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Sequential Consistency for DRF Example

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Thread 1

Acquire(K)

Release(K)

Rd X

Wr Z
...

Thread 2 Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...

Some global ordering

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...



Implementing	a	Lock

• Shared	counter/sum	update	example
– Use	a	mutex	variable	for	mutual	exclusion
– Only	one	processor	can	own	the	mutex

• Many	processors	may	call	lock(),	but	only	one	will	succeed	(others	block)
• The	winner	updates	the	shared	sum,	then	calls	unlock()	to	release	the	
mutex

• Now	one	of	the	others	gets	it,	etc.
– But	how	do	we	implement	a	mutex?

• As	a	shared	variable	(1	– owned,	0	–free)

• How	would	you	implement	it?

Spinlocks 

•  States of a spinlock: 
•  Zero when unlocked 
•  Non-zero when locked 

•  Proposed implementation: 
1. while (lock_var != 0);!
2. lock_var = 1;!
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Locking

• Releasing	a	mutex	is	easy
– Just	set	it	to	0

• Acquiring	a	mutex	is	not	so	easy
– Easy	to	spin	waiting	for	it	to	become	0
– But	when	it	does,	others	will	see	it,	too
– What	invariant	do	we	need?

Spinlocks: Race Condition! 

•  Proposed implementation: 
1. while (lock_var != 0);!
2. lock_var = 1;!

2/5/15 CS161 Spring 2015 3 

Thread 1 Thread 2 
Line1: lock_var == 0 

… descheduled … Line 1: lock_var == 0 

Line 2: Sets lock_var = 1 
(Thinks it has the lock.) 

Line 2: Sets lock_var = 1 
(Thinks it has the lock) 

… descheduled … 

Spinlocks 

•  States of a spinlock: 
•  Zero when unlocked 
•  Non-zero when locked 

•  Proposed implementation: 
1. while (lock_var != 0);!
2. lock_var = 1;!
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Locking

• Releasing	a	mutex	is	easy
– Just	set	it	to	0

• Acquiring	a	mutex	is	not	so	easy
– Easy	to	spin	waiting	for	it	to	become	0
– But	when	it	does,	others	will	see	it,	too
– Need	a	way	to	atomically see	that	the	mutex	is	0	and set	it	to	1
– How?



Atomic	Read-Update	Instructions

• Atomic	exchange	instruction
– E.g.,	EXCH	R1,78(R2)	will	swap	content	of	register	R1	

and	mem	location	at	address	78+R2

– To	acquire	a	mutex,	1	in	R1	and	EXCH
• Then	look	at	R1	and	see	whether	mutex	acquired
• If	R1	is	1,	mutex	was	owned	by	somebody	else	and	we	
will	need	to	try	again	later

• If	R1	is	0,	mutex	was	free	and	we	set	it	to	1,	which	
means	we	have	acquired	the	mutex

• Other	atomic	read-and-update	instructions
– E.g.,	Test-and-Set

Hardware Primitive: TAS 
•  Interrupts are a big hammer; we can do better with an atomic 

instruction. 
•  Test-and-set (TAS) 

•  Provides an atomic instruction equivalent to: 
1.  return_value = lock_var; 
2.  lock_var = 1; 

•  If return value is 0, then you succeeded in acquiring the test-and-set. 
•  If return value is non-0, then you did not succeed. 
•  How do you "unlock" a test-and-set? 

•  Test-and-set on Intel: 
!xchg dest, src!

•  Exchanges destination and source. 
•  How do you use it? 
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src = 1 
xchg lock_var, src!
If src == 0, you got the lock. 



Implementing	Locks

• A	simple	swap	(or	test-and-set)	works
– But	causes	a	lot	of	invalidations

• Every	write	sends	an	invalidation
• Most	writes	redundant	(swap	1	with	1)

• More	efficient:	test-and-swap	(or	test-and-test-and-set	J)
– Read,	do	swap	only	if	0

• Read	of	0	does	not	guarantee	success	(not	atomic)
• But	if	1	we	have	little	chance	of	success

– Write	only	when	good	chance	we	will	succeed

• Would	either	scale?	What	can	we	do?



Large-Scale	Systems:	Locks

• Contention	even	with	test-and-test-and-set
– Every	write	goes	to	many,	many	spinning	procs
– Making	everybody	test	less	often	reduces	contention	for	high-

contention	locks	but	hurts	for	low-contention	locks
– Solution:	exponential	back-off

• If	we	have	waited	for	a	long	time,	lock	is	probably	high-contention
• Every	time	we	check	and	fail,	double	the	time	between	checks

– Fast	low-contention	locks	(checks	frequent	at	first)
– Scalable	high-contention	locks	(checks	infrequent	in	long	waits)

– Special	hardware	support

• Queuing	locks
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Queue Locks

• Test-and-test-and-set locks can still perform poorly
– If lock is contended for by many processors
– Lock release by one processor, creates “free-for-all” by others
– Interconnect gets swamped with swap requests

• Software queue lock
– Each waiting processor spins on a different location (a queue)
– When lock is released by one processor...

• Only the next processors sees its location go “unlocked”
• Others continue spinning locally, unaware lock was released

– Effectively, passes lock from one processor to the next, in order
+ Greatly reduced network traffic (no mad rush for the lock)
+ Fairness (lock acquired in FIFO order)
– Higher overhead in case of no contention (more instructions)
– Poor performance if one thread is descheduled by O.S.



What	Are	the	Problems	With	Locks?

• Mapping	between	data->locks
– Deadlocks
– Races
– Composability?

• Mmm,	DB?
– Optimistic	concurrency



What	If	you	Had	Multi-Word	LL-SC?

• Plus	the	ability	to	execute	stores	speculatively
• =>	Transactional	Memory

– Speculative	execution	+	monitor	CC	trafic
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Transactional	Memory:	The	Big	Idea

• Big	idea	I:	no	locks,	just	shared	data
– Look	ma,	no	locks

• Big	idea	II:	optimistic	(speculative)	concurrency
– Execute	critical	section	speculatively,	abort	on	conflicts
– “Better	to	beg	for	forgiveness	than	to	ask	for	permission”

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;
accts[id_to].bal += amt; }

end_transaction();
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Transactional	Memory:	Read/Write	Sets

• Read	set:	set	of	shared	addresses	critical	section	reads
– Example:	accts[37].bal,	accts[241].bal

• Write	set:	set	of	shared	addresses	critical	section	writes
– Example:	accts[37].bal,	accts[241].bal

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;
accts[id_to].bal += amt; }

end_transaction();
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Transactional	Memory:	Begin

• begin_transaction
– Take	a	local	register	checkpoint
– Begin	locally	tracking	read	set	(remember	addresses	you	read)

• See	if	anyone	else	is	trying	to	write	it
– Locally	buffer	all	of	your	writes	(invisible	to	other	processors)
+ Local	actions	only:	no	lock	acquire

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;
accts[id_to].bal += amt; }

end_transaction();
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Transactional	Memory:	End

• end_transaction
– Check	read	set:	is	all	data	you	read	still	valid	(i.e.,	no	writes	to	any)
– Yes?	Commit	transactions:	commit	writes
– No?	Abort	transaction:	restore	checkpoint

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;
accts[id_to].bal += amt; }

end_transaction();



Transactional	Memory	Hardware	Support
(HTM)
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HTM

• Most	hardware	already	exists
• Only	small	modification	to	cache	needed

Core

Regular
Accesses

L1	$

Ta
g

Da
ta

L1	$

Kumar	et	al.	(Intel)



HTM

• Most	hardware	already	exists
• Only	small	modification	to	cache	needed
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HTM	Example

Tag data Trans? State Tag data Trans? state

atomic	{
read	A
write	B	=1
}

atomic	{
read	B

Write	A	=	2	
}

Bus	Messages:

P1	Cache P2	Cache



HTM	Example

Tag data Trans? State Tag data Trans? state

B 0 Y S

atomic	{
read	A
write	B	=1
}

atomic	{
read	B

Write	A	=	2	
}

Bus	Messages:	2 read	B



HTM	Example

Tag data Trans? State Tag data Trans? state
A 0 Y S

B 0 Y S

atomic	{
read	A
write	B	=1
}

atomic	{
read	B

Write	A	=	2	
}

Bus	Messages:	1 read	A



HTM	Example

Tag data Trans? State Tag data Trans? state
A 0 Y S
B 1 Y M B 0 Y S

atomic	{
read	A
write	B	=1
}

atomic	{
read	B

Write	A	=	2	
}

Bus	Messages:	NONE



Conflict,	visibility	on	commit

Tag data Trans? State Tag data Trans? state
A 0 N S
B 1 N M B 0 Y S

atomic	{
read	A
write	B	=1
}

atomic	{
read	B

ABORT

Write	A	=	2	
}

Bus	Messages:	1	B	modified



HTM	–Strong	isolation

Thread 1 Thread 2
atomic {
r1 = x; x = 1;
r2 = x;
}

Can r1!=r2?
(a) Non-repeatable reads

Initially x==0
Thread 1 Thread 2
atomic {
r = x; x = 10;
x = r + 1;
}

Can x==1?
(b) Lost updates

Initially x is even
Thread 1 Thread 2
atomic {
x++; r = x;
x++;
}

Can r be odd?
(c) Dirty reads

Figure 2. Isolation violations expected with data races.

Intermediate dirty reads: Figure 2(c) illustrates an intermediate
dirty read (IDR) where a non-transactional access can observe
the intermediate state of a transaction. Thread 1 maintains the
invariant that x is even, but Thread 2 will observe an odd value if it
reads x between Thread 1’s two increments. Under lazy versioning,
intermediate dirty reads cannot occur, but at the cost of ordering
violations discussed in Section 2.3.

2.2 Eager-versioning anomalies
Eager-versioning STM can exhibit dirty read and lost update behav-
iors that are not otherwise possible in lock-based code. These be-
haviors are due to the speculate-and-undo strategy of eager version-
ing, in which a transaction speculatively updates shared memory in
place and then on abort, rolls back these updates with a compensat-
ing write. A rolled-back transaction thus manufactures new shared
memory writes that are not present in any sequentially-consistent
execution, resulting in new lost update and dirty read scenarios.

Speculative lost updates: Figure 3(a) illustrates a speculative lost
update (SLU) where a non-transactional update is lost due to a
write during transaction rollback. Assume Thread 1 updates x first,
and then Thread 2 updates y and x. If Thread 1 now rolls back, it
will restore x’s value back to 0 and skip over the update to x on
re-execution (because it now observes y==1), resulting in x==0.

Speculative dirty reads: Figure 3(b) illustrates a speculative dirty
read (SDR) where a non-transactional read observes the speculative
state of a transaction. Assume Thread 1 updates x first, and then
Thread 2 updates y after observing x==1. If Thread 1 now rolls
back, it will restore x’s value back to zero and skip over the update
to x on re-execution, resulting in x==0.

2.3 Lazy-versioning anomalies
Lazy-versioning STM can exhibit memory ordering problems sim-
ilar to memory consistency problems in shared-memory multi-
processors [2]. Lazy-versioning STM buffers transactional updates
privately and then writes the buffered updates back to shared mem-
ory “lazily” when the transaction commits. The window of time
between the transaction commit and the update to shared memory
can cause memory ordering violations because non-transactional
code does not see all committed values during that time.

Memory inconsistency: Figure 4 illustrates memory inconsis-
tency (MI) due to violation of established ordering rules. In Figure
4(a), Thread 1 initializes a field in the object el and then publishes
the object by writing it to a volatile shared variable x. Thread 2 may
now see the published object in x but not see the initialized value of
its field because a lazy-versioning STM copies buffered values to
memory one at a time in no particular order. Since x is volatile, this
ordering is inconsistent [38]. The same problem can occur when a
final field is initialized inside a transaction but is reordered with a
publishing write. This is similar to the multiple overlapped writes
problem described in [2].

Figure 4(b) shows another memory inconsistency example dis-
tilled from Figure 1. Thread 1 takes a shared value in x and makes

it thread local. Once x is set to null, the object in r1 is not visible
to other threads, and from the programmers point of view, it should
be safe to access x outside an atomic region. In a lazy-versioning
STM, Thread 2 may buffer an update to x.val, validate itself, and
commit. But before it has flushed the new value to memory, Thread
1 may execute its transaction and start accessing r1.val. Logi-
cally, Thread 2’s transaction executes before Thread 1’s transaction,
and Thread 1’s accesses to r1.val execute after Thread 1’s trans-
action. But because the STM updates shared memory lazily, Thread
1’s accesses to r1.val end up racing with the STM’s update. This
is similar to the buffered writes problem described in [2].

2.4 Anomalies due to coarse-grained versioning
When the granularity at which the STM system manages data
versions is greater than the granularity at which non-transactional
code writes data (e.g., if the STM logs or buffers writes in 8-byte
blocks while a non-transactional access writes a 4-byte value within
that block), then additional problems can occur in both lazy- and
eager-versioning STM systems.

Granular lost updates: Figure 5(a) illustrates a granular lost
update (GLU) where the non-transactional update to x.g is lost
even though the transaction never accesses this field and there is
no data race. Eager-versioning STM systems [27, 1] maintain undo
log entries that may be larger than individual object fields (or array
elements). If Thread 1’s transaction creates an undo log entry that
spans fields f and g of x, Thread 2’s update to x.g could be lost if
Thread 1 aborts and rolls back x.f. A similar problem can happen
in lazy-versioning STM’s that buffer values at a similar granularity;
for example, if Thread 2 updates x.g after Thread 1 has created a
private copy that spans fields f and g, then the update will vanish
after Thread 1 commits and writes back its copy to shared memory.

Granular lost updates arise because the STM manufactures new
writes to variables that lie adjacent to a variable updated inside a
transaction. These writes do not exist in any sequentially-consistent
execution of the program. Granular lost updates are similar to the
problem of rewriting adjacent data described by Boehm [10].

Granular inconsistent reads: Figure 5(b) illustrates a granular
inconsistent read (GIR) where a transaction may see inconsis-
tent updates from a non-transactional thread. Granular inconsistent
reads are similar to granular lost updates but may only occur in
lazy versioning STMs. Here, the shared variable y is volatile and
imposes certain ordering constraints between Thread 1 and Thread
2. In particular, if Thread 1 observes Thread 2’s update to y, it
must also observe Thread 2’s update to x.g. In a lazy-versioning
STM, however, Thread 1’s transaction (as in the earlier GLU ex-
ample) may have created a private copy on the write to field x.f
that also spans x.g. In this case, the transaction will later read its
own stale copy of x.g and not observe Thread 2’s update as re-
quired by the Java memory model. Note that a granular inconsistent
read is a memory inconsistency anomaly akin to those described in
Section 2.3.



HTM	– False	Sharing

Tag data Trans? State Tag data Trans? state
C/D 0/0 Y S

atomic	{
read	A
write	D	=	1
}

atomic	{
read	C

Write	B	=	2	
}

Bus	Messages:	Read	C/D



Tag data Trans? State Tag data Trans? state
C/D 0/0 Y S

A/B 0/0 Y S

atomic	{
read	A
write	D	=	1
}

atomic	{
read	C

Write	B	=	2	
}

Bus	Messages:	Read	A/B

HTM	– False	Sharing



Tag data Trans? State Tag data Trans? state
C/D 0/1 Y M C/D 0/0 Y S
A/B 0/0 Y S

atomic	{
read	A
write	D	=	1
}

atomic	{
read	C

Write	B	=	2	
}

Bus	Messages:	Write	C/D

UH	OH

HTM	– False	Sharing



HTM	– Limited	Size

Tag data Trans? State Tag data Trans? state
A 0 Y M

atomic	{
read	A
read	B
read	C
read	D
}
Write	C/

Bus	Messages:	Read	A



HTM	– Limited	Size

Tag data Trans? State Tag data Trans? state
A 0 Y M
B 0 Y M

atomic	{
read	A
read	B
read	C
read	D
}

Bus	Messages:	Read	B



HTM	– Limited	Size

Tag data Trans? State Tag data Trans? state
A 0 Y M
B 0 Y M
C 0 Y M

atomic	{
read	A
read	B
read	C
read	D
}

Bus	Messages:	Read	C



HTM	– Limited	Size

Tag data Trans? State Tag data Trans? state
A 0 Y M
B 0 Y M
C 0 Y M

atomic	{
read	A
read	B
read	C
read	D
}

Bus	Messages:	…

UH	OH



Can	we	just	ignore	locks	and	go	ahead?
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Speculative Lock Elision

• Alternatively, keep the locks, but…
• … speculatively transactify lock-based programs in hardware

– Speculative Lock Elision (SLE) [Rajwar+, MICRO’01]
• Captures most of the advantages of transactional memory…

+ No need to rewrite programs
+ Can always fall back on lock-based execution (overflow, I/O, etc.)

Processor 0

acquire(accts[37].lock); // don’t actually set lock to 1
// begin tracking read/write sets
// CRITICAL_SECTION
// check read set
//  no conflicts? Commit, don’t actually set lock to 0
//  conflicts? Abort, retry by acquiring lock
release(accts[37].lock); 
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Amdahl’s	Law

• Restatement	of	the	law	of	diminishing	returns
– Total	speedup	limited	by	non-accelerated	piece
– Analogy:	drive	to	work	&	park	car,	walk	to	building

• Consider	a	task	with	a	“parallel”	and	“serial”	portion
– What	is	the	speedup	with	N	cores?
– Speedup(n,	p,	s)	=		(s+p)	/	(s	+	(p/n))

• p	is	“parallel	percentage”,	s	is	“serial	percentage”
– What	about	infinite	cores?

• Speedup(p,	s)	=	(s+p)	/	s			=		1	/	s

• Example:	can	optimize	50%	of	program	A
– Even	a	“magic”	optimization	that	makes	this	50%	disappear…
– …only	yields	a	2X	speedup
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Amdahl’s	Law	Graph

Source: Wikipedia



Discussion

• Does	cache	coherence	scale?
– Does	message	passing	scale?

• What	would	you	do	with	1000	(or	1M)	cores?
• Speculation	for	parallelism
• Fusing	cores	to	form	a	larger	one	that	better	exploits	ILP
• Continuous	system	improvement?	(codegen,	monitoring	watchdogs,	

etc)
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Memory	Consistency	in	GPUs/CPU+GPU

• Main	issue
– fences	involve	getting	ACKs	from	whole	system
– GPUs	are	“scoped” to	avoid	excessing	control	communication

• What	makes	sense	in	this	context?
– Often	explicit	kernels	operating	on	large	data	sets/regions
– Explicit	data	partitioning/communication
– Sync	barriers	are	frequent

• Goal	of	a	memory	model	in	this	context:
– Provide	reasonable	semantics	for	system	software
– Enable	optimizations
– Avoid	excessive	hardware	complexity

• Recent	proposal	from	AMD:	HRF,	up	next	week
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