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Aside: Better computers hel
design the next generation /EAD)!

The dominant landscape: Tablets/phones/loT backed by Warehouse-scale computers
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What do | mean by “Technology’

Basic element
— Solid-state transistor (i.e., electrical switch)
— Building block of integrated circuits (ICs)

What's so great about ICs? Everything
+ High performance, high reliability, low cost, low power
+ Lever of mass production

Several kinds of IC families
— SRAM/logic: optimized for speed, used for processors
— DRAM: optimized for density, cost, power, used for memory
— Flash: non-volatile memory
— Increasing opportunities for integrating multiple technologies

Non-transistor storage and inter-connection technologies
— Disk, optical storage, ethernet, fiber,



Semiconductor Transistor

gate gate ‘
insulator

source source drain

G——)
channel

* Basic technology element: MOSFET
— Solid-state component acts like electrical switch

— MOS: metal-oxide-semiconductor
* Conductor, insulator, semi-conductor

* FET: field-effect transistor

— Channel conducts source—drain only when voltage applied to gate
* Channel length: characteristic parameter (short — fast)

— Aka “feature size” or “technology node”

— Currently: 14 nanometers (nm)

— Continued miniaturization (scaling) known as “Moore’s Law”
* Won't last forever, physical limits approaching (or are they?)
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A Transistor Analogy: Computing with Air

« Use air pressure to encode values
— High pressure represents a “1” (blow)
— Low pressure represents a “0” (suck)

« Valve can allow or disallow the flow of air
— Two types of valves

N-Valve P-Valve

Low (Off) Low (On)

hole

High (On) High (Off)
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Manufacturing Steps

e Multi-step photo-/electro-chemical process

— More steps, higher unit cost

+ Fixed cost mass production (S1M+ for “mask set”)




Manufacturing Defects

Correct: e Defects can arise
— Under-/over-doping

— Over-/under-dissolved insulator

— Mask mis-alignment

Defective:

— Particle contaminants

* Try to minimize defects

— Process margins

Defective:

— Design rules

* Minimal transistor size, separation

Slow:
- * Or, tolerate defects

:

— Redundant or “spare” memory cells

— Can substantially improve yield
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Cost Implications of Defects

Chips built in multi-step chemical processes on wafers

— Cost / wafer is constant, f(wafer size, number of steps)

Chip (die) cost is related to area

— Larger chips means fewer of them /1 N y N
Cost is superlinear in area LY LD

— Why? random defects ] / \ et /

— Larger chip, more chance of defect \\ /| TN i

* Result: lower “yield” (fewer working chips)

Wafer yield: % wafer that is chips

Die yield: % chips that work
Yield is increasingly non-binary - fast vs slow chips



First Microprocessor

 Connect a few transistors together to make...

o Intel 4004
e 1971 (first microprocessor)

e 4-bit data

e 2300 transistors
e 10 um technology
e 108 KHz

e 12 Volts

e 13 mm?

e 20 KIPS (thousand
instructions per second)
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Moore’s Law (1965)

Transistors per inch square
—  Twice as many after ~1.5-2 years

Some technology-based ramifications
— Annual improvements in density, speed, power, costs
—  SRAM/logic: density: ~30%, speed: ~20%
—  DRAM: density: ~60%, speed: ~4%
—  Disk: density: ~60%, speed: ~10% (non-transistor)
—  Bigimprovements in flash memory and network bandwidth, too

Related trends

—  Processor performance
Twice as fast after 18 months

—  Memory capacity
Twice as much in <2 years

Changing quickly and with respect to each other!!
—  Example: density increases faster than speed
—  Trade-offs are constantly changing
—  Re-evaluate/re-design for each technology generation

Reading: Moore’s original paper

LOG2 OF THE
NUMBER OF COMPONENTS

PER INTEGRATED FUNCTION
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Today:
232 transistors
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How were growing # of transistors used?

* |Initially to widen the datapath
— 4004: 4 bits (BCD calculators) — Pentium4: 64 bits

e ...and also to add more powerful instructions
— To amortize overhead of fetch and decode
— To simplify programming (which was done by hand then)

e And?...



“Recent” Microprocessor

Intel Core i7 (2013)

Application: desktop/server
Technology: 22nm (25% of P4)

1.4B transistors (30x)
177 mm?(2x)

3.5 GHz to 3.9 Ghz (~1x)
1.8 Volts (~1x)

Dlsplay
Bl Engine & B
,_“33 Memory |

- P =
: : Controller |

- : i includin

] isplay, PCle ¢

- an s

256-bit data (2x) |
14-stage pipelined datapath (O 5x)

4 instructions per cycle (1x)

Three levels of on-chip cache

data-parallel vector (SIMD) instructions, hyperthreading
Four-core multicore (4x)
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Performance Trend

Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

Intel Core 2 Extreme 2 cores, 2.9 GHz _@--19,484

.................................. AMDAthIon 64’ 28 GHZ"_’ s LN . . . . . ... -
AMD Athlon, 2.6 GHz_.-*

Intel Xeon EE 3.2 GHz g»=

IBM RS6000/540, 30 MHz_
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MH
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Performance (vs. VAX-11/780)
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The “Meter” of Computer Architecture
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Implicit Parallelism

Extract implicit instruction-level parallelism
— Hardware provides parallel resources, figures out how to use them
— Software is oblivious

Initially using pipelining ...
— Which also enabled increased clock frequency

... caches ...
— Which became necessary as processor clock frequency increased

... and integrated floating-point

Then deeper pipelines and branch speculation
Then multiple issue (superscalar)

Then dynamic scheduling (out-of-order execution)

We will talk about these things



Performance (vs. VAX-11/780)

Hmm, have you noticed it?

100,000
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Explicit Parallelism

Support explicit data & thread level parallelism
— Hardware provides parallel resources, software specifies usage

Helps alleviate power concerns — why?

First using (subword) vector instructions..., Intel’ s SSE
— One instruction does 4 parallel multiplies

... and general support for multi-threaded programs
— Coherent caches, hardware synchronization primitives

Then using support for multiple concurrent threads on chip
— First with single-core multi-threading, now with multi-core
Integrated graphics? Accelerators? FPGAs?
— AMD bought ATI, Nvidia making ARM procs, hmmm...

(We will cover these too)

Still not enough for sustained performance/energy efficiency
Improvement
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More General/Programmable
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