1->r1 addi p8 + 1 -> p9

r1 P9

2 | p2

r3 | p8

4 | p/

5 | pS p10

Map table Free-list

Out-of-order pipeline

| eutwotiematons
N

Have unique register names
Now put into ooo execution structures

52

Dispatch

e Renamed instructions into ooo structures
— Re-order buffer (ROB)

e All instruction until commit

— |ssue Queue
 Un-executed instructions

* Central piece of scheduling logic
e Content Addressable Memory (CAM)

Issue Queue

* Holds un-executed instructions

* Trac

ks ready inputs

— Physical register names + ready bit
— AND to tell if ready

Insn

Inp1 |R| Inp2 |R| Dst|Age

Ready?

B
|

Dispatch Steps

Allocate 1Q slot
— Full? Stall

Read ready bits of inputs

— Table 1-bit per preg
Clear ready bit of output in table

— Instruction has not produced value yet
Write data in 1Q slot

Dispatch Example

xor p1”p2->pb6 Ready bits
add p6 + p4 -> p7 01y
sub pd - p2 -> p8
addi p8 + 1 -> p9 p2
p3
Issue Queue 04

Insn Inp1 |[R| Inp2 |R| Dst| Age p5

O
(@)
<K KK

Dispatch Example

xor p1”p2->pb6 Ready bits
add p6 + p4 -> p7 1

sub pd - p2 -> p8 L
addi p8 + 1 -> p9 P2y
p3 Yy
Issue Queue o4y
Insn Inp1 |[R| Inp2 |R| Dst| Age p5 vy
Xor o} y | p2 y | p6 |0 p6 n
pry
p8 y
P9 y

Dispatch Example

xor p1”p2->pb6 Ready bits
add p6 + p4 -> p7 01y
sub pd - p2 -> p8
addi p8 + 1 -> p9 p2
p3
Issue Queue 04

Insn Inp1 |[R| Inp2 |R| Dst| Age p5

Xor p1 Y | p2
add pP6 n| p4 y | p7 |1 p7

<
O
o
-
O
(@)
< < O KK KK K K

Dispatch Example

xor p1”p2->pb6 Ready bits
add p6 + p4 -> p7 p1 vy
sub pd - p2 -> p8
addi p8 + 1 -> p9 p2
p3 vy
Issue Queue 04y
Insn Inp1 |[R| Inp2 |R| Dst| Age p5 vy
XOr p1 |y p2 |y|p6 |O p6 n
add p6 |n | p4 y | p7 |1 p7 n
sub p5 |y | p2 y | p8 |2 p8 n
P9 vy

Dispatch Example

xor p1”p2->pb6 Ready bits
add p6 + p4 -> p7 01y
sub pd - p2 -> p8
addi p8 + 1 -> p9 p2
p3 Yy
Issue Queue 04y
Insn Inp1 |[R| Inp2 |R| Dst| Age p5 vy
XOr p1 |y p2 |y|p6 |O p6 n
add p6 n|p4 |y |p7 |1 p7 n
sub p5 |y | p2 y | p8 |2 p8 n
addi P8 |n| —- y | p9 |3 P9 n

Out-of-order pipeline

e Execution (0o0) stages
* Select ready instructions

— Send for execution

 Wakeup dependents

61

* Select N oldest, ready instructions

Insn Inp1 |[R| Inp2 |R| Dst| Age
xor p1 Yy | p2 y | p6 |0
add pPo6 n| p4 y | p7 |1
sub PO Yy | p2 y | p8 |2
addi P8 n| --- y|p9 |3

» N==17 xor

> N >= 27 xor and sub

Issue = Select + Wakeup

Ready!

Ready!

— Note: may have resource constraints: i.e. Id/st/fp

Issue = Select + Wakeup

 Wakeup dependent instructions

— CAM search for Dst in inputs
— Set ready
— Also update ready-bit table for future instructions

Insn Inp1 [R| Inp2 |R| Dst| Age
Xor p1 Yy | p2 y | p6 |0
add po6 y | p4 y | p7 |1
sub PS Yy | p2 y | p8 |2
addi P38 y | - y|p9 |3

Issue

* Select/Wakeup one cycle

Dependents go back to back
— Now add/addi are ready:

Insn Inp1 [R| Inp2 |R| Dst| Age
add P6 y | p4 y | p7 |1
addi p8 |y | - y | p9 |3

Register Read

* Not done at decode
— Must read physical register (renamed)

— Must be done when value ready
* Or gone thru when expecting bypass

* Physical register file may be large

— Multi-cycle read

Renaming review

Everyone rename this instruction:

mul r4 * r5 -> r1

r1 p1 PG
2 | p2 p7
3 | p3 P8
4 | p4 P9
5 | pS p10

Map table Free-list

Dispatch Review

Everyone dispatch this instruction: Ready bits
p1_y
div p7 / p6 -> p1 p2
p3
p4

Insn Inp1 |[R| Inp2 |R| Dst| Age p5

O
(@)
<KD K K

Select Review

Insn Inp1 |[R| Inp2 |R| Dst| Age
add pP3 y | p1 y|p2 |0
mul P2 n| p4 y|pS |1
div p1 Y| pS nip6 |2
xor p4 y | p1 y|p9 |3

Determine which instructions are ready.
Which will be issued on a 1-wide machine?
Which will be issued on a 2-wide machine?

Wakeup Review

Insn Inp1 |[R| Inp2 |R| Dst| Age
add pP3 y | p1 y|p2 |0
mul P2 n| p4 y|pS |1
div p1 Y| pS nip6 |2
xor p4 y | p1 y|p9 |3

What information will change if we issue the add?

OO0 execution (2-wide)

xor § RDY

add

sub JRDY

addi

i®
)
O OO0 | O |0 | © |~ W (N

OO0 execution (2-wide)

add § RDY

addijRDY

i®
)
O OO0 | O |0 | © |~ W (N

To
)
O OO0 | O |0 | © |~ W (N

OO0 execution (2-wide)

i®
)
O OO0 | O |0 | © |~ W (N

OO0 execution (2-wide)

'o
O
olw|o|h || |d~|w|(N

OO0 execution (2-wide)

OO0 execution (2-wide)

Note similarity
to in-order

Multi-cycle operations

* Multi-cycle ops (ld, fp, mul, etc)

— Wakeup defered a few cycles
e Structural hazzard?

e Cache misses?

— Speculative wake-up (assume hit)
— Cancel exec of dependents

— Re-issue later

— Details: complex, not important

Re-order Buffer (ROB)

e All instructions in order

* 2 Purposes
— Misprediction recovery
— In-order commit

* Maintain appearance of in-order execution
* Freeing of physical registers

Renaming revisited

* Overwritten register
— Freed at commit
— Restore in map table on recovery
» Also must be read at rename

Renaming example

xorr17Ar2->r3
addr3+r4 ->r4
subr5-r2->r3
addir3d +1->r1

r1 p1 PG
r2 P2 p7
3 | p3 P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorr17r2->r3 > xor p1A7p2-> [p3]
addr3 +r4 ->r4
subrd5-r2->r3
addir3 +1->r1

r1 p1 PG
2 | p2 p7
3 | p3 P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 > Xor p1”7p2->p6 [pP3]
addr3+r4 ->r4
subrb5-r2->r3
addir3 +1->r1

r1 p1

2 | p2 p7
r3 | pb P8
4 | p4 P9
5 | pS p10

Map table Free-list

Renaming example

xorr17Ar2->r3
addr3+r4 ->r4
subr5-r2->r3
addir3d +1->r1

xor p1 7 p2->pb6

add p6 + p4 ->
r1 p1
2 | p2 p7
r3 | pb P8
4 | p4 P9
5 | pS p10

Map table

Free-list

Renaming example

xorr17Ar2->r3
addr3+r4->r4
subr5-r2->r3
addir3+1->r1

xor p1 7 p2->pb6

r1 p1
2 | p2
r3 | pb
4 | p/
s | pd

Map table

add p6 + p4 -> p7

P8
P9
p10
Free-list

Renaming example

xorr1*r2->r3 xor p1 7 p2->pb6 [p3 |
addr3+r4d->r4 add p6 + p4 -> p7 [p4
subrb5-r2->r3 > sSub p5-p2-> [PG |
addir3 + 1 ->r1

r1 p1

2 | p2

r3 | pb6 P8

4 | p/ P9

5 | pS p10

Map table Free-list

Renaming example

xorr1*r2->r3 xor p1 7 p2->pb6 [p3 |
addr3+r4d->r4 add p6 + p4 -> p7 [p4
subrb5-r2->r3 > sub p5-p2->p8 [PG |
addir3 + 1 ->r1

r1 p1

2 | p2

r3 | p8

4 | p/ P9

5 | pS p10

Map table Free-list

Renaming example

xorr17Ar2->r3
addr3+r4 ->r4
subr5-r2->r3
addir3d +1->r1

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8

addip8 + 1 ->
r1 p1
2 | p2
r3 | p8
4 | p/ P9
5 | pS p10

Map table

Free-list

Renaming example

xorr1~r2->r3
addr3+r4->r4
subr5-r2->r3
addir3+1->r1

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->p9

r1 P9
2 | p2
r3 | p8
4 | p/
5 | pS p10

Map table Free-list

ROB

* ROB entry holds all info for recover/commit
— Logical register names
— Physical register names

— |Instruction types

* Dispatch: insert at tail
— Full? Stall

e Commit: remove from head
— Not completed? Stall

Recovery

* Completely remove wrong path instructions
— Flush from 1Q
— Remove from ROB
— Restore map table to before misprediction

— Free destination registers

Recovery example

bnz r1 loop

xorr17Ar2->r3
addr3+r4 ->r4
subr5-r2->r3
addir3+1->r1

bnz p1, loop

xor p1”p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->p9

r1 P9
2 | p2
r3 | p8
4 | p7
rs pPS p10

Map table Free-list

Recovery example

bnz r1 loop

xorr17Ar2->r3
addr3+r4->r4
subrb-r2->r3
addir3+1->r1

bnz p1, loop

xor p1”p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->p9

r1 p1

2 | p2

r3 | p8

4 | p/ P9
5 | pd p10

Map table Free-list

Recovery example

bnz r1 loop

xorr1Ar2->r3
addr3+r4->r4
subr5-r2->r3

bnz p1, loop

xor p1”p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8

r1 p1
2 | p2
r3 | pb6 P8
4 | p/ P9
S | pS p10

Map table Free-list

Recovery example

bnz r1 loop bnz p1, loop]
xorr1 2 r2->r3 xor p1 /" p2->p6 [p3]
addr3+r4 ->r4 add p6 + p4 -> p7/ [p4]

r1 p1

2 | p2 p/

r3 | pb P8

4 | p4 P9

5 | pd p10

Map table Free-list

Recovery example

bnz r1 loop bnz p1, loop []
xorr1 2 r2->r3 xor p1 " p2->p6 [p3]
r1 | p1 6
2 | p2 p’
3 | p3 P8
4 | p4 P9
5 | pd p10

Map table Free-list

Recovery example

s bnz r1 loop bnz p1, loop
r1 | p1 6
2 | p2 p’
3 | p3 P8
4 | p4 P9
5 | pd p10

Map table Free-list

What about stores

e Stores: Write DS, not registers
— Can we rename memory?
— Recover in the cache?

What about stores

e Stores: Write DS, not registers
— Can we rename memory?
— Recover in the cache?

» No (at least not easily)

— Cache writes unrecoverable
— Stores: only when certain

e Commit

Commit

xorrl1”Ar2->r3 xor p1 % p2->p6
addr3+r4->r4 add p6 + p4 -> p7
subr5-r2->r3 sub p5 - p2 -> p8
addir3 + 1 ->r1 addi p8 + 1 -> p9

« Commit: instruction becomes architected state
* In-order, only when instructions are finished

* Free overwritten register (why?)

Freeing over-written register

XOr ["Q)@ XOr p "
addr3 ¥ r4 -3 add(p6 } 4 > T
p -

subr5-r2->r3 sub p2 -> p8
addir3 + 1 ->r1 addi p8 + 1 -> p9

 P3 was r3 before xor
* P6 is r3 after xor
* Anything older than xor should read p3

* Anything younger than xor should p6 (until next
r3 writing instruction

At commit of xor, no older instructions exist

xorr17Ar2->r3
addr3+r4->r4
subr5-r2->r3
addir3+1->r1

Commit Example

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->p9

M1 p9 p10
2 | p2
r3 | p8
4 | p7
S | pS

Map table Free-list

xorr17Ar2->r3
addr3+r4->r4
subr5-r2->r3
addir3+1->r1

Commit Example

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->p9

M| p9 p10
2 | p2 p3
r3 | p8
4 | p7
S | pS

Map table Free-list

Commit Example

addr3 +r4 ->r4 add p6 + p4 -> p7 [p4
subrd5-r2->r3 sub p5 - p2 -> p8 [PG |
addir3 + 1 ->r1 addi p8 + 1 ->p9 [p1

M| p9 p10

2 | p2 pP3

r3 | p8 p4

4 | p7

S | pS

Map table Free-list

subrb5-r2->r3
addir3 + 1 ->r1

Commit Example

sub p5 - p2 -> p8
addi p8 + 1 -> p9

r1 P9
2 | p2
r3 | p8
4 | p7
S | pS

Map table

p10
p3

p4
pPo6

Free-list

Commit Example

addir3 +1->r1 addi p8 + 1 ->p9 [p1]
M| p9 p10
2 | p2 pP3
r3 | p8 p4
4 | p7 PG
5 | pd p1

Map table Free-list

Out of order pipeline diagrams

e Standard style: large and cumbersome
* Change layout slightly

— Columns = stages (dispatch, issue, etc)
— Rows = instructions
— Content of boxes = cycles

* For our purposes: issue/exec = 1 cycle

— lgnore preg read latency, etc
— Load-use, mul, div, and FP longer

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit

Ld [p1]-> p2

add p2 + p3 -> p4

xor p4 A p5 -> p6

Id [p7] -> p38

2-wide
Infinite ROB, 1Q, Pregs
Loads: 3 cycles

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit

Ld [p1]-> p2 1

add p2 + p3 -> p4 1

xor p4 A p5 -> p6

Id [p7] -> p38

Cycle 1:
* Dispatch |d and add

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit

Ld [p1]-> p2 2 5

add p2 + p3 -> p4

xor p4 A p5 -> p6

N (N [— [=

Id [p7] -> p38

Cycle 1:
 Dispatch xor and Id
Cycle 2:
* 1st Ld issues -- also note WB cycle while you do this
(Note: don't issue if WB ports full)

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit
Ld [p1]-> p2 1 2 5
add p2 + p3 -> p4 1
xor p4 A p5 -> p6 2
Id [p7] -> p8 2 3 6
Cycle 3:

» add and xor are not ready
« 2nd load is- issue it

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit
Ld [p1]-> p2 1 2 5
add p2 + p3 -> p4 1 5 6
xor p4 A p5 -> p6 2
Id [p7] -> p8 2 3 6
Cycle 4: Cycle 5:

* Nothing * Add can issue

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit
Ld [p1]-> p2 1 2 5 6
add p2 + p3 -> p4 1 5 6
xor p4 A p5 -> p6 2 6 14
Id [p7] -> p8 2 3 6

Cycle 6:

* 1st load can commit (oldest instruction and finished)
* XOr can issue

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit
Ld [p1]-> p2 1 2 5 6
add p2 + p3 -> p4 1 5 6 14
xor p4 N pd -> p6 2 6 I
Id [p7] -> p8 2 3 6

Cycle 7:

« Add can commit

Out of order pipeline diagrams

Instruction Disp | Issue| WB |Commit
Ld [p1]-> p2 1 2 5 6
add p2 + p3 -> p4 1 5 6 14
xor p4 A p5 -> p6 2 6 14 38
Id [p7] -> p8 2 3 6 3

Cycle 8:

« Commit xor and Id (2-wide: can do both at once)

Loads and stores

Instruction Disp | Issue| WB |Commit
fdiv p1/ p2 ->p3 1 2 25
stpd4 ->[p5] 1 2 3
st p3 ->[p6] 2
d [p7]->p8 2
Cycle 3:

* Canld [p7] -> p8 execute?
* Why or why not?

Loads and stores

Instruction Disp | Issue| WB |Commit
fdiv p1 / p2 ->p3 1 2 25
stpd4 ->[p5] 1 2 3
st p3 ->[p6] 2
Id [p7]->p8 2

Aliasing (again)
. p5 == p7’?
. p6 == p7?

Loads and stores

Instruction Disp | Issue| WB |Commit
fdiv p1 / p2 ->p3 1 2 25
stpd4 ->[p5] 1 2 3
st p3 ->[p6] 2
Id [p7]->p8 2

Suppose p5 == p7 and p6 != p7
Can Id execute now?

Forwarding

* Stores write cache at commit
— Commit is in-order, delayed by all instructions

 Loads read cache
— But execution is critical

* Forwarding

— Allow store -> load communication before store
commit

— Conceptually like bypassing, but very different
implementation

Forwarding: Store Queue

e Store Queue
— Holds all In-ﬂlght stores address data in data out

— CAM: searchable by load pdsition
address Stare Queuk (SQ)

— Age logic: determine
youngest matching store
older than load

. £ L. head
 Store execution S B
— Write Store Queue _:Eage}: tail
* Address + Data Co B

 Load execution ;

— Search SQ ¥r/
e Match? Forward

— Read DS D$/TLB

119

Load scheduling

e Store->Load Forwarding:
— Get value from executed (but not comitted) store to load
* Load Scheduling:

— Determine when load can execute with regard to older stores

* Conservative load scheduling:
— All older stores have executed

— Some architectures: split store address / store data
* Only require known address

— Advantage: always safe
— Disadvantage: performance (limits out-of-orderness)

Our example from before

Id [r1] -> r5

Id [r2] -> 16

add r5 + r6 -> r7 With conservative load
scheduling,

st r7 -> [r3] what can go out of order?
Id 4[r1] -> 5

Id 4[r2] -> 16

add r5 + r6 -> r7

st r7 -> 4[r3]

// loop control here

Our example from before

Disp | Issue | WB |Commit
~[ld [p1] -> p5 1
Id [p2] -> pb6 1
add p5 + p6 -> p7
st p7 -> [p3]

Id 4[pl] -> p8

Id 4[p2] -> p9

add p8 + p9 -> p4
st p4 -> 4[p3]

Suppose 2 wide, conservative scheduling. May issue 1 load
per cycle. Loads take 3 cycles to complete.

Our example from before

Disp | Issue | WB |Commit

Id [p1] -> p5 1 2 5

Id [p2] -> pb6

1
add p5 + p6 -> p7| 2
st p7 -> [p3] 2

Id 4[pl] -> p8

Id 4[p2] -> p9

add p8 + p9 -> p4

st p4 -> 4[p3]

Our example from before

Disp | Issue | WB |Commit

d [p1] -> p5 1 2 5

Id [p2] -> p6 3 6

add p5 + p6 -> p7

st p7 -> [p3]

Id 4[pl] -> p8

WWNIN =

Id 4[p2] -> p9

add p8 + p9 -> p4

st p4 -> 4[p3]

Our example from before

Disp | Issue | WB |Commit
d [p1] -> p5 1 2 5
Id [p2] -> p6 3 6
add p5 + p6 -> p7
st p7 -> [p3]

Id 4[p1] -> p8

Id 4[p2] -> p9

add p8 + p9 -> p4
st p4 -> 4[p3]

AR ITOWNIN -

Conservative load scheduling: can’t issue Id4[p1]->p8

Our example from before

Disp | Issue | WB |Commit

ld [p1] -> p5 1 2 5 6

Id [p2] -> pb6 1 3 6

add p5 + p6 -> p7| 2 6 7

st p7 -> [p3] 2

Id 4[p1] -> p8 3

Id 4[p2] -> p9 3

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

Our example from before

Disp | Issue | WB |Commit

d [p1] > p5 1| 2 6

add p5 + p6 -> p7

5

Id [p2] -> pb6 6 7
7
8

~N O |

st p7 -> [p3]

Id 4[p1] -> p8
Id 4[p2] -> p9

add p8 + p9 -> p4

AR ITWOWNIN -

st p4 -> 4[p3]

Our example from before

Disp | Issue | WB |Commit

d [p1] -> p5 1 2 5 6

d [p2] -> p6 1 3 6 7
add p5 + p6 -> p7| 2 6 7 8

st p7 -> [p3] 2 7 8

Id 4[p1] -> p8 3 8 11

Id 4[p2] -> p9 3

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

Our example from before

Disp | Issue | WB |Commit

d [p1] -> p5 1 2 5 6

d [p2] -> p6 1 3 6 7
add p5 + p6 -> p7| 2 6 7 8

st p7 -> [p3] 2 7 8 9

Id 4[p1] -> p8 3 8 11

Id 4[p2] -> p9 3 9 12

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

Our example from before

Disp | Issue | WB |Commit

d [p1] -> p5 1 2 5 6

d [p2] -> p6 1 3 6 7
add p5 + p6 -> p7| 2 6 7 8

st p7 -> [p3] 2 7 8 9

Id 4[p1] -> p8 3 8 11 12
Id 4[p2] -> p9 3 9 12

add p8 + p9 -> p4| 4 12 13

st p4 -> 4[p3] 4

Our example from before

Disp | Issue | WB |Commit

d [p1] -> p5 1 2 5 6
d [p2] -> p6 1 3 6 7
add p5 + p6 -> p7| 2 6 7 8
st p7 -> [p3] 2 7 8 9
Id 4[p1] -> p8 3 8 11 12
Id 4[p2] -> p9 3 9 12 13
add p8 + p9 -> p4| 4 12 13

st p4 -> 4[p3] 4 13 14

Our example from before

Disp | Issue | WB |Commit

d [p1] -> p5 1 2 5 6
d [p2] -> p6 1 3 6 7
add p5 + p6 -> p7| 2 6 7 8
st p7 -> [p3] 2 7 8 9
Id 4[p1] -> p8 3 8 11 12
Id 4[p2] -> p9 3 9 12 13
add p8 + p9 -> p4| 4 12 13| 14
st p4 -> 4[p3] 4 13 14

Our example from before

Disp | Issue | WB |Commit
Id [p1] -> p5 1 2 5 6 —
Id [p2] -> pb 1 3 6 7 ~
add p5 + p6 -> p7| 2 6 7 8 -
st p7 -> [p3] 2 7 ® 9 -
- Id 4[p1] -> p8 3 8 11 12 ~
Id 4[p2] -> p9 3 9 12 13 —
add p8 + p9 -> p4| 4 12 13| 14 -
st p4 -> 4[p3] 4 13 14 15 =

Our 2-wide 000 processor may as well be 1-wide in-order!

Our example from before

Disp | Issue | WB |Commit

d [p1]-> p5 1 | 2 | 5

d [p2] -> p6 1 3 6

add p5 + p6 -> p7| 2

st p7 -> [p3] 2

Id 4[p1] -> p8 3 4 7

Id 4[p2] -> p9 3

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

e It would be nice if we could issue |d 4[p1]->p8 in c4...

e How?

Load Speculation

e Speculation requires two things.....
e Detection of mis-speculations
e How can we do this?

e Recovery from mis-speculations
e Squash from offending load
e Saw how to squash from branches: same method

Load Queue

Detects load ordering store position flush?
violations

Load execution: Write
address into LQ

load queue (

e Also note any store I address Jg head
forwarded from - —==

Store execution: Search LQ , —==—F[29¢

e Younger load with same — ==
addr?

e Didn't forward from younger
store?

D$/TLB

Store Queue + Load Queue

e Store Queue: handles forwarding
o Written by stores
e Searched by loads
e Load Queue: detects ordering violations

o Written by loads
e Searched by stores

e Both together
o Allows aggressive load scheduling
e Stores don’t constrain load execution

Our example from before

Disp | Issue | WB |Commit

[d [p1]-> p5 1 | 2 |5

ld [p2] -> p6 1 3 6

add p5 + p6 -> p7| 2

st p7 -> [p3] 2

Id 4[p1] -> p8 3 4 7

Id 4[p2] -> p9 3

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

e Aggressive load scheduling?

o Issue ld 4[p1]->p8 in cycle 4

Our example from before

Disp | Issue | WB |Commit
d [p1] -> p5 1 2 5
ld [p2] -> p6 1 3 6
add p5 + p6 -> p7| 2
st p7 -> [p3] 2
Id 4[p1] -> p8 3 4 /
Id 4[p2] -> p9 3 5 8
add p8 + p9 -> p4| 4
st p4 -> 4[p3] 4

Our example from before

Disp | Issue | WB |Commit
Id [p1] -> p5 1 2 5 6
d [p2] -> p6 1 3 6 7
add p5 + p6 -> p7| 2 6 7 8
st p7 -> [p3] 2 7 8 9
Id 4[p1] -> p8 3 4 / 9
Id 4[p2] -> p9 3 5 8 10
addp8 + p9->p4| 4 8 9 10
st p4 -> 4{p3] 4 9 10 11

Saves 4 cycles over conservative
Actually uses ooo-ness

Aggressive Load scheduling

o Allows loads to issue before older stores
o Increases out-of-orderness
+ When no conflict, increases performance
- Conflict => squash => worse performance than waiting

e Some loads might forward from stores
e Always aggressive will squash a lot

o Hmm, what do we do now? ©

Predictive Load scheduling

e Predict which loads must wait for stores

e Fool me once, shame on you-- fool me twice?
e Loads default to aggressive
e Keep table of load PCs that have been caused squashes
e Schedule these conservatively
+ Simple predictor
- Makes “bad” loads wait for all older stores is not so great

e More complex predictors used in practice
e Predict which stores loads should wait for

Out of Order: Window Size

e Scheduling scope = 0oo window size

e Larger = better

e Constrained by physical registers
e ROB roughly limited by #preg = ROB size + #logical registers
e Big register file = hard/slow

e Constrained by issue queue
e Limits number of un-executed instructions
e CAM = can't make big (power + area)

e Constrained by load + store queues
e Limit number of loads/stores
e CAMs

OO0 scalability research

e Checkpoint Processing and Recovery [Akkary ‘03]
o Attacks scaling of register file
o Take checkpoints at rename
e Only recover to those
e Free Pregs aggressively

e Continual Flow Pipelines [Srinivasan ‘04]
o Attacks scaling of Issue Queue
e Put L2 misses and dependents out of IQ
e Place back in when L2 miss returns

e Store Vulnerability Window [Roth '05] +

Store Queue Index Prediction [Sha '05]
e Scalable (non-associative) load/store queues
e Predict store queue index for forwarding

o Filtered load re-execution prior to commit

Out of Order: Benefits

Allows speculative re-ordering
e Loads / stores
e Branch prediction

Schedule can change due to cache misses
o Different schedule optimal from on cache hit

Done by hardware

o Compiler may want different schedule for different hw configs
e Hardware has only its own configuration to deal with

Subject of current reading for comentary

Memory dependences

e RAW (Read After Write)
st rl -> [r2]
Id [r2] ->r4

o WAW (Write After Write)
st rl -> [r2]
st r3 -> [r2]

e WAR (Write After Read)
Id [r1] -> 12
st r3 -> [rl]

More on dependences

e RAW
e When more than one applies, RAW dominates:
addrl +r2 ->r3
addir3+1->1r3
e Must be respected: no trick to avoid

e WAR/WAW on registers

e Two things happen to use same name
e Can be eliminated by renaming

e WAR/WAW on memory

e Can’t rename memory
e Need to use other tricks (later this lecture)

Out of Order: Top 5 things to know

Register renaming

e How to perform is and how to recover it
Commit

e Precise state (ROB) --- Why??

e How/when registers are freed

Issue/Select
o Wakeup: CAM
e Choose N oldest ready instructions

Stores
o \Write at commit
e Forward to loads via LQ

Loads
o Conservative/aggressive/predictive scheduling
e Violation detection

Limits of ILP (Architects Dream)

55 : ;
Window size

gce 10 M Infinite
@ 2K
63 W 512
0128

espresso m 32

Benchmarks

fpppp

doduc

150

tomcatv

34
14

1 1 1 1 1 1 1 J

0 20 40 60 80 100 120 140 160

Instruction issues per cycle

©2007 Elsevier, Inc. All rights reserved.

What spoils this dream?

Physical Restrictions

* Register renaming
* Branch prediction —
* Memory-address alias analysis

—

* More..
— Target prediction —
— Memory latencies __

64-wide, tournament prediction, +64 physical regs

}8 Window size
gcce 10 M Infinite
9
8 0256
128
15 64
espresso w32

Benchmarks

fpppp

doduc

56

tomcatv

0 10 20 30 40 50 60
Instruction issues per cycle

© 2007 Elsavier, Inc. All rights reserved.

152

Can we rely more on compilers
today?

VLIW/EPIC didn’t quite work as planned
Better frameworks?

Can throw more compute at it
— Synthesis

Why?

— Simpler HW?

— Better energy efficiency?

— Better reliability?

ARM Core A-57

Memory hierarchy
— L1: 48KB I-cache, 32KB D-cache
— L2: 512KB-2MB
— 1024-entry TLB
ISA
— extensions for cryptography (AES, SHA1, SHA2)
— SIMD FP units (4x32bit)
— 48-bit VA, 44-bit PA
Out-of-order execution engine:
— 3-wide decode, renaming and dispatch
— 4-issue scheduler/execution units
— 128 in-flight instructions
— Fancy st-Id forwarding

4-16 cores

