CSEP 548: Computer Systems
Architecture

Hardware Multithreading (SMT)
Luis Ceze, Spring 2017

based on slides from friends at UPenn, UIUC, UW, MIT.



Out-of-order pipeline

.

In-order front end
Out-of-order execution

How does this tolerate latencies?



What is multithreading?

e [In SW?

e In HW? How?



Superscalar Under-utilization
* Time evolution of issue slot
— 4-issue processor

=l
Hil

Superscalar

cache
miss




Simple Multithreading

* Time evolution of issue slot

— 4-issue processor

time

Fill in with instructions
from another thread

cache
miss

"h

Superscalar Multithreading
e Where do the threads come from?




“The” Multithreading Picture

* Time evolution of issue slots
— Color = thread

=i

"h

Superscalar CGMT FGMT SMT

time




Vertical and Horizontal Under-Utilization

* FGMT and CGMT reduce vertical under-utilization
— Loss of all slots in an issue cycle

* Do not help with horizontal under-utilization
— Loss of some slots in an issue cycle (in a superscalar processor)

EEE

time

VL

CGMT FGMT SMT



Simultaneous Multithreading (SMT)

* How can we issue insns from multiple threads in one cycle?



Simultaneous Multithreading (SMT)

map table

il
Al




Simultaneous Multithreading (SMT)

 What can issue insns from multiple threads in one cycle?

— Same thing that issues insns from multiple parts of same
program...

— ...out-of-order execution

e Simultaneous multithreading (SMT): OO0 + FGMT
— Aka “hyper-threading”

— Observation: once insns are renamed, scheduler doesn’t care
which thread they come from (well, for non-loads at least)

— Some examples
* |IBM Power5: 4-way issue, 2 threads
* Intel Pentium4: 3-way issue, 2 threads
* Intel “Nehalem”: 4-way issue, 2 threads
e Alpha 21464: 8-way issue, 4 threads (canceled)
* Notice a pattern? #threads (T) * 2 = #issue width (N)

10



Simultaneous Multithreading (SMT)

map table

>

e SMT

— Replicate map table, share (larger) physical register file

thread scheduler map tables

>

|

11



SMT Resource Partitioning

* Physical regfile and insn buffer entries shared at fine-grain
— Physically unordered and so fine-grain sharing is possible

 How are physically ordered structures (ROB/LSQ) shared?
— Fine-grain sharing (below) would entangle commit (and squash)
— Allowing threads to commit independently is important

thread scheduler map tables _
> >

12



Static & Dynamic Resource Partitioning

e Static partitioning (below)

— T equal-sized contiguous partitions

+ No starvation, sub-optimal utilization (fragmentation)

* Dynamic partitioning

— P >T partitions, available partitions assigned on need basis

+ Better utilization, possible starvation

— ICOUNT: fetch policy prefers thread with fewest in-flight insns
Couple both with larger ROBs/LSQs

13



Multithreading Issues

* Shared soft state (caches, branch predictors, TLBs, etc.)

 Key example: cache interference
— General concern for all MT variants
— Can the working sets of multiple threads fit in the caches?

— Shared memory SPMD threads help here
+ Same insns — share IS
+ Shared data — less DS contention
 MT is good for workloads with shared insn/data

— To keep miss rates low, SMT might need a larger L2 (which is OK)
e Qut-of-order tolerates L1 misses

* Large physical register file (and map table)
— physical registers = (#threads * #arch-regs) + #in-flight insns
— map table entries = (#threads * #arch-regs)



Sharing Soft State

BTBs?

BHT (branch history table)?
Branch History Register (BHR)?
Return Address Stack (RAS)?

Caches are shared natural

TLBs need exp

e More on this

icit thread

ater...

V...
Ds to be shared, Why?



Multithreading or Multicore?

* If you wanted to run multiple threads would you build a...
— A multicore: multiple separate pipelines?
— A multithreaded processor: a single larger pipeline?



Multithreading vs. Multicore

* |f you wanted to run multiple threads would you build a...
— A multicore: multiple separate pipelines?
— A multithreaded processor: a single larger pipeline?

* Both will get you throughput on multiple threads
— Multicore core could be simpler, possibly faster clock

— SMT will get you better performance (IPC) on a single thread
 SMT is basically an ILP engine that converts TLP to ILP
e Multicore is mainly a TLP (thread-level parallelism) engine

* Do both
— Sun’s Niagara (UltraSPARC T1)
— 8 processors, each with 4-threads (non-SMT threading)
— 1Ghz clock, in-order, short pipeline (6 stages or so)
— Designed for power-efficient “throughput computing”



Research: Speculative Multithreading

Speculative multithreading
— Use multiple threads/processors for single-thread performance

— Speculatively parallelize sequential loops, that might not be parallel
* Processing elements (called PE) arranged in logical ring
e Compiler or hardware assigns iterations to consecutive PEs
* Hardware tracks logical order to detect mis-parallelization
— Techniques for doing this on non-loop code too
* Detect reconvergence points (function calls, conditional code)
— Effectively chains ROBs of different processors into one big ROB
* Global commit “head” travels from one PE to the next
* Mis-parallelization flushes one PEs, but not all PEs
— Also known as split-window or “Multiscalar”

— Not commercially available yet...
* Butitis one of the “big idea” from academia not yet adopted



Research: Multithreading for Reliability

* Can multithreading help with reliability?
— Design bugs/manufacturing defects?
— Gradual defects, e.g., thermal wear?
— Transient errors?

e Staggered redundant multithreading (SRT)
— Run two copies of program at a slight stagger

— Compare results, difference? Flush both copies and
restart

— Significant performance overhead

19



