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Goals
Data	Parallelism:What	is	it,	and	how	to	exploit	it?
◦ Workload	characteristics

Parallel	Execution	Models
◦ MIMD,	SIMD,	SIMT

GPU	Compute	Programming	Models	
◦ Intro	to	OpenCL
◦ I	will	slowly	introduce	new	terminology

Modern	GPU	Microarchitectures
◦ i.e.,	programmable	GPU	pipelines,	not	their	fixed-function	predecessors

Advanced	Topics:	(time	permitting)
◦ The	Limits	of	GPUs:	What	they	can	and	cannot	do
◦ The	Future	of	GPUs:Where	do	we	go	from	here?
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Data	Parallel	
Execution	
on	GPUs
Data	Parallel ism,	Programming	Models, 	SIMT
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Graphics	Workloads
Streaming computation

GPU
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Graphics	Workloads
Streaming computation	on	pixels

GPU
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Graphics	Workloads
Identical, Streaming computation	on	pixels

GPU
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Graphics	Workloads
Identical,	Independent, Streaming computation	on	pixels

GPU
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Generalize:	Data	Parallel	Workloads
Identical,	Independent computation	on	multiple	data	inputs
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Naïve	Approach
Split	independent work	over	multiple processors
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Data	Parallelism:	A	MIMD	Approach
Multiple	Instruction	Multiple	Data

Split	independent work	over	multiple processors
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CPU2
Fetch Decode Execute Memory Writeback

CPU3
Fetch Decode Execute Memory Writeback
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Data	Parallelism:	A	MIMD	Approach
Multiple	Instruction	Multiple	Data

Split	independent work	over	multiple processors

7,0

6,0

5,0

4,0

CPU0
Fetch Decode Execute Memory Writeback

CPU1
Fetch Decode Execute Memory Writeback

CPU2
Fetch Decode Execute Memory Writeback

CPU3
Fetch Decode Execute Memory Writeback
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When	work	is	identical (same	program):

Single	Program	Multiple	Data	(SPMD)
(Subcategory	of	MIMD)



Data	Parallelism:	An	SPMD	Approach
Single	Program	Multiple	Data

Split	identical, independent work	over	multiple processors
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CPU0
Fetch Decode Execute Memory Writeback

CPU1
Fetch Decode Execute Memory Writeback

CPU2
Fetch Decode Execute Memory Writeback

CPU3
Fetch Decode Execute Memory Writeback

12GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

2,7

3,7

1,7

0,7
Program

𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)



Data	Parallelism:	A	SIMD	Approach
Single	Instruction	Multiple	Data

Split	identical, independent work	over	multiple execution	units	(lanes)

More	efficient:	Eliminate	redundant	fetch/decode
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SIMD:	A	Closer	Look
One	Thread	+	some Data	Parallel	(vector)	Ops	à single	PC,	
program	explicitly	manages	scalar	vs.	vector	instructions

ex.	x86	SSE/AVX
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Program
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Writeback
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Execute Memory Writeback
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GPU

Decode

Data	Parallelism:	A	SIMT	Approach
Single	Instruction	Multiple	Thread

Split	identical, independent work	over	multiple lockstep threads
Implicit	data	parallel	à complete vector	ops	+	some scalar	ops

ex.	HSAIL	SMIT	ISA	compiled	to	AMD	GCN	ISA
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4,0
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Threads	to	hardware
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SIMT	Threads SIMT	Threads



Data	Parallel	Execution	Models
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MIMD SIMD/Vector SIMT

Multiple	independent
threads	

Multiple	lockstep	threadsOne	thread	with	wide	
execution	datapath



Execution	Model	Comparison
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MIMD SIMD/Vector SIMT

Example
Architecture Multicore	CPUs x86 SSE/AVX	 GPUs

Pros More	general:	
supports	TLP

Optimize	sequential	
& parallel	code

Easier	to	program	
Gather/Scatter	
operations

Cons Inefficient for	data	
parallelism

Gather/Scatter	can	
be	awkward

Performance	
optimizations



GPU

GPUs	and	Memory
Recall:	GPUs	perform	Streaming computation	à

Streaming memory	access
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DRAM	latency:	100s-1000s	of	GPU	cycles

How	do	we	keep	the	GPU	busy	(hide	memory	latency)?



Hiding	Memory	Latency
Options	from	the	CPU	world:

Caches
◦ Need	spatial/temporal	locality

OoO/Dynamic	Scheduling
◦ Need	ILP

Multicore/Multithreading/SMT
◦ Need	TLP
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Multicore	Multithreaded	SIMT
Many	SIMT	“threads”	grouped	together	into	GPU	“Core”
◦ Note	again	GPUs	support	many	more	threads	than	CPUs	
◦ The	group	hierarchy	is	exposed	to	programmers

Multiple	GPU	“Cores”	in	hardware
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GPU	“Core” GPU	“Core”

GPU



Multicore	Multithreaded	SIMT
Many	SIMT	“threads”	grouped	together	into	GPU	“Core”
◦ Note	again	GPUs	support	many	more	threads	than	CPUs	
◦ The	group	hierarchy	is	exposed	to	programmers

Multiple	GPU	“Cores”	in	hardware
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GPU	“Core” GPU	“Core”

GPU

This	is	a	GPU	Architecture	(Whew!)



Generic	GPU	Hardware	Terminology
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GPU	“Core”

Lane:
executes	a
single	thread

GPU	Core:
supports	multiple	

SIMD	Units

GPU	Chip

GPU	Wave:
4	lanes

in	lockstep



SIMT	Programming	
Languages
GPUs	Going	Beyond	Graphics
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Motivation
Traditionally	GPUs	were	only	graphic	ASICs

GPU	can	be	more	computational	efficient	for	other	applications
◦ Computer	vision
◦ Machine	learning
◦ Bioinformatics
◦ Signal	processing
◦ Numerical	methods
◦ Network	processing
◦ Finance
◦ Scientific	computing

Each	generation	GPUs	become	easier	to	program
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OpenCL
Early	CPU	languages	were	light	abstractions	of	physical	hardware
◦ E.g.,	C

Early	GPU	languages	are	light	abstractions	of	physical	hardware
◦ OpenCL and	CUDA
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GPU	“Core”

Lane

GPU	Wave

GPU	Core

GPU	Chip

Hardware OpenCL

Work-item

Wavefront:
4	work-items
in	lock-step

Work-group:
1	or	more

wavefonts on	the
same	GPU	Core

Device:
1	or	more

work-groups	on	the
same	GPU	Chip

How	does	OpenCL map	to	the	HW



NDRange
N-Dimensional	(N	=	1,	2,	or	3)	index	space
◦ Partitioned	into	work-groups,	wavefronts,	and	work-items
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NDRange

Work-group Work-group



OpenCL Execution	Hierarchy
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Kernel
Run	an	NDRange on	a	kernel (i.e.,	a	function)

Same	kernel	executes	for	each	work-item
◦ Maps	well	to	SIMT
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Kernel
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Kernel

Run	an	NDRange on	a	kernel (i.e.,	a	function)

Same	kernel	executes	for	each	work-item
◦ Maps	well	to	SIMT…but	beware	of	the	execution	hierarchy

Work-group



OpenCL Code
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__kernel 
void flip_and_recolor(__global float3 **in_image,

__global float3 **out_image,
int img_dim_x, int img_dim_y) 

{
int x = get_global_id(1); // get work-item id in dim 1
int y = get_global_id(2); // get work-item id in dim 2

out_image[img_dim_x - x][img_dim_y - y] = 
recolor(in_image[x][y]);

}



GPU	
Microarchitecture
AMD	Graphics	Core	Next
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GPU	Hardware	Overview
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A	GPU	Core
GPU	Core	Hardware
◦ Contains	4	SIMD	Units
◦ Picks	one SIMD	Unit	per	cycle	for	scheduling

SIMD	Unit	– Runs	Wavefronts
◦ Each	SIMD	Unit	has	10	wavefront instruction	buffer
◦ Takes	4	cycles	to	execute	one	wavefront
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Local	Memory
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SI
M
D 10	Wavefront x	4	SIMD	Units	=	

40	Active	Wavefronts /	GPU	Core	

64	work-items	/	wavefront x	40	active	wavefronts =	
2560	Active	Work-items	/	GPU	Core	



GPU	Timing	Diagram
On	average:	fetch	&	commit	one										wavefront /	cycle
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SIMD	Unit	– A	GPU	Pipeline
Like	a	wide	CPU	pipeline	– except	one	fetch	for	entire	width

16-wide	physical	ALU
◦ Executes	64-wavefront	over	4	cycles

64KB	register	state	/	SIMD	Unit
◦ Compare	to	x86	(CPU):	~1KB	of	physical	register	file	state	(~1/64	size)

Address	Coalescing	Unit
◦ A key	to	good	memory	performance	

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 37

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Address	Coalescing	Unit

SI
M
T



Address	Coalescing
Wavefront:	Issue	64	memory	requests
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NDRange

Workgroup Workgroup



Address	Coalescing
Wavefront:	Issue	64	memory	requests

Common	case:	
◦ work-items	in	same	wavefront touch	same	cache	block

Coalescing:
◦ Merge	many	work-items	requests	into	single	cache	block	request

Important	for	performance:
◦ Reduces	bandwidth	to	DRAM
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GPU	Memory

GPUs	have	caches.
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Not	Your	CPU’s	Cache
By	the	numbers:	Bulldozer	– FX-8170			vs.		GCN	– Radeon	HD	7970
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CPU	(Bulldozer) GPU	(GCN)
L1	data	cache capacity 16KB 16	KB

Active	threads (work-items)	
sharing	L1	D	Cache	

1 2560

L1	dcache capacity	/	thread 16KB 6.4	bytes

Last level cache	(LLC) capacity 8MB 768KB

Active	threads	(work-items)	
sharing	LLC

8 81,920

LLC	capacity	/	thread 1MB 9.6	bytes



GPU	Caches
Maximize	throughput,	not	hide	latency
◦ Not	there	for	temporal	locality
◦ It	is	barely	there	for	spatial	locality

L1	Cache:	Coalesce	requests	to	same	cache	block	by	different	work-items
◦ i.e.,	streaming	thread	locality?
◦ Keep	block	around	just	long	enough	for	each	work-item	to	hit	once
◦ Ultimate	goal:	Reduce	bandwidth	to	DRAM

L2	Cache:	DRAM	staging	buffer	+	some	instruction	reuse
◦ Ultimate	goal:	Tolerate	spikes	in	DRAM	bandwidth

If	there	is	any	spatial/temporal	locality:
◦ Use	local	memory	(scratchpad)
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Scratchpad	Memory
GPUs	have	scratchpads	(Local	Memory)
◦ Separate	address	space
◦ Managed	by	software:

◦ Rename	address
◦ Manage	capacity	– manual	fill/eviction

Allocated	to	a	workgroup
◦ i.e.,	shared	by	wavefronts in	workgroup
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Example	System:	Radeon	Fury	X
High-end	part	from	last	year

64	Compute	Units:
◦ 163,840	Active	work-items
◦ 64	GPU	Cores	*	4	SIMT	Units	*	16	ALUs	=	4096	Max	FP	ops/cycle
◦ 512	GB/s	Max	memory	bandwidth	(4	GB	of	HBM)

1 GHz	engine	clock
◦ 8.6	TFLOPS	single	precision	(accounting	trickery:	FMA)

275W	Max	Power	(Chip)
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Radeon	R9	Fury	X	- Cooking
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A	Rose	by	Any	
Other	Name…
The	GPU	Decoder	Ring
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Terminology	Headaches	#2-5
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GPU	“Core”

CUDA	Processor Processing	Element

CUDA	Core SIMD	Unit

Streaming	
Multiprocessor

Compute	Unit

GPU	DeviceGPU	Device

Nvidia/CUDA AMD/OpenCL CPU	Analogy

Lane

Pipeline

Core

Device



Terminology	Headaches	#6-9
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Group

Thread Work-item

Warp Wavefront

Block Work-group

NDRangeGrid

CUDA/Nvidia OpenCL/AMD Henn&Patt

Sequence	of	
SIMD	Lane	
Operations

Thread	of	
SIMD	
Instructions

Body	of	
vectorized
loop

Vectorized
loop



Terminology	Headache	#10
GPUs	have	scratchpads	(Local	Memory)
◦ Separate	address	space
◦ Managed	by	software:

◦ Rename	address
◦ Manage	capacity	– manual	fill/eviction

Allocated	to	a	workgroup
◦ i.e.,	shared	by	wavefronts in	workgroup
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Nvidia calls	‘Local	Memory’	or	
‘Shared	Memory’.	

AMD	calls	it	‘Group	Memory’	or	‘LDS’.



Recap
Data	Parallelism:	Identical,	Independent	work	over	multiple	data	inputs
◦ GPU	version:	Add	streaming	access	pattern

Data	Parallel	Execution	Models:	MIMD,	SIMD,	SIMT

GPU	Execution	Model:	Multicore	Multithreaded	SIMT

OpenCL Programming	Model	
◦ NDRange over	workgroup/wavefront

Modern	GPU	Microarchitecture: AMD	Graphics	Core	Next	(GCN)
◦ Compute	Unit	(“GPU	Core”):	4	SIMD	Units
◦ SIMD	Unit	(“GPU	Pipeline”):	16-wide	ALU	pipe	(16x4	execution)
◦ Memory:	designed	to	stream

GPUs:	Massively	multithread.	Efficient	throughput-oriented	design.
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Advanced	Topics
GPU	Limitations,	Future	of	GPGPU
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Choose	Your	Own	Adventure!
SIMT	Control	Flow	&	Branch	Divergence

Memory	Divergence

When	GPUs	talk	
◦ Wavefront communication
◦ GPU	coherence
◦ GPU	consistency

Future	of	GPUs:	What’s	next?
◦ Task-based	programming
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SIMT	Control	Flow
Consider	SIMT	conditional	branch:
◦ One	PC
◦ Multiple	data	(i.e.,	multiple	conditions)

53

if (x <= 0) 
y = 0;

else
y = x;

?



SIMT	Control	Flow
Work-items	in	wavefront run	in	lockstep
◦ Don’t	all	have	to	commit

Branching	through	predication

54

if (x <= 0) 
y = 0;

else
y = x;

Branch	à set	execution	mask:	1000

Else	à invert	execution	mask:	0111

Converge	à Reset	execution	mask:	1111

Active	lane:	commit	result Inactive	lane:	throw	away	result

All	lanes	active	at	start:	1111
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if (x <= 0) 
y = 0;

else
y = x;

Branch	à set	execution	mask:	1000

Else	à invert	execution	mask:	0111

Converge	à Reset	execution	mask:	1111

Active	lane:	commit	result Inactive	lane:	throw	away	result

All	lanes	active	at	start:	1111Branch	divergence



Branch	Divergence

When	control	flow	diverges,	all	lanes	take	all	paths

Divergence	Kills	Performance
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Beware!	
Divergence	isn’t	just	a	performance	problem:
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__global int lock = 0;

void mutex_lock(…)
{
…

// acquire lock
while (test&set(lock, 1) == false) {

// spin
}
return;

}



Beware!	
Divergence	isn’t	just	a	performance	problem:
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__global int lock = 0;

void mutex_lock(…)
{
…

// acquire lock
while (test&set(lock, 1) == false) {

// spin
}
return;

}

Deadlock:	work-items	can’t	enter	mutex together!



Memory	Bandwidth
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Memory	Bandwidth
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Memory	Bandwidth
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Memory	Divergence
One	work-item	stalls	à entire	wavefront must	stall
◦ Cause:	Bank	conflicts,	cache	misses

Data	layout	&	partitioning	is	important
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Memory	Divergence
One	work-item	stalls	à entire	wavefront must	stall
◦ Cause:	Bank	conflicts,	cache	misses

Data	layout	&	partitioning	is	important

Divergence	Kills	Performance
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Communication	and	Synchronization
Work-items	can	communicate	with:
◦ Work-items	in	same	wavefront

◦ No	special	sync	needed…they	are	lockstep!

◦ Work-items	in	different	wavefront,	same	workgroup	(local)
◦ Local	barrier

◦ Work-items	in	different	wavefront,	different	workgroup	(global)
◦ OpenCL 1.x:	Nope
◦ OpenCL 2.0:	Yes,	similar	synchronization	operations	to	CPUs
◦ CUDA	x:	Incrementally	getting	better
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GPU	Consistency	Models	(circa	2013)
Very	weak	guarantee:
◦ Program	order	respected	within	single	work-item
◦ All	other	bets	are	off

Safety	net:
◦ Fence	– “make	sure	all	previous	accesses	are	visible	before	proceeding”
◦ Built-in	barriers	are	also	fences

A	wrench:
◦ GPU	fences	are	scoped – only	apply	to	subset	of	work-items	in	system

◦ E.g.,	local	barrier

Take-away:	confusion	abounded

Read	Hower	et	al.	ASPLOS	2014
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GPU	Coherence
Notice:	GPU	consistency	model	does	not	require	strong	coherence
◦ i.e.,	no	Single	Writer,	Multiple	Reader	invariant
◦ i.e.,	no	read-for-ownership	

Don’t	get	caught	up	in	the	historical	CPU	definition	of	coherence

GPU	coherence implementations:
◦ Nvidia:	disable	private	caches
◦ AMD:	flush/invalidate	cache	at	fences

Read	Hechtman	et	al.	HPCA	2014
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GPU	Architecture	Research
The	future	is	GPU	compute
◦ Fundamentally	more	efficient	than	CPUs
◦ Simplifying	GPU	programmability	is	the	challenge

Blending	with	CPU	architecture:
◦ Dynamic	scheduling	/	dynamic	wavefront re-org
◦ Work-items	have	more	locality	than	we	think

Tighter	integration	with	CPU	on	SOC:
◦ Fast	kernel	launch

◦ Exploit	fine-grained	parallel	region:	Remember	Amdahl’s	law

◦ Common	shared	memory
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C

hQ	Command	and	Dispatch	Flow

User-mode	application	talks	directly	to	
the	hardware
◦ HSA	Architected	Queuing	Language	
(AQL)	defines	vendor-independent	
format

◦ No	system	call
◦ No	kernel	driver	involvement

Hardware	scheduling

Greatly	reduced	dispatch	overhead
à less	overhead	to	amortize
à profitable	to	offload	smaller	tasks

GPU	kernels	can	self-enqueue	additional	
tasks	for	dynamic	parallelism
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