
CSE	548:	Computer	Systems	Architecture

Virtual	Memory
Luis	Ceze,	Spring	2017

based	on	slides	from	friends	at	UPenn,	UIUC,	UW,	MIT.

1

Virtualizing	Processors

• How	do	multiple	apps	(and	OS)	share the	processors?
– Goal:	applications	think	there	are	an	infinite	#	of	processors

2

Virtualizing	Processors
• How	do	multiple	apps	(and	OS)	share the	processors?

– Goal:	applications	think	there	are	an	infinite	#	of	processors

• Solution:	time-share	the	resource
– Trigger	a	context	switch	at	a	regular	interval	(~1ms)

• Pre-emptive:	app	doesn’t	yield	CPU,	OS	forcibly	takes	it
+ Stops	greedy	apps	from	starving	others

– Architected	state:	PC,	registers
• Save	and	restore	them	on	context	switches
• Memory	state?

– Non-architected	state:	caches,	branch	predictor	tables,	etc.
• Ignore	or	flush

• OS	responsible	to	handle	context	switching
– Hardware	support	is	just	a	timer	interrupt

3

Virtualizing	Main	Memory

• How	do	multiple	apps	(and	the	OS)	share	main	
memory?
– Goal:	each	application	thinks	it	has	infinite	memory	

4

Virtualizing	Main	Memory

• How	do	multiple	apps	(and	the	OS)	share	main	memory?
– Goal:	each	application	thinks	it	has	infinite	memory	

• One	app	may	want	more	memory	than	is	in	the	system
– App’s	insn/data	footprint	may	be	larger	than	main	memory
– Requires	main	memory	to	act	like	a	cache	

• With	disk	as	next	level	in	memory	hierarchy	(slow)
• Write-back,	write-allocate,	large	blocks	or	“pages”

– No	notion	of	“program	not	fitting”	in	registers	or	caches	(why?)	
• Solution:	

– Part	#1:	treat	memory	as	a	“cache”
• Store	the	overflowed	blocks	in	“swap”	space	on	disk

– Part	#2:	add	a	level	of	indirection	(address	translation)

5

Virtual	Memory	(VM)
• Programs	use	virtual	addresses	(VA)

– 0…2N–1
– VA	size	also	referred	to	as	machine	size
– E.g.,	Pentium4	is	32-bit,	Alpha	is	64-bit

• Memory	uses	physical	addresses	(PA)
– 0…2M–1	(typically	M<N,	especially	if	N=64)
– 2M is	most	physical	memory	machine	supports

• VA®PA	at	page granularity	(VP®PP)
– By	“system”
– Mapping	need	not	preserve	contiguity
– VP	need	not	be	mapped	to	any	PP
– Unmapped	VPs	live	on	disk	(swap)	(or	

unallocated)
• What	is	virtual	memory	used	for?

6

…

…

Disk

Program

Main Memory

code heap stack

Uses	of	Virtual	Memory
• Key	uses:	isolation and	multi-programming

– Each	app	thinks	it	has	2N B	of	memory,	its	stack	starts	
0xFFFFFFFF,…

– Apps	prevented	from	reading/writing	each	other’s	memory
• Can’t	even	address	the	other	program’s	memory!

• Protection
– Each	page	with	a	read/write/execute	permission	set	by	OS
– Enforced	by	hardware

• Inter-process	communication.
– Map	same	physical	pages	into	multiple	virtual	address	spaces
– Or	share	files	via	the	UNIX	mmap() call

7

…
OS

…
App1

…
App2

Address	Translation

• VA®PA mapping	called	address	translation
– Split	VA	into	virtual	page	number	(VPN) &	page	offset	(POFS)
– Translate	VPN	into	physical	page	number	(PPN)
– POFS	is	not	translated
– VA®PA	=	[VPN,	POFS]	® [PPN,	POFS]

• Example	above
– 64KB	pages	® 16-bit	POFS
– 32-bit	machine	® 32-bit	VA	® 16-bit	VPN	
– Maximum	256MB	memory	® 28-bit	PA	® 12-bit	PPN

8

POFS[15:0]virtual address[31:0] VPN[31:16]

POFS[15:0]physical address[25:0] PPN[27:16]
translate don’t touch

Multi-Level	Page	Table	(PT)

• 20-bit	VPN
– Upper	10	bits	index	1st-level	table
– Lower	10	bits	index	2nd-level	table

9

1st-level
“pointers”

2nd-level
PTEs

VPN[9:0]VPN[19:10]

struct {
union { int ppn, disk_block; }
int is_valid, is_dirty;

} PTE;
struct {

struct PTE ptes[1024];
} L2PT;
struct L2PT *pt[1024];

int translate(int vpn) {
struct L2PT *l2pt = pt[vpn>>10];
if (l2pt && l2pt->ptes[vpn&1023].is_valid)

return l2pt->ptes[vpn&1023].ppn;
}

pt “root”

Address	Translation	Mechanics	II

• Conceptually
– Translate	VA	to	PA	before	every	cache	access
– Walk	the page	table	before	every	load/store/insn-fetch

• Really?	Is	this	fast?

10

Address	Translation	Mechanics	II

• Conceptually
– Translate	VA	to	PA	before	every	cache	access
– Walk	the page	table	before	every	load/store/insn-fetch
– Would	be	terribly	inefficient (even	in	hardware)

• In	reality
– Translation Lookaside Buffer	(TLB):	cache	translations
– Only	walk	page	table	on	TLB	miss

• Hardware	truisms
– Functionality	problem?	Add	indirection	(e.g.,	VM)
– Performance	problem?	Add	cache	(e.g., TLB)

11

Translation	Buffer

• Translation	buffer	(TLB)
– Small	cache:	16–64	entries
– Associative	(4+	way	or	fully	
associative)	

+ Exploits	temporal	locality	in	page	
table

– What	if	an	entry	isn’t	found	in	the	
TLB?

• Invoke	TLB	miss	handler

12

VPN PPN
VPN PPN
VPN PPN

“tag” “data”

CPU

D$

L2

Main
Memory

I$

TLB
VA

PA
TLB

Serial	TLB	&	Cache	Access
• “Physical”	caches

– Indexed	and	tagged	by physical	addresses
+ Natural,	“lazy”	sharing	of	caches	between	apps/OS

• VM	ensures	isolation	(via physical	addresses)
• No	need	to	do	anything	on	context	switches
• Multi-threading	works	too

+ Cached	inter-process	communication	works
• Single	copy	indexed	by physical	address

– Slow:	adds	at	least	one	cycle	to	thit

• Note:	TLBs are	by	definition	virtual
– Indexed	and	tagged	by virtual	addresses
– Flush	across	context	switches
– Or	extend	with	process	id	tags

• Does	this	have	to	be	serial?

13

CPU

D$

L2

Main
Memory

I$

TLB
VA

PA
TLB

Parallel	TLB	&	Cache	Access

• What	about	parallel	access?	
– What	if

(cache	size)	/	(associativity)	≤	page	size
– Index	bits	same	in	virt.	and	physical	addresses!

• Access	TLB	in	parallel	with	cache	
– Cache	access	needs	tag	only	at	very	end
+ Fast:	no	additional	thit cycles
+ No	context-switching/aliasing	problems	
– Dominant	organization	used	today

14

CPU

D$

L2

Main
Memory

I$TLB
VA
PATLB

[4:0]tag [31:12] index [11:5]
VPN [31:16] page offset [15:0]

?

page offset [15:0]PPN[27:16]

TLB	Organization

• Like	caches:	TLBs also	have	ABCs
– Capacity
– Associativity	(At	least	4-way	associative,	fully-associative	
common)

– What	does	it	mean	for	a	TLB	to	have	a	block	size	of	two?
• Two	consecutive	VPs	share	a	single	tag

– Like	caches:	there	can	be	L2	TLBs

15

TLB	Misses
• TLB	miss: translation	not	in	TLB,	but	in page	table

– Two	ways	to	“fill”	it,	both	relatively	fast

• Software-managed	TLB:	e.g.,	Alpha,	Embedded	PPC	
– Short	(~10	insn)	OS	routine walks	page	table,	updates	TLB
+ Keeps page	table	format	flexible
– Latency:	one	or	two	memory	accesses	+	OS	call	(pipeline	flush)

• Hardware-managed	TLB:	e.g., x86
– Page	table	root	pointer	in	hardware	register,	FSM	“walks” table
+ Latency:	saves	cost	of	OS	call	(pipeline	flush)
– Page	table	format	is	hard-coded

– TLB	misses	becoming	a	huge	problem	as	physical	memory	
grows
– Direct	Segments	[ISCA’13]

16

Page	Faults

• Page	fault:	PTE	not	in TLB	or	page	table	
– ® page	not	in	memory
– Starts	out	as	a TLB	miss,	detected	by	OS/hardware	handler

• OS	software	routine:
– Choose	a	physical	page	to	replace

• “Working	set”:	refined	LRU,	tracks	active	page	usage
– If	dirty,	write	to	disk
– Read	missing	page	from	disk

• Takes	so	long	(~10ms),	OS	schedules	another	task
– Requires yet	another	data	structure:	frame	map (why?)
– Treat	like	a	normal	TLB	miss	from	here

17

Ok,	now	how	do	we	provide	protection?

18

Page-Level	Protection

• Page-level	protection
– Piggy-back	page-table	mechanism
– Map	VPN	to	PPN	+	Read/Write/Execute permission	bits
– Attempt	to	execute	data,	to	write	read-only	data?

• Exception	® OS	terminates	program
– When	are	protection	properties	checked?

19

struct {
union { int ppn, disk_block; }
int is_valid, is_dirty, permissions;

} PTE;
struct PTE pt[NUM_VIRTUAL_PAGES];

int translate(int vpn, int action) {
if (pt[vpn].is_valid && !(pt[vpn].permissions & action)) kill;
…

}

What	could	we	use	protection	for?

20

What	could	we	use	protection	for?

• Virtualization
• Software	distributed	shared	memory
• Garbage	collection?
• Optimizations?
• Control	program	execution	in	interesting	ways

21

Virtualization

22

guest
process

Host machine

Guest OS

VMM

guest
process

guest
process

guest
process

Guest OS2

VMM

guest
process

guest
process

Virtualization

23

guest
process

Host machine

Guest OS

VMM

guest
process

guest
process

guest
process

Guest OS2

VMM

guest
process

guest
process

Singularity	OS [Larus et	al.]

• Can	we	have	a	single-address	space	OS	that	also	
supports	multiprogramming,	is	safe	etc.

• Exercise:	write	an	OS	in	a	managed	language
– No	explicit	pointer	computation

• Use	types	and	static	analysis	to	isolate	program	
executions

• Minimal	low-level	code	to	interact	with	devices

24

