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Out-of-order pipeline

.

In-order front end
Out-of-order execution

How does this tolerate latencies?



What is multithreading?

e [In SW?

e In HW? How?



Superscalar Under-utilization
* Time evolution of issue slot
— 4-issue processor
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Simple Multithreading

* Time evolution of issue slot

— 4-issue processor
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Superscalar Multithreading
e Where do the threads come from?




“The” Multithreading Picture

* Time evolution of issue slots
— Color = thread
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Vertical and Horizontal Under-Utilization

* FGMT and CGMT reduce vertical under-utilization
— Loss of all slots in an issue cycle

* Do not help with horizontal under-utilization
— Loss of some slots in an issue cycle (in a superscalar processor)
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Simultaneous Multithreading (SMT)

* How can we issue insns from multiple threads in one cycle?



Simultaneous Multithreading (SMT)

map table
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Simultaneous Multithreading (SMT)

 What can issue insns from multiple threads in one cycle?

— Same thing that issues insns from multiple parts of same
program...

— ...out-of-order execution

e Simultaneous multithreading (SMT): OO0 + FGMT
— Aka “hyper-threading”

— Observation: once insns are renamed, scheduler doesn’t care
which thread they come from (well, for non-loads at least)

— Some examples
* |IBM Power5: 4-way issue, 2 threads
* Intel Pentium4: 3-way issue, 2 threads
* Intel “Nehalem”: 4-way issue, 2 threads
e Alpha 21464: 8-way issue, 4 threads (canceled)
* Notice a pattern? #threads (T) * 2 = #issue width (N)
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Simultaneous Multithreading (SMT)

map table

>

e SMT

— Replicate map table, share (larger) physical register file

thread scheduler map tables

>
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SMT Resource Partitioning

* Physical regfile and insn buffer entries shared at fine-grain
— Physically unordered and so fine-grain sharing is possible

 How are physically ordered structures (ROB/LSQ) shared?
— Fine-grain sharing (below) would entangle commit (and squash)
— Allowing threads to commit independently is important

thread scheduler map tables _
> >
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Static & Dynamic Resource Partitioning

e Static partitioning (below)

— T equal-sized contiguous partitions

+ No starvation, sub-optimal utilization (fragmentation)

* Dynamic partitioning

— P >T partitions, available partitions assigned on need basis

+ Better utilization, possible starvation

— ICOUNT: fetch policy prefers thread with fewest in-flight insns
Couple both with larger ROBs/LSQs
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Multithreading Issues

* Shared soft state (caches, branch predictors, TLBs, etc.)

 Key example: cache interference
— General concern for all MT variants
— Can the working sets of multiple threads fit in the caches?

— Shared memory SPMD threads help here
+ Same insns — share IS
+ Shared data — less DS contention
 MT is good for workloads with shared insn/data

— To keep miss rates low, SMT might need a larger L2 (which is OK)
e Qut-of-order tolerates L1 misses

* Large physical register file (and map table)
— physical registers = (#threads * #arch-regs) + #in-flight insns
— map table entries = (#threads * #arch-regs)



Sharing Soft State

BTBs?

BHT (branch history table)?
Branch History Register (BHR)?
Return Address Stack (RAS)?

Caches are shared natural

TLBs need exp

e More on this

icit thread

ater...

V...
Ds to be shared, Why?



Multithreading or Multicore?

* If you wanted to run multiple threads would you build a...
— A multicore: multiple separate pipelines?
— A multithreaded processor: a single larger pipeline?



Multithreading vs. Multicore

* |f you wanted to run multiple threads would you build a...
— A multicore: multiple separate pipelines?
— A multithreaded processor: a single larger pipeline?

* Both will get you throughput on multiple threads
— Multicore core could be simpler, possibly faster clock

— SMT will get you better performance (IPC) on a single thread
 SMT is basically an ILP engine that converts TLP to ILP
e Multicore is mainly a TLP (thread-level parallelism) engine

* Do both
— Sun’s Niagara (UltraSPARC T1)
— 8 processors, each with 4-threads (non-SMT threading)
— 1Ghz clock, in-order, short pipeline (6 stages or so)
— Designed for power-efficient “throughput computing”



Research: Speculative Multithreading

Speculative multithreading
— Use multiple threads/processors for single-thread performance

— Speculatively parallelize sequential loops, that might not be parallel
* Processing elements (called PE) arranged in logical ring
e Compiler or hardware assigns iterations to consecutive PEs
* Hardware tracks logical order to detect mis-parallelization
— Techniques for doing this on non-loop code too
* Detect reconvergence points (function calls, conditional code)
— Effectively chains ROBs of different processors into one big ROB
* Global commit “head” travels from one PE to the next
* Mis-parallelization flushes one PEs, but not all PEs
— Also known as split-window or “Multiscalar”

— Not commercially available yet...
* Butitis one of the “big idea” from academia not yet adopted



Research: Multithreading for Reliability

* Can multithreading help with reliability?
— Design bugs/manufacturing defects?
— Gradual defects, e.g., thermal wear?
— Transient errors?

e Staggered redundant multithreading (SRT)
— Run two copies of program at a slight stagger

— Compare results, difference? Flush both copies and
restart

— Significant performance overhead
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