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nm Historical	Trend

Optimistic	Transistor	Scaling	(Projection)

Conservative	Transistor	Scaling	(Projection)

10	years

1% 17% 36% 40% 51%

18×

3.7×

2017

7.9×



Related	trend:	DRAM
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• Memory	capacity	per	core	dropping	
fast	(30%/yr)

• Trends	worse	for	memory	bandwidth	
per	core

• ITRS	projects	for	sub	20nm	not	
encouraging

And	btw,	DRAM	price	keeping	steady	for	a	while	(though	that	
might	change)…



Silicon	Photonics
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image, sound 
and video processing

image rendering

sensor data analysis,
computer vision

✓

✓

simulations, games, 
search, machine learning

✓

✓

Modern Applications

Inexact	input	data
Approximate/iterative	algorithms
Malleable	output



Performance

En
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gy

Pareto.Fron0er
Processor

Adding	a	third	dimension
Embracing	Error
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A widening practical gap…

[Credit: David Rosenthal (CMU) and Preeti Gupta (UCSC), 2014]

Disk cost-per-byte is not decreasing 
fast enough

[Credit: EMC 2012]
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[Credit: Google 2016]



Is it an inevitable gap?



Disks & Data Centers
Larry Greenfield leg@google.com



Two big problems...
If capacity improvements are slowing to 20% y/y growth, will video storage become 
uneconomical?



Two big problems...
Or will e-mail storage become uneconomical because we need more IOPS?































YouTube: A Storage Perspective
Daniel Stodolsky



YouTube: At a glance
10 years old

100+ hours / video uploaded every minute for the last 3 years ; 400+ 2016

Supporting playback on devices from ancient to modern 

Corpus Effects

Lots of related content ; deduplication / cross-ref opportunities

Many domains: photos 

Retrieval granularity the key issue 



Silicon	meets	Biotech:



100,000x		in	8	years!
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System enhancements: Optics 

Power of high throughput apps 
Size and affordability of a desktop sequencer. 

6x 
MiSeq imaging  

capability 

1/3 
Size of a HiSeq 

1/3 
Capital cost 
of a HiSeq 

6 parallel miniaturized,  
solid-state optics modules 
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INTEGRATED FLUIDICS MANIFOLD | MINIMIZED TUBING 

NextSeq Fluidics 



Computer	Industry

Biotech	Industry

Helped	a	lot! Time	for	
payback!



Biology
Density
Self-assembly
Efficiency
Sensitivity

Can sense things silicon can’t

Silicon
Speed
Engineerability
Integration with Infrastructure



Storage
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…110101010100…
(images,	video,	genomic	data,	…)
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Potential	of	
DNA:
108
Improvement

3-5 5 10-30 5 1000+100Lifetime	
(years) 5-10

0.05 0.03
Archive	Cost
($/GB) 200.000.01And	readers	never	become	obsolete!

redundancy

spacing

addressing

1	Exabyte	

Session	7A	on	Wed	@	11:40am:
A	DNA	Archival	Storage	System



Proteins	are	amazing	machines!

Antibody
Enzymes	(carry	out	most	reactions)
Messenger	(e.g.,	hormones)
Structure
Transport/storage	(e.g.,	oxygen,	ions)

1	ATP	molecule	 =				~	10-21	 J

Processing

A	“proteinistor”	would	be	10,000x	more	
energy	efficient	than	a	CMOS	transistor



ATP	powered	“supercomputer”?

Parallel computation with molecular-motor-propelled
agents in nanofabricated networks
Dan V. Nicolau Jr.a,b,1, Mercy Lardc,1, Till Kortend,e,1, Falco C. M. J. M. van Delftf,2, Malin Perssong, Elina Bengtssong,
Alf Månssong, Stefan Diezd,e, Heiner Linkec,3, and Dan V. Nicolauh,i,3

aDepartment of Integrative Biology, University of California, Berkeley, CA 94720-3140; bMolecular Sense, Ltd., Wallasey CH44 1AJ, United Kingdom;
cNanoLund and Solid State Physics, Lund University, S-22100 Lund, Sweden; dCenter for Molecular Bioengineering (B CUBE) and Center for Advancing
Electronics Dresden (cfaed), Technische Universität Dresden, 01069 Dresden, Germany; eMax Planck Institute of Molecular Cell Biology and Genetics, 01307
Dresden, Germany; fPhilips Research (MiPlaza) and Philips Innovation Services, 5656 AE, Eindhoven, The Netherlands; gDepartment of Chemistry and
Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; hDepartment of Electrical Engineering & Electronics, University of Liverpool, Liverpool
L69 3GJ, United Kingdom; and iDepartment of Bioengineering, McGill University, Montreal, QC, Canada H3A 0C3

Edited by Hillel Kugler, Microsoft Research, Cambridge, United Kingdom, and accepted by the Editorial Board January 18, 2016 (received for review June
5, 2015)

The combinatorial nature of many important mathematical problems,
including nondeterministic-polynomial-time (NP)-complete problems,
places a severe limitation on the problem size that can be solved with
conventional, sequentially operating electronic computers. There have
been significant efforts in conceiving parallel-computation approaches
in the past, for example: DNA computation, quantum computation,
and microfluidics-based computation. However, these approaches
have not proven, so far, to be scalable and practical from a fabrication
and operational perspective. Here, we report the foundations of an
alternative parallel-computation system in which a given combinato-
rial problem is encoded into a graphical, modular network that is
embedded in a nanofabricated planar device. Exploring the network in
a parallel fashion using a large number of independent, molecular-
motor-propelled agents then solves the mathematical problem. This
approach uses orders of magnitude less energy than conventional
computers, thus addressing issues related to power consumption
and heat dissipation. We provide a proof-of-concept demonstration
of such a device by solving, in a parallel fashion, the small instance
{2, 5, 9} of the subset sum problem, which is a benchmark NP-
complete problem. Finally, we discuss the technical advances neces-
sary to make our system scalable with presently available technology.

parallel computing | molecular motors | NP complete | biocomputation |
nanotechnology

Many combinatorial problems of practical importance, such
as the design and verification of circuits (1), the folding (2)

and design (3) of proteins, and optimal network routing (4),
require that a large number of possible candidate solutions are
explored in a brute-force manner to discover the actual solution.
Because the time required for solving these problems grows ex-
ponentially with their size, they are intractable for conventional
electronic computers, which operate sequentially, leading to im-
practical computing times even for medium-sized problems.
Solving such problems therefore requires efficient parallel-com-
putation approaches (5). However, the approaches proposed so far
suffer from drawbacks that have prevented their implementation.
For example, DNA computation, which generates mathematical
solutions by recombining DNA strands (6, 7), or DNA static (8) or
dynamic (9) nanostructures, is limited by the need for impractically
large amounts of DNA (10–13). Quantum computation is limited in
scale by decoherence and by the small number of qubits that can
be integrated (14). Microfluidics-based parallel computation (15) is
difficult to scale up in practice due to rapidly diverging physical size
and complexity of the computation devices with the size of the
problem, as well as the need for impractically large external pressure.
Here, we propose a parallel-computation approach, which is

based on encoding combinatorial problems into the geometry of a
physical network of lithographically defined channels, followed by
exploration of the network in a parallel fashion using a large
number of independent agents, with very high energy efficiency.

To demonstrate operational functionality, we applied it to a small
instance of a benchmark classical nondeterministic-polynomial-time
complete (NP-complete) problem (16), the subset sum problem (SSP)
(Fig. 1). This problem asks whether, given a set S = {s1, s2, ..., sN}
of N integers, there exists a subset of S whose elements sum to a
target sum, T. More formally, the question is whether there is a
solution

PN
i=1wisi where wi ∈ {0, 1}, for any given T from 0 toPN

i=1si. To find all possible subset sums by exploring all possible
subsets requires the testing of 2N different combinations, which––
even for modest values ofN––is impractical on electronic computers
because of exponentially increasing time requirements (SI Appendix,
section S1). Although more sophisticated algorithms exist (17–19),
none of these avoids the exponentially growing exploration time, a
property that is harnessed in some cryptography systems to
generate encoded messages (20).

Significance

Electronic computers are extremely powerful at performing a high
number of operations at very high speeds, sequentially. However,
they struggle with combinatorial tasks that can be solved faster if
many operations are performed in parallel. Here, we present
proof-of-concept of a parallel computer by solving the specific
instance {2, 5, 9} of a classical nondeterministic-polynomial-time
complete (“NP-complete”) problem, the subset sum problem. The
computer consists of a specifically designed, nanostructured net-
work explored by a large number of molecular-motor-driven,
protein filaments. This system is highly energy efficient, thus
avoiding the heating issues limiting electronic computers. We
discuss the technical advances necessary to solve larger combi-
natorial problems than existing computation devices, potentially
leading to a new way to tackle difficult mathematical problems.

Author contributions: Dan V. Nicolau Jr. and Dan V. Nicolau conceived the calculation
method and designed the overall network; F.C.M.J.M.v.D designed the junctions; M.L.,
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fabricated the devices; M.L., T.K., M.P., and E.B. ran motility experiments and ana-
lyzed motility data; Dan V. Nicolau Jr., T.K., and A.M. carried out numerical simula-
tions; Dan V. Nicolau initiated the project; Dan V. Nicolau and H.L. coordinated the
project; and Dan V. Nicolau Jr., M.L., T.K., F.C.M.J.M.v.D., M.P., E.B., A.M., S.D., H.L.,
and Dan V. Nicolau contributed to planning the work, to data interpretation, and to
writing the manuscript.
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Or	an	ATP	battery?

10x	energy	density	of	lithium



Molecular-Level	Self-Assembly	and	
Reconfiguration

DNA	origami

35.8 nm

Proteins

[Caltech,	Duke]



Single-Molecule	Sensing	
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What	about	output?

CuttlePhone



Silicon+Biotech

01011011101
DNA 

synthesis

gattaca

01011011101
DNA 

sequencing

Hyper-Dense — 1 ZB/cm3 (~1E8 denser than Flash)
Hyper-Durable — We find readable ~100k-year-old DNA
Eternally relevant — As long as there is DNA-based 
intelligent life, there will be reasons to read/write DNA



01011011101
DNA 
synthesis

gattaca

01011011101
DNA 
sequencing

Hyper-Dense — 1 exabyte/cm3 (~1E8 denser than Flash)
Hyper-Durable — We find readable 1M-year-old DNA
Eternally relevant — As long as there is DNA-based 
intelligent life, there will be reasons to read/write DNA

DNA	as	data	storage	media



Cost	and	speed!?

DRAFT 09.22.2015 v0.3

a chip or a porous glass bead; bases are added to the growing chain simply by introducing each base in 
the order desired. Spatial or temporal address of this process is accomplished through the use of 
reagents that block the addition of new bases, where the blocking group is removed via a reaction that is 
controlled either through a bulk change in solvent or by local transformation of the solvent using photo- or 
electro-chemistry. The stepwise efficiency of this process varies depending on the specific chemistry and 
specific instrumentation used, but it is always less than 100% per addition reaction. Consequently, as the 
length of the ssDNA increases, there is an exponential decrease in the yield of correct sequences, 
resulting in a growing fraction of each pool that contains deletion errors. Depending on the end use of the 
ssDNA, these errors are managed, removed, or corrected, generally resulting in a large fraction of the 
original reagents being discarded. ssDNA is usually fabricated and sold in lengths form 20-mers to 150-
mers. Longer sequences are produced at lower yields and thus may cost substantially more than short 
sequences at the same concentration.

The Cost of and Comparative Economics of Reading and Writing DNA
New sequencing technologies have driven the cost of reading DNA below a $1 per megabase (Figure 3). 
In contrast, the stagnation of new synthesis technologies has been accompanied by a slow-down in price 
decreases (Figure 3 and Figure 4). It is my judgement that there is presently insufficient market pull for 
ssDNA and dsDNA to incentivize sufficient investment in new synthesis technology. Unlike sequencing, or
for that matter transistors, where an order of magnitude decrease in price can be counted on to increase 
demand disproportionately – thereby growing the size of the total transistor market despite the price 
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Figure 2: The productivity of commercial available DNA sequencing and synthesis 
instruments compared to Moore's Law.

DRAFT 09.22.2015 v0.3

decrease – the demand for synthesis appears to less elastic. The primary reason is that DNA is already 
cheap enough that, for most applications, it is not a significant driver of cost. More specifically, having 
access to less expensive DNA does not appreciably help with the engineering challenge of building new 
commercially viable metabolic pathways. In other words, we already have access to enough DNA to build 
new pathways, and the challenge is in knowing what to build and how to build it. I have accumulated 
several anecdotes that suggest the cost of DNA is less that 1% of the total cost to bring a new organism 
to market (where that organism makes a fuel or material). Reducing the cost of DNA by a factor of two, or 
even an order of magnitude, is simply not a big impact on total cost reduction. The bigger costs, and thus 
the biggest recipients of investment, are tasks related to the rest of the organism or pathway engineering 
effort.

Another way to think about the difference between the drivers of chips costs and the drivers of DNA costs 
can be found in the way the atoms are used. Improving individual information technology devices requires
increasing the computational power embedded in the atoms that are sold in every device. That is, the 
utility of a phone or a laptop is determined by capabilities embedded in the atoms constituting the device. 
The cost of the device is directly related to the cost of arranging the atoms in a particular configuration 
(e.g., the transistors, batteries, display, etc.). The arrangement of those atoms has direct value to a 
customer, and the cost of those atoms is passed to the customer, one way or another.

In contrast, synthetic DNA used to program an organism to deliver a product is disconnected from the 
economics of producing that DNA. The biological product may be a drug, a material, or food, but the value
of that product to the customer is decoupled from the arrangement of atoms in the synthetic DNA. In 
principle, an engineer needs to arrange those atoms as code only one time to create a particular 
metabolic pathway, and then the host organism will both copy and execute the instructions embodied in 
that code. But engineering an organism has proved to be only a small part of commercialization cost. The 
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Figure 3



From	bits	to	letters

(00,	01,	10,	11) A,	C,	G,	T

Repeated	letters	are	bad…

G A C A C C T G

C T G T G C A C
A T

G

T
CA

T

A

G

C

G C C TA AA

Secondary	structures	are	
bad…

P        o        l        y        a        ;
01010000 01101111 01101100 01111001 01100001 00111011 Binary data

   12011    02110    02101   222111    01112   222021Base 3 
Huffman code

   GCGAG    TGAGT    ATCGA   TGCTCT    AGAGC   ATGTGADNA 
nucleotides

G TCA

0

1

2

T AGC

A CTG

C GAT

Previous Nucleotide

Te
rn

ar
y 

Di
gi

t
To

 E
nc

od
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No	repeated	letters,	low	chance	of	secondary	structures



Preventing	a	big	mess…

DNA	is	“uni-dimensional”,	so	
need	to	embed	address	as	
data…

TCTACGCTCGAGTGATACGAATGCGTCGTACTACGTCGTGTACGTA…

Output Strand

Input Nucleotides

TCTACGCTCGAGTGATACGAA ATCTACGTCTACGATC CCAGTATCA

AddressPayloadPrimer PrimerS S
5’ 3’

Synthesis	is	not	perfect…

TCTACGCTCGAGTGATACGAATGCGTCGTACTACGTCGTG
Input 

Nucleotides

XOR Parity 
Strand



+ =

DNA Synthesizer

PCR
Thermocycler

DNA Sequencer

DNA storage library
Data

IN

Data
OUT

DNA
pool

An	integrated	system



Does	it	really	work?

catcatgg

catcatgc



What	I	hope	you	got	a	sense	of…

• Power	as	a	first	class	design	constraint
• How	“modern”	microprocessors	work
• ILP/TLP/DLP
• Cache	coherence	and	memory	consistency	models

– At	least	the	difference	between	them	J

• Silicon	scaling	future	not	so	good
– Trade-offs	between	generality	and	performance	inevitable

48



Today’s	Dominant	Target	Systems

• Mobile	(smartphone/tablet)
– >1	billion	sold/year
– Market	dominated	by	ARM-ISA-compatible	general-purpose	processor	

in	system-on-a-chip	(SoC)
– Plus	sea	of	custom	accelerators	(radio,	image,	video,	graphics,	audio,	

motion,	location,	security,	etc.)
• Warehouse-Scale	Computers	(WSCs)

– 1,000,000’s	cores	per	warehouse
– Market	dominated	by	x86-compatible	server	chips
– Dedicated	apps,	plus	cloud	hosting	of	virtual	machines
– Starting	to	see	some	GPU	usage,	but	mostly	general-purpose	CPU	

code
• Embedded	computing

– Wired/wireless	network	infrastructure,	printers
– Consumer	TV/Music/Games/Automotive/Camera/MP3



Thank	you!
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