
CSE	548:	Computer	Systems	Architecture

Superscalar	Processors
Luis	Ceze,	Spring	2017

(based	on	slides	lifted	from	friends	at	UPenn,	UIUC,	UW,	MIT)

Announcements

This	Unit:	Superscalar	Execution

• Superscalar	scaling	issues
– Multiple	fetch	and	branch	prediction
– Dependence-checks	&	stall	logic
– Wide	bypassing
– Register	file	&	cache	bandwidth

• Multiple-issue	designs	
– “Superscalar”
– VLIW	and	EPIC	(Itanium)

How	to	make	our	pipelined	design	faster?

• What	happens	if	we	make	the	pipeline	deeper?	(more	stages)

regfile

DI

B
P

Scalar	Pipeline	and	the	Flynn	Bottleneck

• So	far	we	have	looked	at	scalar	pipelines
– One	instruction	per	stage

• With	control	speculation,	bypassing,	etc.
– Performance	limit	(aka	“Flynn	Bottleneck”)	is	CPI	=	IPC	=	1
– Limit	is	never	even	achieved	(hazards)
– Diminishing	returns	from	“super-pipelining”	(hazards	+	overhead)

regfile

DI

B
P

Multiple-Issue	Pipeline

• Overcome	this	limit	using	multiple	issue
– Also	called	superscalar
– Two	instructions	per	stage	at	once,	or	three,	or	four,	or	eight…
– “Instruction-Level	Parallelism	(ILP)” [Fisher,	IEEE	TC’81]

• Today,	typically	“4-wide”	(Intel	Core	i7,	AMD	Opteron)
– Some	more	(Power5	is	5-issue;	Itanium	is	6-issue)
– Some	less	(dual-issue	is	common	for	simple	cores)

regfile

DI

B
P

Superscalar	Pipeline	Diagrams	- Ideal

scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)èr2 F D X M W
lw 4(r1)èr3 F D X M W
lw 8(r1)èr4 F D X M W
add r14,r15èr6 F D X M W
add r12,r13èr7 F D X M W
add r17,r16èr8 F D X M W
lw 0(r18)èr9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)èr2 F D X M W
lw 4(r1)èr3 F D X M W
lw 8(r1)èr4 F D X M W
add r14,r15èr6 F D X M W
add r12,r13èr7 F D X M W
add r17,r16èr8 F D X M W
lw 0(r18)èr9 F D X M W

Superscalar	Pipeline	Diagrams	- Realistic

scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)èr2 F D X M W
lw 4(r1)èr3 F D X M W
lw 8(r1)èr4 F D X M W
add r4,r5èr6 F d* D X M W
add r2,r3èr7 F D X M W
add r7,r6èr8 F D X M W
lw 0(r8)èr9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)èr2 F D X M W
lw 4(r1)èr3 F D X M W
lw 8(r1)èr4 F D X M W
add r4,r5èr6 F d* d* D X M W
add r2,r3èr7 F d* D X M W
add r7,r6èr8 F D X M W
lw 0(r8)èr9 F d* D X M W

A	Typical	Dual-Issue	Pipeline

• Fetch	an	entire	16B	or	32B	cache	block
– 4	to	8	instructions	(assuming	4-byte	fixed	length	instructions)
– Predict	a	single	branch	per	cycle

• Parallel	decode
– Need	to	check	for	conflicting	instructions
– Output	of	I1 is	an	input	to	I2
– Other	stalls,	too	(for	example,	load-use	delay)

• What	are	the	added	costs	of	this	design?

regfile

DI

B
P

A	Typical	Dual-Issue	Pipeline

• Multi-ported	register	file
– Larger	area,	latency,	power,	cost,	complexity

• Multiple	execution	units
– Simple	adders	are	easy,	but	bypass	paths	are	expensive

• Memory	unit
– Single	load	per	cycle	(stall	at	decode)	probably	okay	for	dual	issue
– Alternative:	add	a	read	port	to	data	cache

• Larger	area,	latency,	power,	cost,	complexity

regfile

DI

B
P

Superscalar	Challenges	- Front	End

• Wide	instruction	fetch
– Modest:	need	multiple	instructions	per	cycle
– Aggressive:	predict	multiple	branches,	trace	cache

• Wide	instruction	decode
– Replicate	decoders

• Wide	instruction	issue	(submit	for	execution)
– Determine	when	instructions	can	proceed	in	parallel
– Not	all	combinations	possible
– More	complex	stall	logic	- order	N2	for	N-wide	machine

• Wide	register	read
– One	port	for	each	register	read

• Each	port	needs	its	own	set	of	address	and	data	wires
– Example,	4-wide	superscalar	è 8	read	ports

Superscalar	Challenges	- Back	End

• Wide	instruction	execution
– Replicate	arithmetic	units
– Multiple	cache	ports

• Wide	instruction	register	writeback
– One	write	port	per	instruction	that	writes	a	register
– Example,	4-wide	superscalar	è 4	write	ports

• Wide	bypass	paths
– More	possible	sources	for	data	values
– Order	(N2 *	P) for	N-wide	machine	with	execute	pipeline	depth	P

• Fundamental	challenge:
– Amount	of	ILP	(instruction-level	parallelism)	in	the	program
– Compiler	must	schedule	code	and	extract	parallelism

Superscalar Execution

Superscalar	Decode	and	Register	Read

• What	is	involved	in	decoding	multiple	(N)	insns per	cycle?
• Actually	doing	the	decoding?	

– Easy	if	fixed	length	(multiple	decoders),	doable	if	variable	length
• Reading	input	registers?

– 2N	register	read	ports	(latency	µ #ports)
+ Actually	less	than	2N,	most	values	come	from	bypasses
– More	about	this	in	a	bit

• What	about	the	stall	logic?	(i.o.w.,	what	happens	to	dependence	
check?)

regfile

N2 Dependence	Cross-Check

• Stall	logic	for	1-wide	pipeline	with	full	bypassing
– Full	bypassing	® load/use	stalls	only

X/M.op==LOAD	&&	(D/X.rs1==X/M.rd ||	D/X.rs2==X/M.rd)
– Two	“terms”

• Now:	same	logic	for	a	2-wide	pipeline
X/M1.op==LOAD	&&	(D/X1.rs1==X/M1.rd	||	D/X1.rs2==X/M1.rd)	||
X/M1.op==LOAD	&&	(D/X2.rs1==X/M1.rd	||	D/X2.rs2==X/M1.rd)	||
X/M2.op==LOAD	&&	(D/X1.rs1==X/M2.rd	||	D/X1.rs2==X/M2.rd)	||
X/M2.op==LOAD	&&	(D/X2.rs1==X/M2.rd	||	D/X2.rs2==X/M2.rd)

– Eight	“terms”:	µ 2N2	

• N2 dependence	cross-check
– Not	quite	done,	also	need

• D/X2.rs1==D/X1.rd	||	D/X2.rs2==D/X1.rd

Superscalar	Execute

• What	is	involved	in	executing	N	insns per	cycle?

Superscalar	Execute

• What	is	involved	in	executing	N	insns	per	cycle?
• Multiple	execution	units	…	N	of	every	kind?

– N	ALUs?	OK,	ALUs	are	small
– N	FP	dividers?	No,	FP	dividers	are	huge	and	fdiv is	uncommon
– How	many	branches	per	cycle?	How	many	loads/stores	per	cycle?
– Typically	some	mix	of	functional	units	proportional	to	insn	mix

• Intel	Pentium:	1	any	+	1	ALU
• Alpha	21164:	2	integer	(including	2	loads)	+	2	FP

Superscalar	Memory	Access

• What	about	multiple	loads/stores	per	cycle?
– Probably	only	necessary	on	processors	4-wide	or	wider– why?
– More	important	to	support	multiple	loads	than	multiple	stores

• Insn mix:	loads	(~20–25%),	stores	(~10–15%)

D$

D$	Bandwidth:	Multi-Porting,	Replication

• How	to	provide	additional	D$	bandwidth?
– Have	already	seen	split	I$/D$,	but	that	gives	you	just	one	D$	port
– How	to	provide	a	second	(maybe	even	a	third)	D$	port?

• Option#1:	multi-porting
+ Most	general	solution,	any	two	accesses	per	cycle
– Expensive	in	terms	of	latency,	area	(cost),	and	power

• Option	#2:	replication
– Additional	read	bandwidth	only,	but	writes	must	go	to	all	replicas
+ General	solution	for	loads,	no	latency	penalty
– Not	a	solution	for	stores	(that’s	OK),	area	(cost),	power	penalty

• Is	this	what	Alpha	21164	does?

RAM	vs	CAM

• Random	Access	Memory
– Read/write	specific	index
– Get/set	value	there

• Content	Addressable	Memory
– Search	for	a	value
– Find	matching	indices

• One	structure	can	have	ports	of	both	types

20

RAM	vs	CAM:	RAM

17

22

47

17

19

12

13

42

Read	index	4
19

RAM:	read/write	specific	index

21

RAM	vs	CAM:	CAM

17

22

47

17

19

12

13

42

Find	17

CAM:	search	for	value

Index	0

Index	3

22

Superscalar	Register	Read/Write

• How	many	register	file	ports	to	execute	N	insns per	cycle?
– Nominally,	2N	read	+	N	write	(2	read	+	1	write	per	insn)

– Latency,	area	µ #ports2

– In	reality,	fewer	than	that
• Read	ports:	many	values	come	from	bypass	network
• Write	ports:	stores,	branches	(35%	insns)	don’t	write	registers

• Replication	works	great	for	regfiles (used	in	Alpha	21164)
• Banking?	Not	so	much

regfile

Superscalar	Bypass

• N2 bypass	network
– N+1	input	muxes at	each	ALU	input
– N2 point-to-point	connections
– Routing	lengthens	wires
– Expensive	metal	layer	crossings
– Heavy	capacitive	load
• And	this	is	just	one	bypass	stage	(MX)!

• There	is	also	WX	bypassing
• Even	more	for	deeper	pipelines

– One	of	the	big	problems	of	superscalar

Superscalar	Fetch

• What	is	involved	in	fetching	multiple	instructions	per	cycle?
• In	same	cache	block?	® no	problem

– Favors	larger	block	size	(independent	of	hit	rate)
• Can	compilers	help?	How?
• In	multiple	blocks?	Hmm,	how?

I$

1020

1022 1023

1021

B
P

Superscalar	Fetch

• What	is	involved	in	fetching	multiple	instructions	per	cycle?
• In	same	cache	block?	® no	problem

– Favors	larger	block	size	(independent	of	hit	rate)
• Compilers	align	basic	blocks	to	I$	lines	(.align assembly	directive)

– Reduces	I$	capacity
+ Increases	fetch	bandwidth	utilization	(more	important)

• In	multiple	blocks?	® Fetch	block	A	and	A+1	in	parallel
– Banked	I$	+	combining	network
– May	add	latency	(add	pipeline	stages	to	avoid	slowing	down	clock)

I$

1020

1022 1023

1021

B
P

Wide	Non-Sequential	Fetch

• Two	related	questions
– How	many	branches	predicted	per	cycle?
– Can	we	fetch	across	the	branch	if	it	is	predicted	“taken”?

Wide	Non-Sequential	Fetch

• Two	related	questions
– How	many	branches	predicted	per	cycle?
– Can	we	fetch	across	the	branch	if	it	is	predicted	“taken”?

• Simplest,	most	common	organization:	“1”	and	“No”
– One	prediction,	discard	post-branch	insns if	prediction	is	“taken”
– Lowers	effective	fetch	width	and	IPC
– Average	number	of	instructions	per	taken	branch?

• Assume:	20%	branches,	50%	taken	® ~10	instructions
– Consider	a	10-instruction	loop	body	with	an	8-issue	processor

• Without	smarter	fetch,	ILP	is	limited	to	5	(not	8)

• Compiler	can	help
– Reduce	taken	branch	frequency	(e.g.,	unroll	loops)

Branch	Prediction	and	Wide	Execution

• What	happens	to	the	cost	of	a	branch	misprediction in	a	
superscalar	processor?

Impact of Branch Prediction

• Base CPI for scalar pipeline is 1
• Base CPI for N-way superscalar pipeline is 1/N

– Amplifies stall penalties
– Assumes no data stalls (an overly optimistic assumption)

• Example: Branch penalty calculation
– 20% branches, 75% taken, 2 cycle penalty, no branch prediction

• Scalar pipeline
– 1 + 0.2*0.75*2 = 1.3 ® 1.3/1 = 1.3 ® 30% slowdown

• 2-way superscalar pipeline
– 0.5 + 0.2*0.75*2 = 0.8 ® 0.8/0.5 = 1.6 ® 60% slowdown

• 4-way superscalar
– 0.25 + 0.2*0.75*2 = 0.55 ® 0.55/0.25 = 2.2 ® 120% slowdown

Multiple-Issue	Implementations

• Statically-scheduled	(in-order)	superscalar
+ Executes	unmodified	sequential	programs
– Hardware	must	figure	out	what	can	be	done	in	parallel
– E.g.,	Pentium	(2-wide),	UltraSPARC (4-wide),	Alpha	21164	(4-wide)

• Very	Long	Instruction	Word	(VLIW)
+ Hardware	can	be	dumb	and	low	power
– Compiler	must	group	parallel	insns,	requires	new	binaries
– E.g.,	TransMeta Crusoe	(4-wide)

• Explicitly	Parallel	Instruction	Computing	(EPIC)
– A	compromise:	compiler	does	some,	hardware	does	the	rest
– E.g.,	Intel	Itanium	(6-wide)

• Dynamically-scheduled	superscalar
– Pentium	Pro/II/III	(3-wide),	Alpha	21264	(4-wide)

VLIW

• Hardware-centric	multiple	issue	problems
– Wide	fetch+branch	prediction,	N2 bypass,	N2 dependence	checks
– Hardware	solutions	have	been	proposed:	clustering,	trace	cache

• Software-centric:	very	long	insn	word	(VLIW)
– Effectively,	a	1-wide	pipeline,	but	unit	is	an	N-insn	group
– Compiler	guarantees	insns	within	a	VLIW	group	are	independent

• If	no	independent	insns,	slots	filled	with	nops
– Group	travels	down	pipeline	as	a	unit

+ Simplifies	pipeline	control	(no	rigid	vs.	fluid	business)
+ Cross-checks	within	a	group	un-necessary
• Downstream	cross-checks	still	necessary

– Typically	“slotted”:	1st	insn	must	be	ALU,	2nd	mem,	etc.
+ Further	simplification

What	Does	VLIW	Actually	Buy	You?

+ Simpler	I$/branch	prediction
+ Slightly	simpler	dependence	check	logic
• Doesn’t	help	bypasses	or	regfile

– Which	are	the	much	bigger	problems
– Although	clustering	and	replication	can	help	VLIW,	too

– Not	compatible	across	machines	of	different	widths
– Is	non-compatibility	worth	all	of	this?

• How	did	TransMeta deal	with	compatibility	problem?
– Dynamically	translates	x86	to	internal	VLIW

Trends	in	Single-Processor	Multiple	Issue

• Issue	width	has	saturated	at	4-6	for	high-performance	cores
– Canceled	Alpha	21464	was	8-way	issue
– No	justification	for	going	wider
– Out-of-order	execution	(or	EPIC)	needed	to	exploit	4-6	effectively

• For	high-performance/power	cores,	issue	width	is	~2
– Out-of-order	execution	not	needed
– Multi-threading	(a	little	later)	helps	cope	with	cache	misses

486 Pentiu
m

Pentiu
mII

Pentiu
m4

Itanium Itanium
II

Core2 Core i7
(Sandy B)

Core M
(Broadwell)

Year 1989 1993 1998 2001 2002 2004 2006 2011 2015
Widt
h

1 2 3 3 3 6 4 F6/4 4

