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Shared-Memory	Multiprocessors

• Conceptual	model
– The	shared-memory	abstraction
– Familiar	and	feels	natural	to	programmers
– Life	would	be	easy	if	systems	actually	looked	like	this…

P0 P1 P2 P3

Memory
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Shared-Memory	Multiprocessors

• …but	systems	actually	look	more	like	this
– Processors	have	caches
– Memory	may	be	physically	distributed
– Arbitrary	interconnect

P0 P1 P2 P3

$ M0

Router/interface

Interconnect

$ M1

Router/interface

$ M2

Router/interface

$ M3

Router/interface



Problems	with	the	Intuition

• Intuition:
– Reading	a	shared	location	should	return	latest	value	written (by	any	

process)

• But	“last”	is	not	well-defined
• In	sequential	case:

– “last”	is	defined	in	terms	of	program	order,	not	time

• In	parallel	case?



Problems	with	the	Intuition

• Intuition:
– Reading	a	shared	location	should	return	latest	value	written (by	any	

process)

• But	“last”	is	not	well-defined
• In	sequential	case:

– “last”	is	defined	in	terms	of	program	order,	not	time

• In	parallel	case:
– program	order	defined	within	a	thread,	but	need	to	make	sense	of	orders	

across	thread

• Must	define	a	meaningful	semantics
– the	answer	involves	both	“cache	coherence”	and	an	appropriate	

“memory	consistency	model”



Formal	Definition	of	Coherence

• A	memory	system	is	coherent if	the	results	of	any	execution	of	a	
program	are	such	that	for	each	location,	it	is	possible	to	construct	a	
hypothetical	serial	order of	all	operations	to	the	location	that	is	
consistent	with	the	results	of	the	execution	and	in	which:

• 1.	operations	issued	by	any	particular	process	occur	in	the	order	
issued	by	that	thread,	and

• 2.	the	value	returned	by	a	read	is	the	value	written	by	the	last	write	
to	that	location	in	the	serial	order

• Two	necessary	conditions:
–Write	propagation: value	written	must	become	visible	to	others	eventually
–Write	serialization: writes	to	location	seen	in	same	order	by	all

• if	I	see	w1	after	w2,	you	should	not	see	w2	before	w1
• do	we	need	to	worry	about	read	order?

How	do	we	provide	these	guarantees?



Announcements

• Next	lecture	in	room	305
– HW	specialization/machine	learning
– Joint	with	deep	learning	class
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hypothetical	serial	order of	all	operations	to	the	location	that	is	
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Coherence

Wr	X

Wr	X

“Reading	X	gets	the	value	of	
the	last	write	to	X”Rd	X



Coherence

2)	“Reading	X	gets	the	value	
of	the	last write	to	X”

Wr	X

Wr	X

Rd	X

I	wrote	X	last

Blue	wrote	X	last



Without Coherence

Wr	X Wr	X

Rd	X

Which	
X?!

Cache	XCache	X

(The	coherence	invariants	prevent	this	from	happening)

How	to	decide	who	wrote	last?



Coherence is Ordering

Wr	X

Wr	X

Coherence defines	the	set	of	legal	orders	of	
accesses	to	a	single	memory	location

Wr	X

Wr	X
OR



Shared	Caches

• Processors	share	a	single	cache,	essentially	punting	the	problem.		
• Useful	for	very	small	machines.	

– Problems	are	limited	cache	bandwidth	and	cache	interference
– Benefits	are	fine-grain	sharing	and	prefetch effects

P P

Shd. Cache

Memory

Intel Core 2 Duo (Conroe)



Interconnect

Shared Cache Implementation
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P0 P1 P2

Memory A 500
B 0

Shared
Cache

Tag Data • On-chip shared cache
• Lacks per-core caches

– Shared cache becomes 
bottleneck



Interconnect

Shared Cache Implementation
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P0 P1 P2

Memory A 500
B 0

Shared
Cache

Tag Data

Load	[A]

1

2



Interconnect

Shared Cache Implementation
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P0 P1 P2

Memory A 500
B 0

Shared
Cache

Tag Data
A 500

Load	[A]

1

2
3

4

(500)



Shared
Cache

Tag Data
A 400

Interconnect

Shared Cache Implementation

• Write into cache
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P0 P1 P2

Memory A 500
B 0

1

Store	400	->	[A]



Shared
Cache

Tag Data State
A 400 Dirty

Interconnect

Shared Cache Implementation

• Mark as “dirty”
• Memory not updated
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P0 P1 P2

Memory A 500
B 0

1

Store	400	->	[A]

2



Interconnect

Adding Private Caches
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P0

Cache
Tag Dat

a

Cache
Tag Dat

a

Cache
Tag Dat

a

P1 P2

Memory A
B

Shared
Cache

Tag Data State• Add per-core caches
(write-back caches)
– Reduces latency
– Increases throughput
– Decreases energy



Interconnect

Adding Private Caches
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Interconnect

Adding Private Caches
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2
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5
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Interconnect

Adding Private Caches
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P0

Cache
Tag Dat

a

Cache
Tag Dat

a
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Tag Dat

a
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Memory A 500
B

Shared
Cache

Tag Data State
A 500 Clean

Store	400	->	[A]1



Interconnect

Adding Private Caches
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P0

Cache
Tag Dat

a

Cache
Tag Dat

a
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e

A 400 Dirty

Cache
Tag Dat

a

P1 P2

Memory A 500
B

Shared
Cache

Tag Data State
A 500 Clean

Store	400	->	[A]1

2



Interconnect

Will It Always Work?

• What happens 
when another 
core tries to 
read A?
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Interconnect

Private Cache Problem: Incoherence
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Interconnect

Private Cache Problem: Incoherence
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Interconnect

Private Cache Problem: Incoherence

• P0 got the 
wrong value!
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P0

Cache
Tag Dat

a
A 500

Cache
Tag Dat
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e
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Uh,	Oh
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Bus-based	Multiprocessor

• Simple	multiprocessors	use	a	bus
– All processors	see	all	requests	at	the	same	time,	same	order

• Memory
– Single	memory	module,	-or-
– Banked	memory	module

P0 P1 P2 P3

$

M0

Bus

$

M1

$

M2

$

M3
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Snoopy	Hardware	Cache	Coherence

• Coherence	controller:
– Examines	bus	traffic	(addresses	and	data)
– Executes	coherence	protocol

• What	to	do	with	local	copy	when	you	see	different	things	
happening	on	bus

• Protocol	is	a	distributed	algorithm:	cooperating	
state	machines
– Set	of	states,	state	transition	diagram,	actions	

• Granularity	of	coherence	is	a	cache	block
• Bus	messages	totally	ordered	and	atomic	(unless	

split-transaction)
• What	should	the	protocol	(s)	look	like?

CPU

D$	
dataD$

	ta
gs

CC

bus
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VI	(MI)	Coherence	Protocol

• VI	(valid-invalid)	protocol:	aka	MI
– Two	states	(per	block	in	cache)

• V	(valid):	have	block
• I	(invalid):	don’t	have	block
+ Can	implement	with	valid	bit

• Protocol	diagram	(left)
– Convention:	event⇒generated-event
– Summary

• If	anyone	wants	to	read/write	block
• Give	it	up:	transition	to	I state
• Write-back	if	your	own	copy	is	dirty

• This	is	an	invalidate	protocol

I

V

R⇒
BR

,	W
⇒

BW

BR
/B
W
⇒

SD
,	W

B⇒
SD

R/W

BR/BW

Three	processor-initiated	events
R:	read								W:	write							WB:	write-back

One	response	event:	SD:	send	data	
Two	remote-initiated	events

BR:	bus-read,	read	miss	from	another processor
BW:	bus-write,	write	miss	from	another processor



VI	Protocol	State	Transition	Table

This Processor Other Processor
State Load Store Load Miss Store Miss

Invalid (I) Miss
=> V

Miss
=> V --- ---

Valid (V) Hit Hit Send Data 
=> I

Send Data 
=> I

28

• Rows are “states”
• I vs V

• Columns are “events”
• Writeback events not shown

• Memory controller not shown
• Responds with no other processor would respond
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VI	Protocol	(Write-Back	Cache)

• lw by	processor	1	generates	a	BR	(bus	read)
– processor	0	responds	by	sending	its	dirty	copy,	transitioning	to	I

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)
5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)
5: jal dispense_cash

500
V:500 500

V:400 500

I: 400V:400

400V:300

CPU0 MemCPU1

Is	this	a	good	protocol?	What	is	it	actually	doing?	Can	we	do	better?	☺
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VI	→ MSI

• VI	protocol	is	inefficient
– Only	one	cached	copy	allowed	in	entire	system
– Multiple	copies	can’t	exist	even	if	read-only!

• Not	a	problem	in	example
• Big	problem	in	reality

• MSI	(modified-shared-invalid)
– Fixes	problem:	splits	“V”	state	into	two	states

• M	(modified):	local	dirty	copy
• S	(shared):	local	clean	copy

– Allows	either
• Multiple	read-only	copies	(S-state)		--OR--
• Single	read/write	copy	(M-state)

I

M

W
⇒

BW

BW
⇒

SD
,	W

B⇒
SD

R⇒,W⇒

BR⇒,BW⇒

S
W⇒BW

R⇒,BR⇒
BR⇒SD



MSI	Protocol	State	Transition	Table

This Processor Other Processor
State Load Store Load Miss Store Miss

Invalid (I) Miss
=> S

Miss
=> M --- ---

Shared (S) Hit Upg Miss
=> M --- => I

Modified
(M) Hit Hit Send Data 

=> S
Send Data 

=> I

31

• M => S	transition	also	updates	memory,	why?
• After which memory willl respond (as all processors will be in S)
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MSI	Protocol	(Write-Back	Cache)

• lw by	processor	1	generates	a	BR
– Processor	0	responds	by	sending	its	dirty	copy,	transitioning	to	S

• sw by	processor	1	generates	a	BW
– Processor	0	responds	by	transitioning	to	I

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)
5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)
5: jal dispense_cash

500
S:500 500

M:400 500

S:400 400S:400

I:					 400M:300

CPU0 MemCPU1



MSI Example: Step #1
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P0

Cache
Addr Data State

-- -- --
-- -- --

Shared
Cache

Addr Data State
A 1000 Modified
B 0 Idle

Bus

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

Miss!

Memory A 1000
B 0



MSI Example: Step #2
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P0

Cache
Addr Data State

-- -- --
-- -- --

Bus

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

LdMiss:	Addr=A

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 1000 Modified
B 0 Idle



MSI Example: Step #3
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P0

Cache
Addr Data State

-- -- --
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

Response:	Addr=A,	Data=500

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 1000 Modified
B 0 Idle



MSI Example: Step #4
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P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

Response:	Addr=A,	Data=500

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle



MSI Example: Step #5
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P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A	<- 500

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle



MSI Example: Step #6
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P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Miss!

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle



MSI Example: Step #7
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P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Miss!

UpgradeMiss:	Addr=A

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle



MSI Example: Step #8
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P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Miss!

UpgradeMiss:	Addr=A

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Modified
B 0 Idle



MSI Example: Step #9
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P0

Cache
Addr Data State

A 500 M
-- -- --

Bus

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Miss!

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Modified
B 0 Idle



MSI Example: Step #10
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P0

Cache
Addr Data State

A 400 M
-- -- --

Bus

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Miss!

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Modified
B 0 Idle



Cache Coherence and Cache Misses
• Coherence introduces two new kinds of cache misses

– Upgrade miss
• On stores to read-only blocks
• Delay to acquire write permission to read-only block

– Coherence miss
• Miss to a block evicted by another processor’s requests/invalidate

• Making the cache larger…
– Doesn’t reduce these type of misses
– May increase these type of misses

33



Hmm..	What	would	happen	in	this	case?

load	A				miss

store	A

44

Processor 0



MESI	(4-state)	Invalidation	Protocol

• Problem	with	MSI	protocol
– Reading	and	modifying	data	is	2	bus	transactions,	even	if	no	sharing

• e.g.	even	in	sequential	program
• BusRd	(I->S)	followed	by	BusRdX	or	BusUpgr	(S->M)

• Add	exclusive state:	write	locally	without	transaction,	but	not	
modified
– Main	memory	is	up	to	date,	so	cache	not	necessarily	owner
– States

• invalid
• exclusive or	exclusive-clean (only	this	cache	has	copy,	but	not	modified)
• shared	(two	or	more	caches	may	have	copies)
• modified	(dirty)

– I	->	E on	PrRd	if	no	other	processor	has	a	copy
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MESI Example

• Most modern protocols also include E (exclusive) state
– Interpretation: “I have the only cached copy, and it’s a clean copy”
– Why would this state be useful?

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

500
E:500 500

M:400 500

S:400 400S:400

I:					 400M:300

CPU0 MemCPU1

(No miss!)



MESI	Protocol	State	Transition	Table

This Processor Other Processor
State Load Store Load Miss Store Miss

Invalid (I) Miss
=> S or E

Miss
=> M --- ---

Shared (S) Hit Upg Miss
=> M --- => I

Exclusive
(E) Hit Hit

=> M
Send Data 

=> S
Send Data 

=> I
Modified

(M) Hit Hit Send Data 
=> S

Send Data 
=> I

47
• Load misses lead to “E” if no other processors is caching the block



Can	we	do	better	than	MESI?

• What	if	we	have	a	lot	of	producer-consumer?

49



Can	we	do	better	than	MESI?

• What	if	we	have	a	lot	of	producer-consumer?
• That	would	suck…	you	can’t		shared	cache-cache	dirty	data	

without	writing	back…
• MOESI:	Add	yet	another	state	“Owned”

• Owned	means:	I	am	responsible	for	write	back
• Can	alternate	between	O	and	M	without	writing	data	back	

to	memory,	hence	useful	for	producer-consumer

49





Snooping Bandwidth Scaling Problems

• Coherence events generated on…
– L2 misses (and writebacks)

• Problem#1: N2 bus traffic
– All N processors send their misses to all N-1 other processors
– Assume: 2 IPC, 2 Ghz clock, 0.01 misses/insn per processor
– 0.01 misses/insn * 2 insn/cycle * 2 cycle/ns * 64 B blocks 

= 2.56 GB/s… per processor
• With 16 processors, that’s 40 GB/s!  With 128 that’s 320 GB/s!!

– You can use multiple buses… but that complicates the protocol
• Problem#2: N2 processor snooping bandwidth

– 0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor
– 16 processors: 0.32 bus-side tag lookups per cycle

• Add 1 extra port to cache tags? Okay
– 128 processors: 2.56 tag lookups per cycle!  3 extra tag ports?

– Now add a GPU to the coherence domain, what happens?



Shared	broadcast	bus
Key:	bus	arbiter	services	one	request	at	a	time
Advantage:	conceptually	simple
Disadvantage:	shared,	difficult	to	scale
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• Coherence events generated on…
– L2 misses (and writebacks)
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– All N processors send their misses to all N-1 other processors
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– 0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor
– 16 processors: 0.32 bus-side tag lookups per cycle
– 128 processors: 2.56 tag lookups per cycle!  3 extra tag ports?

– Now add a GPU to the coherence domain, what happens?



Shared	broadcast	bus
Key:	bus	arbiter	services	one	request	at	a	time
Advantage:	conceptually	simple
Disadvantage:	shared,	difficult	to	scale
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point-to-point	networks

Problem:	unordered	network
Nodes	may	observe	messages	in	different	orders
Is	this	a	problem?

Advantages:	
• better	electrical	behavior	(shorter	wires)
• coherence	transaction	parallelism

55



Ordering	– What	is	wrong	here?

56
How	do	we	fix	it?



Directory Coherence Protocols

• Directories:	
– Extend	memory	(or	shared	cache)	to	track	caching	information
– For	each	physical	cache	block,	track:

• Owner:	which	processor	has	a	dirty	copy	(I.e.,	M	state)
• Sharers:	which	processors	have	clean	copies	(I.e.,	S	state)

– Processor	sends	coherence	event	to	directory
• Directory	sends	events	only	to	processors as	needed

– Avoids	non-scalable	broadcast	used	by	snooping	protocols,	does	not	
require	strong	ordering	properties	from	the	network

– For	multicore	with	shared	L3	cache,	put	directory	info	in	cache	tags

• For	high-throughput,	directory	can	be	banked/partitioned
+ Use	address	to	determine	which	bank/module	holds	a	given	block

• That	bank/module	is	called	the	“home”	for	the	block



Basic	Scheme

• Assume	P	processors
• With	each	cache-block	in	memory:

• P	sharer	bits
• 1	dirty bit

• With	each	cache-block	in	cache:
• 1	valid bit
• 1	dirty (owner)	bit

– Read from	main	memory	by	PE-i:
• if	dirty-bit is	OFF then	{	read	from	main	memory;	turn	p[i]	ON;	}
• if	dirty-bit is	ON then	{	recall	line from	dirty	PE	(cache	state	to	shared);	
update	memory;	turn	dirty-bit	OFF;	turn	p[i]	ON;	supply	recalled	data	to	PE-
i;	}

– Write to	main	memory	by	PE-i:
• if	dirty-bit OFF then	{	supply	data	to	PE-i;	send	invalidations to	all	PEs	
caching	that	block;	turn	dirty-bit	ON;	turn	P[i]	ON;	...	}

• ...

• ••

P P

Cache Cache

Memory Directory

sharer	bits dirty	bit

Interconnection	Network



MSI Directory Protocol
• Processor side

– Directory follows its own protocol
• Similar to bus-based MSI

– Same three states
– Same five actions (keep BR/BW names)
– Minus red arcs/actions

• Events that would not trigger action anyway
+ Directory won’t bother you unless you need to act

60

I

M

St
or

e

St
M

is
s,

 W
B

Load, Store

S
Store

Load, LdMiss
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MSI Directory Protocol

• ld by P1 sends BR to directory
– Directory sends BR to P0, P0 sends P1 data, does WB, goes to S

• st by P1 sends BW to directory
– Directory sends BW to P0, P0 goes to I

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

–:–:500

S:500 S:0:500

M:400 M:0:500

S:400 S:0,1:400S:400

M:1:400M:300

P0       P1    Directory

(stale)



Point-to-Point	Interconnect

Directory Example: Step #1
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P0

Cache
Addr Data State

-- -- --
-- -- --

Addr Data State Sharers
A 1000 Modified P1
B 0 Idle --

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

Miss!

Memory A 1000
B 0

Directory



Point-to-Point	Interconnect

Directory Example: Step #2
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P0

Cache
Addr Data State

-- -- --
-- -- --

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

LdMiss:	Addr=A

Memory A 1000
B 0

Addr Data State Sharers
A 1000 Blocked P1
B 0 Idle --

LdMissForward:	Addr=A,	Req=P0

Directory



Point-to-Point	Interconnect

Directory Example: Step #3
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P0

Cache
Addr Data State

-- -- --
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

Response:	Addr=A,	Data=500

Memory A 1000
B 0

Addr Data State Sharers
A 1000 Blocked P1
B 0 Idle --

Directory



Point-to-Point	Interconnect

Directory Example: Step #4
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P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A

Response:	Addr=A,	Data=500

Memory A 1000
B 0

Addr Data State Sharers
A 1000 Blocked P1
B 0 Idle --

Directory



Point-to-Point	Interconnect

Directory Example: Step #5
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P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Load	A	<- 500

Memory A 1000
B 0

Addr Data State Sharers
A 500 Shared, Dirty P0, P1
B 0 Idle --

Unblock:	Addr=A,	Data=500

Directory



Point-to-Point	Interconnect

Directory Example: Step #6
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P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Miss!

Memory A 1000
B 0

Addr Data State Sharers
A 500 Shared, Dirty P0, P1
B 0 Idle --

Directory



Point-to-Point	Interconnect

Directory Example: Step #7
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P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Memory A 1000
B 0

Addr Data State Sharers
A 500 Blocked P0, P1
B 0 Idle --

UpgradeMiss:	Addr=A

Invalidate:	Addr=A,	Req=P0,	Acks=1

Directory



Point-to-Point	Interconnect

Directory Example: Step #8
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P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Memory A 1000
B 0

Addr Data State Sharers
A 500 Blocked P0, P1
B 0 Idle --

Ack:	Addr=A,	Acks=1

Invalidate:	Addr=A,	Req=P0,	Acks=1

Directory



Point-to-Point	Interconnect

Directory Example: Step #9
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P0

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Memory A 1000
B 0

Addr Data State Sharers
A 500 Blocked P0, P1
B 0 Idle --

Directory



Point-to-Point	Interconnect

Directory Example: Step #10
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P0

Cache
Addr Data State

A 400 M
-- -- --

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2
Store	400	->	A	

Memory A 1000
B 0

Addr Data State Sharers
A 500 Modified P0
B 0 Idle --

Unblock:	Addr=A

Directory
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Directory	Flip	Side:	Latency

• Directory	protocols
+ Lower	bandwidth	consumption	→ more	scalable
– Longer	latencies

• Two	read	miss	situations

• Unshared:	get	data	from	memory
– Snooping:	2	hops	(P0→memory→P0)
– Directory:	2	hops	(P0→memory→P0)

• Shared	or	exclusive:	get	data	from	other	processor	(P1)
– Assume	cache-to-cache	transfer	optimization
– Snooping:	2	hops	(P0→P1→P0)
– Directory:	3	hops (P0→memory→P1→P0)
– Common,	with	many	processors	high	probability	someone	has	it

P0 P1

Dir

3	hop	miss

P0

Dir

2	hop	miss
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Directory	Flip	Side:	Complexity

• Latency	not	only	issue	for	directories
– Subtle	correctness	issues	as	well
– Stem	from	unordered	nature	of	underlying	inter-connect

• Individual	requests	to	single	cache	must	be	ordered
– Point-to-point	network:	requests	may	arrive	in	different	orders

• Directory	has	to	enforce	ordering	explicitly
• Cannot	initiate	actions	on	request	B…
• Until	all	relevant	processors	have	completed	actions	on	request	A
• Requires	directory	to	collect	acks,	queue	requests,	etc.

• Directory	protocols
– Obvious	in	principle
– Complicated	in	practice
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Best	of	Both	Worlds?

• Can	we	combine	best	features	of	snooping	and	directories?
– From	snooping:	fast	two-hop	cache-to-cache	transfers
– From	directories:	scalable	point-to-point	networks
– In	other	words…

• Can	we	use	broadcast	on	an	unordered	network?
– Yes,	and	most	of	the	time	everything	is	fine
– But	sometimes	it	isn’t	…	 protocol	race
– Example:	IBM	Power	servers	(ring	network,	no	directory)
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D$/I$	coherence	issues?

• Can	D$	and	I$	ever	be	incoherent?
• When	would	that	be	a	problem?CPU

D$	
dataD$

	ta
gs

CC

bus
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Performance	danger

for(	i=0;	i<n;	i++	)
a[i]	=	b[i];

• Let’s	assume	we	parallelize	code:	
– p	=	2
– element	of	a	takes	4	words
– cache	line	has	32	words

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache line

Written by processor 0
Written by processor 1
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False Sharing

• Two	or	more	processors	sharing	parts	of	the	same	block
• But	not	the	same	bytes	within	that	block	(no	actual	sharing)
• Creates	pathological	“ping-pong”	behavior
• Careful	data	placement	may	help,	but	is	difficult

– It	can	happen	every	where	and	in	different	type:	intra-
object	and	inter-object,	heap,	globals.	



False	sharing	discussion

• False	sharing	rate
– Larger	block?
– Larger	cache?

• Impact	of	false	sharing
– As	miss	penalty	increases?
– Traffic?
– Overall	effects	on	performance?

• How	can	we	reduce	it?
– Data	layout?
– Compiler	optimizations?
– HW	support?
– Tools	(e.g.,	Sherif	from	UMass)

50
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Coherence	on	Real	Machines

• Many	uniprocessors	designed	with	on-chip	snooping	logic
– Can	be	easily	combined	to	form	multi-processors

• E.g.,	Intel	Pentium4	Xeon
– Multi-core

• Xeon	Phi	(MESI,	directory-based)
– 60	cores,	bi-directional	ring	bus
– Minor	extension	to	support	modified-shared	to	avoid	broadcast	storms

• ARM	CoreLink
– MOESI

• Larger	scale	(directory)	systems	built	from	smaller	MPs
– E.g.,	Sun	Wildfire,	NUMA-Q,	IBM	Summit

• Some	shared	memory	machines	are	not	cache	coherent
– E.g.,	CRAY-T3D/E
– Shared	data	is	un-cacheable
– If	you	want	to	cache	shared	data,	copy	it	to	private	data	section
– Basically,	cache	coherence	implemented	in	software

• Have	to	really	know	what	you	are	doing	as	a	programmer



Cache	Coherence	in	Heterogeneous	Systems

• E.g.,	CPU+GPU	sharing	address	space	in	a	cache-coherent	way	
• GPUs	touch	a	lot	of	data,	have	very	different	access	pattern

– How	to	isolate	traffic	and	still	provide	coherence
• Several	approaches:

– Self-invalidation
– Traffic	filtering

• Learn	from	traffic	what	each	node	cares	about,	filter	based	on	that
– Region	Coherence

• Do	it	at	a	coarse	grain,	then	fine-grain
• A-priori	configuration	of	what	each	node	cares	about

– Heterogeneous	System	Coherence
• Directory-based	region	coherence
• Use	direct	access	as	opposed	to	coherent	interface
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