
Cross-Stack Co-Design for
E�cient and Adaptable Hardware Acceleration

�ierry Moreau

A dissertation submi�ed in partial ful�llment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2018

Program Authorized to O�er Degree: Computer Science and Engineering

University of Washington

Abstract

Cross-Stack Co-Design for
E�cient and Adaptable Hardware Acceleration

�ierry Moreau

Chair of the Supervisory Commi�ee:
Professor Luis Ceze

Computer Science and Engineering

Hardware accelerators are becoming more critical than ever in scaling the capabilities of computer systems in a

post-Dennard scaling computing landscape. As abstractions like ISAs and intermediate representations are shi�ing con-

stantly, building capable so�ware stacks that expose familiar programming interfaces poses a signi�cant engineering

challenge. In addition, the push for ever more e�cient and cost-e�ective hardware has brought the need to expose

quality-e�ciency tradeo�s across the stack, particularly in hardware accelerators where computation and data move-

ment dominates energy. �e goal of this dissertation is to propose hardware and so�ware techniques that work in

concert to facilitate the integration of hardware accelerators in today’s ever-evolving compute stack. Speci�cally, we

look at co-design methodologies that (1) make it easy to program specialized accelerators, (2) allow for adaptability

in the context of evolving workloads, and (3) expose quality-e�ciency knobs across the stack to adapt to shi�ing user

requirements. In Chapter 1, I discuss why specialization is critical to push the capabilities of modern systems, and iden-

tify challenges that remain in the way to provide e�cient and adaptable specialization moving forward. In Chapter 2, I

present SNNAP, a hardware design coupled with a familiar so�ware API that approximately o�oads diverse compute-

intensive regions of code to a tightly coupled FPGA to deliver signi�cant energy savings. �is approach makes it much

easier to target FPGAs for so�ware programmers, as long as they can express quality bounds for their target application.

In Chapter 3, I present QAPPA an C/C++ compiler framework that can target quality programmable accelerators, i.e.

accelerator designs that expose quality knobs in their ISA. �e key of QAPPA is to translate application-level quality

bounds into instruction-level quality se�ings via an auto-tuning process. In Chapter 4, I present the VTA hardware-

so�ware stack designed for extensible deep learning acceleration as data sets, models, and numerical representations

evolve. VTA exposes a layered stack that o�oads design complexity away from hardware: this makes updating the

stack to support new models and operators a so�ware-centric challenge. Finally, in Chapter 5, I discuss recent e�orts

outside of the research realm aimed at popularizing access and reproducibility of cross-stack pareto-Optimal design.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . viii

Chapter 1: Introduction . 1

Appendices . 9
1.A Background: A Taxonomy of General Purpose Approximate Computing Techniques 10
1.B Background: An Survey of Domain Specialized Deep Learning Accelerators . . . 20

Chapter 2: SNNAP: Approximately Mapping Diverse Regions of Code to a Single FPGA-
Based Substrate via Neural Acceleration 23

2.1 Introduction . 24
2.2 Programming . 25
2.3 Architecture Design for SNNAP . 28
2.4 Hardware Design for SNNAP . 32
2.5 Evaluation . 38
2.6 Related Work . 52
2.7 Conclusion . 53

Appendices . 54
2.A SNNAC: An Error-Tolerant Low-Voltage SRAM Neural Network Accelerator ASIC 54

Chapter 3: QAPPA: �ality Autotuner for Precision Programmable Hardware Accel-
erators . 59

3.1 Introduction . 60
3.2 QAPPA: A �antization Autotuner . 61
3.3 PERFECT Application Study . 68
3.4 Dynamic �antization Scaling . 77
3.5 Approximation Study . 83

i

3.6 Related Works . 90
3.7 Conclusion. 91

Chapter 4: VTA: So�ware-Micromanaged Hardware For Extensible Deep Learning Ac-
celeration . 92

4.1 Introduction . 93
4.2 VTA Stack Overview . 94
4.3 VTA Hardware Design . 96
4.4 VTA So�ware Stack . 105
4.5 Evaluation . 111
4.6 Related Work . 121
4.7 Conclusion . 122

Chapter 5: Conclusion . 123
5.1 Accomplished Research Summary . 123
5.2 Beyond Academic Research . 125
5.3 Artifact Submissions Overview . 131
5.4 Lessons Learned and Future Work . 133
5.5 Concluding Remarks: An Outlook to the Future 135

Bibliography . 136

ii

LIST OF FIGURES

Figure Number Page

1.1 Analyzing compute intensive application kernels from the PERFECT benchmark suite [13] with AC-
CEPT [123] reveals the average of fraction dynamic instructions that are safe to approximate (i.e.
an erroneous outcome would have no catastrophic side e�ects on the execution of the kenrel [124]).
Coincidentally, the same characteristics that make these applications prime targets for hardware
specialization (no pointer chasing, low degrees of memory and control �ow divergence) also makes
them amenable to additional energy savings thanks to approximations. 3

1.2 Specialization can take di�erent forms and for that reason constitutes an adoption challenge across
the system stack. �is high-level overview of specialization categorizes accelerators across two axes:
(1) domain-specialization, i.e. how tailored an accelerator is to an application domain, and (2) quality-
specialization, i.e. how tailored an accelerator is to a given use-case. �is thesis dissertation explores
how to make accelerators easier to program and extend as workloads evolve. SNNAP (Chapter 2)
touches on targeting spatially programmable accelerators by approximately mapping diverse regions
of code to a single hardware substrate, via an algorithmic transformation that uses neural networks
to memoize the code target. QAPPA (Chapter 3) aims to make it easy to target quality programmable
accelerators translate programmer-de�ned application quality constraints, down to ISA-level qual-
ity se�ings. Finally, VTA (Chapter 4) presents an domain-specialized so�ware/hardware stack that
make it easy to e�ciently o�oad diverse deep learning workloads onto a modular deep learning
architecture that can be tailored to speci�c application scenarios. VTA exploits layered intermediate
representations to make the stack extensible to evolving deep learning workloads. 5

1.B.1 Salient characteristics of recently-proposed deep learning accelerators. 20

2.1 SNNAP system diagram. Each Processing Unit (PU) contains a chain of Processing
Elements (PE) feeding into a sigmoid unit (SIG). 29

2.1 Detailed PU datapath. PEs are implemented on multiply–add logic and produce a
stream of weighted sums from an input stream. �e sums are sent to a sigmoid
unit that approximates the activation function. 32

2.2 Implementing multi-layer perceptron neural networks with systolic arrays. 34
2.1 Performance and energy bene�t of SNNAP acceleration over an all-CPU baseline

execution of each benchmark. 41
2.2 Performance of neural acceleration as the number of PUs increase. 43
2.3 Impact of batching on speedup. 44
2.4 Resource Utilization for a 1-PU NPU containing 1 to 16 PEs. 45
2.5 Exploration of SNNAP static resource utilization. 46

iii

2.6 Output of sobel for a 220x220 pixel image. 48
2.7 Performance and energy comparisons of HLS and SNNAP acceleration. 50
2.8 Resource-normalized throughput of the NPU and HLS accelerators. 51
2.A.1 (le�) �e fraction of total power dissipated by weight storage SRAMs, and (right)

the fraction of total SRAM used to store fully-connected weights. On-chip weight
storage accounts for a signi�cant fraction of the total power dissipation in state-of-
the-art DNN accelerators. Even for Conv-DNNs such as AlexNet, weight storage
is dominated by fully-connected layers. 55

2.A.2 (le�) MATIC [78] increases energy-e�ciency by aggressively scaling supply volt-
ages of on-chip weight SRAMs. (right) Compared to hardware paired with conventionally-
trained neural network models, MATIC leverages an adaptive training process to
recover from errors caused by voltage overscaling. 56

2.A.3 Architecture of the SNNAC DNN accelerator. �e SNNAP design is tightly inte-
grated with an OpenMSP430 micro-controller. 56

2.A.4 (a) Microphoto of a fabricated SNNAC test chip, and (b) summary of test chip char-
acteristics. �e baseline voltage, power, frequency, and energy e�ciency are re-
ported. 57

3.1 QAPPA Autotuner System Architecture. 61
3.1 Program annotation with APPROX type quali�er. Variables that are safe to approxi-

mated are annotated by the user. �e compiler then infers the program instructions
that can be approximated. 63

3.1 Dynamic instruction category mix of the PERFECT kernels. �e approximable
instructions are colored in shades of blue, and the precise instructions categories
are colored in gray. 72

3.2 Aggregate bit-savings for 14 PERFECT kernels over a 20dB to 100dB SNR range. . 72
3.3 Bit-savings vs. SNR averaged over PERFECT kernels, for integer arithmetic, FP

arithmetic, memory ops and math functions. 73
3.4 CDF of exponent value range of all �oating-point variables in the PERFECT bench-

mark suite. 75
3.1 �antization scaling mechanisms overview. (a) Default wide addition on wide

adder. (b) Narrow addition on wide adder. (c) Wide addition on narrow adder
(d) Narrow addition on narrow adder. 77

3.2 Energy vs. precision relationship for precision-scaled multiplier designs (32 bit
baseline). 78

3.3 Simpli�ed schematic of (a) bit-sliced adder and (b) bit-sliced multiplier. 78
3.4 Arithmetic energy reduction on the PERFECT benchmark at di�erent bit slicing

granularities and at di�erent SNR targets (higher is be�er). 81

iv

3.5 Ideal bandwidth reduction on PERFECT benchmark suite at di�erent data packing
granularities and at di�erent SNR targets (higher is be�er). 82

3.6 Example of quantization-scalable pipeline: memory packing and unpacking mech-
anism used in Proteus [72] combined with operand narrowing used in �ora [150].
�e input and output data can be loaded in its packed format to save memory band-
width. 83

3.1 Bit-�ip probabilities of each output bit for a single-precision �oating point adder at
voltage overscaling factors [0.8-1.0]. Sign and exponent bits are in blue, mantissa
bits are in green/yellow. 84

3.2 PERFECT kernel SNR at voltage overscaling factors of 0.95, 0.90 and 0.84 corre-
sponding to 10%, 20% and 30% energy savings. SNR is measured collected over 100
runs, values represent median SNR, and error bars represent min and max error. . 86

3.3 Approximating the inverse kinematics kernel: (a) default DFG, (b) optimized �xed
point DFG with PWP, (c) neural approximation DFG. Operations that read data
from local SRAM are colored in gray. 87

3.4 Energy and storage comparison of quantized acceleration vs. neural acceleration
on AxBench kernels (lower is be�er). 89

4.1 Overview of the VTA stack. 95
4.1 �e VTA hardware organization. VTA is composed of modules that communicate

via FIFO queues, and SRAMs. �is enables task-level pipeline parallelism, which
helps maximize compute resource utilization. 97

4.2 �e VTA high-level instruction �elds. LOAD and STORE instructions perform 2D
strided DMA reads/writes between DRAM and SRAM. GEMM instructions are used
to perform matrix multiplication and 2D convolutions while ALU instructions can
perform a wide range of activation, normalization, and pooling tasks. 98

4.3 �e VTA GEMM core can perform one dense matrix multiplication over an input
tensor, a weight tensor, and adds the result into a register �le tensor. �e data
addressing pa�ern is speci�ed by a micro-coded sequence. 99

4.4 �e VTA tensor ALU can implement tensor-tensor element wise operations, or
tensor-scalar operations. 100

4.5 �e load module can perform 2D DMA loads with a strided access pa�ern from
DRAM to SRAM. In addition, it can insert 2D padding on the �y, which is useful
when blocking 2D convolution. �is means that VTA can tile 2D convolution in-
puts without paying the overhead of re-laying data out in DRAM to insert spatial
padding around input and weight tiles. 102

4.6 Task-level pipeline parallelism allows concurrent utilization of compute and mem-
ory resources in hardware. Depending on the granularity of the task-level-parallelism,
much of the memory access latency can be hidden for compute intensive workloads. 102

v

4.7 Inserting data dependences between instructions is essential to ensure execution
correctness of a decoupled access-execute instruction stream. 103

4.8 Each module is connected to its consumer and producer via RAW and WAR depen-
dence queues. In addition, we organize VTA to ensure that each SRAM bu�er has
at most one writer and one reader. With such a hardware organization, modules
can execute in a data�ow fashion. 104

4.1 Simple vector addition data�ow graph. A and B are stored in global memory
(DRAM) and are copied via DMA into the register �le (accumulator memory scope,
a.k.a. register �le). �e vector add computes the results in the local register �le,
before being wri�en back to DRAM via a DMA copy. 107

4.2 Simple vector addition compiled down into low level calls into JIT runtime. . . . 108
4.3 �e runtime helps extract task-parallelism in hardware by exposing an explicit

dependence API when lowering the VTA instruction stream. 110
4.1 �roughput improvement on each ResNet convolution layer versus integer precision of

kernel weights (8-bit down to 2-bits). 113
4.2 Roo�ines of 8-bit, 4-bit, 2-bit weight VTA designs. 114
4.3 Improvement in compute throughput of ResNet workloads as we use a lower-precision

VTA designs. 115
4.4 Roo�ine of an FPGA-based deep learning accelerator running ResNet inference.

With latency hiding enabled by TVM, the performance of the benchmarks are
brought closer to the roo�ine, demonstrating higher compute and memory band-
width e�ciency. 117

4.5 Validating the runtime simulator metrics against real experiment. As the results
show, this correlates closely to measured performance, thus allowing us to perform
schedule exploration without incurring hardware run time costs. 118

4.6 End-to-end ImageNet classi�cation throughput vs top-1 accuracy of model and
hardware designs on Zynq XC7Z020. We can �nd that VTA (labeled as XTU) en-
ables exploration of di�erent bitwidth and model choices, enabling state of the art
models on ImageNet classi�cation. 119

4.7 End-to-end time cost of Models on Zynq XC7Z020 at 8-bit precision. VTA (labeled
as XTU) generates higher throughput not only on standard ResNet networks, but
also supports novel operators in models such as MobileNetG and DCGAN. 120

5.1 Each of the students assignment submissions according to their e�ciency (8k batch
inference latency) and validation accuracy. �e Pareto frontier is represented as a
green do�ed line. 127

5.2 We leverage the open Collective Knowledge work�ow framework (CK) and the
rigorous ACM artifact evaluation methodology (AE) to allow the community col-
laboratively explore quality vs. e�ciency trade-o�s for rapidly evolving workloads
across diverse systems. 131

vi

5.3 A live scoreboard can produce a sca�erplot of system implementations across any
two dimensions among accuracy, latency, throughput, batch size, price, model size,
peak power, clock frequency. 132

vii

LIST OF TABLES

Table Number Page

1.A.1 Taxonomy of approximate computing techniques. 12

2.1 Static PU scheduling of a 2–2–1 neural network. �e naive schedule introduces
pipeline stalls due to data dependencies. Evaluating two neural network invoca-
tions simultaneously by interlacing the layer evaluations can eliminate those stalls. 39

2.2 Applications used in our evaluation. �e “NN Topology” column shows the number
of neurons in each MLP layer. �e “NN Con�g. Size” column re�ects the size of
the synaptic weights and microcode in bits. “Amdahl Speedup” is the hypothetical
speedup for a system where the SNNAP invocation is instantaneous. 40

2.3 Microarchitectural parameters for the Zynq platform, CPU, FPGA and NPU. . . . 41
2.1 Post-place-and-route FPGA utilization. 47
2.2 HLS-kernel speci�cs per benchmark: required engineering time (working days)

to accelerate each benchmark in hardware using HLS, kernel clock, whether the
design was pipelined, most-utilized FPGA resource utilization. 49

3.1 PERFECT kernel overview. “Annotations” refer to how many lines of code had to
be altered with ACCEPT-style type annotations. “Static Approx. Insn.” refers to the
total number of instructions that were deemed safe to approximate by ACCEPT.
“Dynamic Approx. Insn.” refers to the percentage of overall instructions that are
safe to approximate over the course of the program execution. “Approx. Runtime
Overhead” refers to the slowdown experienced a�er approximate code injection by
QAPPA over the original kernel. “Autotuner Steps” indicates the number of tuning
steps taken to �nd a con�guration that could not be approximated further without
violating a 40dB quality target. “Autotuner Runtime” indicates how long it takes
to tune each kernel as a multiple of its original runtime. 68

3.2 Bit-savings loss from using a empirical guarantee to statistical guarantee at 90%
and 99% con�dence. We vary the quality target at medium (20dB) a high (40dB)
se�ings on the PA1 kernels. 76

4.1 Instruction stream management runtime functions 105
4.2 Compute micro-kernel generation functions . 106
4.1 Con�gurations of all conv2d operators in ResNet-18 used in the single kernel experiment.

H/W denotes height and width, IC input channels, OC output channels, K kernel size, and
S stride size. All ops use “SAME” padding. 113

viii

1

Chapter 1

INTRODUCTION

“�e computing scientist’s main challenge is not to get confused by the complexities of

his own making.”

– Edsger W. Dijkstra

�e faltering of Dennard scaling [47] announced the end of e�ort-free performance improve-

ments. In other words the growth of processing e�ciency, measured in throughput per Wa�s,

would taper o� from its exponential trajectory since the popularization of integrated circuits tech-

nology in the 60’s. Traditionally, computer architects would manage to harness transistor scaling

into building faster processors by enabling higher clock speeds with deeper pipelines, improved

instructions-per-cycle (IPC) with smarter scheduling, and higher memory e�ciency with be�er

caches. But in a post-Dennard scaling landscape, architects would need to exploit more ambitious

strategies to scale processor performance to and beyond the end of Moore’s Law.

�e introduction of hardware specialization has helped scale the capabilities of commodity sys-

tems from the datacenter [89, 71, 111, 75, 33] to edge devices [55, 45, 32]. By tailoring hardware

to the characteristics of a stable application (e.g. type of data parallelism, amounts of data reuse,

control �ow divergence, memory access pa�erns etc.) hardware specialization can drastically min-

imize the number of Joules per operations required to complete a given computational task. Spe-

cialization can take di�erent forms depending on the degree to which an accelerator is specialized

to a domain (i.e. algorithm), or quality requirements (i.e. use case). Figure 1.2 shows an overview

of the diversity of accelerator designs that have appeared over the last decades.

Domain-Specialization (a.k.a. algorithmic specialization) �ere exists a wide spectrum of

hardware accelerators, each exhibiting di�erent trade-o�s between degree of specialization to a

given application domain, and allowable reuse across separate application domains:

• On one end of the spectrum, �xed-function accelerators (or domain-specialized accelera-

2

tors [105]) are highly tuned to well understood and stable algorithms, and generally ap-

ply to pre-determined use-cases. �e Anton supercomputer [131] is an example of a highly

engineered ASIC chip tailored for calculating electrostatic and van der Waals forces in the

context of molecular dynamics simulations. Every aspect of the Anton design down to the

width of each arithmetic component was tailored for molecular dynamics. �is makes the

Anton supercomputer di�cult to use across other applications, and across other use-cases

that would dictate lower accuracy requirements to minimize energy.

• On another end of the spectrum, we have spatially programmable accelerators, which can

take various forms, and accommodate for a varied set of applications that exhibit similar

characteristics such as high degree of parallelism, high arithmetic intensity, regular mem-

ory access pa�erns and low amounts of control �ow divergence. Spatially programmable

accelerators most commonly take the form of FPGAs [111], which o�er �ne-grained con-

trol over how hardware resources are allocated and con�gured to o�oad compute intensive

tasks. But the high degree of �exibility o�ered by FPGAs hurts their power e�ciency [81].

CGRAs [24, 109] and data�ow processors [140, 21, 107] o�er coarser degrees of hardware

specialization to improve upon FPGA’s relatively low power e�ciency.

• In the middle of this specialization spectrum, we have behavior-specialized accelerators [105],

which exploit program behavior across many application domains. Examples include accel-

erators for frequently executing short program traces such as BERET [60], XLOOPS [60],

and DYSER [15]. �ese accelerators are typically highly integrated within a CPU pipeline to

minimize the cost of o�oading small bursts of computation. �is dissertation won’t tackle

the question of programming this class of accelerators since research in that area is still in

its infancy (in comparison, �xed function accelerators and FPGAs are already permeating

the datacenter and popular edge devices).

�ality-Specialization (a.k.a. use-case specialization). Another trend in specialization is to

insert accuracy-e�ciency tradeo�s in the micro-architecture [73, 138] or circuits [77, 78] of accel-

erators to make them quality-programmable. By exposing quality knobs in these accelerator’s ISA,

3

load/store
27%

int arith
4%

fp arith
31%

math
1%

int arith
25%

control
11%

Safe to approximate

Precise

Figure 1.1: Analyzing compute intensive application kernels from the PERFECT benchmark suite [13] with AC-

CEPT [123] reveals the average of fraction dynamic instructions that are safe to approximate (i.e. an erroneous outcome

would have no catastrophic side e�ects on the execution of the kenrel [124]). Coincidentally, the same characteristics

that make these applications prime targets for hardware specialization (no pointer chasing, low degrees of memory and

control �ow divergence) also makes them amenable to additional energy savings thanks to approximations.

the so�ware stack can scale how much energy is spent as long as quality constraints aren’t violated.

Many proposals for quality-programmable accelerators were made in the context of approximate

computing research, which advocates for systems to expose quality vs. e�ciency tradeo�s across

the stack to bring their operation closer to a Pareto-optimal point.

�is growing trend of quality-programmable accelerators exposes a second axis in the special-

ization spectrum: the quality-specialization axis. By making accelerators less quality-specialized,

and therefore more quality-programmable, a human programmer can be�er tune the amount of

energy spent on a given problem applied to a speci�c use-case. For instance, a Sobel �lter used in

a smartphone photography �lter would be designed under di�erent QoR constraints than a Sobel

�lter used in a vision pipeline for cancerous cell identi�cation.

�e good news is that approximate computing techniques are best applied to specialized accel-

erators, rather than general purpose processors. In general purpose processors, dominant control

and instruction fetching/decoding overheads impose an “Amdahl limitation” to how much energy

4

savings can be achieved in compute and memory. Disciplined approximate computing dictates that

control �ow branches, arithmetic and memory operations that impact memory references have to

be executed precisely to avoid catastrophic errors [124]. Coincidentally, applications that make

excellent targets for specialization are also the ones that would bene�t highly from �ne grained

approximations as Figure 1.1 shows. Take a graph processing for instance: the high amount of

pointer chasing, and low amount of arithmetic operations per memory operations means that not

only would accelerators do poorly due to irregular memory accesses and low arithmetic opera-

tions, but also that approximations would have limited impact on reducing e�ciency since pointer

chasing has to be performed precisely to avoid catastrophic de-references.

Challenges. �e proliferation of accelerator designs across the domain-specialization and quality-

specialization axes shown in Figure 1.2 makes it challenging to build so�ware support for this

broad range of hardware designs. For instance, �xed-function accelerators are challenging to map

applications to, and generally require ad-hoc so�ware libraries to be used e�ectively. �ese so�-

ware libraries take much engineering e�ort to build and optimize. As a result, many accelerator

designs that are taped out never leave the ”micro-benchmark” stage of evaluation, because they

were not designed with programmability in mind. In addition, spatially programmed accelerators

like FPGAs o�er �exibility, but programming them is notoriously di�cult since they require expe-

rience in hardware design and optimization. Although High Level Synthesis (HLS) tools [157, 6]

have raised the level of abstraction to describe hardware, they still require programmers to think

like hardware designers. Finally, quality-programmable accelerators [77, 73] expose knobs to scale

energy according to quality requirements, but is is not straightforward to derive these knob set-

tings from high-level application QoR requirements. Much of the derivation for these knobs are

derived from ad-hoc Matlab or Python scripts [77, 73] which require applications to be entirely

re-wri�en.

It has become evident that we need be�er tools and methodologies to map application code to

new accelerator designs in ways that would maximize e�ciency, and maintainability. �is disser-

tation addresses three challenges that a�ect the adoption of accelerators in the modern compute

stack:

5

Le
ss

 Q
ua

lit
y

Tu
ne

ab
le

M
or

e
Q

ua
lit

y
Tu

ne
ab

le

Fixed-Function Spatially-Programmed

ANTON

DaDianNao

Google TPU

Stripes
QUORA

FPGAs

Behavior Specialized

DySER
BERET XLOOPS

WaveScalar

Eyeriss

Plasticine

TRIPS

SNNAC

QAPPA: how to target quality
programmable accelerators

SNNAP: approximately mapping diverse regions
of code to a single accelerator substrate

VTA: a software-hardware stack for
adaptable deep learning specialization

Figure 1.2: Specialization can take di�erent forms and for that reason constitutes an adoption challenge across the sys-

tem stack. �is high-level overview of specialization categorizes accelerators across two axes: (1) domain-specialization,

i.e. how tailored an accelerator is to an application domain, and (2) quality-specialization, i.e. how tailored an accel-

erator is to a given use-case. �is thesis dissertation explores how to make accelerators easier to program and extend

as workloads evolve. SNNAP (Chapter 2) touches on targeting spatially programmable accelerators by approximately

mapping diverse regions of code to a single hardware substrate, via an algorithmic transformation that uses neural

networks to memoize the code target. QAPPA (Chapter 3) aims to make it easy to target quality programmable accel-

erators translate programmer-de�ned application quality constraints, down to ISA-level quality se�ings. Finally, VTA

(Chapter 4) presents an domain-specialized so�ware/hardware stack that make it easy to e�ciently o�oad diverse deep

learning workloads onto a modular deep learning architecture that can be tailored to speci�c application scenarios. VTA

exploits layered intermediate representations to make the stack extensible to evolving deep learning workloads.

Programmability Challenge Hardware architectures are only as good as the so�ware stacks

built to program them. For domain-speci�c accelerators, mapping regions of code to spe-

cialized hardware primitives requires hand-cra�ed compiler support. Speci�cally, building

highly tuned libraries that expose a simple programming API to so�ware programmers can

take signi�cant amounts of engineering, given that accelerators and workloads can evolve

over time. An example of expertly cra�ed so�ware library for accelerators is NVIDIA’s

6

CuDNN deep learning library, which provides �nely tuned implementation of common GPU

deep learning operators (kernels) to framework builders. Enabling fast development of these

critical so�ware libraries requires careful co-design of domain speci�c languages (DSLs),

optimizing compilers, code-generators, and the hardware-so�ware interface of these accel-

erators.

Spatially programmed accelerators on the other hand let programmers map divergent code

to a single accelerator substrate. �is “generality” lets applications reuse the same hardware

resources and also mitigates the risks of over-specializing hardware to a given applications

domain. �e most common example of spatially programmed accelerators are FPGAs, which

provide a balance between �exibility and e�ciency [111], but rely upon tedious hardware

description languages and toolchains for programming. In order to facilitate the wide-scale

adoption of FPGA hardware, we want to maintain a so�ware programming paradigm which

programmers are familiar with.

Adaptability Challenge Design, veri�cation and tape-out costs for domain specialized acceler-

ators have increased exponentially at every process node shrink [75]. For rapidly evolving

application domains like deep learning, this makes hardware specialization a risky under-

taking. One approach to designing adaptable accelerators is to expose the right amount of

so�ware-de�ned programmability in hardware to allow for some degree of post-tapeout �ex-

ibility. In addition, templatized hardware designs can de�ne a parameterization space that

can be explored to quickly respond to shi�ing application needs. In so�ware, accommo-

dating for a large space of templatized hardware designs requires �exible abstractions that

can adapt to divergent hardware intrinsics and data representations. Consequently, achiev-

ing adaptability in domain speci�c accelerators requires careful co-design of hardware and

so�ware layers.

Pareto-E�ciency Challenge �ality-programmable accelerators that expose approximation knobs

open up a quality vs. e�ciency space that can be challenging to navigate. In particular,

translating user-de�ned application quality requirements (e.g. SNR for signal processing

applications) down to low-level accuracy knobs (e.g. number of mantissa bits for a �oating

7

point add) that minimize energy requires compiler support, well de�ned quality metrics, and

automated tuning techniques.

Fixed-function accelerators on the other hand can take advantage of domain speci�city across

the compute stack to gracefully mitigate low-level errors. Deep learning systems for exam-

ple are known to be very resilient to imprecisions: models are known to be forgiving to

errors [143, 78], or aggressive quantization [40, 115] thanks to their ability to be retrained

around imperfections. With full �exibility over the so�ware and hardware stack, many syn-

ergistic Pareto-optimization opportunities open up. Cross stack decisions include: what

model architecture, hyper-parameters, parameter compression, operator (e.g. convolution

vs. depthwise convolution), scheduling knobs, and micro-architectural optimizations to use.

In this deep learning, the design space of models, schedules, and hardware designs can be

intractably large to navigate.

Overview of Contributions �e goal of this dissertation is to propose hardware and so�ware

techniques that work in concert to facilitate the integration of diverse hardware accelerators in

the system stack. Speci�cally, we look at three bodies of work that address the aforementioned

challenges of programmability, adatability and Pareto-e�ciency.

• In Chapter 2, I discuss SNNAP [102, 78], a hardware design coupled with a familiar so�ware

API that approximately o�oads diverse compute-intensive regions of code to a tightly cou-

pled FPGA to deliver �xed-function accelerator levels of energy savings. SNNAP addresses

the programmability challenge for spatially programmed accelerators, by making it much

easier to target FPGAs for so�ware programmers compared to HLS tools [157], as long as

they can express quality bounds for their target application.

• In Chapter 3, I propose QAPPA [97, 98] an C/C++ compiler framework that can target

quality-programmable accelerators, i.e. accelerator designs that expose quality knobs in

their ISA. QAPPA addresses the Pareto-e�ciency challenge for quality programmable hard-

ware by safely translating application-level quality bounds into instruction-level quality set-

tings via a quality auto-tuner. Program safety is ensured by ACCEPT [123]’s guarantees

8

on disciplined approximate execution [124]. QAPPA also lets programmers derive energy

savings bounds for architectures that expose the right set of hardware quality scaling mech-

anisms, and lets us qualitatively compare these quality scaling techniques to other �ne-

grained approximations, like voltage under-scaling.

• In Chapter 4, I describe the VTA hardware-so�ware stack designed for extensible deep

learning acceleration as data sets, models, and numerical representations evolve. VTA ad-

dresses the programmability and adaptability challenges for deep learning accelerators, by

jointly designing a complete so�ware-hardware stack. �is stack is composed of hardware

agnostic intermediate representations, IR transformation primitives, a low-level JIT com-

piler, a �exible ISA, and explicitly controlled decoupled access-execute micro-architecture.

By allowing hardware, so�ware schedule, and neural network model customization, VTA

tackles the Pareto-e�ciency challenge by facilitating synergistic quality-e�ciency explo-

ration across the stack.

In the following appendix subsections, we provide background information on both approxi-

mate computing and deep learning specialization research. In Section 1.A, we discuss a taxonomy

of approximate computing techniques across the stack [100]. In Section 1.B, we discuss salient

properties of deep learning accelerators and how they help us inform the design of a generic deep

learning hardware-so�ware stack.

9

CHAPTER APPENDIX

10

1.A Background: A Taxonomy of General Purpose Approximate Computing Techniques

Published As: �ierry Moreau, Joshua San Miguel, Mark Wyse, James Bornholt, Armin Alaghi,

Luis Ceze, Natalie Enright Jerger and Adrian Sampson, A Taxonomy of General Purpose Approxi-

mate Computing Techniques, IEEE Embedded Systems Le�ers, 10(1):2-5, 2018.

Abstract: Approximate computing is the idea that systems can gain performance and energy e�-

ciency if they expend less e�ort on producing a “perfect” answer. Approximate computing techniques

propose various ways of exposing and exploiting accuracy–e�ciency trade-o�s. In this chapter, we

present a taxonomy that classi�es approximate computing techniques according to salient features:

visibility, determinism, and coarseness. �ese axes allow us to address questions about the correctabil-

ity, reproducibility, and control over accuracy–e�ciency tradeo�s of di�erent techniques. We use this

taxonomy to inform research challenges in approximate architectures, compilers, and applications.

1.A.1 Introduction

Approximate computing encompasses a broad spectrum of techniques that relax accuracy to im-

prove e�ciency. Although the term is new, the principle is not: �oating-point numbers, for ex-

ample, e�ciently but approximately represent the real numbers in the digital domain. E�ciency–

accuracy trade-o�s are also commonplace in digital signal processing, where techniques such as

quantization and decimation are crucial for tractable designs.

Opportunities abound for exploiting e�ciency–accuracy trade-o�s at every layer of the sys-

tem stack, from compilers to circuit design. Cross-cu�ing concerns about energy e�ciency and

the future of CMOS scaling have created a boom in approximate computing research. While ex-

citing, the multitude of approaches complicates discussions and obscures common pa�erns. A

single monolithic “approximate computing” label, spanning ideas as disparate as voltage over-

scaling [49], tweaking �oating-point precision [120], and code perforation [132], is too broad to

identify the foundations of the �eld.

�is appendix section presents a taxonomy of general-purpose approximate computing tech-

niques. An approximate computing technique is deemed general if it is not speci�c to a given

algorithm or application domain. We classify techniques along three axes: correctability of the

11

approximation e�ects, reproducibility of the approximate results, and control over the e�ciency–

accuracy trade-o�s.

1.A.2 Motivation

Our taxonomy characterizes approximation techniques around three practical concerns:

1. Correctability: How can the e�ects of an approximation technique be detected and cor-

rected?

2. Reproducibility: How easily can the results of an approximation technique be reproduced

for testing?

3. Control: How much con�dence over the error magnitude does an approximation technique

provide?

In this section, we present examples to highlight the importance of these questions and demon-

strate how they distinguish techniques that may seem similar at �rst glance.

Correctability of the Approximation E�ects Correctability re�ects the cost and complexity

of detecting and compensating for approximation errors. �e degree of correctability varies widely

between techniques. For example, consider two seemingly similar techniques: (1) low supply volt-

age SRAM [49], which allows for so� errors when accessing data in SRAM; and (2) low refresh

DRAM [88], which allows for so� errors in DRAM data cells. For low supply voltage SRAM, errors

are introduced when an instruction reads or writes the data. A precise check can thus be invoked

on each approximate load and store instruction in order to recover from a faulty operation. On the

other hand, for low refresh DRAM, the error can be introduced at any point in the lifetime of the

data independent of any instruction’s execution. �is uncertainty makes error management more

costly and less prompt. Our taxonomy distinguishes these two approaches (Section 1.A.3) in terms

of their architectural visibility.

12

So�ware Technique Visible Deterministic Coarse

Approximate GPU Kernels [122, 85] Y Y Y

Approximate Synthesis [19, 93] Y Y Y

Algorithm Selection [12, 10] Y Y Y

Code Perforation [132] Y Y Y

Lossy Compression / Packing [122] Y Y Y

Parallel Pa�ern Replacement [121] Y Y Y

Bit-Width Reduction [120] Y Y N

Float-to-Fixed Conversion [2] Y Y N

Approximate Parallelization [22] Y N Y

Statistical �ery [4] Y N Y

Synchronization Elision [117] Y N Y

Hardware Technique Visible Deterministic Coarse

Digital Neural Acceleration [50] Y Y Y

Interpolated Memoization [96] Y Y Y

Approximate Warp Deduplication [155] Y Y Y

Bit-Width Reduction [83] Y Y N

Clock Overgating [80] Y Y N

Load Value Approximation [92] Y Y N

Approximate Cache Coherence [118] Y Y N

Concise Loads and Stores [68] Y Y N

Instruction Memoization [8] Y Y N

Precision Scaling [150, 68, 74] Y Y N

Logical Simplifications [151] Y Y N

Reduced-Precision FPU [145] Y Y N

Analog Neural Acceleration [138] Y N Y

Approx. Processors [84, 162] Y N N

Voltage Overscaling [49, 83] Y N N

Stochastic Logic [53] Y N N

Approx. PCM Multi-Level Cells [125] Y N N

SRAM So� Error Exposure [49] Y N N

Approximate Value Dedup. [91, 127] N Y Y

Approx. PCM Failed Cells [125] N N N

Low-Refresh DRAM [88] N N N

Table 1.A.1: Taxonomy of approximate computing techniques.

13

Reproducibility of the Approximate Results Reproducibility is the degree to which error

can be measured during development and generalized to production. It can be di�cult to reason

about the error introduced by an approximation technique. We o�en rely on measurements from

test systems to decide whether or not the error is within an acceptable range. For example, code

perforation [132] is an approximation technique that omits instructions during execution. In gen-

eral, its impact on error is the same regardless of the underlying system on which it is executed, so

its reproducibility is straightforward. On the other hand, synchronization elision [22] omits calls

to synchronization primitives like locks. We can measure the error of synchronization elision on a

test system and deem it satisfactory, but we may �nd that error increases on a di�erent production

system. Our taxonomy distinguishes reproducibility between deterministic techniques like code

perforation and nondeterministic techniques like synchronization elision (Section 1.A.3).

Control over the Accuracy–E�ciency Tradeo�s Control re�ects how easily a technique can

trade accuracy for e�ciency gains. All approximate computing techniques enable such a trade-

o�. However, they fall all along the accuracy–e�ciency curve; some favor e�ciency while others

favor accuracy. Consider a program that performs many �oating-point computations. We can

approximate this program either via fuzzy function memoization [96] or via fuzzy �oating-point

instructions [8]. Both techniques seem similar, yet they o�er very di�erent error–e�ciency trade-

o�s. Function memoization can elide code regions that are as small as one or two instructions or

as large as entire functions, which can lead to arbitrary errors if not tested exhaustively. Fuzzy

�oating-point instructions, on the other hand, limit e�ciency gains due to control overheads but

also con�ne errors to the execution of individual instructions, meaning that traditional techniques

such as interval analysis can be used to guarantee control over the error introduced by the tech-

nique. To characterize control over errors, our taxonomy distinguishes between techniques based

on their granularity (Section 1.A.3).

1.A.3 Taxonomy

We guide our taxonomy with the motivation questions detailed in Section 1.A.2—(1) correctabil-

ity, (2) reproducibility, (3) control—and list three orthogonal taxonomy axes that address them:

(1) architectural visibility vs. invisibility, (2) deterministic vs. nondeterministic, (3) coarse-grained

14

vs. �ne-grained. For each taxonomy dimension, we provide a formal de�nition, examples and dis-

cuss practical implications. Table 1.A.1 lists a set of recent approximation techniques we surveyed

and classi�ed along these three dimensions. In this table, note that we classify techniques as so�-

ware or hardware; we do not elaborate on this as a taxonomy axis since it does not inform any

interesting new insights or properties.

Correctability: Architecturally Visible vs. Invisible

De�nition 1. Consider a program as a sequence of instructions that operate on data. An approxi-

mation technique is architecturally invisible if it can introduce error even when the sequence of

instructions is null. Otherwise it is an architecturally visible technique.

Architecturally visible techniques introduce errors during the execution of a speci�c instruc-

tion, and architecturally invisible techniques introduce errors silently. Naturally, visible errors

are simple to detect: they can be traced to a speci�c moment in time. On the other hand, in-

visible errors are a�ributed to a phenomenon that occurs below the architectural stack, e.g., a

micro-architectural event, or a physical event occurring at the circuit level. Consequently, archi-

tecturally invisible techniques can require expensive error detection and correction mechanisms

and are harder to monitor dynamically.

Revisiting the examples in Section 1.A.2, low supply voltage SRAM [49] is architecturally visi-

ble. It approximates (via bit upsets) only upon memory operations; thus, detecting and managing

error is straightforward. For write upsets, for example, adding a precise check a�er a write opera-

tion can immediately catch (and roll back) any erroneous approximations. On the other hand, low

refresh DRAM [88] is architecturally invisible: since it yields bit �ips at arbitrary times, a precise

check a�er a write operation cannot draw any conclusions about error. Even if the precise check

passes, an erroneous bit-�ip can still occur some time later.

�ough errors are invisible, an advantage of architecturally invisible techniques is that they

are not on the critical path; thus their latency costs can be made invisible as well. Architecturally

visible techniques can introduce run time overheads, whereas invisible approximations can be

performed in the background. For example, the Doppelgänger cache [91] is an architecturally in-

visible technique; it generates approximate values silently upon a microarchitectural event without

15

stalling memory requests.

�is taxonomy axis informs trade-o�s in error correctability. Architecturally visible techniques

bene�t from errors which are easier to detect and correct. On the other hand, architecturally invis-

ible techniques bene�t from generating approximations o� the critical path of program execution.

Reproducibility: Deterministic vs. Nondeterministic

De�nition 2. An approximation technique is deterministic if, given the same initial state, for every

input Ij , it yields constant error Ej . An approximation technique is nondeterministic if, given the

same initial state, there exists some input Ij for which it yields more than one error valueEj0, ..., Ejn.

Nondeterministic techniques can pose a challenge for testing and debugging. When developing

techniques, the conventional approach is to evaluate error and e�ciency on a test system and

extrapolate to production systems. �is is e�ective for deterministic techniques since they produce

the same approximations regardless of the underlying system; errors are reproducible. It is possible

for a user to declare any error threshold ε and concretely evaluate whether or not it is always

satis�ed for a given input. However, this is not true for nondeterministic techniques. For a given

input, error can only be probabilistically evaluated; ε must be accompanied by some probability

and con�dence.

Nondeterministic techniques have limited reproducibility. Such approximations are possible

via exposing analog noise, asynchrony and race conditions to the program. Revisiting the ex-

amples in Section 1.A.2, synchronization elision [22] is a nondeterministic technique while code

perforation [132] is deterministic. Whereas perforating computations yields the same output on

any system, eliding synchronization primitives exposes race conditions. �is increases the number

of possible outputs and limits reproducibility. �e amount of error via synchronization elision can

vary greatly across systems depending on the amount of thread-level parallelism. Nondeterminis-

tic techniques can also expose analog noise. For example, voltage-overscaled ALUs [49] generate

approximations by risking exposure to the analog domain. �is has low reproducibility; error can-

not be concretely evaluated and must be empirically measured. In comparison, precision-scaled

ALUs [150] are deterministic. Scaling precision in the digital representation of data yields the same

output on any system.

16

As a trade-o�, nondeterministic techniques can generally o�er more opportunity for e�ciency

gains. By exposing the stochastic nature of the physical world, they avoid the expensive digital

abstraction tax. For example, voltage-overscaled ALUs signi�cantly improve e�ciency by relaxing

the safety margins enforced by digital circuitry.

�is taxonomy axis informs trade-o�s in reproducibility. Deterministic techniques bene�t from

high reproducibility, simplifying testing and debugging. On the other hand, nondeterministic tech-

niques bene�t from more opportunities for approximation that only exist outside the digital do-

main.

Error Control: Coarse-Grained vs. Fine-Grained

De�nition 3. An approximation technique is coarse-grained if it reduces the data footprint or the

number of dynamic instructions in a program. Otherwise, it is �ne-grained.

Control over the error introduced by a technique depends on the granularity at which an ap-

proximation technique is employed. Fine-grained techniques lower the cost of executing an in-

struction or storing a word of data. Coarse-grained techniques replace a set of instructions or a

block of data with a more e�cient or compact representation.

Coarse-grained techniques o�er more opportunity for error–e�ciency trade-o�s. Revisiting

the examples in Section 1.A.2, fuzzy �oating-point instructions [145] are �ne-grained while fuzzy

function memoization [96] is coarse-grained. Whereas the former improves the e�ciency of indi-

vidual instructions, the la�er can improve the e�ciency of an entire block or function. �e la�er,

in the most extreme case, can memoize the entire program for the highest e�ciency. In terms

of storage, �ne-grained techniques, such as low refresh DRAM [88], generate approximations in

individual bits. Coarse-grained techniques, such as approximate deduplication [91], reduce data

footprint. �e la�er can be more aggressively tuned for e�ciency gains, to the point where the

entire data footprint is deduplicated into a single data block.

Naturally, the coarser the granularity of a technique, the higher the risk of error. Fine-grained

techniques do not remove any data nor instructions. Conversely, coarse-grained techniques risk

information loss as more data and more instructions are omi�ed. In the previous examples, though

memoizing an entire program yields highest e�ciency, it also yields highest error. Holistically

17

approximating regions of code can disregard rarely-used control-�ow paths when not exercised.

Neural approximation [50] is an example of a coarse-grained technique that can subsume entire

functions, including potentially complex control �ow. �is coarseness makes testing and analysis

challenging.

�is taxonomy axis informs trade-o�s in error control. Coarse-grained techniques bene�t from

greater opportunities for aggressive e�ciency gains. On the other hand, �ne-grained techniques

can limit error and are generally be�er suited for programs where quality constraints are conser-

vative.

1.A.4 Discussion

We highlight the applicability of our proposed taxonomy by suggesting how it can inform fu-

ture research in approximate computing. We formulate a three-pronged answer that address the

questions across layers of the compute stack: (1) architecture, (2) compilers and runtimes and (3) ap-

plications.

HowCan It InformArchitecture Research? Research on new approximation techniques mo-

tivates the need for approximation-aware ISAs (A-ISA). Since the days of the IBM System/360,

architects have distinguished between architecture and implementation to guarantee the forward-

compatibility of their hardware. An A-ISA can express instruction-level error bounds that need

to be respected when deployed on current or future hardware. Such an abstraction layer would

allow hardware designers to modify the implementation of approximations down the road in a

way that remains invisible to the so�ware. We make a distinction between two types of A-ISAs:

strict A-ISAs and statistical A-ISAs. Strict A-ISAs are applicable to deterministic �ne-grained tech-

niques and provide strict error bounds on the execution of an instruction. Examples of A-ISAs

include the �ality-Programmable ISA [150], which provides strict error bounds relative to the

maximum output value of the instruction. Statistical A-ISAs, on the other hand, are applicable to

nondeterministic �ne-grained techniques and provide statistical failure guarantees. Such an ISA

would have to include probability bounds as well as con�dence bounds.

18

HowCan It InformCompilers/Runtimes Research? Research on approximation techniques

motivates the development of frameworks to make approximations safe to use. Such frameworks

include new languages, compilers and runtimes. We discuss how each taxonomy can inform the

applicability of framework proposals.

Architectural visibility is relevant to frameworks that focus on detecting and recovering from

hardware faults. Relax [44], for instance, can only work on top of architecturally visible techniques

because errors must be locally correctable [136]. Online monitoring proposals [119] that rely on

precise replay are also only applicable to architecturally visible techniques.

Determinism and coarseness are relevant to formulating statically-derived or empirically-observed

application-level error bounds. Nondeterministic techniques require statistical methods like prob-

abilistic assertions [126], while deterministic techniques can rely on hard assertions. Fine-grained

techniques can inherit from the wealth of tools developed in numerical analysis research [120].

More speci�cally, deterministic �ne-grained techniques have the advantage of providing strict er-

ror bounds at an instruction granularity. �us, they can provide hard worst-case error bounds for

many algorithmic pa�erns, as opposed to empirically derived average-case error bounds. Coarse-

grained techniques have seen a wealth of frameworks [10, 12, 121, 123, 90] that generally rely on

empirical error measurements to provide varying levels of error guarantees via quality autotuning.

HowCan It InformApplications Research? Research on new approximation techniques mo-

tivates be�er understanding on the applicability of such techniques. Application designers care

about (1) whether a technique can be applied to their algorithms, and (2) whether a technique can

meet the quality guarantees they wish to enforce.

Coarseness correlates to how general a technique is to algorithmic pa�erns. Fine-grained

techniques are broadly generalizable: any approximate �oating-point algorithm can make use of

reduced-precision FPUs. Coarse-grained techniques, on the other hand, have to adhere to spe-

ci�c code pa�erns: neural acceleration only applies to precise-pure regions of code, while loop-

perforation applies to loops free of early exits [123].

Determinism and coarseness will both determine the error behavior that the application will

see. Nondeterministic techniques generally yield large rarely-occurring errors while deterministic

techniques yield small frequently-occurring errors. Nondeterministic techniques would generally

19

not be used in mission-critical systems. �e magnitude of an error is generally be�er controlled

on deterministic �ned-grained techniques as opposed to deterministic coarse-grained techniques.

1.A.5 Conclusion

A wealth of approximate computing techniques has been proposed in architecture, circuits, lan-

guages, and compilers research. We present a taxonomy that categorizes approximate computing

techniques based their most salient properties: visibility, determinism, and coarseness, to be�er

inform cross-stack research in architecture, tools, and applications.

20

1.B Background: An Survey of Domain Specialized Deep Learning Accelerators

Over the last few years years, comprehensive deep learning accelerator designs have been pro-

posed in academia [33, 86, 45, 32, 62, 71]. �ese domain-speci�c architectures present a program-

ming challenge to traditional compiler frameworks since they expose unconventional hardware

intrinsics. For instance, compilers built to generate scalar code are naturally ill-equipped to un-

cover tensor operations as they would require higher-level abstractions.

Related
Work Tile Type Compute

Tiles
MAC/
Tile Data Types Parameter

Storage
Activation
Storage

Accumulator
Storage

DRAM Latency
Hiding

Other
Operators Applications

DaDianNao Vector Dot
Product 16 256 int16/int32

distributed
32MB

(eDRAM)

4MB
(eDRAM)

distributed
512kB n/a

activation,
pooling,

normalization
MLP, CNN

PuDianNao Vector Dot
Product 64 16 fp16/fp32 16kB 8kB 8kB ping pong

buffering
thresholding,
general math,

k-sorting

MLP, general
machine
learning

ShiDianNao
2D mesh,
output-

stationary
1 64 int16 128kB 64kB 64kB n/a

activation,
pooling,

normalization
CNN, MLP

Eyeriss
2D mesh,

row-
stationary

1 168 int16 108kB of unified global cache + 84kB of
distributed register files

global buffer
prefetch pooling CNN, MLP

EIE
Sparse

Vector Dot
Product

1 64 int4/int16
distributed

10MB sparse
representation

distributed
128kB

distributed
2kB n/a ReLU MLP

TPU
2D Systolic

Matrix-Matrix
Multiplication

1 64k int8/int32 256k FIFO 24MB 4MB
4-stage pipeline

+ explicit
synchronization

activation,
pooling,

normalization

MLP, LSTM,
CNN

Figure 1.B.1: Salient characteristics of recently-proposed deep learning accelerators.

We summarize prominent works in Figure 1.B.1 in terms of their most salient features: dense

tensor computation fabric, data type specialization, memory subsystem specialization, latency

hiding mechanisms and general purpose-ness. �ese salient features explain why programming

domain-specialized accelerators in the context of deep learning requires re-thinking the so�ware

stack.

Dense Tensor Computation Fabric. While most accelerators reviewed under Table 1.B.1 ap-

pear to support di�erent basic operations, ranging from an array of vector dot product

tiles [33, 86], to spatially programmed 2D meshes of processing elements [45, 32, 71, 62],

they all perform matrix-matrix multiplication from a programming abstraction perspective.

Most of the complex low-level processing element control and data movement orchestra-

tion can be hidden away under a CISC-like ISA abstraction to present the programmer with

21

high-level dense linear algebra intrinsics, as done in the Google TPU [71] or in Cambricon

ISA work [87].

Data Type Specialization. Deep learning is amenable to quantization, particularly for inference

workloads which many of the accelerators in Table 1.B.1 are optimized for. Most accelera-

tors use two levels of precision: low-precision for map-like operators (e.g., multiplication in

a dot product), and high-precision for reduce-like operators (e.g., addition in a dot product).

As a result, it is common to store neural network weights and activations at lower precision

se�ings, while aggregated data is stored at a higher precision. Concretely, these two pre-

cision levels are int8/int32 in the case of the TPU [71], i.e. 8-bit multiplications, and

32-bit accumulations.

On-Chip Memory Subsystem Specialization. While on-chip memory subsystems can seem-

ingly vary drastically between proposed architectures, they generally provide separate and

disjoint storage structures for activations, parameters and accumulator values (as opposed to

a uni�ed register �le or data cache in the case of CPUs, and GPUs). �is allows the memory

subsystem to be �nely tuned to the on-chip bandwidth (number of SRAM banks and read

ports) and the overall capacity requirements for each data type that the dense tensor core

processes. Dadiannao [33] and EIE [62] are architectures that are tuned to evaluate Multi-

Layer Perceptrons (MLPs). Consequently they provide vast amounts of on-chip storage to

store parameters (i.e. kernel weights) to minimize o�-chip DRAM accesses. Other designs

like the TPU o�er practically no on-chip parameter storage due to the assumption that the

parameters of large models cannot realistically �t on-chip. �is design assumption is typical

of accelerators optimized for 2D convolution layers, where the memory requirements for

activations vastly outweighs those of kernel weights.

DRAM Latency Hiding. Several designs in Table 1.B.1 assume that all parameters or interme-

diate activations must �t on chip ([33, 45, 62]). While remaining within an on-chip storage

budget can maximize e�ciency, it yields constraints that are not realistic to satisfy as neural

networks are ge�ing deeper, and the number of parameters keeps growing. In most cases,

on-chip storage limitations will inevitably lead to spilling of either activations, or parame-

22

ters. In order to maintain high utilization of computation resources when memory spilling

occurs, latency hiding mechanisms is required. Unsurprisingly, a variety of latency hiding

techniques exists in the deep learning accelerator design literature. PuDianNao [86] per-

forms streaming of activations and weights from DRAM into ping-pong bu�ers which are

partitioned into a read bank and write bank that alternate during overlapping execution

phases. Eyeriss [32] relies on a classical data prefetching approach into bring data its global

bu�er in a timely fashion. �e Google TPU [71] relies on a high-level 4-stage pipeline of load,

compute, activation, and store stages to hide all non-compute latencies. For that reason, the

TPU pipeline relies on explicit dependences [135] to insert stalls if necessary.

General-Purposeness. Deep learning accelerators also incorporate support for other operators

beyond dense linear algebra, including activation, pooling, and normalization. As new net-

work models are proposed and new operators are introduced, adding ”general purposeness”

with an ALU [45] or function interpolation module [86] can help future-proof deep learning

accelerator designs to some extent.

In order to foster the development of so�ware stacks adapted to deep learning domain-specialized

accelerators, we propose in Chapter 4 a generic accelerator designs that can be seen by a compiler

as a superset of the designs proposed in [33, 86, 45, 32, 62, 71]. �e VTA design can for instance be

parameterized to implement dense linear operations such as vector dot product [86], vector-matrix

multiply [106], and matrix-matrix multiply[71].

In addition VTA design o�ers a customizable on-chip memory subsystem allowing for the im-

plementation of the di�erent memory organizations found in designs like the TPU [71] where

activation storage dominates, or DaDianNao [33] where parameter storage dominates. Finally in

terms of latency hiding, VTA exposes a so�ware-driven dependency tracking management sim-

ilar to the one found in TPU [71]. Supporting latency hiding via low-level dependence tracking

mechanisms requires all layers of the stack to work together.

23

Chapter 2

SNNAP: APPROXIMATELY MAPPING DIVERSE REGIONS OF CODE TO A
SINGLE FPGA-BASED SUBSTRATE VIA NEURAL ACCELERATION

“All problems in computer science can be solved by another level of indirection.”

– David Wheeler

Published As: �ierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,

Luis Ceze and Mark Oskin, QAPPA: A Framework for Navigating�ality-Energy Tradeo�s with Ar-

bitrary �antization, IEEE 21st International Symposium on High Performance Computer Archi-

tecture (HPCA), 2015.

Abstract: Many applications that can take advantage of accelerators are amenable to approximate

execution. Past work has shown that neural acceleration is a viable way to accelerate approximate

code [50]. In light of the growing availability of on-chip �eld-programmable gate arrays (FPGAs),

this chapter explores neural acceleration on o�-the-shelf programmable SoCs. We describe the design

and implementation of SNNAP, a �exible FPGA-based neural accelerator for approximate programs.

SNNAP is designed to work with a compiler work�ow that con�gures the neural network’s topology

and weights instead of the programmable logic of the FPGA itself. �is approach enables e�ective use

of neural acceleration in commercially available devices and accelerates di�erent applications without

costly FPGA recon�gurations. No hardware expertise is required to accelerate so�ware with SNNAP,

so the e�ort required can be substantially lower than custom hardware design for an FPGA fabric and

possibly even lower than current “C-to-gates” high-level synthesis (HLS) tools. Our measurements on a

Xilinx Zynq FPGA show that SNNAP yields a geometric mean of 3.8× speedup (as high as 38.1×) and

2.8× energy savings (as high as 28×) with less than 10% quality loss across all applications but one.

We also compare SNNAP with designs generated by commercial HLS tools and show that SNNAP has

similar performance overall, with be�er resource-normalized throughput on 4 out of 7 benchmarks.

24

2.1 Introduction

In light of diminishing returns from technology improvements on performance and energy ef-

�ciency [47, 108], researchers are exploring new avenues in computer architecture. �ere are

at least two clear trends emerging. One is the use of specialized logic in the form of accelera-

tors [152, 153, 56, 60] or programmable logic [112, 111, 34], and another is approximate computing,

which exploits applications’ tolerance to quality degradations [124, 150, 49, 122]. Specialization

leads to be�er e�ciency by trading o� �exibility for leaner logic and hardware resources, while

approximate computing trades accuracy to enable novel optimizations.

�e con�uence of these two trends leads to additional opportunities to improve e�ciency.

One example is neural acceleration, which trains neural networks to mimic regions of approximate

code [50, 138]. Once the neural network is trained, the system no longer executes the original

code and instead invokes the neural network model on a neural processing unit (NPU) accelera-

tor. �is leads to be�er e�ciency because neural networks are amenable to e�cient hardware

implementations [110, 48, 70, 128]. Prior work on neural acceleration, however, has assumed

that the NPU is implemented in fully custom logic tightly integrated with the host processor

pipeline [50, 138]. While modifying the CPU core to integrate the NPU yields signi�cant perfor-

mance and e�ciency gains, it prevents near-term adoption and increases design cost/complexity.

�is chapter explores the performance opportunity of NPU acceleration implemented on o�-the-

shelf �eld-programmable gate arrays (FPGAs) and without tight NPU–core integration, avoiding

changes to the processor ISA and microarchitecture.

On-chip FPGAs have the potential to unlock order-of-magnitude energy e�ciency gains while

retaining some of the �exibility of general-purpose hardware [133]. Commercial parts that incor-

porate general purpose cores with programmable logic are beginning to appear [158, 7, 67]. In

light of this trend, this chapter explores an opportunity to accelerate approximate programs via an

NPU implemented in programmable logic.

Our design, called SNNAP (systolic neural network accelerator in programmable logic), is

designed to work with a compiler work�ow that automatically con�gures the neural network’s

topology and weights instead of the programmable logic itself. SNNAP’s implementation on o�-

the-shelf programmable logic has several bene�ts. First, it enables e�ective use of neural acceler-

25

ation in commercially available devices. Second, since NPUs can accelerate a wide range of com-

putations, SNNAP can target many di�erent applications without costly FPGA recon�gurations.

Finally, the expertise required to use SNNAP can be substantially lower than designing custom

FPGA con�gurations. In our evaluation, we �nd that the programmer e�ort can even be lower

than for commercially available “C-to-gates” high-level synthesis tools [157, 6].

We implement and measure SNNAP on the Zynq [158], a state-of-the-art programmable system-

on-a-chip (PSoC). We identify two core challenges: communication latency between the core and

the programmable logic unit, and the di�erence in processing speeds between the programmable

logic and the core. We address those challenges with a new throughput-oriented interface and pro-

gramming model, and a parallel architecture based on scalable FPGA-optimized systolic arrays. To

ground our comparison, we compare benchmarks accelerated with SNNAP to custom designs of

the same accelerated code generated by a high-level synthesis tool. Our HLS study shows that

current commercial tools still require signi�cant e�ort and hardware design experience. Across a

suite of approximate benchmarks, we observe an average speedup of 3.8×, ranging from 1.3× to

38.1×, and an average energy savings of 2.8×.

2.2 Programming

�ere are two basic ways to use SNNAP. �e �rst is to use a high-level, compiler-assisted mech-

anism that transforms regions of approximate code to o�oad them to SNNAP. �is automated

neural acceleration approach requires low programmer e�ort and is appropriate for bringing ef-

�ciency to existing code. �e second is to directly use SNNAP’s low-level, explicit interface that

o�ers �ne-grained control for expert programmers while still abstracting away hardware details.

We describe both interfaces below.

2.2.1 Compiler-Assisted Neural Acceleration

Approximate applications can take advantage of SNNAP automatically using the neural algorithmic

transformation [50]. �is technique uses a compiler to replace error-tolerant subcomputations in

a larger application with neural network invocations.

�e process begins with an approximation-aware programming language in which code or data

can be marked as approximable. Language options include Relax’s code regions [44], EnerJ’s type

26

quali�ers [124], Rely’s variable and operator annotations [23], or simple function annotations.

In any case, the programmer’s job is to express where approximation is allowed. �e neural-

acceleration compiler trains neural networks for the indicated regions of approximate code using

test inputs. �e compiler then replaces the original code with an invocation of the learned neural

network. Lastly, quality can be monitored at run-time using application-speci�c quality metrics

such as Light-Weight Checks [58].

As an example, consider a program that �lters each pixel in an image. �e annotated code

might resemble:

APPROXFUNC double filter(double pixel);

...

for (int x = 0; x ¡ width; ++x)

for (int y = 0; y ¡ height; ++y)

outimage[x][y] = filter(inimage[x][y]);

where the programmer uses a function a�ribute to mark filter() as approximate.

�e neural-acceleration compiler replaces the filter() call with instructions that instead

invoke SNNAP with the argument inimage[x][y]. �e compiler also adds setup code early in

the program to set up the neural network for invocation.

2.2.2 Low-Level Interface

While automatic transformation represents the highest-level interface to SNNAP, it is built on a

lower-level interface that acts both as a compiler target and as an API for expert programmers.

�is section details the instruction-level interface to SNNAP and a low-level library layered on top

of it that makes its asynchrony explicit.

Unlike a low-latency circuit that can be tightly integrated with a processor pipeline, FPGA-

based accelerators cannot a�ord to block program execution to compute each individual input.

Instead, we architect SNNAP to operate e�ciently on batches of inputs. �e so�ware groups

together invocations of the neural network and ships them all simultaneously to the FPGA for

pipelined processing. In this sense, SNNAP behaves as a throughput-oriented accelerator: it is

most e�ective when the program keeps it busy with a large number of invocations rather than

when each individual invocation must complete quickly.

27

Instruction-level interface. At the lowest level, the program invokes SNNAP by enqueueing

batches of inputs, invoking the accelerator, and receiving a noti�cation when the batch is complete.

Speci�cally, the program writes all the inputs into a bu�er in memory and uses the ARMv7 SEV

(send event) instruction to notify SNNAP. �e accelerator then reads the inputs from the CPU’s

cache via a cache-coherent interface and processes them, placing the output into another bu�er.

Meanwhile, the program issues an ARM WFE (wait for event) instruction to sleep until the neural-

network processing is done and then reads the outputs.

Low-Level asynchronousAPI. SNNAP’s accompanying so�ware library o�ers a low-level API

that abstracts away the details of the hardware-level interface. �e library provides an ordered,

asynchronous API that hides the size of SNNAP’s input and output bu�ers. �is interface is useful

both as a target for neural-acceleration compilers and for expert programmers who want conve-

nient, low-level control over SNNAP.

�e SNNAP C library uses a callback function to consume each output of the accelerator when

it is ready. For example, a simple callback that writes a single �oating-point output to an array can

be wri�en:
static int index = 0;

static float output[...];

void cbk(const void *data) –

output[index] = *(float *)data; ++index;

�en, to invoke the accelerator, the program con�gures the library, sends inputs repeatedly, and

then waits until all invocations are �nished with a barrier. For example:
snnapstreamt stream = snnapstreamnew(

sizeof(float), sizeof(float), cbk);

for (int i = 0; i ¡ max; ++i) –

snnapstreamput(stream, input);

snnapstreambarrier(stream);

�e snnapstreamnew call creates a stream con�guration describing the size the neural net-

work’s invocation in bytes, the size of each corresponding output, and the callback function. �en,

snnapstreamput copies an input value from a void* pointer into SNNAP’s memory-mapped

28

input bu�er. Inside the put call, the library also consumes any outputs available in SNNAP’s out-

put bu�er and invokes the callback function if necessary. Finally, snnapstreambarrier waits

until all invocations are �nished.

�is asynchronous style enables the SNNAP runtime library to coalesce batches of inputs with-

out exposing bu�er management to the programmer or the compiler. �e underlying SNNAP con-

�guration can be customized with di�erent bu�er sizes without requiring changes to the code. In

more sophisticated programs, this style also allows the program to transparently overlap SNNAP

invocations with CPU code between snnapstreamsend calls.

�is low-level, asynchronous interface is suitable for expert programmers who want to exert

�ne-grained control over how the program communicates with SNNAP. It is also appropriate for

situations when the program explicitly uses a neural network model for a traditional purpose,

such as image classi�cation or handwriting recognition, where the SNNAP C library acts as a

replacement for a so�ware neural network library. In most cases, however, programmers need not

directly interact with the library and can instead rely on automatic neural acceleration.

2.3 Architecture Design for SNNAP

�is work is built upon an emerging class of heterogeneous computing devices called Programmable

System-on-Chips (PSoCs). �ese devices combine a set of hard processor cores with programmable

logic on the same die. Compared to conventional FPGAs, this integration provides a higher-

bandwidth and lower-latency interface between the main CPU and the programmable logic. How-

ever, the latency is still higher than in previous proposals for neural acceleration [50, 138]. Our

objective is to take advantage of the processor–logic integration with e�cient invocations, latency

mitigation, and low resource utilization. We focus on these challenges:

• �e NPU must use FPGA resources e�ciently to minimize its energy consumption.

• �e NPU must support low-latency invocations to provide bene�t to code with small ap-

proximate regions.

• To mitigate communication latency, the NPU must be able to e�ciently process batches of

invocations.

29

Zynq Programmable System-on-a-Chip

Neural Processing Unit

bus

AXI Master
Interface Scheduler

PU

sc
ra

tc
hp

ad

control

PE

PE

PE

SIG

...

...

Application Processing Unit

Dual Core
ARM Cortex-A9

L1 I$ L1D$

snoop control unit

OCM L2 $

ACP
port

PU

control

PE

PE

PE

SIG

...

sc
ra

tc
hp

ad

Figure 2.1: SNNAP system diagram. Each Processing Unit (PU) contains a chain of Processing

Elements (PE) feeding into a sigmoid unit (SIG).

• �e NPU and the processor must operate independently to enable the processor to hibernate

and conserve energy while the accelerator is active.

• Di�erent applications require di�erent neural network topologies. �us, the NPU must be

recon�gurable to support a wide range of applications without the need for reprogramming

the entire FPGA or redesigning the accelerator.

�e rest of this section provides an overview of the SNNAP NPU and its interface with the

processor.

2.3.1 SNNAP Design Overview

SNNAP evaluates multi-layer perceptron (MLP) neural networks. MLPs are a widely-used class of

neural networks that have been used in previous work on neural acceleration [50, 138]. An MLP is

a layered directed graph where the nodes are computational elements called neurons. Each neuron

30

computes the weighted sum of its inputs and applies a nonlinear function, known as the activation

function, to the sum—o�en a sigmoid function. �e complexity of a neural network is re�ected in

its topology: larger topologies can �t more complex functions while smaller topologies are faster

to evaluate.

�e SNNAP design is based on systolic arrays. Systolic arrays excel at exploiting the regular

data-parallelism found in neural networks [35] and are amenable to e�cient implementation on

modern FPGAs. Most of the systolic array’s highly pipelined computational datapath can be con-

tained within the dedicated multiply–add units found in FPGAs know as Digital Signal Processing

(DSP) slices. We leverage these resources to realize an e�cient pipelined systolic array for SNNAP

in the programmable logic.

Our design, shown in Figure 2.1, consists of a cluster of Processing Units (PUs) connected

through a bus. Each PU is composed of a control block, a chain of Processing Elements (PEs), and a

sigmoid unit, denoted by the SIG block. �e PEs form a one-dimensional systolic array that feeds

into the sigmoid unit. When evaluating a layer of a neural network, PEs read the neuron weights

from a local scratchpad memory where temporary results can also be stored. �e sigmoid unit

implements a nonlinear neuron-activation function using a lookup table. �e PU control block

contains a con�gurable sequencer that orchestrates communication between the PEs and the sig-

moid unit. �e PUs operate independently, so di�erent PUs can be individually programmed to

parallelize the invocations of a single neural network or to evaluate many di�erent neural net-

works. Section 2.4 details SNNAP’s hardware design.

2.3.2 CPU–SNNAP Interface

We design the CPU–SNNAP interface to allow dynamic recon�guration, minimize communication

latency, and provide high-bandwidth coherent data transfers. To this end, we design a wrapper

that composes three di�erent interfaces on the target programmable SoC (PSoC).

We implement SNNAP on a commercially available PSoC: the Xilinx Zynq-7020 on the ZC702

evaluation platform [158]. �e Zynq includes a Dual Core ARM Cortex-A9, an FPGA fabric, a

DRAM controller, and a 256 KB scratchpad SRAM referred to as the on-chip memory (OCM). While

PSoCs like the Zynq hold the promise of low-latency, high-bandwidth communication between the

31

CPU and FPGA, the reality is more complicated. Zynq provides multiple communication mecha-

nisms with di�erent bandwidths and latencies that can surpass 100 CPU cycles. �is latency can in

some cases dominate the time it takes to evaluate a neural network. SNNAP’s interface must there-

fore mitigate this communication cost with a modular design that permits throughput-oriented,

asynchronous neural-network invocations while keeping latency as low as possible.

We compose a communication interface based on three available communication mechanisms

on the Zynq PSoC [160]. First, when the program starts, it con�gures SNNAP using the medium-

throughput General Purpose I/Os (GPIOs) interface. �en, to use SNNAP during execution, the

program sends inputs using the high-throughput ARM Accelerator Coherency Port (ACP). �e

processor then uses the ARMv7 SEV/WFE signaling instructions to invoke SNNAP and enter sleep

mode. �e accelerator writes outputs back to the processor’s cache via the ACP interface and,

when �nished, signals the processor to wake up. We detail each of these components below.

Con�guration via General Purpose I/Os (GPIOs). �e ARM interconnect includes two 32-bit

Advanced Extensible Interface (AXI) general-purpose bus interfaces to the programmable logic,

which can be used to implement memory-mapped registers or support DMA transfers. �ese

interfaces are easy to use and are relatively low-latency (114 CPU cycle roundtrip latency) but

can only support moderate bandwidth. We use these GPIO interfaces to con�gure SNNAP a�er it

is synthesized on the programmable logic. �e program sends a con�guration to SNNAP without

reprogramming the FPGA. A con�guration consists of a schedule derived from the neural network

topology and a set of weights derived from prior neural network training. SNNAP exposes the

con�guration storage to the compiler as a set of memory-mapped registers. To con�gure SNNAP,

the so�ware checks that the accelerator is idle and writes the schedule, weights, and parameters

to memory-mapped SRAM tables in the FPGA known as block RAMs.

Sending data via the Accelerator Coherency Port. �e FPGA can access the ARM on-chip

memory system through the 64-bit Accelerator Coherency Port (ACP) AXI-slave interface. �is

port allows the FPGA to send read and write requests directly to the processors’ Snoop Control Unit

to access the processor caches thus bypassing explicit cache �ushes required by traditional DMA

interfaces. �e ACP interface is the best available option for transferring batches of input/output

32

PE

48

sigmoid unit
48

+

x

16

weight
16

31
48

+

x

16

weight
16

31
48

+

x

16

weight
16

31
48

+

x

16

weight
16

31
48 accumulator

FIFO

sigmoid FIFO

data_in

16

accum_in

accum_out

data_out16

48

PE PE PE

(a) Processing Unit datapath.

is_small

is_large

2048 entry 16-bit LUT

is_pos

-1

1

48
1

48

48

11

16 (linear)

sig_in fn_in

sig to
tanh

2

sig_out
16

(b) Sigmoid Unit datapath.

Figure 2.1: Detailed PU datapath. PEs are implemented on multiply–add logic and produce a stream

of weighted sums from an input stream. �e sums are sent to a sigmoid unit that approximates

the activation function.

vectors to and from SNNAP. SNNAP includes a custom AXI master for the ACP interface, reducing

round-trip communication latency down to 93 CPU cycles. Batching invocations help amortize this

latency in practice.

Invocation via synchronization instructions. �e ARM and the FPGA are connected by two

unidirectional event lines eventi and evento for synchronization. �e ARMv7 ISA contains

two instructions to access these synchronization signals, SEV and WFE. �e SEV instruction

causes the evento signal in the FPGA fabric to toggle. �e WFE instruction causes the processor

to enter the low-power hibernation state until the FPGA toggles the eventi signal. �ese oper-

ations have signi�cantly lower latency (5 CPU cycles) than any of the other two communication

mechanisms between the processor and the programmable logic.

We use these instructions to invoke SNNAP and synchronize its execution with the processor.

To invoke SNNAP, the CPU writes input vectors to a bu�er in its cache. It signals the accelerator

to start computation using SEV and enters hibernation with WFE. When SNNAP �nishes writing

outputs to the cache, it signals the processor to wake up and continues execution.

2.4 Hardware Design for SNNAP

�is section describes SNNAP’s systolic-array design and its FPGA implementation.

33

2.4.1 Multi-Layer Perceptrons With Systolic Arrays

MLPs consist of a collection of neurons organized into layers. Figure 2.2a depicts an MLP with

four layers: the input layer, the output layer, and two hidden layers. �e computation of one of

the neurons in the second hidden layer is highlighted: the neuron computes the weighted sum of

the values of its source neurons and applies the activation function f to the result. �e resulting

neuron output is then sent to the next layer.

�e evaluation of an MLP neural network consists of a series of matrix–vector multiplications

interleaved with non-linear activation functions. Figure 2.2b shows this approach applied to the

hidden layers of Figure 2.2a. We can schedule a systolic algorithm for computing this matrix–

vector multiplication onto a 1-dimensional systolic array as shown in Figure 2.2c. When computing

a layer, the vector elements xi are loaded into each cell in the array while the matrix elements

elements wji trickle in. Each cell performs a multiplication xi ·wji, adds it to the sum of products

produced by the upstream cell to its le�, and sends the result to the downstream cell to its right.

�e output vector produced by the systolic array �nally goes through an activation function cell,

completing the layer computation.

Systolic arrays can be e�ciently implemented using the hard DSP slices that are common

in modern FPGAs. Our PSoC incorporates 220 DSP slices in its programmable logic [160]. DSP

slices o�er pipelined �xed-point multiply-and-add functionality and a hard-wired data bus for

fast aggregation of partial sums on a single column of DSP slices. As a result, a one-dimensional

�xed-point systolic array can be contained entirely in a single hard logic unit to provide high

performance at low power [159].

2.4.2 Processing Unit Datapath

Processing Units (PUs) are replicated processing cores in SNNAP’s design. A PU comprises a chain

of Processing Elements (PEs), a sigmoid unit, and local memories including block-RAMs (BRAMs)

and FIFOs that store weights and temporary results. A sequencer orchestrates communication

between the PEs, the sigmoid unit, local memories, and the bus that connects each PU to the

NPU’s memory interface.

�e PEs that compose PUs map directly to a systolic array cell as in Figure 2.1a. A PE consists

34

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

y0

y1

Input Layer

Hidden Layer 0 Hidden Layer 1

Output

w47

w57

w67

∑
i=4

6
wi7•xi ! x7

(a) An multilayer perceptron neural network.

w47 w57 w67

w48 w58 w68

w49 w59 w69

 ·

x4

x5

x6

 =

x7

x8

x9

(b) Matrix representation of hidden layer evaluation.

x4 x5 x6

w47

w48

w49

x7 x8 x9!0

.
w57

w58

w59

.

.
w67

w68

w69

(c) Systolic algorithm on one-dimensional systolic array.

Figure 2.2: Implementing multi-layer perceptron neural networks with systolic arrays.

35

of a multiply-and-add module implemented on a DSP slice. �e inputs to the neural network are

loaded every cycle via the input bus into each PE following the systolic algorithm. Weights, on the

other hand, are statically partitioned among the PEs in local BRAMs.

�e architecture can support an arbitrary number of PEs. Our evaluation discusses the optimal

number of PEs per PU by discussing throughput-resources trade-o�s.

Sigmoid unit. �e sigmoid unit applies the neural network’s activation function to outputs from

the PE chain. �e design, depicted in Figure 2.1b, is a 3-stage pipeline comprising a lookup-table

and some logic for special cases. We use a y = x linear approximation for small input values and

y = ±1 for very large inputs. Combined with a 2048-entry LUT, the design yields at most 0.01%

normalized RMSE.

SNNAP supports three commonly-used activation functions: a sigmoid functionS(x) = k
1+e−x ,

a hyperbolic tangent S(x) = k · tanh(x), and a linear activation function S(x) = k · x, where k

is a steepness parameter. Microcode instructions (see Section 2.4.3) dictate the activation function

for each layer.

Flexible NN topology. �e NPU must map an arbitrary number of neurons to a �xed number

of PEs. Consider a layer with n input neurons, m output neurons and let p be the number of PEs

in a PU. Without any constraints, we would schedule the layer on n PEs, each of which would

perform m multiplications. However, p does not equal n in general. When n < p, there are excess

resources and p− n PEs remain idle. If n > p, we time-multiplex the computation onto the p PEs

by storing temporary sums in an accumulator FIFO. Section 2.4.3 details the process of mapping

layers onto PEs.

�e partial sums of the �rst p input neurons are computed and stored in the accumulator

FIFO; and later retrieved and added to the next p partial sums before being stored back into the

accumulator FIFO etc. �is process repeats until the last input neuron is mapped to a PE; at that

point the completed sum is sent to the sigmoid unit.

A similar time-multiplexing process is performed to evaluate neural networks with many hid-

den layers. We bu�er sigmoid unit outputs in a sigmoid FIFO until the evaluation of the current

layer is complete; then they can be used as inputs to the next layer. When evaluating the �nal layer

36

in a neural network, the outputs coming from the sigmoid unit are sent directly to the memory

interface and wri�en to the CPU’s memory.

�e BRAM space allocated to the sigmoid and accumulator FIFOs limit the maximum layer

width of the neural networks that SNNAP can execute.

Numeric representation. SNNAP uses a 16-bit signed �xed-point numeric representation with

7 fraction bits internally. �is representation �ts within the 18×25DSP slice multiplier blocks. �e

DSP slices also include a 48-bit �xed-point adder that helps avoid over�ows on long summation

chains. We limit the dynamic range of neuron weights during training to match this representation.

�e 16-bit width also makes e�cient use of the ARM core’s byte-oriented memory interface for

applications that can provide �xed-point inputs directly. For �oating-point applications, SNNAP

converts the representation at its inputs and outputs.

We found that one sigmoid unit was su�cient for our NPU design. Out of the 6 application

benchmarks we used in our evaluation, only the FFT benchmark schedule experienced contention

for the Sigmoid Unit from two PEs, thus introducing a one-cycle bubble in the schedule and in-

creasing the FFT neural network computation latency by 4.8%.

2.4.3 Processing Unit Control

Microcode. SNNAP executes a static schedule derived from the topology of a neural network.

�is inexpensive scheduling process is performed on the host machine before it con�gures the

accelerator. �e schedule is represented as microcode stored in a local BRAM.

Each microcode line describes a command to be executed by a PE. We distinguish architectural

PEs from physical PEs since there are typically more inputs to each layer in a neural network than

there are physical PEs in a PU (i.e., n > p). Decoupling the architectural PEs from physical PEs

allow us to support larger neural networks and makes the same micro-code executable on PUs of

di�erent PE length.

Each instruction comprises four �elds:

1. ID: the ID of the architectural PE executing the command.

2. MADD: the number of multiply–add operations that must execute to compute a layer.

37

3. SRC: input source selector; either the input FIFO or the sigmoid FIFO.

4. DST: the destination of the output data; either the next PE or the sigmoid unit. In the la�er

case, the �eld also encodes (1) the type of activation function used for that layer, and (2)

whether the layer is the output layer.

Sequencer. �e sequencer is a �nite-state machine that processes microcoded instructions to

orchestrate data movement between PEs, input and output queues, and the sigmoid unit within

each PU. Each instruction is translated by the sequencer into commands that get forwarded to

a physical PE along with the corresponding input data. �e mapping from architectural PE (as

described by the microcode instruction) to the physical PE (the actual hardware resource) is done

by the sequencer dynamically based on resource availability and locality.

Algorithm 1 shows this scheduling process. �e sequencer only needs to wait on the �rst

physical PE, PE0. For fully connected neural networks, PEs receive the same MADD count in

each layer. Consequently, if a given PE is ready to do work at cycle t, the next downstream PE is

guaranteed to be ready do work at cycle t+ 1.

Scheduler optimizations. During microcode generation, we use a simple optimization that im-

proves utilization by minimizing pipeline stalls due to data dependencies. �e technique improves

overall throughput for a series of invocations at the cost of increasing the latency of a single invo-

cation.

Consider a simple PU structure with two PEs and a one-stage sigmoid unit when evaluating

a 2–2–1 neural network topology. Table 2.1 presents two schedules that map this neural network

topology onto the available resources in the pipeline diagram. Each schedule tells us which task

each functional unit is working on at any point in time. For instance, when PE1 is working on

x2, it is multiplying x1 × w12 and adding it to the partial sum x0 × w02 computed by PE0.

Executing one neural network invocation at a time results in a ine�cient schedule as illustrated

by the naive schedule in Table 2.1. �e pipeline stalls here result from (1) dependencies between

neural network layers and (2) contention over the PU input bus. Data dependencies occur when a

PE is ready to compute the next layer of a neural network, but has to wait for the sigmoid unit to

produce the inputs to that next layer.

38

Algorithm 1: Sequencer algorithm.

1 while inputs are ready do

2 if a new layer is being processed then

3 idxPE ← 0

4 end

5 foreach microcode command do

6 if idxPE == 0 then

7 while PE[idxPE] is busy do

8 wait

9 end

10 end

11 map architectural ID to physical PE[idxPE]

12 dequeue input or sigmoid FIFO based on SRC

13 send command with DST and MADD to PE[idxPE]

14 idxPE ← (idxPE + 1) mod len(PE)

15 end

16 end

We eliminate these stalls by interleaving the computation of layers from multiple neural net-

work invocations as shown in the e�cient schedule in Table 2.1. Pipeline stalls due to data depen-

dencies can be eliminated as long as there are enough neural network invocations waiting to be

executed. SNNAP’s throughput-oriented workloads tend to provide enough invocations to justify

this optimization.

2.5 Evaluation

We implemented SNNAP on an o�-the-shelf programmable SoC. In this section, we evaluate our

implementation to assess its performance and energy bene�ts over so�ware execution, to charac-

terize the design’s behavior, and to compare against a high-level synthesis (HLS) tool. �e HLS

comparison provides a reference point for SNNAP’s performance, e�ciency, and programmer ef-

39

Schedule FU 0 1 2 3 4 5 6 7

Naive

PE0 x
(0)
2 x

(0)
3 x

(0)
4 x

(1)
2 x

(1)
3

PE1 x
(0)
2 x

(0)
3 x

(0)
4 x

(1)
2

SIG x
(0)
2 x

(0)
3 x

(0)
4

E�cient

PE0 x
(0)
2 x

(0)
3 x

(1)
2 x

(1)
3 x

(0)
4 x

(1)
4 x

(2)
2

PE1 x
(0)
2 x

(0)
3 x

(1)
2 x

(1)
3 x

(0)
4 x

(1)
4

SIG x
(0)
2 x

(0)
3 x

(1)
2 x

(1)
3 x

(0)
4 x

(1)
4

Table 2.1: Static PU scheduling of a 2–2–1 neural network. �e naive schedule introduces pipeline

stalls due to data dependencies. Evaluating two neural network invocations simultaneously by

interlacing the layer evaluations can eliminate those stalls.

fort requirements.

2.5.1 Experimental setup

Applications. Table 2.2 shows the applications measured in this evaluation, which are the bench-

marks used by Esmaeilzadeh et al. [50] along withblackscholes from the PARSEC benchmark

suite [17]. We o�oad one approximate region from each application to SNNAP. �ese regions are

mapped to neural network topologies used in previous work [50, 30]. �e table shows a hypothet-

ical “Amdahl speedup limit” computed by subtracting the measured runtime of the kernel to be

accelerated from the overall benchmark runtime.

Target platform. We evaluate the performance, power and energy e�ciency of SNNAP run-

ning against so�ware on the ZYNQ ZC702 evaluation platform described in Table 2.3. �e ZYNQ

processor integrates a mobile-grade ARM Cortex-A9 and a Xilinx FPGA fabric on a single TSMC

28nm die.

We compiled our benchmarks using GCC 4.7.2 at its -O3 optimization level. We ran the bench-

marks directly on the bare metal processor.

40

Application Description Error Metric Topology Con�g. Size Error Amdahl

Speedup (×)

blackscholes option pricing mean error 6–20–1 6308 bits 7.83% > 100

fft radix-2 Cooley-Tukey FFT mean error 1–4–4–2 1615b 0.1% 3.92

inversek2j inverse kinematics for 2-joint arm mean error 2–8–2 882b 1.32% > 100

jmeint triangle intersection detection miss rate 18–32–8–2 15608b 20.47% 99.65

jpeg lossy image compression image di� 64–16–4 21264b 1.93% 2.23

kmeans k-means clustering image di� 6–8–4–1 3860b 2.55% 1.47

sobel edge detection image di� 9–8–1 3818b 8.57% 15.65

Table 2.2: Applications used in our evaluation. �e “NN Topology” column shows the number of

neurons in each MLP layer. �e “NN Con�g. Size” column re�ects the size of the synaptic weights

and microcode in bits. “Amdahl Speedup” is the hypothetical speedup for a system where the

SNNAP invocation is instantaneous.

Monitoring performance and power. To count CPU cycles, we use the event counters in the

ARM’s architectural performance monitoring unit and performance counters implemented in the

FPGA. �e ZYNQ ZC702 platform uses Texas Instruments UCD9240 power supply controllers,

which allow us to measure voltage and current on each of the board’s power planes. �is allows

us to track power usage for the di�erent sub-systems (e.g., CPU, FPGA, DRAM).

NPU con�guration. Our results re�ect a SNNAP con�guration with 8 PUs, each comprised of

8 PEs. �e design runs at 167 MHz, or 1/4 of the CPU’s 666MHz frequency. For each benchmark,

we con�gure all the PUs to execute the same neural network workload.

High-Level Synthesis infrastructure. We use Vivado HLS 2014.2 to generate hardware ker-

nels for each benchmark. We then integrate the kernels into SNNAP’s bus interface and program

the FPGA using Vivado Design Suite 2014.2.

41

Zynq SoC

Technology 28nm TSMC

Processing 2-core Cortex-A9

FPGA Artix-7

FPGA Capacity 53KLUTs, 106K Flip-Flops

Peak Freqs 667MHz A9, 167MHz FPGA

DRAM 1GB DDR3-533MHz

Cortex-A9

L1 Cache Size 32kB I$, 32kB D$

L2 Cache Size 512kB

Scratch-Pad 256kB SRAM

Interface Port AXI 64-bit ACP

Interface Latency 93 cycles roundtrip

NPU

Number of PUs 8

Number of PEs 8

Weight Memory 1024×16-bit

Sigmoid LUT 2048×16-bit

Accumulator FIFO 1024×48-bit

Sigmoid FIFO 1024×16-bit

DSP Unit 16×16-bit mul, 48-bit add

Table 2.3: Microarchitectural parameters for the Zynq platform, CPU, FPGA and NPU.

2.67

1.46

2.25

1.3

2.35

3.7810.84 38.12

0

1

2

3

4

bscholes
fft

inversek2j
 jmeint

jpeg
kmeans

 sobel
GEOMEAN

W
ho

le
 A

pp
lic

at
io

n
S

pe
ed

up

(a) Speedup

2.
17

1.
54

1.
06

0.
7

1.
65

1.
01

0.
87

0.
54

1.
77

1.
24

2.
77

1.
82

7.
75

4.
49

28
.0

1

20
.0

4
0

1

2

3

4

bscholes
fft

inversek2j
jmeint

jpeg
kmeans

sobel
GEOMEAN

E
ne

rg
y

S
av

in
gs

Power domain:

Zynq+DRAM
Core logic only

(b) Energy savings

Figure 2.1: Performance and energy bene�t of SNNAP acceleration over an all-CPU baseline exe-

cution of each benchmark.

2.5.2 Performance and Energy

�is section describes the performance and energy bene�ts of using SNNAP to accelerate our

benchmarks.

Performance. Figure 2.1a shows the whole application speedup when SNNAP is used to execute

each benchmark’s target region, while the rest of the application runs on the CPU, over an all-CPU

baseline.

�e average speedup is 3.78×. Among the benchmarks,inversek2j has the highest speedup

42

(38.12×) since the bulk of the application is o�oaded to SNNAP, and the target region of code in-

cludes trigonometric function calls that take over 1000 cycles to execute on the CPU and that a

small neural network can approximate. Conversely, kmeans sees only a 1.30× speedup, mostly

because the target region is small and runs e�ciently on a CPU, while the corresponding neural

network is relatively deep.

Energy. Figure 2.1b shows the energy savings for each benchmark over the same all-CPU base-

line. We show the savings for two di�erent energy measurements: (1) the SoC with its DRAM and

other peripherals, and (2) the core logic of the SoC. On average, neural acceleration with SNNAP

provides a 2.77× energy savings for the SoC and DRAM and a 1.82× savings for the core logic

alone.

�e Zynq+DRAM evaluation shows the power bene�t from using SNNAP on a chip that already

has an FPGA fabric. Both measurements include all the power supplies for the Zynq chip and its

associated DRAM and peripherals, including the FPGA. �e FPGA is le� uncon�gured for the

baseline.

�e core logic evaluation provides a conservative estimate of the potential bene�t to a mobile

SoC designer who is considering including an FPGA fabric in her design. We compare a base-

line consisting only of the CPU with the power of the CPU and FPGA combined. No DRAM or

peripherals are included.

On all power domains and for all benchmarks except jmeint and kmeans, neural acceler-

ation on SNNAP results in energy savings. In general, the more components we include in our

power measurements, the lower the relative power cost and the higher the energy savings from

neural acceleration. inversek2j, the benchmark with the highest speedup, also has the highest

energy savings. For jmeint and kmeans we observe a decrease in energy e�ciency in the core

logic measurement; for kmeans, we also see a decrease in the Zynq+DRAM measurement. While

the CPU saves power by sleeping while SNNAP executes, the accelerator incurs more power than

this saves, so a large speedup is necessary to yield energy savings.

43

1
1.

69
2.

58
3.

46
1

1.
24 1.

42
1.

5
1

1.
68

2.
22

2.
7

1
1.

76
2.

79
3.

88
1

1.
21 1.
36

1.
38

1
1.

57
2.

16 2.
57

1
1.

55
2.

13 2.
4

1
1.

52
2.

03 2.
4

0

1

2

3

4

5

bscholes
fft

inversek2j
jmeint

jpeg
kmeans

sobel
GEOMEAN

W
ho

le
 A

pp
lic

at
io

n
S

pe
ed

up Number of PUs:

1
2

4
8

Figure 2.2: Performance of neural acceleration as the number of PUs increase.

2.5.3 Characterization

�is section supplements our main energy and performance results with secondary measurements

to the primary results in context and justify our design decisions.

Impact of parallelism. Figure 2.2 shows the performance impact of SNNAP’s parallel design

by varying the number of PUs. On average, increasing from 1 PU to 2 PUs, 4 PUs, and 8 PUs im-

proves performance by 1.52×, 2.03×, and 2.40× respectively. �e sobel, kmeans and jmeint

benchmarks require at least 2, 4, and 8 PUs respectively to see any speedup.

Higher PU counts lead to higher power consumption, but the cost can be o�set by the per-

formance gain. �e best energy e�ciency occurs at 8 PUs for most benchmarks. �e exceptions

are jpeg and fft, where the best energy savings are with 4 PUs. �ese benchmarks have a

relatively low “Amdahl speedup limit” , so they see diminishing returns from parallelism.

Impact of batching. Figure 2.3 compares the performance of batched SNNAP invocations, sin-

gle invocations, and zero-latency invocations - an estimate of the speedup if there were no com-

munication latency between the CPU and the accelerator.

With two exceptions, non-batched invocations lead to a slowdown due to communication la-

44

0.
42

0.
95 1

0.
23

0.
89 1

0.
63

0.
97

1

0.
75

0.
92 1

0.
33

0.
94 1

0.
31

0.
96 1

0.
41

0.
94 1

0.0

0.4

0.8

1.2

1.6

fft
inversek2j

jmeint
jpeg

kmeans
sobel

GEOMEAN

N
or

m
al

iz
ed

 S
pe

ed
up

Measurement/Estimate:

Single invocation
Batch invocation

Zero−latency limit

Figure 2.3: Impact of batching on speedup.

tency. Only inversek2j and jpeg see a speedup since their target regions are large enough

to outweigh the communication latency. Comparing with the zero-latency estimate, we �nd that

batch invocations are e�ective at hiding this latency. Our 32-invocation batch size is within 11%

of the zero-latency ideal.

Optimal PE count. Our primary SNNAP con�guration uses 8 PEs per PU. A larger PE count

can decrease invocation latency but can also have lower utilization, so there is a trade-o� between

fewer, larger PUs or more, smaller PUs given the same overall budget of PEs. In Figure 2.5a, we

examine this trade-o� space by sweeping con�gurations with a �xed number of PEs. �e NPU

con�gurations range from 1 PU consisting of 16 PEs (1× 16) through 16 PUs each consisting of a

single PE (16×1). �e 16×1 arrangement o�ers the best throughput. However, resource utilization

is not constant: each PU has control logic and memory overhead. �e 16× 1 NPU uses more than

half of the FPGA’s LUT resources, whereas the 2× 8 NPU uses less than 4% of all FPGA resources.

Normalizing throughput by resource usage (Figure 2.5b) indicates that the 2 × 8 con�guration is

optimal.

45

0.0

2.5

5.0

7.5

10.0

1 2 4 8 16
Number of PEs

U
til

iz
at

io
n

(%
)

Resource

 slice_reg
 slice_lut
 dsp48e1
 ramb

Figure 2.4: Resource Utilization for a 1-PU NPU containing 1 to 16 PEs.

2.5.4 Design Statistics

FPGA utilization. Figure 2.5d shows the FPGA fabric’s resource utilization for varying PU

counts. A single PU uses less than 4% of the FPGA resources. �e most utilized resources are

the slice LUTs at 3.92% utilization and the DSP units at 3.64%. With 2, 4, 8, and 16 PUs, the design

uses less than 8%, 15% 30% and 59% of the FPGA resources respectively and the limiting resource

is the DSP slices. �e approximately linear scaling re�ects SNNAP’s balanced design.

Memory Bandwidth. Although the Zynq FPGA can accommodate 16 PUs, the current ACP

interface design does not satisfy the bandwidth requirements imposed by compute-resource scal-

ing for benchmarks with high bandwidth requirements (e.g. jpeg). �is limitation is imposed

by the ACP port used to access the CPU’s cache hierarchy. During early design exploration, we

considered accessing memory via higher-throughput non-coherent memory ports, but concluded

experimentally that at a �ne o�oad granularity, the frequent cache �ushes were hurting perfor-

mance. As a result, we evaluate SNNAP at 8-PUs to avoid being memory bound by the ACP port.

We leave interface optimizations and data compression schemes that could increase e�ective mem-

ory bandwidth as future work.

Output quality. We measure SNNAP’s e�ect on output quality using application-speci�c error

metrics, as is standard in the approximate computing literature [124, 49, 50, 132]. Table 2.2 lists

46

0

25

50

75

100

1x16 2x8 4x4 8x2 16x1
PU x PE config for 16 DSPs

U
til

iz
at

io
n

(%
)

Resource

Registers
LUTs

DSPs
SRAMs

(a) Static resource utilization for multiple con�gurations of 16 DSP units.

0.00
0.05
0.10
0.15
0.20
0.25

1x16 2x8 4x4 8x2 16x1
PU x PE config for 16 DSPs

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

(b) Peak throughput on jmeint normalized to most-limited FPGA resource for each con�guration.

0.0

2.5

5.0

7.5

10.0

1 2 4 8 16
Number of PEs

U
til

iz
at

io
n

(%
)

Resource

 slice_reg
 slice_lut
 dsp48e1
 ramb

(c) Resource utilization as number of PEs increase in a single PU.

DSPs SRAMs LUTs Registers

●●
●

●

●

●● ●
●

●

●●
●

●

●

●● ●
●

●25

50

75

100

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
Number of 8−PE PUs

U
til

iz
at

io
n

(%
)

(d) Resource utilization as number of PUs increase, each PU consisting of 8-PEs.

Figure 2.5: Exploration of SNNAP static resource utilization.

47

Logic Utilization Used Available Util

Occupied Slices 625 13300 4%

Slice Registers 2055 106400 2%

Slice LUTs 1650 53200 3%

RAMB18E1 13 280 4%

RAMB36E1 4 140 2%

DSP48E1 8 220 3%

Table 2.1: Post-place-and-route FPGA utilization.

the error metrics.

We observe less than 10% application output error for all benchmarks exceptjmeint. jmeint

had high error due to complicated control �ow within the acceleration region, but we include this

benchmark to fairly demonstrate the applicability of neural acceleration. Among the remaining

applications, the highest output error occurs in sobel with 8.57% mean absolute pixel error with

respect to a precise execution. To put this error in context, Figure 2.6 shows the output from the

original and SNNAP-accelerated executions of the benchmark. �alitatively, the program still

produces reasonable results.

2.5.5 HLS Comparison Study

We compare neural acceleration with SNNAP against Vivado HLS [157]. For each benchmark,

we a�empt to compile using Vivado HLS the same target regions used inneural acceleration. We

synthesize a precise specialized hardware datapath and integrate it with the same CPU–FPGA

interface we developed for SNNAP and contrast whole-application speedup, resource-normalized

throughput, FPGA utilization, and programmer e�ort.

Speedup. Table 2.2 shows statistics for each kernel we synthesized with Vivado HLS. �e ker-

nels close timing between 66 MHz and 167 MHz (SNNAP runs at 167 MHz). We compare the

48

(a) Precise Output (b) Approximate Output

Figure 2.6: Output of sobel for a 220x220 pixel image.

performance of the HLS-generated hardware kernels against SNNAP.

Figure 2.7a shows the whole-application speedup for HLS and SNNAP. �e NPU outperforms

HLS on all benchmarks, yielding a 3.78× average speedup compared to 2× for HLS. �e jmeint

benchmark provides an example of a kernel that is not a good candidate for HLS tools; its dense

control �ow leads to highly variable evaluation latency in hardware, and the HLS tool was unable

to pipeline the design. Similarly, jpeg performs poorly using HLS due to DSP resource limitations

on the FPGA. Again, the HLS tool was unable to pipeline the design, resulting in a kernel with long

evaluation latency. HLS nearly matches SNNAP’s speedup on blackscholes and fft as it is

able to generate fully pipelined, low latency kernels for each.

Resource-normalized kernel throughput. To assess the area e�ciency of SNNAP and HLS,

we isolate FPGA execution from the rest of the application. We compute the theoretical throughput

(evaluations per second) by combining the pipeline initiation interval (cycles per evaluation) from

functional simulation and the fmax (cycles/second) from post-place-and-route timing analysis. We

obtain post-place-and-route resource utilization by identifying the most-used resource in each

design. �e resource-normalized throughput is the ratio of these two metrics.

Figure 2.8 compares the resource-normalized throughput for SNNAP and HLS-generated hard-

ware kernels. Neural acceleration does be�er than HLS for blackscholes, inversek2j,

jmeint andjpeg. In particular, while HLS provides be�er absolute throughput forblacksc-

49

Application E�ort Clock Pipelined Util.

blackscholes 3 days 148 MHz yes 37%

fft 2 days 166 MHz yes 10%

inversek2j 15 days 148 MHz yes 32%

jmeint 5 days 66 MHz no 39%

jpeg 5 days 133 MHz no 21%

kmeans 2 days 166 MHz yes 3%

sobel 3 days 148 MHz yes 5%

Table 2.2: HLS-kernel speci�cs per benchmark: required engineering time (working days) to ac-

celerate each benchmark in hardware using HLS, kernel clock, whether the design was pipelined,

most-utilized FPGA resource utilization.

holes and inversek2j, the kernels also use an order of magnitude more resources than a sin-

gle SNNAP PU. kmeans and sobel have e�cient HLS implementations with utilization roughly

equal to one SNNAP PU, resulting in 2–5× greater throughput.

Programming experience. “C-to-gates” tools are promoted for their ability to hide the com-

plexity of hardware design. With our benchmarks, however, we found hardware expertise to be

essential for ge�ing good results using HLS tools. Every benchmark required hardware experi-

ence to verify the correctness of the resulting design and extensive C-code tuning to meet the

tool’s requirements.

Table 2.2 lists the number of working days required for a student to produce running hardware

for each benchmark using HLS. �e student is a Masters researcher with Verilog and hardware

design background but not prior HLS experience. Two months of work was needed for familiar-

ization with the HLS tool and the design of a kernel wrapper to interact with SNNAP’s custom

memory interface. A�er this initial cost, compiling each benchmark took between 2 and 15 days.

blackscholes, fft, kmeans, and sobel all consist of relatively simple code, and each

took only a few days to generate fast kernels running on hardware. �e majority of the e�ort was

50

2.
45 2.

67

0.
3

1.
46

0.
75

2.
25

0.
98 1.

3 1.
64

2.
35

2

3.
78

9.
64

10
.8

4

14
.8

2

38
.1

2

0

1

2

3

4

5

bscholes
fft

inversek2j
jmeint

jpeg
kmeans

sobel
GEOMEAN

W
ho

le
 A

pp
lic

at
io

n
S

pe
ed

up

Accelerator:

HLS
SNNAP

(a) Single HLS kernel and 8-PU NPU whole-

application speedups over CPU-only execution base-

line.
5 5

2.
25

2.
17

5 5

0.
28

1.
06

0.
74

1.
65

0.
87

0.
87

1.
5 1.

77

1.
8

2.
77

8.
08

7.
75

12
.3

7

28
.0

1

0

1

2

3

4

5

bscholes
fft

inversek2j
jmeint

jpeg
kmeans

sobel
GEOMEAN

E
ne

rg
y

S
av

in
gs

Accelerator:

HLS
SNNAP

(b) Energy savings of single HLS kernel and 8-

PU NPU over CPU-only baseline for Zynq+DRAM

power domain.

Figure 2.7: Performance and energy comparisons of HLS and SNNAP acceleration.

spent tweaking HLS compiler directives to improve pipeline e�ciency and resource utilization.

Accelerating jmeint was more involved and required 5 days of e�ort, largely spent a�empting

(unsuccessfully) to pipeline the design. jpeg also took 5 days to compile, which was primarily

spent rewriting the kernel’s C code to make it amenable to HLS by eliminating globals, precomput-

ing lookup tables, and manually unrolling some loops. Finally, inversek2j required 15 days

of e�ort. �e benchmark used the arc-sine and arc-cosine trigonometric functions, which are not

supported by the HLS tools, and required rewriting the benchmark using mathematical identities

with the supported arc-tangent function. �e la�er exposed a bug in the HLS work�ow that was

eventually resolved by upgrading to a newer version of the Vivado tools.

In an ideal world, using “C-to-gates” HLS tools would be as simple as using a traditional C

compiler—no RTL programming experience required. �e reality is di�erent. For our benchmark

suite, we found hardware expertise to be essential for troubleshooting the resulting design and

to achieve good performance. Every benchmark required extensive tuning of C-code to meet the

tool’s requirements.

Table 2.2 lists the number of working days taken by a student to get each benchmark running

on hardware using HLS. �e student in question is an Masters researcher with no prior expe-

51

1.
08

0.
67

3.
61

4.
2

3.
01

2.
33

0.
34

0.
04

0.
36

0.
01

2.
46

4.
2

1.
87

3.
66

1.
31

0.
81

8.
7

12
.7

9

0

1

2

3

4

bscholes
fft

inversek2j
jmeint

jpeg
kmeans

sobel
GEOMEAN

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Accel:

HLS
SNNAP

Figure 2.8: Resource-normalized throughput of the NPU and HLS accelerators.

rience in HLS, but some Verilog background. It took over two months to get familiarized with

the tool �ow and design the kernel wrapper to interact with a memory interface. A�er this ini-

tial cost, each benchmark took between 2 days and 3 weeks. Four benchmarks—kmeans, fft,

blackscholes, and sobel—consist of relatively simple code: it took less than a week to get

fast kernels from these benchmarks running on hardware. �is e�ort was spent on tweaking com-

piler directives to get more e�cient pipelining and resource utilization. Acceleratingjmeintwas

more involved and required a full week of e�ort, and even then the design could not be success-

fully pipelined. jpeg also took a full week, which was primarily spent rewriting the kernel’s C

code to make it amenable to HLS by eliminating globals, precomputing some tables, and unrolling

loops. Finally, inversek2j required three weeks of e�ort. �e benchmark used the arc-cosine

and arc-sine trigonometric functions, which are not supported by the HLS tools, so we rewrote

the benchmark using mathematical identities to simplify the code. �e (supported) arc-tangent

function exposed a bug in the HLS work�ow that was, in the end, solved by upgrading to a newer

version of the Vivado suite.

Discussion. While HLS o�ers a route to FPGA use without approximation, it is far from �awless:

signi�cant programmer e�ort and hardware-design expertise is still o�en required. In contrast,

SNNAP acceleration uses a single FPGA con�guration and requires no hardware knowledge. Un-

like HLS approaches, which place restrictions on the kind of C code that can be synthesized, neural

52

acceleration treats the code as a black box: the internal complexity of the legacy so�ware imple-

mentation is irrelevant. SNNAP’s FPGA recon�guration-free approach also avoids the overhead

of programming the underlying FPGA fabric, instead using a small amount of con�guration data

that can be quickly loaded in to accelerate di�erent applications. �ese advantages make neural

acceleration with SNNAP a viable alternative to traditional C-to-gates approaches.

2.6 Related Work

Our design builds on related work in the broad areas of approximate computing, acceleration, and

neural networks.

Approximate computing. A wide variety of applications can be considered approximate: oc-

casional errors during execution do not obstruct the usefulness of theprogram’s output. Recent

work has proposed to exploit this inherent resiliency to trade o� output quality to improve perfor-

mance or energy consumption using so�ware [12, 132, 10, 94, 95, 65] or hardware [44, 88, 49, 84,

103, 25, 50, 124, 58] techniques. SNNAP represents the �rst work (to our knowledge) to exploit this

trade-o� using tightly integrated on-chip programmable logic to realize these bene�ts in the near

term. FPGA-based acceleration using SNNAP o�ers e�ciency bene�ts that complement so�ware

approximation, which is limited by the overheads of general-purpose CPU execution, and custom

approximate hardware, which cannot be realized on today’s chips.

Neural networks as accelerators. Previous work has recognized the potential for hardware

neural networks to act as accelerators for approximate programs, either with automatic compila-

tion [50, 138] or direct manual con�guration [30, 143, 14]. �is work has typically assumed special-

purpose neural-network hardware; SNNAP represents an opportunity to realize these bene�ts on

commercially available hardware. Recent work has proposed combining neural transformation

with GPU acceleration to unlock order-of-magnitude speedups by elimiating control �ow diver-

gence in SIMD applications [59, 58]. �is direction holds a lot of promise in applications where

a large amount of parallelism is available. Until GPUs become more tightly integrated with the

processor core, their applicability remains limited in applications where the invocation latency

is critical (i.e. small code o�oad regions). Additionally the power envelope of GPUs has been

53

traditionally high. Our work targets low power accelerators and o�ers higher applicability by

o�oading computation at a �ner granularity than GPUs.

Hardware support for neural networks. �ere is an extensive body of work on hardware im-

plementation of neural networks both in digital [110, 48, 163, 31, 38, 18] and analog [20, 128, 141, 70]

domains. Other work has examined fault-tolerant hardware neural networks [63, 143]. �ere is

also signi�cant prior e�ort on FPGA implementations of neural networks ([163] contains a compre-

hensive survey). Our contribution is a design that enables automatic acceleration of approximate

so�ware without engaging programmers in hardware design.

FPGAs as accelerators. �is work also relates to work on synthesizing designs for recon�g-

urable computing fabrics to accelerate traditional imperative code [112, 116, 36, 51]. Our work

leverages FPGAs by mapping diverse code regions to neural networks via neural transformation

and accelerating those code regions onto a �xed hardware design. By using neural networks as a

layer of abstraction, we avoid the complexities of hardware synthesis and the overheads of FPGA

compilation and recon�guration. Existing commercial compilers provide means to accelerate gen-

eral purpose programs [157, 6] with FPGAs but can require varying degrees of hardware expertise.

Our work presents a programmer-friendly alternative to using traditional “C-to-gates” high-level

synthesis tools by exploiting applications’ tolerance to approximation.

2.7 Conclusion

SNNAP enables the use of programmable logic to accelerate approximate programs without re-

quiring hardware design. Its high-throughput systolic neural network mimics the execution of

existing imperative code. We implemented SNNAP on the Zynq system-on-chip, a commercially

available part that pairs CPU cores with programmable logic and demonstrate 3.8× speedup and

2.8× energy savings on average over so�ware execution. �e design demonstrates that approx-

imate computing techniques can enable e�ective use of programmable logic for general-purpose

acceleration while avoiding custom logic design, complex high-level synthesis, or frequent FPGA

recon�guration.

54

CHAPTER APPENDIX

2.A SNNAC: An Error-Tolerant Low-Voltage SRAM Neural Network Accelerator ASIC

Results and�gures borrowed from : Sung Kim, Patrick Howe, �ierry Moreau, Armin Alaghi,

Luis Ceze and Visvesh Sathe, MATIC: Learning Around Errors for E�cient Low-Voltage Neural Net-

work Accelerators, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018.

While the main application for SNNAP was to approximately o�oad compute intensive re-

gions of code to a �exible FPGA acceleration fabric, the design of the SNNAP architecture can be

applied to more general deep learning applications, speci�cally fully-connected deep neural net-

works (DNNs). We present one ASIC design based on SNNAP that was used to explore SRAM

approximation knobs in the context of deep learning inference. SNNAC (Systolic Neural Network

ASIC) is an error-tolerant low-voltage ASIC implementation of the SNNAP accelerator design cou-

pled with an MSP-430. It is aimed at o�oading fully connected neural networks inference and

neurally-approximated so�ware kernels [78].

2.A.1 SNNAC Motivation

State of the art DNNs can have millions or billions of learnable weights, implying that judiciously

managing data movement and data storage is critical in minimizing energy consumption. Chen

et al. [33] noted that maximizing data reuse on chip is critical to achieving e�cient inference.

Follow up work on convolutional neural networks [45] showed that maximizing weight reuse on

SRAM made edge-inference for vision applications possible. Other ASIC proposals have explored

compression-based approaches to store the weights of ever growing deep neural networks [62].

Figure 2.A.1 shows how much power is dedicated to storing weights on chip in state of the art

deep learning ASIC designs [31, 33, 45, 62].

55

DianNao
[1]

PuDianNao
[39]

DaDianNao
[40]

EIE
[3]

VGG
[17]

AlexNet
[7]

LeNet
[16]

Frac�on of Total Power A�ributed to Weight Storage Frac�on of Total Weights in Fully-Connected Layers

Figure 2.A.1: (le�) �e fraction of total power dissipated by weight storage SRAMs, and (right)

the fraction of total SRAM used to store fully-connected weights. On-chip weight storage accounts

for a signi�cant fraction of the total power dissipation in state-of-the-art DNN accelerators. Even

for Conv-DNNs such as AlexNet, weight storage is dominated by fully-connected layers.

2.A.2 SNNAC Overview

SNNAC was designed to overcome the challenge of the ever-growing cost of storing DNN weights

in on-chip SRAMs. �e key idea behind SNNAC was to expose voltage scaling knobs to minimize

static and dynamic power dissipation in SRAM. However, as the voltage gets lowered, so does the

chance of encountering a read upset or a write error increase. �e key in being able to leverage

voltage under-scaled SRAMs in SNNAC is to exploit (1) proactive error mitigation strategies that

consist of learning weights around statically pro�led errors, and (2) reactive error detection mech-

anisms that use dummy logic circuits (i.e. canaries) to identify imminent failures. �e details of

the error tolerant approach, referred to as MATIC by Kim et al. is described in much detail in [78].

Figure 2.A.2 summarizes MATIC’s key principles: SRAM cells are operated at voltages that will

lead to high rates of bit-level errors, but uses adaptive training approaches to minimizes the e�ect

of those physical errors on the execution of the high-level algorithm.

2.A.3 SNNAC ASIC Implementation

To demonstrate the e�ectiveness of MATIC on real hardware, SNNAC was implemented in 65

nm CMOS technology (Figure 2.A.4). �e SNNAC core consists of a fully-programmable Neu-

56

VDD

SRAM Bit
Errors

Algo.
 Error

(First failure)

MATIC

Conven�onal

Naive H.W.

VDD

Margin

MATIC

Overscale

(First failure)

Figure 2.A.2: (le�) MATIC [78] increases energy-e�ciency by aggressively scaling supply voltages

of on-chip weight SRAMs. (right) Compared to hardware paired with conventionally-trained neu-

ral network models, MATIC leverages an adaptive training process to recover from errors caused

by voltage overscaling.

NPU
A

FU
IMEM

FIFO

Memory Arbiter

OpenMSP430

Shared
DMEM

GPIO & Serial

SRAM SRAM SRAM

+SRAM

SRAM

+
AFU

LUT

+

AFU_OUT
AFU_OUT

DMEM_OUT

ACCUM
ACCUM

...

PE Systolic Array

FIFO

...

Control

Weight

SRAM

PE 0

MAC

Weight

SRAM

PE 7

MAC

Figure 2.A.3: Architecture of the SNNAC DNN accelerator. �e SNNAP design is tightly integrated

with an OpenMSP430 micro-controller.

ral Processing Unit (NPU) based on the SNNAP design [102]. �e NPU contains eight multiply-

accumulate (MAC)-based Processing Elements (PEs) which are arranged in a 1D systolic ring that

maintains high compute utilization during inner-product operations. Energy-e�cient arithmetic

in the PEs is achieved with 8-22 bit �xed-point operands, and each PE includes a dedicated voltage-

scalable SRAM bank to enable on-chip storage of all synaptic weights. �e systolic ring is a�ached

to an activation function unit (AFU), which minimizes energy and area footprint with piecewise-

linear approximation of activation functions (e.g., sigmoid or ReLU).

�e operation of the PEs is coordinated by a lightweight control core that executes statically

57

Technology TSMC GP 65 nm

Core Area 1.15×1.2 mm

SRAM 9 KB

Weight Prec. 8-bit

Activation Prec. 22-bit

Voltage 0.9 V

Frequency 250 MHz

Power 16.8 mW

Energy 67.1 pJ/cycle

Figure 2.A.4: (a) Microphoto of a fabricated SNNAC test chip, and (b) summary of test chip char-

acteristics. �e baseline voltage, power, frequency, and energy e�ciency are reported.

compiled microcode. To achieve programmability and support for a wide range of layer con�gu-

rations, the computation of wide DNN layers is time-multiplexed onto the PEs in a systolic ring.

When the layer width exceeds the number of physical PEs, PE results are bu�ered to an accu-

mulator that computes the sum of all atomic MAC operations in the layer. SNNAC also includes

a sleep-enabled OpenMSP430-based microcontroller (µC) to handle runtime control, debugging

functions, and o�-chip communication with a UART serial interface. To minimize data movement,

NPU input and output data bu�ers are memory-mapped directly to the µC data-memory address

space.

2.A.4 SNNAC Results Summary

�e combination of an e�cient ASIC design, coupled with memory supply-voltage voltage over-

scaling, and error correction mechanism to minimize the e�ect of bit-level errors on application

error leads to highly e�cient neural network inference. As demonstrated on SNNAC, MATIC[78]

reports 3.3× total energy reduction, and 5.1× energy reduction in SRAM, or 18.6x reduction in

application error. �is indicates that SNNAC, when used with error compensation techniques can

achieve graceful quality degradation as errors appear. By taking advantage of application speci-

58

�city (e.g. deep learning’s ability to learn around errors), a thoughtfully cra�ed application stack

can elegantly mitigate errors as they manifest in physical layer (e.g. SRAM bit-level errors).

59

Chapter 3

QAPPA: QUALITY AUTOTUNER FOR PRECISION PROGRAMMABLE
HARDWARE ACCELERATORS

“Our treatment of this science will be adequate, if it achieves the amount of precision

which belongs to its subject ma�er.”

– Aristotle, Nicomachean Ethics, 7.

Published As: �ierry Moreau, Felipe Augusto, Patrick Howe, Armin Alaghi and Luis Ceze, Ex-

ploiting�ality-Energy Tradeo�swith Arbitrary�antization, Proceedings of the Twel�h IEEE/ACM/I-

FIP International Conference on Hardware/So�ware Codesign and System Synthesis (CODES+ISSS),

2017.

Abstract �antization naturally exposes knobs in hardware to trade �delity for e�ciency: the more

bits that are used to represent the data, the higher the storage and computation overheads. With the

emergence of approximate computing research, we set out to answer the following question: how e�ec-

tive is quantization in trading quality for e�ciency, and how does it compare to other approximation

techniques? �is chapter makes the case for quantization as a general approximation technique that

exposes quality vs. energy tradeo�s and provides practical error guarantees. We assume arbitrary

quantization levels, and focus on the hardware subsystems that are a�ected by quantization: memory

and computation. We present QAPPA (�ality Autotuner for Precision Programmable Accelerators),

an autotuner for C/C++ programs that automatically tunes the precision of each arithmetic and mem-

ory operation to meet user de�ned application level quality guarantees. QAPPA integrates energy

models of quantization scaling mechanisms to produce bandwidth and energy savings estimates for

custom accelerator designs. We use the analysis produced by QAPPA to compare the e�ectiveness of

arbitrary quantization against voltage overscaling and neural approximation. Our analysis shows

that when using the right quantization scaling mechanisms in hardware, quantization provides sig-

ni�cant energy e�ciency bene�ts over voltage overscaling and comparable energy e�ciency gains

60

over neural approximation. Additionally, quantization o�ers more predictable error degradation and

fully tunable error bounds.

3.1 Introduction

Energy e�ciency is a �rst-class concern in data centers, embedded systems and sensory nodes. To

improve energy e�ciency, numerous cross-stack techniques have been proposed to bring hard-

ware and so�ware systems closer to their quality-energy Pareto-optimal design point. Navigating

quality-energy tradeo�s is fundamental to digital systems design, and o�en starts with data rep-

resentation, i.e. how to map a set of real values to a compact and �nite digital representation. �is

process is called quantization, and is essential in keeping computation tractable in digital systems.

�antization o�ers a natural way to trade quality for energy e�ciency by tweaking the number

of bits needed to represent data. Using more bits leads to higher �delity, but also larger compute,

data movement and memory overheads.

�is chapter argues towards adopting arbitrary quantization as a general approximation tech-

nique for its e�ectiveness in delivering smooth quality-energy tradeo�s, and practical error guar-

antees. �antization is o�en overlooked as an e�ective way to improve quality-energy optimality

due to the limited quantization levels available in hardware (e.g. single and double precision �oat-

ing point), and the large control overheads found in general purpose processors. �is chapter by-

passes those limitations by assuming arbitrary quantization, i.e. bit-granular precision tunability,

and by targeting hardware accelerators where control overheads are minimal.

We introduce QAPPA (�ality Autotuner for Precision Programmable Accelerators), a pre-

cision auto-tuner for C and C++ programs that �nds bit-granular quantization requirements for

each program instruction while meeting user-de�ned application-level quality guarantees. QAPPA

leverages ACCEPT [123] in order to guarantee isolation of approximation e�ects based on lightweight

user annotations. We survey a set of hardware precision scaling techniques and evaluate their abil-

ity to improve quality-energy optimality using detailed RTL models. We feed those hardware mod-

els into QAPPA to identify energy savings opportunities that arise from adopting precision scaling

techniques in hardware accelerator designs. QAPPA isolates arithmetic energy savings and mem-

ory bandwidth savings, preserving the orthogonality between savings due to specialization and

savings due to approximation in hardware accelerators.

61

Autotuner
[2.3]

Annotated
C/C++

Program

Quality
Guarantee

& Test Inputs

ACCEPT
static analysis

[2.1]

Instruction
Quantization

Settings

Precision
Relaxation

[2.2]

Quantized
Program
Binary

Quality
Assessment

[2.2]

QoR Test
[2.4]

Best
Quantization

Settings

Quality
& Bit Savings
Assessment

N: return best config

Y: update config

Energy
Modeling
Toolbox

(Section 5)

Sa
vin

gs

0

2.5

5

7.5

10

10% 1% 0.1%

Energy Savings

Figure 3.1: QAPPA Autotuner System Architecture.

We analyze the PERFECT benchmark suite [13] with QAPPA to unveil signi�cant precision

reduction opportunities; about 74%, 57%, and 48% of total precision bits can be dropped to achieve

10%, 1%, and 0.1% average relative error. Respectively, we suggest hardware precision-scaling

mechanisms for hardware accelerators that provide 7.7×, 4.8×, and 3.6× energy reduction in arith-

metic units, and 4.4×, 3.3×, and 2.8× memory bandwidth reduction.

Finally, we argue that arbitrary quantization compares favorably against other approximation

techniques in terms of quality-energy optimality and error guarantees. Our comparative study

of approximation techniques includes a SPICE-level characterization of voltage scaling-induced

faults, and an analytical evaluation of neural acceleration in terms of hardware resource utilization.

Our evaluation reveals that arbitrary quantization outperforms voltage overscaling in terms of

quality-energy optimality, and provides performance that is on par with neural acceleration.

3.2 QAPPA: A�antization Autotuner

QAPPA is a precision autotuning framework built using ACCEPT [123], the LLVM-based approxi-

mate compiler for C and C++ programs. In a nutshell, QAPPA takes an annotated C/C++ program

and user-speci�ed, high-level quality guarantees to greedily derive quantization requirements for

each program instruction. We discuss the design and implementation of QAPPA as illustrated in

Figure 3.1. Section 3.2.1 describes the annotation model used by QAPPA to identify instructions

that are safe to approximate and guarantee program safety. Section 3.2.2 describes how QAPPA in-

struments programs to quantify quality loss that results from arbitrary quantization. Section 3.2.3

62

describes the autotuner search algorithm and how it is used to �nd quantization requirements.

Section 3.2.4 describes the quality guarantees that QAPPA provides. �e energy modeling tool-

box is later discussed in Section 3.4, where we evaluate di�erent hardware techniques that enable

energy scaling.

3.2.1 Annotation Model and Static Analysis

QAPPA leverages ACCEPT [123] to provide type-safety and error isolation guarantees. �ese

isolation guarantees are essential to prevent crashes or catastrophic errors from occurring. QAPPA

utilizes the APPROX type quali�ers for approximate data used by ACCEPT. By default, all program

variables are assumed to be precise, so approximations have to be speci�ed as an opt-in property.

Consequently, it is the programmer’s responsibility to annotate what variables hold data that is safe

to approximate. �e compiler then uses �ow analysis to infer which instructions are approximable

from data annotations.

Figure 3.1 shows how one would annotate a simple convolution kernel. Intuitively, data types

such as pixels and �lter coe�cients can be relaxed, but integer variables that are used to index ar-

rays should remain precise to avoid out-of-array writes. In the convolution example, the compiler

infers that the instructions that perform convolution are safe to approximate (instructions from

l.9 and l.10). In addition, it identi�es that the loads from the image source and the stores to

the image destination are also safe to approximate. �ese approximable instructions will later be

used by the autotuner as knobs to minimize precision in the target program.

3.2.2 Assessing �antization E�ects

�e QAPPA autotuner relies on a trial-and-error approach to �nd locally optimal quantization

se�ings that satisfy user-de�ned accuracy metrics. In order to properly assess quantization e�ects

on a given program execution, QAPPA statically instruments the target program with code that

applies arbitrary quantization to individual arithmetic and memory instructions. �is can be done

in LLVM by replacing all uses of a given static single assignment (SSA) register with its quantized

counterpart. In order to perform �oating point to �xed point conversion, QAPPA performs an

initial dynamic pro�ling step on the target program by measuring the value range of each variable.

63

�e degree of quantization and the rounding policy (i.e. up, down, towards zero, away from

zero, nearest) are de�ned for each static instruction in a quantization se�ings �le. �e quantization

se�ings dictate how QAPPA applies varying levels of quantization to each instruction in the target

program. �e instrumented program gets compiled by QAPPA to produce an approximate binary.

�e approximate binary can then be executed on user-provided input datasets to produce output

data on which to quantitatively assess quality degradation with user-de�ned quality metrics.

3.2.3 Autotuner Design

�e goal of the autotuner is to maximize quantization while satisfying user-speci�ed quality re-

quirements.

0: void conv2d (APPROX pix *in, APPROX pix *out, APPROX flt *filter)
1: for (row)
2: for (col)
3: APPROX flt sum = 0
4: int dstPos = …
5: for (row_offset)
6: for (col_offset)
7: int srcPos = …
8: int fltPos = …
9: sum += in[srcPos] * filter[fltPos]
10: out[dstPos] = sum / normFactor

Figure 3.1: Program annotation with APPROX type quali�er. Variables that are safe to approxi-

mated are annotated by the user. �e compiler then infers the program instructions that can be

approximated.

Bit Savings We de�ne bit savings as a hardware-agnostic metric that quanti�es how much total

precision can be trimmed-o� in a program over its execution. QAPPA a�empts to maximize bit

savings while keeping application accuracy within user-speci�ed margins.

Bit savings are calculated with the following formula:

BitSavings =
N∑
i=1

(ri − qi)
ri

× ei∑N
j=1 ej

64

where ri and qi denote the precision in bits of the reference, and quantized instruction i, ei denotes

the number of times instruction i executes, and N denotes the total approximable instructions in

the target program. For instance, if a program executes only one single precision �oating point

instruction, and that QAPPA quantizes that instruction down to 6 bits, the total bit savings will be
32−6
32 ×

1
1 = 81.25%.

Autotuner Search Algorithm �e challenge in the design of an arbitrary quantization auto-

tuner lies in the exponentially large problem search space. Let us consider a program containing

m static instructions, where each instruction can be tuned to n di�erent precision levels. In order

to �nd a globally optimal con�guration that maximizes bit savings, the autotuner needs to traverse

an exponential search space with nm possible quantization se�ings, each with di�erent tradeo�s

between quality and bit savings. Instead of resorting to a brute-force search to �nd the optimal

con�guration, we use a greedy search which �nds a local optimum in O(m2 ∗ n) worst-case time

by selecting the path of least quality degradation.

�e greedy iterative search algorithm is similar to the approach proposed in Precimonious [120]

which uses a trial and error tuning approach to selecting the precision of �oating point data. At

each step of the search, the QAPPA autotuner identi�es the instruction that a�ects output the

least, and relaxes its precision by a single bit. �e autotuner repeats the process until it �nally

reaches a point where decreasing the precision of any instruction violates user-de�ned quality

requirements. We discuss the di�erent quality tests that can be used to guide this search process in

Section 3.2.4. Finally, the autotuner reports locally-optimal instruction quantization se�ings along

with bit savings estimates. �ose quantization se�ings can then be fed into an energy modeling

toolbox, which we discuss later in Section 3.4.

Autotuner Complexity �e autotuner greedy-search can be improved with runtime optimiza-

tions including search parallelization, stochastic search, the delta-debugging algorithm [120]. �e

autotuner can parallelize each stage of its iterative search, acrossmmachines wherem is the num-

ber of safe to approximate instructions in a given program. We found that in kernels we analyzed,

m is relatively small (¡200), which makes it possible to run the analysis on a cluster, allowing the

search algorithm to run in O(m ∗n) worst-case time on m nodes. If one were to run the autotuner

65

on a single node, the autotuner could be extended to make use of the delta-debugging algorithm,

which �nds an optimal solution in O(n ∗m ∗ logm) average times. A �nal trick to improve run-

time of the autotuner is to use logarithmic precision increments instead of using 1-bit increments

at each stage of the autotuning search. �is improves average runtime of the parallel autotuner to

O(m ∗ log n) and the serial delta-debugging autotuner to O(m ∗ logm ∗ log n).

3.2.4 �ality of Result (QoR) Guarantees

Approximation techniques are only practical if they provide accuracy guarantees to the program-

mer. Guarantees are used as a contract between the tools and the programmer to ensure that the

relaxations applied by the tool to the target program will not violate QoR requirements. Guaran-

tees can come under di�erent forms: empirical, statistical and hard guarantees. Hard guarantees

provide the strongest guarantees by assuming worst-case error accumulation. A method to en-

sure hard guarantees is interval analysis [148], which can be applied to small functions that do

not exhibit asymptotic behavior or long chains of operations that could lead to high error accu-

mulation. While hard guarantees are the most desirable to the user, they assume worst-case error

accumulation, which are o�en not representative of real-world inputs. For that reason, QAPPA

o�ers empirical or statistical guarantees.

Empirical Guarantees Empirical guarantees provide guarantees that are as good as the datasets

provided by the user. �is puts more pressure on the programmer to provide satisfactory input

coverage, akin to what test engineers do in industry to ensure that code is properly tested, or

that learning models are properly trained. �is class of guarantees are prevalent in approximate

computing literature, due to the complexity involved in providing stricter guarantees [50, 123].

QAPPA provides empirical guarantees by default. �e user has to provide a training dataset,

and a validation dataset. QAPPA’s autotuner traverses the search path of least quality degradation

measured on the training input set, but decides when to stop its search when error thresholds

are violated on the validation dataset. Having disjoint test and validation sets prevents over��ing

issues. QAPPA also provides statistical guarantees, which we discuss next.

66

Statistical Guarantees Statistical guarantees provide a way to reason about unlikely quality

violations. Some applications scenarios may tolerate rarely occurring errors if that means achiev-

ing signi�cant energy savings. While statistical guarantees make the most sense in the context of

non-deterministic approximations [126] and statistical sampling-based approximations [4], they

can also be used on deterministic techniques [90]. In the la�er case, the rarely occurring quality

violation would be the result of a corner case input that would lead to worst case error accumula-

tion.

We augment QAPPA to provide statistical error guarantees in the form of con�dence intervals.

For example, a con�dence interval may imply that the output has an error of at most 10% with a

con�dence that is equal or greater than 95%. To derive a statistical guarantee, QAPPA measures

Nviolation, the number of times the error has exceeded a given error bound δ across N input sam-

ples that it has sampled from the user-provided distribution. QAPPA then provides a statistical

bound to the user by computing the Clopper-Pearson interval [37] to �nd an upper bound ε of the

probability of ge�ing errors that are larger than δ. We have:

ε = β(1− α

2
;Nviolation + 1, N −Nviolation) (3.1)

where β denotes the beta distribution and α is a constant that determines the con�dence of the

Clopper-Pearson interval. In all our experiments, we set α = 0.01. Equation 3.1 entails

Pr[error < δ] > 1− ε

in which Pr[∗] denotes the probability of an event. Equivalently, we can say that the error is within

δ with 1− ε con�dence.

3.2.5 Floating-Point to Fixed Point Conversion

We discuss a motivation use-case for QAPPA: deriving cheap �xed point speci�cation of �oating-

point and math heavy kernels for hardware implementation (which will evaluated in Section 3.5.2).

Fixed point computation is signi�cantly cheaper than its �oating-point counterpart and is thus

preferred in custom hardware designs to maximize energy e�ciency [2]. Floating-point data rep-

resentations provide high-precision across a very wide dynamic range of values, which makes the

implementation of certain algorithms possible without using very long integer types. In practice

67

however, application programmers choose �oating-point over �xed point computation for its prac-

ticality and ease-of-use. Deriving �xed point precision requirements from �oating point programs

can be tricky, and generally requires analysis from domain experts, numerical analysts, or the use

of application-speci�c tools. We describe how we augment QAPPA to produce precision minimal

�xed point speci�cations of �oating-point program by performing (1) �oating-point to �xed point

conversion, (2) precision minimization and (3) piece-wise polynomial approximation of standard

math functions. �e end result of these transformations is a cheap �xed point speci�cation of the

input program where all non-linear operations (i.e. standard math, or division) are replaced with

cheap linear operations (i.e. addition and multiplication).

FixedPoint Emulation andPrecisionMinimization QAPPA can convert all safe-to-approximate

�oating point instructions with �xed point instructions via dynamic pro�ling and static instrumen-

tation. First, QAPPA analyzes the dynamic range of exponents for each �oating-point variable by

inserting instrumentation code that tracks the range of binary exponents for each target variable.

�en, once QAPPA has recorded the largest exponent emax value for each variable, it generates a

�xed point version of that instruction with precision n by dynamically se�ing the mantissa width

m of the variable at run-time tom = n−emax+e−1 where e denotes the current exponent value

of the variable. Finally, the autotuner performs its standard search to �nd a precision-minimal

con�guration that satis�es the QoR requirements set by the user. �ere is one limitations to this

�xed point emulation approach: �xed point precisions cannot exceed the original �oating point

type’s mantissa width. �is limitation can be alleviated with the use of double precision �oating

point types.

Piece-Wise Polynomial Approximation of Standard Math Functions Standard math is

prevalent in many application domains, but comes at a high computational cost in its standard

library implementation. Precision reduction provides an opportunity to signi�cantly reduce the

cost of math. QAPPA uses the �nal instruction-level precision requirements produced by the au-

totuner to generate a piece-wise-polynomial approximations for each math function in the target

program. We implemented a custom optimization library for QAPPA that �nds the cheapest piece-

wise polynomial approximation for each math function while ensuring that QoR is not violated as

68

a result of the code transformation.

3.3 PERFECT Application Study

App. Kernel Use Case User Anno-

tations

Static

Approx.

Insn.

Dynamic

Approx.

Insn.

Approx

Runtime

Overhead

Autotuner

Steps

(40dB)

Autotuner

Runtime

PA1

2D Convolution Convolutional NNs 6 6 33% 8.9x 26 233x

DWT JPEG compression 10 27 44% 3.3x 94 315x

Histogram Eq. PDF estimation 12 13 50% 1.5x 71 109x

STAP

Outer Product Covariance Estimation 26 142 81% 10.3x 1143 11762x

System Solver Weight Generation 47 77 77% 10.1x 929 9420x

Inner Product Adaptive Weighting 41 84 83% 10.5x 974 10256x

SAR

Interpolation 1 Radar 25 42 65% 6.4x 402 2588x

Interpolation 2 Radar 21 41 50% 6.5x 528 3437x

Backprojection Radar 18 45 82% 6.2x 569 3517x

WAMI

Debayer Photography 22 124 31% 12.3x 228 2793x

Lucas-Kanade Motion Tracking 34 129 51% 4.3x 772 3322x

Gaussian MMs Change Detection 25 134 58% 8.1x 107 870x

Required
FFT-1D Signal Processing 18 43 49% 1.1x 578 642x

FFT-2D Signal Processing 18 43 49% 3.1x 1084 3357x

Average 23 68 57% 5x 338 1836x

Table 3.1: PERFECT kernel overview. “Annotations” refer to how many lines of code had to be

altered with ACCEPT-style type annotations. “Static Approx. Insn.” refers to the total number of

instructions that were deemed safe to approximate by ACCEPT. “Dynamic Approx. Insn.” refers to

the percentage of overall instructions that are safe to approximate over the course of the program

execution. “Approx. Runtime Overhead” refers to the slowdown experienced a�er approximate

code injection by QAPPA over the original kernel. “Autotuner Steps” indicates the number of

tuning steps taken to �nd a con�guration that could not be approximated further without violating

a 40dB quality target. “Autotuner Runtime” indicates how long it takes to tune each kernel as a

multiple of its original runtime.

We use QAPPA on the PERFECT benchmark [13] kernels to quantify the opportunity for quan-

tization on compute intensive workloads. We answer the following questions:

Section 3.3.3 How long does the autotuner take to run on the target program?

69

Section 3.3.4 How does increasing the strength of guarantees diminish opportunities for precision reduc-

tion?

Section 3.3.5 What dynamic portion of those applications is safe to quantize?

Section 3.3.6 For the set of instructions that can be relaxed, how much precision can be dropped at di�er-

ent quality constraints?

Section 3.3.8 How does increasing the strength of guarantees diminish opportunities for precision reduc-

tion?

3.3.1 Benchmark Overview and�ality Metrics

PERFECT is a benchmark suite composed of compute-intensive application kernels that span image

processing, signal processing, compression, and machine learning. Table 3.1 provides an overview

of the PERFECT kernels. For instance, the Wide Area Motion Imagery (WAMI) application rep-

resents a typical processing pipeline performed on giga-pixel scale imagery. WAMI comprises an

RGB image generation kernel based on the debayer algorithm, an image registration kernel based

on the Lucas-Kanade algorithm, and a change detection algorithm based on Gaussian Mixture

Models.

PERFECT Application 1 (PA1) is composed of image processing kernels o�en executed in stan-

dard image processing and vision pipelines. It includes a 2d-convolution kernel used in con-

volutional neural networks, a discrete-wavelet-transform kernel used in image compression

and a histogram-equalization kernel.

Space Time Adaptive Processing (STAP) is based on the extended factored algorithm, and is used

for mitigating the impact of ground clu�er on signals of interest in airborne radar systems.

�e application includes an covariance estimation kernel, a linear system solver kernel and

an adaptive weighting kernel.

70

Synthetic Aperture Radar (SAR) is a radar-based image formation application for achieving high-

resolution imagery. �e SAR application is composed of two polar format algorithm inter-

polation kernels (range and azimuth), and a back-projection kernel.

Wide Area Motion Imagery (WAMI) represents a typical processing pipeline performed on giga-

pixel scale imagery. �e WAMI application comprises an RGB image generation kernel based

on the debayer algorithm, an image registration kernel based on the Lucas-Kanade algorithm

and a change detection algorithm based on Gaussian Mixture Models.

3.3.2 �ality Assessment

For quality assessment, we follow the PERFECT manual guidelines for quality assessment [13],

and use a uniform Signal-to-Noise Ratio (SNR) quality metric across all benchmarks to measure

quality degradation.

SNRdB = 10 log10

(∑N
k=1 |rk|2∑N

k=1 |rk − qk|2

)
(3.2)

�e formula used to assess SNR in our benchmarks is provided in Equation 3.2, where rk and qk
denote the kth reference and quantized output value. SNR provides an average measure of relative

error. It is also worth noting that SNR measures error in a logarithmic scale, i.e. an increase of

20dB corresponds to a 10× relative error reduction. Some kernels do not use an SNR metric by

default: gmm of the WAMI benchmark measures the number of foreground pixels that have been

misclassi�ed. For the sake of uniformity, we convert the classi�cation metric to a logarithmic

scale. In order to produce a uniform error scale, we convert classi�cation rates to SNR by using

the conversion formula in Equation 3.3.

SNRdB = 20 log10

(
posfalse + negfalse

postrue

)
(3.3)

3.3.3 Annotation E�ort

�e QAPPA framework relies on ACCEPT to apply quantization on program instructions that are

deemed to be safe to approximate. �e set of approximable instructions are identi�ed via data

71

type annotations by ACCEPT, as discussed in Section 3.2.1. ACCEPT dictates that approximations

must be applied as an opt-in decision. �is places the burden of expressing to the compiler what

data can be a�ected by approximation on the user. We argue that the burden is necessary to

ensure the safety of a program [124]. �ankfully, the code annotations e�ort is reasonable: we

counted the amount of code annotations that we had to insert in each PERFECT kernel, which

are enumerated in Table 3.1 under the “User Annotations” column. Overall, annotations were

minimal for each kernel. Most of the time, it came down to annotating all �oating point variables

and integer variables that hold data (as opposed to an address or index) as approximate.

3.3.4 Autotuner Runtime

Table 3.1 summarizes the runtime overhead of the autotuner. �e autotuner runtime is dictated by

how many steps the autotuner gets to run and how much slower the instrumented approximate

program runs at each autotuning step. �e goal of the quantization instrumentation step is to

faithfully emulate the error resulting from quantization, not to improve performance of the original

program. We report an at-most 12.3× slowdown from instrumentation under the “Instrumentation

Overheads“ column. We report the total number of search steps taken under the “Autotuner Search

Step“ column where we used a 40dB target.

Table 3.1 summarizes the total autotuner overhead as a multiple of the original program run-

time under the “Autotuner Runtime“ column. At worst, the autotuner will take 10,000× longer to

perform the precision tuning compared to the original runtime, but in the common case it takes

about 1000× longer. �is runtime overhead isn’t too bad considering that we ran the autotuner

on microbenchmarks which take less than a second to run, and that this slowdown is compara-

ble to the slowdown that many architectural simulators introduce. �e QAPPA autotuner was

designed to be run once on programs of interests, but we plan to improve its runtime to make it

more practical across more challenging applications.

3.3.5 Approximation Opportunity

Table 3.1 summarizes application characteristics of the PERPECT kernels derived using QAPPA.

�e “Static �antized Instruction Count” column lists the number of static instructions that are

72

safe to approximate according to QAPPA. Each approximable instruction serves as a knob that the

autotuner can tune to �nd a precision-minimal con�guration that meets quality requirements. �e

more precision knobs, the larger the search space for the autotuner.

0%

25%

50%

75%

100%

2dconv
dwt
histeq
outer
solve

inner
interp1
interp2

bp debayer
lucas-k
gmm

fft1d

fft2d

control [P] int arith [P] mem [P] math [A] fp arith [A] int arith [A] mem [A]

Figure 3.1: Dynamic instruction category mix of the PERFECT kernels. �e approximable instruc-

tions are colored in shades of blue, and the precise instructions categories are colored in gray.

Ag
gr

eg
at

e
Bi

t S
av

in
gs

0%

25%

50%

75%

100%

2dconv dwt histeq outer systemsolve inner interp1 interp2 bp debayer lucaskanade gmm fft1d fft2d AVERAGE

20dB 40dB 60dB 80dB 100dB

Figure 3.2: Aggregate bit-savings for 14 PERFECT kernels over a 20dB to 100dB SNR range.

�e “Dynamic �antized Instruction Ratio” is the ratio of approximable instructions to to-

tal instructions, measured over the dynamic execution of the target kernel. �e higher the ratio,

the larger the opportunity to apply quantization in a given program. Figure 3.1 shows a detailed

instruction category breakdown for each PERFECT kernel. Each category is split between ap-

proximable and precise classes, which are respectively colored in blue and gray. �e approximate

73

Bi
t-S

av
in

gs

0%

20%

40%

60%

80%

100%

Average SNR (dB)
10 20 40 60 80 100 120

int arith fp arith mem ops math AGGREGATE

26%
32%

40%
48%

57%

74%

83%83%

74%

57%

48%
40%

32%
26%

Figure 3.3: Bit-savings vs. SNR averaged over PERFECT kernels, for integer arithmetic, FP arith-

metic, memory ops and math functions.

instruction ratio is on average 64% which indicates that the PERFECT benchmark suite is a com-

pelling target for approximate computing.

More importantly, the approximable instructions are for the most part composed of expensive

operations, such as �oating-point arithmetic, loads and stores to memory, and standard C math

functions (LLVM IR treats math functions as instructions since back-end architectures may or may

not have hardware support for those). Most �oating-point and memory operations can be approx-

imated. �e kernels mostly access memory to store data, rather than pointers, which are more

common in graph applications where pointer-chasing is necessary. �e PERFECT kernels mostly

perform regular bulk data processing which is not only compelling for hardware acceleration,

but also for approximate computing. �e bulk of the precise instructions are composed of control

instructions and integer arithmetic used for address computation, neither of which can be approxi-

mated without compromising the safety of the program. �at said, the PERFECT kernels are highly

regular in terms of memory and control �ow divergence. Consequently address computation and

control can easily be handled by simple �nite-state machines in hardware accelerator designs, and

their energy overheads should remain small next to arithmetic, and memory operations.

74

3.3.6 Bit Savings

Figure 3.2 shows the aggregate bit-savings obtained on approximable instructions that QAPPA

was able to obtain on each PERFECT application kernel, on SNR targets from 100dB down to 20dB

(0.001% up to 10% average relative error). In general, the lower the quality target, the higher

the bit-savings. On average, a 74%, 57%, and 48% average bit-savings can be obtained at 20dB,

40dB and 60dB respectively (10%, 1%, and 0.1% average relative error). We observe that integer

benchmarks (2dconv, dwt, histeq, and debayer) o�er relatively high bit-savings at high

SNR requirements (100dB). �is is indicative of the common use of wide integer types (e.g. 32-bit)

to handle narrow pixel data (e.g. 8-bit) for image processing benchmarks (PA1). We also notice

that changedet provides minimal bit-savings until we lower error to 40dB and 20dB error (1%

and 10% misclassi�cation rate). �e remaining �oating-point kernels all exhibit a smooth tradeo�

relationship between bit-savings and quality. We observe that quantization can meet very stringent

quality thresholds that are o�en not achievable with other approximation techniques. For instance,

the PERFECT manual recommends 100dB (0.001% relative error) degradation as a quality target

from applying compiler optimizations. We do not know of any approximation techniques that can

meet such stringent accuracy guarantees.

Figure 3.3 shows the average bit-savings obtained across the PERFECT benchmark for approx-

imable integer arithmetic, �oating-point arithmetic, memory ops and standard math functions

over the same range of SNR targets. Again, integer arithmetic has an overall higher bit-savings at

100dB SNR target because trimming o� the MSB bits of many integer variables has no e�ect on out-

put quality. Math functions also exhibit high bit-savings at 100dB but for di�erent reasons: most

standard math in the PERFECT benchmark suite uses double-precision implementations which is

generally overkill over our range of quality targets. All benchmark exhibit a smooth quality vs.

bit-savings trade-o� curve. which o�ers opportunities for energy, bandwidth and storage savings

in hardware designs.

3.3.7 Fixed Point Conversion

We apply �xed-point conversion of the �oating-point PERFECT kernels to evaluate the viability

of using �xed-point hardware exclusively. �is type of analysis would be bene�cial to a hardware

75

Pe
rc

en
ta

ge
 o

f V
ar

ia
bl

es

0

0.2

0.4

0.6

0.8

1

Exponent Range
0 8 16 24 32 40 48 56 64

Single-Precision Double-Precision

Figure 3.4: CDF of exponent value range of all �oating-point variables in the PERFECT benchmark

suite.

designer or an FPGA programmer who wants to produce a highly e�cient �xed-point data-path

for a given kernel.

Figure 3.4 shows a histogram of the exponent range for all of the PERFECT benchmark suite

variables, when executing each program on the provided input sets. Over 92% and 97% of single-

precision and double-precision �oating-point variables have a binary exponent range below 32,

while the IEEE754 �oating-point supports exponent ranges of 255 and 2047 for single-precision

and double-precision �oating-point respectively (excluding sub-normals). �is shows that most

PERFECT kernels can be ported to �xed-point without a�ecting quality too drastically.

3.3.8 Guarantees

In Section 3.2.4, we discussed two ways to express QoR guarantees: empirical tests — used so far in

this evaluation — and statistical tests, which we discuss in this section. Statistical error guarantees

capture the uncertainty that arises from measuring error in a non-exhaustive way. To express a

statistical guarantee, the user needs to provide an error threshold δ, and a con�dence threshold

1 − ε. QAPPA then applies the Clopper-Pearson (CP) test to ensure that both δ and 1 − ε are

satis�ed.

Demanding higher con�dence leads to more conservative precision relaxations and thus lower

76

Table 3.2: Bit-savings loss from using a empirical guarantee to statistical guarantee at 90% and

99% con�dence. We vary the quality target at medium (20dB) a high (40dB) se�ings on the PA1

kernels.

PA1 Kernel medium quality (20dB) high quality (40dB)

conf > 90% conf > 99% conf > 90% conf > 99%

2D Conv. -4.10% -13.25% -4.37% -8.73%

DWT -12.50% -22.47% -2.51% -2.73%

Hist. Eq. -3.02% -7.35% -2.91% -6.76%

bit-savings. We conduct an experiment to quantify the loss in bit-savings when demanding a

statistical guarantee at di�erent con�dence levels. �e baseline bit-savings for this experiment is

obtained using empirical error guarantees. We chose the PA1 kernels to conduct our experiment

for two reasons: (1) it was straightforward to produce a generative model for image data, and

(2) processing each image requires hundred of thousands of kernel invocations which provided

enough samples for QAPPA to run the CP test on at high con�dence levels.

We conduct our experiment at two quality levels: a medium quality se�ing at 20dB (10% error)

and a high quality se�ing at 40dB (1% error). Table 3.2 shows the bit-saving loss at two con�-

dence levels (1−ε = {90%, 99%}), relative to the bit-savings obtained with empirical guarantees.

We evaluate the bit-savings loss using both quality levels, with error thresholds (δ = {10%, 1%}).

Overall, we notice a reduction in bit-savings going from empirical guarantees to statistical guaran-

tees, as the con�dence interval increases. �ese results con�rm that stronger statistical guarantees

diminish bit-savings returns.

To complete our sensitivity analysis, we specify worst-case relative error bounds, to guide

QAPPA’s precision minimization search, at error thresholds of 10% and 1%. �is corresponds to

a con�dence level of 100%. In both cases, no reduced-precision con�guration meets either worst

case guarantee. �is indicates that using worst-case error measurement are too pessimistic to be

of practical use. In general, we recommend the use of statistical guarantees, which strike a balance

between strength of error guarantee, and expected bit-savings.

77

1101
1110

0100
1001

0110
0010

(a) (b)

0100
1000

1100
1100

1000
0100

quant quant

0100
1001

0110
0010

(c)

10
01

11
10

01
01

c

ser ser
1001 0101

de-ser

1110

01
00

11
00

01
10

c

ser ser
0100 0110

de-ser

1100

(d)

10

11

01

c

q q
1001 0101

de-ser

1100

01

11

10

c

q q
0100 0110

de-ser

1100

Figure 3.1: �antization scaling mechanisms overview. (a) Default wide addition on wide adder.

(b) Narrow addition on wide adder. (c) Wide addition on narrow adder (d) Narrow addition on

narrow adder.

3.4 Dynamic�antization Scaling

We survey dynamic quantization mechanisms in hardware and discuss the savings in arithmetic

energy and memory bandwidth that these mechanisms achieve on hypothetical accelerator de-

signs executing the PERFECT kernels. We isolate the subsystems that are a�ected by quantization,

namely the arithmetic and the memory subsystems. Arithmetic energy denotes the fraction of en-

ergy that is consumed by arithmetic units in a given hardware design, e.g. ALUs and processing

elements. What this study does not focus on are control overheads, which are speci�c to a given

hardware implementation.

�e aim of this study is to motivate the adoption of quantization scaling mechanisms in hard-

ware accelerators, where data bandwidth requirements far surpass the instruction bandwidth re-

quirements. General purpose processors spend much of their energy budget in instruction fetching

and decoding. Augmenting the ISA of a general processor with bit-granular quantization se�ings

would counteract much of the energy savings that quantization would enable. �us, this survey

targets designs such as vector processors, systolic arrays, or �xed-function accelerators that could

incorporate dynamic quantization scaling mechanisms in order to respond to dynamic energy or

quality constraints.

78

En
er

gy
 C

os
t (

pJ
)

0

5

10

15

20

Input Operand Width
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

bit-serial 2-bit 4-bit 8-bit 16-bit
bit-parallel (32-bit)

Figure 3.2: Energy vs. precision relationship for precision-scaled multiplier designs (32 bit base-

line).

m x n
multB

A
n

m
+

m+n
m

n O

m

n-bit
adderB

A
n

n

carry

n O

(a) (b)

Figure 3.3: Simpli�ed schematic of (a) bit-sliced adder and (b) bit-sliced multiplier.

3.4.1 Scaling �antization in Compute

We evaluate two quantization scaling hardware mechanisms that provide energy reduction on

quantized arithmetic operations. �e �rst technique, operand narrowing, aims to minimize power

by reducing transistor switching [150] on wide compute units. �e second technique, bit slicing (or

operator narrowing), utilizes narrow compute unit in parallel to time-multiplex the computation

of wider operations, e�ectively scaling throughput with precision on data-parallel workloads [73].

We compare the energy savings obtained by each technique at di�erent operand quantization

levels, over a standard 32 bit arithmetic unit.

79

Reducing Power with Operand Narrowing Operand narrowing is a precision scaling tech-

nique that can reduce dynamic switching in standard bit-parallel arithmetic units [150]. �e idea

is to apply quantization on the input operands of the arithmetic units by zeroing the LSBs that cor-

respond to the desired quantization level. �is in turns limits the amount of transistor switching

in the arithmetic unit’s logic, as the lower slices of the datapath remain inactive.

Figure 3.1.b shows how operand narrowing sets the least signi�cant bits (LSBs) of the input

operands to zero, to underutilize the arithmetic unit’s lower slices. LSB-zeroing is the precision

scaling mechanism proposed in the �ora vector processor [150]. While operand narrowing re-

duces the amount dynamic power, it does not provide throughput improvements. Next, we discuss

a quantization scaling technique that achieves throughput scaling when data parallelism is avail-

able.

Increasing�roughput with Bit Slicing Bit slicing is a technique used to perform wide arith-

metic operations using narrower arithmetic units. �e advantage of bit slicing lies in its ability

to scale throughput nearly linearly with precision requirements. Given an narrow n bit adder, a

wide m bit addition can be done in O(m/n) time, while an m bit multiplication can be done in

O(m/n) time on a an m × n multiplier. �e simple design of a bit-sliced adder and bit-sliced

multiplier is shown in Figure 3.3. Bit slicing reduces arithmetic unit power while increasing com-

putational delay, thus making baseline precision computation on a wide ALU and a bit-sliced ALU

roughly equivalent in terms of energy. Bit slicing excels at reducing energy at lower-precisions

se�ings, since lower precision lead to lower computation delays. Bit slicing comes at a cost how-

ever, which we will refer to as the bit-serialization tax. �e bit-serialization tax is a�ributed to the

extra registers needed to time-multiplex a narrow compute unit for wide computation. �e addi-

tional hardware requirement can be seen in Figure 3.3 as a small register in the bit-sliced adder

case and an m-bit register and m + n bit adder for the bit-sliced multiplier. In addition, increas-

ing the delay of a given operation has negative e�ects outside of the ALU itself, as the rest of the

hardware needs to remain powered on. Bit slicing is best applied in applications that have SIMD

parallelism, where bit parallelism can be exchanged for increased SIMD parallelism. �is results

in designs that have similar area footprint and the ability to dynamically increase throughput as

precision requirements go down [73]. Finally bit slicing can achieve the added bene�t of reducing

80

critical path delay in some hardware designs. �is in turn allows hardware designers to increase

the maximum frequency of their designs if the critical path was previously in one of the arithmetic

units of the design.

3.4.2 �antization Scaling Energy Evaluation

Methodology We synthesize adder and multiplier designs of varying widths using the Synopsys

Design Compiler with the TSMC-65nm library. To model power, we collect switching activities in

simulation when adding/multiplying input operands streams of varying widths, from 1 bit to 32

bits. We set a target frequency of 500MHz and perform place and route on each simulated design

with ICC. We use PrimeTime PX to accurately model the impact that switching activity has on

power.

Multiplier Case Study We evaluate the energy cost of performing arithmetic operations on

input streams with varying bit widths. �e energy per operation vs. input width relationship for a

32-bit multiplier design is shown as a do�ed black line in Figure 3.2. �e linear increase in energy

re�ects an increase in switching activity when the multiplier processes wider input operands.

Next we look at bit slicing: we vary the granularity at which computation is sliced from 1 bit

(bit serial) to 32 bits (bit parallel). �e relationship between the energy cost and the input width for

a 32 bit multiplier is shown as colored lines in Figure 3.2 for di�erent bit slicing granularities. When

the input operand width is narrower than the arithmetic unit width, the energy scales linearly with

the input width because of lower switching activity. Conversely, when the input operand width

exceeds the width of the serial arithmetic unit width, the energy increases discretely at every n-

bit increments, where n denotes the width of the slice. Bit-serial evaluation – i.e. arithmetic unit

width of 1 – is a corner case where the relationship between energy and operand width is linear. It

is worth noting that no single slice width produces be�er e�ciency than others across the entire

input widths range.

Energy Evaluation on PERFECT We use the PERFECT benchmark suite to guide our choice

of an energy-optimal precision scaling mechanism at di�erent quality targets from 60dB down to

10dB.

81

En
er

gy
 R

ed
uc

tio
n

(x
)

0.0

3.0

6.0

9.0

12.0

PERFECT Average Application SNR (dB)
10 20 30 40 50 60

2.52.62.93.1
3.8

4.4
3.6

4.3
4.8

5.6

7.1

8.6

2.83.03.2
3.6

7.7

11.3

2.62.93.23.4
4.5

6.2

2.02.22.52.8
3.6

4.9

1.41.51.72.0
2.5

3.5

1-bit (bit-slicing only) 2-bit
4-bit 8-bit
16-bit 32-bit (operand narrowing only)

Figure 3.4: Arithmetic energy reduction on the PERFECT benchmark at di�erent bit slicing gran-

ularities and at di�erent SNR targets (higher is be�er).

Figure 3.4 shows energy savings across all PERFECT benchmarks over a standard arithmetic

unit executing 32 bit arithmetic operations. Performing operand narrowing exclusively as in

�ora [150] on a bit-parallel arithmetic unit results in signi�cant energy reduction over the pre-

cise, non quantization scalable baseline: 3.8×, 2.9× and 2.5× at 20dB, 40dB and 60dB respectively.

�ese energy reductions are improved by combining bit slicing and operand narrowing: a slice

width of 16 bits yields optimal energy reductions by 3.6× and 4.8× at 40dB and 60dB while a slice

width of 8 bits yields 7.7× energy reduction at 20dB over the baseline arithmetic unit. Finally,

we make the observation that applying bit slicing at a 1 bit granularity yields suboptimal energy

results at all quality targets.

3.4.3 Scaling �antization in Memory

Much of the energy spent in processors and accelerators is associated with data movement to

and from memory [33, 62]. Scaling precision in programs can help mitigate memory bandwidth

requirements.

Data packing can maximize bandwidth e�ciency at arbitrary precision se�ings. Recent work

has proposed hardware packing and unpacking mechanisms to store variable precision weights

in neural network accelerators [72]. �e idea is to store variable precision data into �xed-width

memory, by packing data at a coarse granularity (e.g. an array of coe�cients) to mitigate over-

82

M
em

or
y

Ba
nd

w
id

th

R
ed

uc
tio

n
(x

)

0.0

1.8

3.5

5.3

7.0

PERFECT Average Application SNR (dB)
10 20 30 40 50 60

1.01.01.01.01.01.0

1.81.81.91.92.02.0 2.32.32.6
2.8

3.23.4

2.52.6
2.9

3.1
3.5

5.1

2.72.9
3.1

3.6
4.2

5.5

2.82.9
3.3

3.7

4.4

6.2 1-bit (bit-slicing only) 2-bit
4-bit 8-bit
16-bit 32-bit (operand narrowing only)

Figure 3.5: Ideal bandwidth reduction on PERFECT benchmark suite at di�erent data packing

granularities and at di�erent SNR targets (higher is be�er).

heads. Figure 3.6 shows how reduced precision data can be e�ciently padded in �xed-width SRAM

modules, unpacked for processing, and re-packed before being stored to SRAM again. �is results

in more e�ective use of bandwidth and storage, but adds complexity when accessing data. �is

complexity can be mitigated in hardware accelerators that perform regular data access on large

portions of memory, where precision se�ings can be set on coarse structures. We assume that the

data is read and wri�en to DRAM in a dense format, simplifying the on-chip to o�-chip storage

communication pipeline.

Applying quantization to data can signi�cantly reduce memory bandwidth. Figure 3.5 shows

bandwidth savings on a cache-less accelerator. We vary the data packing granularity from 1 to 32

bits and derive the resulting bandwidth reduction. A data packing granularity of 1 bit can achieve

4.4×, 3.3×, and 2.8× average memory bandwidth reduction on the PERFECT kernels at 20dB,

40dB and 60dB. Data packing at �ne granularities can increase both so�ware and hardware over-

heads for packing and unpacking. A hardware designer might therefore want to align the data

packing granularity with the bit slicing width of the precision scalable compute units to minimize

control overheads. �e optimal data granularity can be determined by the target system energy

breakdown between memory, computation, and control which di�ers for di�erent classes of ac-

celerators and workloads.

83

0x00

0x08

c2 c1 b3 b2 b1 a3 a2 a1

f1 e3 e2 e1 d3 d2 d1 c3

… SRAM

f1 e3 e2 e1 d3 d2 d1 c3 c2 c1 b3

Word Select and LSB Padding

c3 c2 c1 0 c’3 c’2 c’1 0

SRAM

Precision Scaled Processing Element

b2

x3 x2 x1 0

0xF0

0xF8

x2 x1 w3 w2 w1 v3 v2 v1

α1 z3 z2 z1 y3 y2 y1 x3

…

x2 x1 w3 w2 w1 v3 v2x3 v1

SRAM

LSB Truncation and Word Shift

curr reg prev reg

curr regnxt reg

U
n-

pa
ck

in
g

Pa
ck

in
g

Pr
oc

es
si

ng

Figure 3.6: Example of quantization-scalable pipeline: memory packing and unpacking mechanism

used in Proteus [72] combined with operand narrowing used in �ora [150]. �e input and output

data can be loaded in its packed format to save memory bandwidth.

3.5 Approximation Study

Approximate Computing encompasses a wide variety of so�ware and hardware techniques that

expose quality-e�ciency trade-o�s in compute-intensive applications. It seems ��ing given the

emergence in recent approximate computing trends to compare how the classical approach of �ne-

grained precision minimization compares with more recent proposals of approximate computing

optimizations.

In this section, we conduct a comparative evaluation of approximation techniques. We evalu-

ate precision reduction against nondeterministic voltage overscaling [103, 49] and coarse grained

84

0

10

0.8

20

01

Er
ro

r P
ro

ba
bi

lit
y

(%
)

2

30

30.85 456

40

789100.9 11

Overscaling Factor

1213

Bit Position

141516170.95 181920212223241 25262728293031

Figure 3.1: Bit-�ip probabilities of each output bit for a single-precision �oating point adder at volt-

age overscaling factors [0.8-1.0]. Sign and exponent bits are in blue, mantissa bits are in green/yel-

low.

neural approximation [138], and compare the quality vs. energy tradeo�s achieved with each

technique.

3.5.1 Voltage Overscaling

We compare the energy savings obtained by quantization against voltage overscaling and contrast

the energy savings obtained at di�erent quality targets on the PERFECT benchmark kernels.

Motivation: Determinismvs. Nondeterminism Nondeterministic approximations can intro-

duce errors in a random or pseudo-random fashion [103, 49, 26, 84, 162]. While nondeterministic

approximations pose a testing and debugging challenge, they can be modeled using probabilistic

distributions [126]. We investigate nondeterministic voltage overscaling, a popular approximation

85

technique that reduces compute power at the risk of increasing timing violations. Our evalua-

tion of voltage overscaling relies on (1) characterizing the energy vs. error relationship of voltage

overscaling and (2) analyzing how low level timing violations a�ects application quality.

Characterizing Overscaling Error We quantify the e�ects of voltage overscaling on �xed

point and �oating point arithmetic designs taken from the Synopsis DesignWare IP library. We

simulate those circuits in CustomSim-XA, built on top of FastSpice to perform transistor level

power and fault characterization. �e circuits are built in Synopsys Design Compiler with a 65nm

process and synthesized using a timing constraint of 2GHz. Registers latch the inputs and outputs

of the arithmetic units and a synchronizer is used to se�le errors caused by metastability. We syn-

thesize a parallel pre�x architecture for the �xed point adder and a Booth-encoded Wallace-tree

architecture for the �xed point multiplier. We generate 105 random input pairs as stimuli to the cir-

cuits and pro�le timing violation errors at three representative voltage overscaling factors (0.95×,

0.90×, and 0.84×), corresponding to 10%, 20%, and 30% power savings respectively. We measure

the probability of a timing violation induced bit-�ip for each output bits to produce a statistical

error model of the voltage overscaled circuit. Figure 3.1 shows the bit-�ip probability distribution

for a �oating point adder, measured at di�erent voltage overscaling factors, with di�erent color

coding to highlight the sign, exponent and mantissa bits.

Comparative Evaluation on PERFECT We feed the error models derived above into QAPPA’s

error injection framework to quantify the e�ect of voltage overscaling on the application output.

We execute each benchmark 100 times on the same input data to obtain an error distribution.

�e results of the experimental runs are displayed in Figure 3.2 and show the e�ects of volt-

age overscaling on application quality at 10%, 20% and 30% energy savings. Applying the same

voltage overscaling factor to each PERFECT kernel can lead to vastly di�erent errors because of

nondeterminism. Integer benchmarks such as dwt and debayer are mostly una�ected by over-

scaling. �e integer circuits have shorter critical paths than their �oating point counterparts, and

therefore are less a�ected by voltage overscaling. Other benchmarks including the SAR kernels

and systemsolve produce data that contain erroneous output values (inf and NaN) which

lead to a 0dB SNR. Voltage overscaling does well on simple single-stage functions (2dconv), in

86
SN

R
(d

B)
 -

hi
ge

r i
s

be
tte

r

0

10

20

30

40

2dconv
dwt

histeq
outer
systemsolve
inner
interp1
interp2

bp debayer
lucaskanade
changedet
fft1d

fft2d
VOF=0.95 VOF=0.90 VOF=0.84

Figure 3.2: PERFECT kernel SNR at voltage overscaling factors of 0.95, 0.90 and 0.84 corresponding

to 10%, 20% and 30% energy savings. SNR is measured collected over 100 runs, values represent

median SNR, and error bars represent min and max error.

which errors have localized e�ects. Multi-stage kernels (lucaskanade) on the other hand pose

a challenge since errors can propagate and snowball into large output errors.

Discussion �antization provides be�er energy e�ciency at preferable SNR levels for all PER-

FECT kernels. In addition, the deterministic nature of quantization allows for sounder guarantees

and more predictable behavior. We conclude that is it di�cult to justify incorporating voltage over-

scaling in hardware designs without some form of error correction. �e unbounded errors simply

don’t justify the energy savings. A hybrid approach of combining �ne grained precision require-

ments with error correction mechanisms proposed in [46] could selectively correct a timing vio-

lation error based on what bits are a�ected, thereby reducing the amount of hardware rollbacks.

We reserve the evaluation of such error correction mechanisms for future work.

3.5.2 Neural Approximation

We discuss how quantization scaling could improve the e�ciency and programmability of pro-

grammable accelerators and compare the energy bene�ts of quantization against neural approxi-

87

load load

* *

+

+ imm

* imm

acos

sin cos

* imm

*

+ imm

*

* imm

-

/

asin

store store

load load

sig sig

* *

+

* * * * * * * * * * * *

+ + + + + + + + + + + + +

* *

+ +

* * * * * * * * * * * * * * * *

+ + + + + + + + + + + + + + + +

sig sig sig sig sig sig sig sig

store store

(a) (b) (c)

load load

* *

+

+ imm

* imm

* imm

*
+

*

+

*

+

*

+ imm

*

* imm

-

store store

*

+

*

*
+

Figure 3.3: Approximating the inverse kinematics kernel: (a) default DFG, (b) optimized �xed

point DFG with PWP, (c) neural approximation DFG. Operations that read data from local SRAM

are colored in gray.

mation. Neural approximation has limited applicability when it comes to approximating arbitrary

functions at arbitrarily low error levels. We evaluate the AxBench [161] benchmark suite at sug-

gested error levels (10% relative) to ground the comparison between quantized acceleration and

neural acceleration.

Motivation: Fine vs. Coarse Approximation Coarse grained approximation a�empts to ap-

proximate an entire code region using a regression model (e.g. polynomials, neural networks).

Neural acceleration [50, 138] uses neural networks to approximate functions via learning, and

utilizes hardware accelerators for e�cient execution. Much of the previous studies on neural ac-

celeration have not isolated the e�ciency gains a�ributed to specialization from approximation.

We compare two approximation approaches: (1) �ne grained approximation with piecewise

polynomial (PWP) approximation of math functions, and (2) coarse grained approximation with

neural approximation. In both cases, we assume a hardware accelerator composed of �xed point

88

adders, multipliers and local SRAM storage. We quantify arithmetic energy, and SRAM require-

ments to draw a cost comparison between the two techniques. We motivate our study with the

inverse kinematics (inversek2j) function example, which data�ow graph (DFG) is shown in

Figure 3.3.a.

Comparative Evaluation on AxBench We use QAPPA to derive the quantization require-

ments in each target application at the error rate recommended by AxBench. �antization pro-

vides an opportunity to signi�cantly reduce the cost of standard math function invocations. We

leverage QAPPA to derive the accuracy requirements and the input range of standard math func-

tions (e.g. cos, sqrt, reciprocal etc.) in each target program. We use those requirements to produce

piecewise polynomial approximations with a custom math approximation toolbox that we built

in Python. �e degree of the polynomial dictates computational requirements, while the num-

ber of pieces dictates the memory requirements for storing the polynomial coe�cients. �e DFG

of an example quantized program is shown in Figure 3.3.b. In this example, all nonlinear opera-

tors (represented as circles) have been replaced replaced with a piecewise degree-one polynomial

approximation.

We run our study on a set of AxBench [161] benchmarks due to the limited applicability of neu-

ral approximation on the PERFECT benchmark kernels. We exclude jmeint and jpeg from our

study since the input dimensionality of these kernels is too high to be approximated with coarse

PWP approximation. We assume a spatially laid-out accelerator design (i.e. each static instruction

is mapped to a single processing element, or load/store unit) for each approximation technique

and measure hardware e�ciency in two key metrics: (1) compute energy and (2) SRAM storage

requirements. We use the RTL computation cost models obtained in Section 3.4 to analytically

evaluate energy costs associated with each approximate acceleration technique. We quantitatively

measure on-chip SRAM requirements for storing the neural network weights, and piecewise poly-

nomial approximation coe�cient tables. Finally we use the neural approximation errors reported

in previous literature [138] as quality targets for quantization.

We use two modeling assumptions to estimate the computation and storage costs of neural

acceleration. �e realistic model based on digital implementations of NPUs [50, 102] assumes 16

bit weights, and a 16-piece linear approximation of the activation function. �e optimistic model

89

In
vo

ca
tio

n
En

er
gy

 (p
J)

0

100

200

300

400

blacks fft invk2j kmeans sobel

NN realistic
NN optimistic
Quantized + PWP

SR
AM

 R
eq

s
(B

)

0

200

400

600

800

blacks fft invk2j kmeans sobel

NN realistic
NN optimistic
Quantized + PWP

Figure 3.4: Energy and storage comparison of quantized acceleration vs. neural acceleration on

AxBench kernels (lower is be�er).

assumes 8 bit weights, a linear activation function and no quality loss with respect to the realis-

tic model. We leverage QAPPA to produce a reduced precision quantized program speci�cation

for each AxBench kernel. Our compute cost model assumes a quantization scalable 8 bit ALU,

that applies either operand narrowing or bit-serial computation depending on the quantization

requirements.

We summarize our evaluation of neural approximation vs. reduced precision acceleration in

Figure 3.4. Reduced precision acceleration is more energy-e�cient than neurally approximated

acceleration for all of the reviewed AxBench kernels. �e storage requirements of the quantized

kernels lie between the realistic and optimistic neural network accelerator cost models, except for

blackscholes where quantized acceleration beats neural acceleration in both cost modeling

scenarios.

Discussion While there is not a clear answer as to which technique is more e�cient in terms

of both energy and storage, we can claim that quantized acceleration o�ers comparable e�ciency

bene�ts to neural acceleration. Neural acceleration provides the bene�t of programmability as

it requires one hardware accelerator to evaluate any neurally approximated piece of code [102].

Conversely, neural networks have limited success at approximating code at arbitrarily low error

levels, as there are no examples in literature that show successful approximations with neural

networks below 1% relative error [50, 138, 102, 57]. �antization and PWP approximation could

90

improve programmability in spatial accelerators by simplifying complex operators such as math

functions, down to simple linear operators. �e simpli�ed kernel can then be more easily mapped

onto a programmable acceleration substrate composed of simple arithmetic functions [15, 105]. Fi-

nally, improving the quality guarantees of neurally-approximated programs is the object of much

on-going research and remains a challenge for high-dimensional functions [76, 57, 90, 77]. �an-

tization on the other hand bene�ts from mature numerical analysis frameworks that provide error

analysis and guarantees which programmers are familiar with [43, 42, 148].

3.6 Related Works

Tools and Frameworks Precimonious [120] is a dynamic program analysis tool that suggests

cheaper �oating point operations to improve the performance of �oating point-heavy functions.

QAPPA di�ers from Precimonious in that it supports approximate type quali�ers to ensure pro-

gram safety, and that it applies arbitrary quantization to either �oating point or integer types.

AHLS [83] is a high-level synthesis framework for synthesizing RTL implementations of energy

e�cient circuits given a high-level C speci�cation. Similarly to QAPPA, AHLS considers narrow

�xed-point operations to minimize the overall energy of a given circuit. While AHLS focuses

on synthesizing �xed-function and �xed-precision accelerators, QAPPA serves as a framework to

navigate quality-e�ciency tradeo�s for precision-scalable accelerators. Approxilyzer [149] helps

improve hardware resiliency to approximation errors by quantifying the impact of single bit er-

rors on output quality. QAPPA assumes deterministic value truncation or rounding as opposed

to random bit-errors. QAPPA is not focused on improving resiliency, but rather aims to expose

opportunities to reduce energy and bandwidth in hardware accelerators.

Error Guarantees Approximate computing has embraced statistical guarantees [90, 126] to pro-

vide common-case error bounds. Our work inspires itself from past work to provide statistical

error bounds. Numerical analysis exploits interval analysis [43, 42] to reason about quantization

and rounding errors in �oating point programs. dco/scorpio [148] is a framework that automates

signi�cance analysis to identify computation tasks that have high contribution to output quality.

QAPPA could be augmented with such frameworks to provide stricter error bounds.

91

Precision-Scaling Hardware Techniques �ora [150] is a precision scalable SIMD architec-

ture that delivers energy precision trade-o�s in parallel applications. Stripes and Proteus [73, 72]

propose precision scalable compute and storage mechanisms that can improve the energy e�-

ciency of DNN accelerators. QAPPA can be used as a so�ware compiler for such precision scalable

architectures, by automatically deriving precision requirements and providing statistical guaran-

tees. Our comparative evaluation of precision-scaling mechanisms aims to motivate the inclusion

of precision scalable architectures like �ora and Stripes.

3.7 Conclusion.

We present QAPPA, a framework that �ne-tunes quantization requirements of C/C++ programs,

while meeting user de�ned, application level quality guarantees. We analyze the PERFECT bench-

mark suite with QAPPA and �nd that much precision can be discarded while meeting reasonable

quality targets. We evaluate hardware mechanisms that can reduce compute energy and memory

bandwidth in hardware accelerator designs. We then perform a comparative study of quantization

as a viable alternative to voltage overscaling and neural approximation. We show that precision

reduction rivals these techniques in terms of energy savings, while exhibiting predictable error

and providing practical quality guarantees.

92

Chapter 4

VTA: SOFTWARE-MICROMANAGED HARDWARE FOR EXTENSIBLE DEEP
LEARNING ACCELERATION

“Anyone can build a fast CPU. �e trick is to build a fast system.”

– Seymour Cray

Work under submission to ISCA 2019 with the collaboration of �ierry Moreau, Tianqi

Chen, Josh Fromm, Luis Vega, Lianmin Zheng, Eddie Yan, Luis Ceze, Carlos Guestrin and Arvind

Krishnamurthy.

Abstract Hardware accelerator design for deep learning faces the challenge of supporting a fast

changing landscape of deep learning models, algorithms, and frameworks. Existing frameworks o�en

choose performance over �exibility and extensibility by o�ering native support for a limited set of

data types, operators, and memory hierarchy optimizations. In this chapter, we propose a hardware/-

so�ware acceleration stack design that relies on bare minimal hardware features, shi�ing control

complexity to a tightly coupled so�ware stack. Our proposed system architecture o�ers extensibility

because (1) most of the control complexity is shi�ed to a static compiler and JIT runtime, and (2)

the hardware design can be expressed e�ciently in less than 1000 lines of HLS code, so it is friendly

to a wider set of engineers. �e design relies on explicitly managed low-level programming, explicit

compute/memory task arbitration, and explicit instruction and data cache management. We evaluate

our system architecture using an FPGA-based implementation of the proposed accelerator and com-

pilation techniques built on top of TVM, a state-of-the-art compilation stack. Our solution enables

the state of art deep learning models on a resource limited FPGA and outperforms a hand-optimized

designrunning on the same FPGA in terms of accuracy and throughput for ImageNet classi�cation.

Moreover, our solution is extensible to support novel models such as MobileNet variant and DCGAN

without changing the design of the hardware.

93

4.1 Introduction

�e e�ectiveness of deep learning techniques has led to a Cambrian explosion of model architec-

tures and frameworks. To keep up with the growing computational demands of new models and

increase applicability in power-constrained scenarios, many industrial players are already o�ering

specialized hardware accelerators.

Hardware systems designers need to deal with the quickly changing set of model architectures

and algorithmic techniques. �is poses challenges to designing e�cient hardware support that will

still be useful by the time it is ready for mainstream use. Microso�, for example, chose to use FPGAs

for their �exibility. Google’s TPU and Nvidia’s vertically integrated o�erings make compromises

in choosing hardware operators, supported data types, etc. Additionally, many details (e.g., ISA,

operator libraries, etc) of such systems are not visible to researchers, and this limits the scope of

innovation by researchers and designers in smaller companies or academia.

Despite the multitude of hardware/so�ware systems in industry, open-source deep learning

accelerator designs in academia, and ad-hoc model-to-ASIC/FPGA compilers, we argue that sup-

porting extensibility is still a key challenge. �is challenge takes several forms. Supporting many

deep learning models and operators requires modi�cations to the compiler stack and hardware

micro-architecture. Supporting many data types require proper handling of data layout and data

packing requirements across the so�ware stack, and arbitrary quantization knobs in hardware to

take advantage of low-precision data types. Additionally, e�ectively supporting many hardware

back-ends, speci�cally with respect to FPGA development platforms means that hardware designs

should be prototyped and tested within hours as opposed to months.

Addressing these extensibility challenges is di�cult for several reasons. First, hardware ac-

celerator designers o�en choose hardware features based on performance, which typically limits

�exibility. Second, hardware accelerator designs are speci�ed in HDL languages mastered by a

few experts, posing a challenge to maintainability and extensibility. Finally, on top of those hard-

ware designs, model-to-accelerator compilers are o�en built in an ad-hoc fashion for a �xed deep

learning framework, accelerator, and model combination, constraining extensibility as new mod-

els, operators, and data types emerge.

In this chapter we propose the Versatile Tensor Accelerator (VTA) stack, a hardware/so�ware

94

acceleration stack design that relies on minimal hardware support tightly coupled with a com-

piler stack. We employ a So�ware-Micromanaged Hardware design, which aims to o�oad as much

complexity as feasible to the so�ware stack. Our design o�ers extensibility as most of the con-

trol complexity is shi�ed to a compiler and JIT runtime, and because the hardware design can

be expressed e�ciently in less than 1000 lines of HLS code (making it friendly to a wider set of

engineers). We carefully consider how to partition the hardware from the compiler/runtime stack

while not compromising performance. VTA is composed of an open-source layered system stack

that includes model translation, TVM-based graph and operator optimization, �exible code JITing,

and customizable hardware architecture generation. VTA currently can be deployed on FPGA-

equipped SoCs for validation and end-to-end system evaluation.

VTA provides a bare-bones programmable accelerator that relies on explicit so�ware manage-

ment of e�ectively all of its operations. �is includes explicit dependence tracking to synchronize

memory and compute operations in a data�ow fashion to hide memory access latency, operators

de�ned in micro-kernels for extensibility, and explicit instruction and data cache management to

support large workloads on frugal resources — we run ImageNet classi�cation on an FPGA with

less than 1MB of on-chip storage.

We evaluate the complete VTA stack on the Pynq low-cost FPGA development board running

a Linux test environment. We show that the VTA stack supports e�ective exploration of hardware

designs with di�erent �xed point precision levels and provides automatic generation of hardware

design options and so�ware optimizations. Moreover, we show that the VTA stack can be readily

extensible to novel deep learning models such as MobileNet variants and Deep Convolutional

Generative Adversarial Network (DCGAN). Our evaluation shows that VTA enables extensibility

in terms of models, operators, data representations. Additionally, we show that VTA generates full

so�ware-hardware stacks that are performance-competitive with a comparable research-oriented

open-source FPGA design maintained by Xilinx. �e hardware design and the so�ware stack are

open-source and are ACM artifact-reproducible.

4.2 VTA Stack Overview

�e VTA stack takes as input models expressed in most deep learning frameworks (PyTorch, Keras,

CoreML, TensorFlow, etc). �e higher levels of the stack are based on TVM [28], a state-of-the-art

95

Graph Optimizer

Tensor Optimizer

VTA JIT Runtime

VTA ISA

VTA Micro-Architecture

Front End

Compiler and
Code Generation

Hardware
Design

Edge FPGA SimulatorCloud FPGA (Q3 2018)

Hardware
Deployment

Figure 4.1: Overview of the VTA stack.

open source framework for deep learning compilation. �e Graph Optimizer enables deep learning

frameworks to take advantage of graph-level optimizations, such as operator fusion and data layout

constraints (in particular how to pack data when using ultra-low precision integer types). �e

implementations of the operators are optimized by the Tensor Optimizer from TVM, which builds

upon the Halide DSL [114] with additional schedule primitives to provide performance across

multiple hardware back-ends [28], particularly on specialized hardware accelerators.

Two-level Instruction Set Architecture. VTA’s two-level hybrid ISA consists of (1) a high-

level CISC-y ISA that describes high-level, variable latency operations such as DMA transfers,

or tensor matrix multiplication and (2) a low-level, �xed latency RISC-y ISA that describes the

compute operations in terms of their memory access pa�erns.

�is two-level ISA allows VTA to remain programmable and e�cient. �e CISC-y ISA is spe-

ci�c to VTA, but provides a generic programming interface that is representative of other deep

96

learning accelerator designs [71].

JIT Runtime. An integral part of the VTA stack architecture is a just-in-time compilation run-

time that generates code at both levels of the VTA ISA. Micro-code implementations of high-level

ISA compute operations, such as 2D convolutions or max-pooling operations, are generated by the

JIT compiler. �is provides �exibility over what operators are supported by VTA. With this JIT-ted

microcode approach, supporting new operators seen in novel models can be facilitated by making

changes mostly in so�ware.

Explicit Instruction Management. When generating micro-code, the JIT runtime explicitly

manages microkernel swapping in VTA’s microcode cache. �is allows us to virtualize modest

FPGA resources for arbitrarily large workloads that requires many microkernels for all of the op-

erators that compose the network.

Latency Hiding. �e VTA design employs a decoupled access-execute [135] architecture motif

to hide memory access latency and increase overall utilization of compute resources. �e idea is

to rely on FIFO queues for communicating dependence information between the memory modules

and compute modules. �ere is no hardware support for dynamic dependency tracking, so proper

synchronization is handled entirely by the so�ware: the compiler translates so�ware-friendly

thread-level parallelism into hardware-friendly task-level parallelism, by inserting dependence in-

formation in the high-level instruction stream of VTA based on thread context.

4.3 VTA Hardware Design

�e VTA is a deep learning accelerator inspired by mainstream designs, including Google’s TPU [71].

VTA incorporates a simple RISC-like processor that can perform dense linear algebra operations

on rank 1 or 2 tensor registers. To a broader extent, VTA can serve as a template deep learning

accelerator design for full stack optimization, exposing a generic tensor computation interface to

the compiler stack.

97

DRAM

LOAD
MODULE

INPUT BUFFER

WEIGHT BUFFER

OUTPUT BUFFER

MICRO-OP
CACHE

REGISTER
FILE

GEMM Core

Tensor ALU

LD→CMP Q

CMP→LD Q

CMP→ST Q

ST→CMP Q

COMPUTE MODULE

STORE
MODULE

LOAD
CMD Q

COMPUTE
CMD Q

STORE
CMD Q

INSTRUCTION FETCH MODULE

Figure 4.1: �e VTA hardware organization. VTA is composed of modules that communicate

via FIFO queues, and SRAMs. �is enables task-level pipeline parallelism, which helps maximize

compute resource utilization.

4.3.1 VTA Design Overview

Figure 4.1 gives a high-level overview of the VTA hardware organization. VTA is composed of

four modules that communicate among each other via FIFO queues to enable task-level pipeline

parallelism. SRAM bu�ers serve as unidirectional data channels between concurrently executing

modules. �e fetch module loads instruction streams from DRAM. It also decodes those in-

structions to route them into one of three command queues. �e load module loads input and

weight tensors from DRAM into data-specialized on-chip memories. �e compute module per-

forms both dense linear algebra computation via a GEMM core, and general computation via a

tensor ALU. It also loads data from DRAM into the register �le and loads micro-op kernels into the

micro-op cache. Finally, the store module stores results produced by the compute core back

to DRAM.

4.3.2 High-Level ISA

VTA’s high-level instruction set architecture (ISA) is composed of 4 CISC-y instructions with vari-

able execution latency. It includes a LOAD instruction, a GEMM instruction, an ALU instruction,

98

OPCODE DEPT
FLAGS

BUFFER ID
(sram_mem)

SRAM BASE
(sram_base)

DRAM BASE
(dram_base)

Y SIZE
(y)

X SIZE
(x)

X STRIDE
(x_stride)

Y PAD:
TOP

(y_pad_0)

Y PAD:
BOTTOM
(y_pad_1)

X PAD:
LEFT

(x_pad_0)

X PAD:
RIGHT

(x_pad_1)
unused

OPCODE DEPT
FLAGS RESET

MICRO-OP
BEGIN

(uop_bgn)

MICRO-OP
END

(uop_end)

LOOP
EXTENT 0
(end0)

LOOP
EXTENT 1
(end1)

ACCUM IDX
FACTOR 0
(x0)

ACCUM IDX
FACTOR 1
(x1)

INPUT IDX
FACTOR 0
(y0)

INPUT IDX
FACTOR 1
(y1)

WEIGHT IDX
FACTOR 0
(z0)

WEIGHT IDX
FACTOR 1
(z1)

unused

OPCODE DEPT
FLAGS RESET

MICRO-OP
BEGIN

(uop_bgn)

MICRO-OP
END

(uop_end)

LOOP
EXTENT 0
(end0)

LOOP
EXTENT 1
(end1)

DST IDX
FACTOR 0
(x0)

DST IDX
FACTOR 1
(x0)

SRC IDX
FACTOR 0
(y0)

SRC IDX
FACTOR 1
(y0)

ALU
OPCODE
(OP)

USE_IMM IMMEDIATE
(IMM)

unused

unused

unused

OPCODE_WIDTH 4 MEMOP_ID_WIDTH MEMOP_SRAM_ADDR_WIDTH

unused

MEMOP_DRAM_ADDR_WIDTH 2 * MEMOP_SIZE_WIDTH 4 * MEMOP_DRAM_ADDR_WIDTH
MEMOP_STRIDE_WIDTH

OPCODE_WIDTH 4 1 2 * LOG_UOP_BUFF_DEPTH 2 * LOOP_ITER_WIDTH 2 * LOG_ACC_BUFF_DEPTH 2 * LOG_INP_BUFF_DEPTH 2 * LOG_WGT_BUFF_DEPTH

2 * LOG_ACC_BUFF_DEPTH 2 * LOG_INP_BUFF_DEPTHOPCODE_WIDTH 4 1 2 * LOG_UOP_BUFF_DEPTH 2 * LOOP_ITER_WIDTH
ALU_OPCODE_WIDTH

1 ALUOP_IMM_WIDTH

0 63

0 63

0 63 64 127

64 127

64 127

LOAD, STORE

GEMM

ALU

Figure 4.2: �e VTA high-level instruction �elds. LOAD and STORE instructions perform 2D

strided DMA reads/writes between DRAM and SRAM. GEMM instructions are used to perform

matrix multiplication and 2D convolutions while ALU instructions can perform a wide range of

activation, normalization, and pooling tasks.

and a STORE instruction. Figure 4.2 describes the �elds of each instruction. �e compute high-

level instructions execute a micro-coded kernel to perform computation. �ese CISC-instructions

echo the TPU [71] and Cambricon [87] set of programming instructions. For that reason, VTA

can be used to experiment with compiler optimizations that target hardware designs that are not

publicly available.

4.3.3 Compute Module

VTA’s compute module acts as a RISC-like processor that performs computation on tensor reg-

isters rather than scalar registers. Two functional units perform operations on the register �le: the

tensor ALU and the GEMM core. �e tensor ALU performs low-arithmetic intensity tensor opera-

tions such as element-wise addition. We rely on the tensor ALU to perform activation, normaliza-

tion and pooling tasks. �e GEMM core performs high-arithmetic intensity matrix multiplication

over data from the input and weight bu�ers. As new results are wri�en to the register �le, they

are concurrently �ushed to the output bu�er to be eventually stored to DRAM.

Low-Level ISA. �e compute core executes RISC micro-ops from the micro-op cache, which

describes how computation is performed over data. �ere are two types of compute micro-ops:

ALU and GEMM operations. To minimize the footprint of micro-op kernels while avoiding the

99

BLOCK_OUT

BLOCK_OUT

GEMM
Core

input
tensor

weight tensor
(stored transposed)

accumulator
tensor

BLOCK_IN

B
A
T
C
H

B
L
O
C
K
_
I
N

B
A
T
C
H

Data Types

int<INPUT_WIDTH>

int<WEIGHT_WIDTH>

int<ACCUM_WIDTH>

Bandwidth Derivation (bits per cycle)

INPUT_WIDTH*BATCH*BLOCK_OUT

WEIGHT_WIDTH*BLOCK_OUT*BLOCK_IN

ACCUM_WIDTH*BATCH*BLOCK_OUT

input buffer register file

inp_idx
reg_idx

weight buffer

wgt_idx

GEMM Instruction Pseudo-Code:

for i0 in range(0, end0):
 for i1 in range(0, end1):
 for uop_idx in range (uop_bgn, uop_end):
 x, y, z = decode_gemm_indices(uop_buffer[upc])
 reg_idx = i0 * x0 + i1 * x1 + x
 inp_idx = i0 * y0 + i1 * y1 + y
 wgt_idx = i0 * z0 + i1 * z1 + z
 reg_file[reg_idx] += GEMM(inp_buff[inp_idx], wgt_buff[wgt_idx])

LOG_ACC_BUFF_DEPTH LOG_INP_BUFF_DEPTH LOG_WGT_BUFF_DEPTH

accumulator index (x) input index (y) weight index (z) unused

0 31Micro-Op Fields

micro-op buffer

uop_idx

uop_bgn

uop_end

Figure 4.3: �e VTA GEMM core can perform one dense matrix multiplication over an input tensor,

a weight tensor, and adds the result into a register �le tensor. �e data addressing pa�ern is

speci�ed by a micro-coded sequence.

need for control-�ow instructions, the compute core executes micro-op sequences inside a two-

level nested loop that computes the location of each tensor register location via an a�ne function.

�is compression approach helps reduce the micro-kernel instruction footprint, and applies to

both matrix multiplication and 2D convolution, which are common primitives in neural network

operators.

GEMM Core. �e GEMM core evaluates GEMM instructions, by executing a micro-code se-

quence in a 2-level nested loop described in Figure 4.3’s pseudo-code block, at a rate of one input-

weight matrix multiplication per cycle. �e instruction �elds of the GEMM high-level instruction

are detailed in Figure 4.2. �e compiler lowers a computation schedule onto a hardware tensoriza-

100

BLOCK_OUT

Tensor
ALU

B
A
T
C
H

register file

dst_idx

ALU Instruction Pseudo-Code:

for i0 in range(0, end0):
 for i1 in range(0, end1):
 for uop_idx in range (uop_bgn, uop_end):
 x, y = decode_alu_indices(uop_buffer[upc])
 dst_idx = i0 * x0 + i1 * x1 + x
 stc_idx = i0 * y0 + i1 * y1 + y
 if USE_IMM:
 reg_file[dst_idx] = OP(reg_file[dst_idx], IMM)
 else:
 reg_file[dst_idx] = OP(reg_file[dst_idx], reg_file[src_idx])

LOG_ACC_BUFF_DEPTH LOG_ACC_BUFF_DEPTH

destination index (x) source index (y) unused

0 31Micro-Op Fields

source
tensor

destination
tensor

src_idx

Tensor ALU
 Micro-Ops
MIN(x, y)

MAX(x, y)

ADDI(x, C)

ADD(x, y)

MULI(x, C)

MUL(x, y)

SHLI(x, C)

SHRI(x, C)

Micro-Op Semantics
R[x] = R[x] < R[y] ? R[x] : R[y]

R[x] = R[x] > R[y] ? R[x] : R[y]

R[x] = R[x] + C

R[x] = R[x] + R[y]

R[x] = R[x].lo * C

R[x] = R[x].lo * R[y].lo

R[x] = R[x] << C

R[x] = R[x] >> C

micro-op buffer

uop_idx

uop_bgn

uop_end

Figure 4.4: �e VTA tensor ALU can implement tensor-tensor element wise operations, or tensor-

scalar operations.

tion intrinsic de�ned by the dimensions of the single-cycle matrix multiplication. Each data type

can have a di�erent integer precision: typically both weight and input types are low-precision

(8-bits or less), while the accumulator tensor has a wider type (32-bit) to prevent over�ow. In or-

der to keep the GEMM core busy, the input bu�er, weight bu�er, and register �le have to expose

su�cient read/write bandwidth, as derived in Figure 4.3.

Tensor ALU. Figure 4.4 details the range of operators that the Tensor ALU supports to imple-

ment common activation, normalization, and pooling operations. VTA being a modular design, the

range of operators that the Tensor ALU supports can be extended for higher operator coverage,

at the expense of higher resource utilization. �e Tensor ALU can perform tensor-tensor opera-

tions, as well as tensor-scalar operations on an immediate value. �e opcode of the tensor ALU,

and the immediate value are speci�ed by the high-level CISC instruction which �elds are listed in

101

Figure 4.2. �e micro-code in the context of tensor ALU computation only takes care of specifying

data access pa�erns, as shown in the ALU instruction pseudo-code block in Figure 4.4.

In terms of computational throughput, the Tensor ALU does not execute at a rate of one op-

eration per cycle. �e limitation comes from the lack of read-ports: since one register �le tensor

can be read per cycle, the tensor ALU has an initiation interval of at least 2 (i.e. performs at most 1

operation every 2 cycles). In addition, performing a single tensor-tensor operation at once can be

expensive especially given that register �le types are wide, typically 32-bit integers. As a result,

in order to balance the resource utilization footprint of the Tensor ALU with the GEMM core, a

tensor-tensor operation is by default performed via vector-vector operations over multiple cycles.

4.3.4 VTA Memory Subsystem

VTA has a single-level on-chip memory hierarchy composed of SRAM memories that are data-

specialized, e.g. weight and input activations are stored in di�erent physical SRAM modules. Fig-

ure 4.1 shows that SRAM bu�ers serve as unidirectional data channels between hardware modules.

Each bu�er has a single reader, single writer to allow for concurrent execution of both modules.

Bandwidth Considerations. VTA has a single-level on-chip memory hierarchy composed of

SRAM memories that are data-specialized: weight and input activations are stored in di�erent

physical SRAM modules. Having data-specialized bu�ers allows each SRAM memory to expose

the right amount of bandwidth required to keep the GEMM core busy. For instance, with 8-bit

inputs and weights, 32-bit accumulators, BATCH=2, BLOCK IN=16, and BLOCK OUT=16, the

bandwidth required to keep a GEMM core clocked at 200MHz busy is: 51.2 Gb/s, 409.6Gb/s, and

204.8Gb/s for each of the input bu�er, weight bu�er and register �le SRAM memories. �is diver-

gence in bandwidth requirements is the reason why VTA relies on data-specialized SRAM memo-

ries, rather than a single memory structure from which to read/write all data.

Memory Access Latency Hiding. VTA’s load and store modules perform DMA transfers

from DRAM to the input and weight SRAM bu�ers, and from the SRAM output bu�er to the

DRAM respectively. �ese operations can be performed while computation is taking place in the

compute core using the latency-hiding mechanisms described in Section 4.3.5.

102

stride = WIDTH

H
E
I
G
H
T

x

y

x

y

x pad

y

p
a
d2D load

DRAM SRAM

Load Instruction Pseudo-Code:

for i in range(0, y + y_pad_0 + y_pad_1):
 for j in range(0, x + x_pad_0 + x_pad_1):
 sram_loc = sram_base + i * (x_size + x_pad_0 + x_pad_1) + j
 dram_loc = dram_base + (i - x_pad_0) * x_stride + (j - y_pad_0)
 if (i < y_pad_0 || i >= y_size + y_pad_0 ||
 j < x_pad_0 || j >= x_size + x_pad_0):
 mem[sram_loc] = 0
 else:
 mem[sram_loc] = DRAM[dram_loc]

Figure 4.5: �e load module can perform 2D DMA loads with a strided access pa�ern from

DRAM to SRAM. In addition, it can insert 2D padding on the �y, which is useful when blocking

2D convolution. �is means that VTA can tile 2D convolution inputs without paying the overhead

of re-laying data out in DRAM to insert spatial padding around input and weight tiles.

load
inputs

load
weights

matrix
multiplication

store
outputs

load
inputs

load
weights

matrix
multiplication

store
outputs

load
inputs

load
weights

store
outputs

load
inputs

load
weights

matrix
multiplication

matrix
multiplication

store
outputs

Single Module
No Task-Pipelining

Multiple Modules
Task-Pipelining

execution savings

Figure 4.6: Task-level pipeline parallelism allows concurrent utilization of compute and memory

resources in hardware. Depending on the granularity of the task-level-parallelism, much of the

memory access latency can be hidden for compute intensive workloads.

Tiled Access Patterns. �e load and store modules can perform strided 2D accesses from

and to DRAM as Figure 4.5 shows. �is feature is useful for describing cached reads and writes over

tiled tensor data with a single instruction. �e load module can also dynamically insert padding

as Figure 4.5 suggests, in order to tile input and weight tensors in the context of 2D convolution

without paying the overhead of spatial packing.

103

load
inputs

load
weights

store
outputs

load
inputs

load
weights

matrix
multiplication

matrix
multiplication

load
inputs

store
outputs

matrix
multiplication

matrix
multiplication

store
outputs

matrix
multiplication

store
outputs

store
outputs

No dependences:
tasks execute as
soon as modules are
ready, leading to
erroneous execution

Insert read-after-write
dependences and
producer-consumer
order is respected,
but tasks can execute
too early

matrix
multiplication

store
outputs

store
outputs

matrix
multiplication

matrix
multiplication

store
outputs

Insert write-after-read
provide timely
execution of tasks,
thus ensuring
execution correctness

matrix
multiplication

store
outputs

load
inputs

load
weights

load
weights

load
inputs

load
weights

load
inputs

load
weights

load
inputs

load
weights

load
inputs

load
weights

load
inputs

load
weights

in this scenario, the input load overwrites the data from
the previous load that is still being consumed by the
matrix multiplication, leading to incorrect execution

Legend
context 0
context 1

Figure 4.7: Inserting data dependences between instructions is essential to ensure execution cor-

rectness of a decoupled access-execute instruction stream.

4.3.5 Task-Level Pipeline Parallelism

Managing memory movement to keep compute resources busy is the key to e�cient hardware

acceleration. For this reason, Task-Level Pipeline Parallelism (TLPP) is an important pa�ern in

hardware design: it allows for the simultaneous use of compute and memory resources in order

to maximize their utilization. TLPP is achieved via access-execute decoupling [135], which is the

mechanism employed by Google’s TPU [71] to maximize compute resource utilization.

Latency Hiding. Figure 4.6 demonstrates the bene�ts of performing access-execute decoupling

in order to unlock task-level pipeline parallelism. By allowing instructions to execute concurrently

in separate hardware modules rather than within a monolithic module, the memory operations

can be performed concurrently with compute operations. �is has the e�ect of hiding memory

access latency in typical deep learning workloads. Speci�cally with 2D convolutions and their high

operational intensity, much of the memory access latency can be hidden with this mechanism.

104

MODULE

producer
RAW queue

consumer
RAW queue

producer
WAR queue

consumer
WAR queue

input buffer output buffer

producer consumer

Figure 4.8: Each module is connected to its consumer and producer via RAW and WAR dependence

queues. In addition, we organize VTA to ensure that each SRAM bu�er has at most one writer and

one reader. With such a hardware organization, modules can execute in a data�ow fashion.

Data Dependences. Implementing a decoupled access-execute hardware pipeline requires ex-

plicit data dependences between instructions. Figure 4.7 explains the need to insert those depen-

dences. In the case of blocked matrix multiplication, each execution phase consists of two load

operations for input and weight tensors, a matrix multiply compute operation, and a store op-

eration. In order to extract TLPP, we partition memories into two mutually-exclusive execution

contexts, so that concurrent load, compute, and store operations do not interfere with one another.

�ese partitions are so�ware-de�ned, and do not require physical separation.

Figure 4.7 shows that without dependences, tasks execute as soon as each hardware module

is available: this can result in erroneous execution due to operations executing too soon (e.g. the

�rst store will read the results of the �rst matrix multiplication before the la�er is computed). By

inserting read-a�er-write (RAW) and write-a�er-read (WAR) dependences between tasks, we can

guarantee timely and correct execution for decoupled access-execute instruction streams.

Data�ow Execution. VTA uses dependence FIFO queues between hardware modules to syn-

chronize the execution of concurrent tasks. Figure 4.8 shows how hardware modules can execute

concurrently from their producer and consumer in a data�ow fashion through the use of depen-

dence FIFO queues, and single-reader/single-writer SRAM bu�ers. �is method of connecting

hardware modules can build data�ow task pipelines of arbitrary depth. Figure 4.1 shows a VTA de-

sign composed of four modules that describe a 3-stage task pipeline (load-compute-store).

105

Function Usage

BufferLoad2D() prepare a load from DRAM instruction

BufferStore2D() prepare a store to DRAM instruction

PushUop() push micro-kernel op

DepPush() mark instruction dependence source

DepPop() mark instruction dependence destination

Synchronize() send the instructions/micro-kernels

Table 4.1: Instruction stream management runtime functions

We can envision separating the tensor ALU from the GEMM core in order to maximize the utiliza-

tion of the GEMM core. �is separation would result in a load-gemm-activate-store

task pipeline which closely re�ects the TPU [71] design.

4.4 VTA So�ware Stack

�e guiding design principle of VTA is to o�oad control-related complexity to the so�ware stack.

�is complexity includes dynamic dependence tracking, timeliness of data and instruction cache

reads, and execution of CISC-y instructions over many cycles. VTA’s so�ware stack extends the

TVM stack to support a smart compiler and JIT runtime. �is layered so�ware organization gives

us the �exibility to o�oad a multitude of deep learning workloads, mostly by tweaking the so�ware

stack rather than changing hard-coded feature coverage in hardware. Our so�ware stack was

co-designed with the hardware to support �exibility in terms of operation coverage via micro-

kernel JIT-ting, �exibility of workload size via runtime-driven instruction cache management, and

performance-driven latency hiding via runtime-driven dependence insertion from virtual thread

context.

4.4.1 VTA Runtime System

�e VTA JIT runtime performs the bookkeeping tasks needed to o�oad computation onto VTA.

It exposes APIs (shown in Table 4.1 and Table 4.2) that perform the following:

106

Function Usage

UopInst() prepare a compute instruction

UopLoopBegin() mark uop loop begin

UopLoopEnd() mark uop loop end

Table 4.2: Compute micro-kernel generation functions

• Direct Memory Access (DMA) transfers between main memory (DRAM) and accelerator

memory (SRAM). It supports shared memory systems both with coherent and non-coherent

accesses between the CPU and accelerator.

• Explicit dependence management in the instruction stream.

• Synchronization between the target CPU and VTA.

• Micro-op kernel generation and caching.

We discuss each one of those runtime functionalities in light a lowered code example that

performs vector addition, dictated by the graph in Figure 4.1. �e code is the result of schedule

optimizations and lowering. �e resulting code calls into to the VTA JIT runtime which we’ll

explain next.

�e VTA runtime exposes the LoadBuffer2D() and StoreBuffer2D() API calls to

generate LOAD and STORE VTA instructions. In the vector add code example in Figure 4.2, these

functions are inserted when preparing the SRAM bu�ers, and when sending the results back to

DRAM.

�is on-the-�y micro-kernel generation is handled using theUopLoopBegin(),UopLoopEnd(),

and UopInst() runtime API functions, listed in the vector addition example. �e Begin and

End functions prepare and package the micro-op kernel to produce a CISC compute instruction

that will call into the kernel. �e DepPop() and DepPush() calls set the dependence �ags

of the in-�ight instructions to insert a dependence edge between two instructions. Finally, the

107

A

B

A_buf

B_buf

C_buf C

id(A)

acc_scope

acc_scope

acc_scope

id(B)

add(A_buf, B_buf)
cast(C_buf)

DMA Load ALU (vector add) DMA StoreVTA Operation:

global

global

global

Figure 4.1: Simple vector addition data�ow graph. A and B are stored in global memory (DRAM)

and are copied via DMA into the register �le (accumulator memory scope, a.k.a. register �le). �e

vector add computes the results in the local register �le, before being wri�en back to DRAM via a

DMA copy.

Synchronize() runtime call �nishes preparing the instruction stream and micro-kernels, and

hands-o� control to the accelerator.

Just-in-TimeMicro-KernelGeneration. Di�erent deep learning models expose operators that

have varied memory access pa�erns. It is challenging to enumerate and hard code these access

pa�erns in hardware via CISC instructions. For instance, a 2D convolution with window size of

3 and stride of 1 will have an access pa�ern di�erent from a convolution with window size of 7

and stride of 2. �ere is an even larger divergence when we consider more advanced operators

such as grouped convolution for MobileNet [66] and conv2d transpose operators for generative

adversarial networks [113].

Our solution to this explosion of operators to support is to keep the hardware as simple as

possible and let the JIT runtime generate micro-kernels for new operators dynamically. �e VTA

executable generates new micro-kernels on-the-�y by calling into the runtime’s micro-kernel gen-

eration function. Upon each UopInst() call, the runtime adds a VTA micro-op to current micro

kernel to construct the kernel.

108

LoadBuffer2D(A, 0, 64, 1, 64, 0, 0, 0, 0, 0, 3)
LoadBuffer2D(B, 0, 64, 1, 64, 0, 0, 0, 0, 64, 3)
PushUop {
 UopLoopBegin(64, 1, 1, 0)
 UopInst(1, 0, 0, 64, 0, 2, 0, 0)
 UopLoopEnd()
}
DepPush(2, 3)
DepPop(2, 3)
StoreBuffer2D(0, 4, C, 0, 64, 1, 64)
Synchronize()

Figure 4.2: Simple vector addition compiled down into low level calls into JIT runtime.

VTA hardware provides a nested loop construct to reduce the footprint of micro-kernels which

consist of many levels of nested loops. We enhanced the TVM compiler to detect loop pa�erns

and fold them into the hardware-imposed loop construct. A�er folding the loop nest outer loops,

the internal code is unrolled during runtime by calling the runtime micro-kernel function. �is

provides a key advantage—we can unroll the inner loop dependent predicates and simplify the

control �ow that needs to be performed on device. �is is essential to support novel operators

such as conv2d transpose used in generative adversarial nets.

ExplicitMicro-KernelManagement. �e runtime generates each micro-kernel once and caches

them in on-chip DRAM throughout execution to enable reuse of micro-kernels across multiple ker-

nel launches. While most modern CPU architectures manage instruction caches automatically, we

had to provide a minimalist design that trims down this control unit. We use VTA JIT runtime

to manage the micro-op cache instead. �e micro-op cache is swapped in during invocation and

follows a simple LRU cache replacement policy.

4.4.2 Compiler Support

TVM [28] is an optimizing compiler that exposes an intermediate representation (IR) and set of

scheduling transformations to produce e�cient code for a multiplicity of hardware back-ends

109

based on a hardware-agnostic algorithm description. �e process of generating multiple valid

implementations builds on Halide’s idea of decoupling algorithm descriptions from computation

rules (i.e. schedule optimizations) [114].

To the best of our knowledge, VTA is the �rst specialized deep learning accelerator to be fully

supported with the TVM stack. In this subsection, we highlight how TVM is used to apply schedule

transformations to target VTA. Some of these compiler passes are described in TVM [28], but we

revisit them in light of VTA’s hardware, and runtime internals.

ExplicitMemoryManagement One aspect that di�erentiates CPUs and GPUs from deep learn-

ing accelerators is the explicit management of on-chip memories. TVM introduced the concept of

memory scopes to the schedule space so that a compute stage bu�er can be assigned to an ex-

plicitly managed memory region (AL, BL and CL in the code). In the context of programming

VTA, memory scopes let us assign a bu�er to a speci�c memory region and subsequently create

region-speci�c lowering rules.

Section 4.3 explained that VTA has data-specialized memories, meaning that input activation

tensors could not be stored in the same memory structure as kernel weight tensors. Memory

scopes lets us enforce data specialization constraints by assigning a given bu�er to a particular

VTA hardware memory structure. When reasoning about a data�ow graph, like the one shown in

Figure 4.1, we di�erentiate between global memories that sit in DRAM, and scoped memories that

reside in VTA’s on-chip SRAM bu�ers.

Explicit DependenceManagement. We saw in Section 4.3.5 that labeling task dependences ex-

plicitly in the instruction stream is necessary to expose task-level pipeline parallelism. �e runtime

exposes an explicit dependence insertion API, which is illustrated in Figure 4.3. Figure 4.3 shows

how the runtime can enforce a RAW dependence between aLOAD and its subsequentADD instruc-

tion (e.g. the RAW dependence between ld0 and add0 in Figure 4.3). First, DepPush(load,

compute) is called while preparing the ld0 instruction. �is sets the dependence �ag of the

ld0 instruction so that when that instruction gets executed by the load module, a dependence

token is pushed into the RAW dependence FIFO leading to the compute hardware modules. Sec-

ond, DepPop(load, compute) is called before preparing the add0 instruction. �is sets

110

ld
0

add
0

ld
1

add
1

ld
2

ld
3

add
2

add
3

ld
0

add
0

ld
1

add
1

ld
2

add
2

ld
3

add
3

execution savings

Task-Pipelining

t

No Task-Pipelining

write after read (WAR) dependence

read after write (RAW) dependence

LoadBuffer2D(ld0)
DepPush(load, compute)
LoadBuffer2D(ld1)
DepPush(load, compute)
DepPop(load, compute)
PushALUOp(mm0)
DepPush(compute, load)
DepPop(load, compute)
PushALUOp(mm1)
DepPush(compute, load)
DepPop(compute, load)
LoadBuffer2D(ld2)
...

LoadBuffer2D(ld0)
PushALUOp(add0)
LoadBuffer2D(ld1)
PushALUOp(mm1)
...

Lowered JIT Runtime Calls

Figure 4.3: �e runtime helps extract task-parallelism in hardware by exposing an explicit depen-

dence API when lowering the VTA instruction stream.

the dependence �ag of the upcoming add0 instruction. When the add0 instruction is executed

by the compute module, it pops the dependence token that the previous ld0 pushed in the RAW

dependence FIFO, in order to enforce the dependence between the two instructions.

Programming accelerators that require explicit low-level synchronization is di�cult as we dis-

cussed saw in Figure 4.3’s explicit dependence insertion example. To reduce the burden on the pro-

grammer, TVM introduced a virtual threading scheduling primitive that allows the programmer

to specify a high-level data parallel program in the same way that they would for multi-threaded

CPUs. Finally, TVM automatically lowers the virtual threaded program to a single instruction

stream with low-level explicit synchronization.

�e algorithm starts with a high-level multi-threaded program schedule and then inserts the

necessary low-level synchronization operations to guarantee correct execution within each thread.

Next, the operations of all virtual threads are interleaved into a single instruction stream. Finally,

the hardware recovers the available pipeline parallelism dictated by the low-level synchronization

of the instruction stream.

111

Computational Graph Optimizations We augment the TVM stack to provide customized

high-level computational graph optimizations that are speci�c to VTA. We transform the layout

of intermediate tensors to a packed data format that is friendly to VTA’s DMA instructions. For

low-bit weight operators, we automatically pre-pack the weights into standard 64-bit words. �e

computational graph optimizer also automatically partitions the workloads among the accelerator

and on-chip CPU to perform heterogeneous computation for end-to-end inference. For example,

operators with shallow channel depth are not amenable to hardware acceleration and are more

easily o�oaded on the CPU.

4.4.3 Simulator Runtime and Automated Scheduling

For a given VTA hardware design and deep learning operator speci�cation, there are a multitude of

ways to implement an e�cient schedule. We need a simpli�ed approach to exploring the schedul-

ing space to �nd the best implementation of any given operator on VTA. TVM [28] provides an

automated schedule explorer that requires reliable performance measurement on hardware. �is

requirement can be problematic for accelerators since the cost of generating a hardware design

can be expensive (a few hours of FPGA place and route time).

We provide a simulator-based solution, by building a cycle accurate simulator of VTA that

lets us to run any given VTA schedule on a server. �e simulator supports a quick pro�ling mode

that skips the actual computation but returns the performance counter of the program. �e perfor-

mance counter can then be used to predict the cost of the actual hardware runtime quite accurately,

which we show in the evaluation below.

�e simulator has been proven crucial to the improving our productivity to performing design

space exploration automation. Crucially, it allows the user to reliably catch bad schedules (ones

that can cause runtime errors), get quick estimations of runtime costs, and quickly �nd the best

schedules without having to generate the hardware.

4.5 Evaluation

We a�empt to answer several questions in our evaluation on the e�ect of di�erent hardware imple-

mentations, data precisions, and schedule optimizations. We aim to answer the following speci�c

questions:

112

• Can VTA enable extensive design space exploration, across hardware variants and sched-

ules?

• How e�ective is VTA stack’s JIT simulator runtime-based automated scheduling?

• Can the VTA stack optimize real world end-to-end deep learning workloads, and expose

Pareto-optimal designs for a given problem (e.g. ImageNet)?

• Can the VTA stack easily support emerging workloads in deep learning (e.g., MobileNets,

GANs, low precision operators)?

We �rst evaluate variants of VTA hardware and so�ware schedules, �ne-tuned for ResNet-18

convolution layers. Second, we evaluate our best hardware and schedule variants on a set of end-

to-end deep learning workloads that include ResNet, MobileNet and DCGAN. We also perform a

Pareto-optimality study that showcases hardware-level and model-level accuracy vs. performance

trade-o�s exposed by the VTA stack on the ImageNet classi�cation problem. We evaluate the VTA

stack entirely on real hardware experiments running complete workloads for which we verify

correctness.

4.5.1 Methodology

One of the priorities in our evaluation is to capture bo�lenecks that exist outside of the accelera-

tor: moving data in and out of SRAM, CPU overheads, memory management, etc. �is approach

gives us be�er visibility on important system bo�lenecks that hinder the bene�ts of hardware

acceleration.

Hardware Platform. We evaluate VTA on the Xilinx Pynq FPGA development board that in-

cludes an ARM-based Zynq XC7Z020 FPGA SoC. It is a low-power FPGA fabric that could run on

most IoT devices (under a 2W envelope). �e modest resources of the FPGA re�ects the challenge

for edge deep learning accelerator design to support real world deep learning workloads. However,

the principles of hardware and schedule optimizations can extrapolate to other ASIC and FPGA

platforms.

Workloads. Our workload coverage includes CNNs such as ResNet and MobileNet for computer

vision and the DCGAN generative adversarial network.

113

Name Operator H,W IC,OC K,S

C0 conv2d 224, 224 3,64 7, 2

C1 conv2d 56, 56 64,64 3, 1

C2 conv2d 56, 56 64,64 1, 1

C3 conv2d 56, 56 64,128 3, 2

C4 conv2d 56, 56 64,128 1, 2

C5 conv2d 28, 28 128,128 3, 1

C6 conv2d 28, 28 128,256 3, 2

C7 conv2d 28, 28 128,256 1, 2

C10 conv2d 14, 14 256,256 3, 1

C11 conv2d 14, 14 256,512 3, 2

C12 conv2d 14, 14 256,512 1, 2

C13 conv2d 7, 7 512,512 3, 1

Table 4.1: Con�gurations of all conv2d operators in ResNet-18 used in the single kernel experiment. H/W

denotes height and width, IC input channels, OC output channels, K kernel size, and S stride size. All ops

use “SAME” padding.

Workload (layer)

0

50

100

150

M
ea

su
re

d
Th

ro
ug

hp
ut

 (G
O

p/
s)

resnet-01 resnet-02 resnet-03 resnet-04 resnet-05 resnet-06 resnet-07 resnet-08 resnet-09 resnet-10 resnet-11

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

1x
16
x1
6

2x
16
x1
6

1x
32
x3
2

2
4
8

weight bits

file:///Users/moreau/Downloads/visualization(10).svg

1 of 1 8/7/18, 3:12 AM

Figure 4.1: �roughput improvement on each ResNet convolution layer versus integer precision of kernel

weights (8-bit down to 2-bits).

FPGA Compilation. We automate the generation of VTA binaries on a compute cluster to

sweep design parameters including tensor intrinsic shape, weight precision, and SRAM distribu-

tion among input, weight and register �le. In addition we vary the levels of HLS-generated register

pipelining in order to close timing at di�erent target frequencies. We keep the bitstreams that pass

timing closure, and discard the rest.

114

2
4
8

weight bits

resnet-01
resnet-02
resnet-03
resnet-04
resnet-05
resnet-06
resnet-07
resnet-08
resnet-09
resnet-10
resnet-11

workload

16 32 64 128 256 512 1,024
Arithmetic Intensity (Op/B) - log scale

2

4

8

16

32

64

128

256
M

ea
su

re
d

Th
ro

ug
hp

ut
 (G

O
p/

s)
 -

lo
g

sc
al

e

file:///Users/moreau/Downloads/visualization(7).svg

1 of 1 8/6/18, 11:22 PM

Figure 4.2: Roo�ines of 8-bit, 4-bit, 2-bit weight VTA designs.

4.5.2 Hardware and Schedule Exploration

KernelWeight�antizationAnalysis. We assess the workload-level e�ects of modifying ker-

nel weight precision from a baseline 8-bit which is now standard in accelerators, down to 4 and

2 bits. �e goal of this evaluation is to show that with careful co-optimization of hardware and

schedules, we can achieve linear speedups when reducing weight precision.

We denote a design that uses 4-bit weights and 8-bit activation with the W4A8 notation. We

choose to only quantize kernel weights as quantizing activations can be too detrimental to accu-

racy. We pick our best combination of VTA hardware designs (for each precision se�ing), and

schedule (which can be �ne-tuned to each layer) for each data point in Figure 4.1.

Overall performance is a function of how quantization a�ects compute throughput, e�ective

memory bandwidth, and e�ective on-chip storage. Changing the weight precision leads to linear

compute scaling because of narrower FMAs, but sub-linear memory bandwidth and storage scaling

as activations and outputs remain at default precision levels. Reducing the weight precision in-

creases e�ective weight storage linearly, which can improve tile reuse when optimizing schedules.

115

resnet-01
resnet-02
resnet-03
resnet-04
resnet-05
resnet-06
resnet-07
resnet-08
resnet-09
resnet-10
resnet-11

workload

2
4
8

weight bits

16 32 64 128 256 512 1,024
Arithmetic Intensity (Op/B) - log scale

2

4

8

16

32

64

128

256

M
ea

su
re

d
Th

ro
ug

hp
ut

 (G
O

p/
s)

 -
lo

g
sc

al
e

file:///Users/moreau/Downloads/visualization(8).svg

1 of 1 8/6/18, 11:22 PM

Figure 4.3: Improvement in compute throughput of ResNet workloads as we use a lower-precision VTA

designs.

�is reuse can be very e�ective in layers of ResNet with higher weight to activation ratios.

To be�er understand the e�ect of quantization, we complement our analysis with a roo�ine

model of the hardware design at each precision shown in Figure 4.1. A roo�ine analysis shows at a

glance how e�ciently a given workload is running on hardware (i.e. how close it it to the roo�ine),

and whether the bo�leneck is memory or compute (le� or right of the knee respectively). Figure 4.2

and Figure 4.3 display the same data but with visualization cues to capture di�erent nuances.

Figure 4.2 highlights how the roo�ines shi� as we increase the quantization of kernel weights:

as expected, the compute roo�ine peak shi� up to higher throughput values, and so do the data

points under the roo�ine (each represents a workload performance number). Peak throughput

scaling is linear at a clock rate of 100MHz; we achieve 200GOps at W2A8, 100GOps at W4A8,

and 50GOps at W8A8. It’s worth noting that the knee of the roo�ine which marks the point

from which a memory-constrained workload shi�s to being compute-constrained is moving to the

right (higher arithmetic intensity point). �is is a sign that memory bandwidth cannot keep up

with compute scaling as explained above, so workloads need to have high arithmetic intensity to

116

take advantage of the reduced precision.

Figure 4.3 shows how the each workload’s throughput and arithmetic intensity changes as

we go from an 8-bit weight VTA design down to 2-bit weight design. �antizing the weights

shi�s the arithmetic intensity of each workload to the right because we perform the same amount

of computation for less bytes moved. �is can have the e�ect of moving a data point from a

compute-bound region into to a memory-bound region.

In the case of resnet-11, which has a high weight to activation ratio compared to other

layers, the bar chart in Figure 4.1 shows super-linear scaling for resnet-11. �e higher weight

reuse caused by larger weight storage overall reduces the data movement and improves perfor-

mance super-linearly. We can con�rm this hypothesis with the Roo�ine in Figure 4.3: moving

fromW8A8 toW4A8, the red resnet-11 shi�s far to the right, validating that we have a high

increase in compute to data movement ratio.

For layers where activations dominate data movement, like resnet-1, performance scaling

is sub-linear. �e roo�ine shows that resnet-1 barely shi�s on the x axis showing li�le bene�t

to quantization on overall data movement, while compute is improving.

Overall, hardware parameter and schedule exploration leads to near-linear scaling of workload

throughput as kernel weight precision goes down. We show in the Section 4.5.3 a Pareto-optimality

study where we train quantized variants of ResNet-18 to take advantage of versions of VTA opti-

mized for 2 and 4-bit inference.

E�ects of Latency Hiding. �e roo�ine plot in Figure 4.4 shows how the throughput changes

with and without latency hiding enabled. �ese results are measured on di�erent convolution

layers of the ResNet-18 inference benchmark running on the same VTA W8A8 variant.

�e goal behind designing a hardware architecture together with its compiler stack is to allow

each workload to be brought as close as possible to the roo�ine of the hardware. �e technique

showcased is latency hiding, which requires explicit dependence tracking at the hardware level,

compiler support to partition work via virtual threading, and explicit dependence insertion in

the instruction stream during JIT code-generation. Latency hiding improves the utilization of

the available compute and memory resources. Peak compute utilization increases from 70% with

no latency hiding to 88% with latency hiding. �is experiment demonstrates the VTA stack’s

117

10 100
Arithmetic Intensity: Ops per Byte of Data (log scale)

10.0

6 × 100

2 × 101

3 × 101

4 × 101

6 × 101

Gi
ga

 O
ps

 p
er

 S
ec

 (l
og

 sc
al

e) 37

14

39

9

4243

15

45

30

15

32 34

11

31

7

36
30

10

30

20

10

20

optimized
baseline
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

Figure 4.4: Roo�ine of an FPGA-based deep learning accelerator running ResNet inference. With

latency hiding enabled by TVM, the performance of the benchmarks are brought closer to the

roo�ine, demonstrating higher compute and memory bandwidth e�ciency.

potential for implementing cross-stack optimizations that require visibility into both the hardware

and compiler layers.

E�ectiveness of Simulator Runtime for Schedule Exploration Figure 4.5 belows shows the

result of having the hardware and compiler work together to maximize utilization of the available

hardware resources. On the same hardware executing the same workload, schedule optimiza-

tions can have a 10× impact on performance. We rely on the runtime simulator pro�ling metrics

such as total data movement to assess how well a give schedule will perform in hardware. �e

power of this approach is that we can perform black box tuning without knowing what hardware

or schedule is being used. �is approach provides �exibility over hardware design variants and

schedule templates without having to cra� ad-hoc cost models that can change when running

other workloads. Note that latency hiding changes the cost relationship between data movement

and measured inference time.

118

false
true

latency hiding

0.5 1 2 4 8 16 32 64
Simulated Data Transfer (MB) - log scale

8

16

32

64

128

M
ea

su
re

d
Ti

m
e

(m
s)

 -
lo

g
sc

al
e

file:///Users/moreau/Downloads/visualization(11).svg

1 of 1 8/7/18, 12:49 PM

Figure 4.5: Validating the runtime simulator metrics against real experiment. As the results show,

this correlates closely to measured performance, thus allowing us to perform schedule exploration

without incurring hardware run time costs.

4.5.3 End-to-End Evaluation

�is complete evaluation section showcases the VTA stack on complete deep learning workloads

running in hardware.

ImageNet Accuracy-Performance Pareto Study. We perform an accuracy vs. throughput

Pareto-optimality study of VTA on the standard ImageNet classi�cation task. ImageNet classi-

�cation is a challenging task, given the limited resource budget of the edge FPGA device we are

targeting, and the resources it takes to train ImageNet for di�erent precisions. Existing alternatives

to VTA on the FPGA we target can only use datapath specialized designs that utilize shallow net-

works with limited accuracy to maximize throughput. We trained 4-bit and 8-bit weight variants

of ResNet18 and ResNet34 on the ImageNet dataset and o�oad them to VTA using our complete

optimization stack.

�e results are shown in Figure 4.6. We also include the hand-designed accelerator QNN-MO 1

from Xilinx. QNN-MO uses a variant of DoReFa-Net with small capacity. VTA can e�ectively ex-

1 h�ps://github.com/Xilinx/QNN-MO-PYNQ, �is is the only publicly available working ImageNet classi�cation
solution that we can �nd on the target FPGA platform.

119

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Throughput (image/second)

0.3

0.4

0.5

0.6

0.7

To
p-

1
Ac

cu
ra

cy

Resnet18 4bit
Resnet34 4bit

Resnet34 8bit
Resnet18 8bit

MobileNet-G 8bit

Dorefa-small

XTU 8bit
XTU 4bit
QNN-MO

Figure 4.6: End-to-end ImageNet classi�cation throughput vs top-1 accuracy of model and hard-

ware designs on Zynq XC7Z020. We can �nd that VTA (labeled as XTU) enables exploration of

di�erent bitwidth and model choices, enabling state of the art models on ImageNet classi�cation.

120

MobileNet-G ResNet-18 ResNet-34 DCGAN
0

500

1000

1500

2000

Ti
m

e
co

st
 (m

s)
CPU
XTU

Figure 4.7: End-to-end time cost of Models on Zynq XC7Z020 at 8-bit precision. VTA (labeled as

XTU) generates higher throughput not only on standard ResNet networks, but also supports novel

operators in models such as MobileNetG and DCGAN.

plore the design space while supporting state-of-art models on a resource-limited platform. �ese

improvements are brought by VTA’s minimalist architecture that enables e�ective FPGA o�oad-

ing, as well as powerful so�ware stack to support the various models.

Extending Novel Model Coverage �e landscape of deep learning evolves continuously; it is

important to support novel models. In this part of evaluation, we evaluate two novel model archi-

tectures. MobileNet [66] is a recent architecture that uses grouped convolution to reduce the total

computation overhead of the network. We evaluate a variant of MobileNet we call MobileNetG that

groups the channels by the vector factor of the VTA’s GEMM core. Convolutional Generative Ad-

versarial Network [113] (DCGAN) is another type of model that has been used for image-to-image

translation and generation.

Both models requires non-trivial extensions to support new operators. Speci�cally, MobileNetG

needs grouped convolution support that exhibits block sparse pa�erns on channel groups. DCGAN

convolution transpose operator support, which has a sparsity pa�ern on the spatial locations.

121

Specialized accelerators need to carefully support these novel access pa�erns to skip unnecessary

computations on these operators to achieve maximum performance. �anks to VTA’s JIT runtime,

we can readily use schedules to generate micro-kernels that support these novel access pa�erns

without changing the hardware. �is demonstrates the extensibility of VTA.

Figure 4.7 shows a performance comparison across these models, comparing VTA-accelerated

execution against a highly optimized ARM CPU-only execution on the Pynq platform. We use the

TVM autotuner to cra� industry-strength CPU kernels that take advantage of NEON vectorization,

multi-threading and state of the art scheduling tricks (spatial tiling, Winograd transform etc.).

VTA outperforms the highly optimized CPU baseline, achieving 3.0× speedup on MobileNet, 5.5×

speedup on ResNet-34, and 8.0× speedup on DCGAN.

Anecdotally, an undergraduate researcher unfamiliar with the VTA stack but familiar with

TVM-level programming implemented grouped convolution and conv2D transpose support in just

3 days, highlighting the extensibility of the VTA stack.

4.6 Related Work

Deep Learning Frameworks Deep learning frameworks [3, 16, 27, 129] provide convenient

interfaces for users to express deep learning workloads and deploy them easily on di�erent hard-

ware back-ends. �ere is a recent trend on introducing compilation techniques into deep learning

frameworks. Tensor�ow’s XLA [3], and DLVM [154] use computational graphs to optimize deep

learning workloads. TVM [28] uses both graph optimization and tensor schedule optimization to

target diverse hardware back-ends. �e VTA stack provides a minimalist hardware design, to-

gether with a novel JIT runtime and TVM compiler support to provide an end-to-end hardware

so�ware stack for extensible deep learning acceleration.

Deep Learning Accelerators Despite the emerging popularity of accelerators for deep learn-

ing [71, 33, 32, 62], it is yet unclear how an end-to-end stack can be built to e�ectively target these

devices. VTA provides such a compiler stack blueprint and we demonstrate its e�ectiveness by

o�oading the latest state-of-the-art deep learning workloads onto a IoT class FPGA with less than

1MB on-chip storage. In addition, logic speedups have been heavily emphasized (leading to 3, 4,

5 orders of magnitude speedups), li�le a�ention has been devoted to how other system, CPU, and

122

data movement bo�lenecks a�ect acceleration bene�ts. �is chapter provides a generic and open

so�ware hardware co-design solution and enables rapid exploration and evaluation of hardware

knobs, runtime, and compiler optimizations.

Model to FPGACompilers Model to FPGA translation is an active area of research. FINN [146]

is a model to binarized FPGA compiler that can provide very high compute throughput when

the entire network architecture datapath can be unrolled in hardware. �is approach works ex-

tremely well when networks can be fully unrolled (e.g., AlexNet for Ci-Far10 classi�cation), but

can have limitations when the models are too large to �t on chip (e.g. ResNet-18 on Zynq FPGA).

DNNWeaver [130] implements Ca�e to static templatized FPGA accelerator binary compilation,

guided by a heuristic algorithm that aims to minimize o�-chip memory accesses. We designed our

layered compiler stack with black-box schedule optimization, minimalist hardware design, and

�exible JIT runtime with the intent of facilitating adoption and covering emerging deep learning

workloads.

4.7 Conclusion

We introduced the Versatile Tensor Accelerator (VTA) stack, an open, generic, and extensible so�-

ware hardware co-design solution for cross-stack deep learning optimization. We adopted a guid-

ing design principle of minimal hardware that shi�s as much complexity to so�ware as possible

without signi�cant compromises in performance. To that end, our design relies on explicitly con-

trolled access-execute decoupling and a two-level ISA that makes heavy use of JIT compilation for

both high-level code and low-level microcode. VTA stack’s upper layers are based on the state-of-

the-art TVM compiler stack.

One of our aims is to empower systems, compilers, programming languages, and machine

learning experts with be�er visibility into the hardware stack by presenting them with an ap-

proachable hardware design. We have used the VTA design as a reference accelerator design for a

deep learning hardware/so�ware co-design graduate level class and believe it can be maintained

and augmented by programmers with li�le to no hardware design background. Finally, VTA can

serve as a blue-print stack for hardware researchers who want to learn how to integrate a complete

so�ware stack on top of the new architectures they build.

123

Chapter 5

CONCLUSION

“It would appear that we have reached the limits of what it is possible to achieve with

computer technology, although one should be careful with such statements, as they tend to

sound pre�y silly in 5 years.”

– John Von Neumann, 1949

5.1 Accomplished Research Summary

�e development of big data, machine learning and ubiquitous computing is driving the demand

for e�cient computer systems that can process massive amounts of data under stringent energy

budgets. Hardware accelerators o�er the promise of quantum leaps in e�ciency gains for stable

applications and algorithms. But hardware accelerators pose programmability, adaptability and

Pareto-e�ciency challenges to system designers, to durably incorporate acceleration into the sys-

tem stack.

In Chapter 2 we propose SNNAP, an FPGA-based accelerator design that can map diverse appli-

cation targets approximately. �e idea is to train a neural network to approximate the execution

of the target region of code, and run it e�ciently on a single neural network accelerator sub-

strate [50]. Having a single accelerator substrate for diverse regions of code essentially emulates

the �exibility of behavior-specialized accelerators [105]. We showed through a programmability

study that taking advantage of neural acceleration is much easier than programming FPGAs from

scratch, even when it involves using friendlier HLS tools. By implementing approximate region

detection with approximate compilers like ACCEPT [123], we can automate the task of identi-

fying candidate regions of code from simple EnerJ-style type annotations. SNNAP alleviates the

burden of programming FPGAs as those become ubiquitous in the datacenter [111], and in mobile

SoCs [34].

In Chapter 3 we propose QAPPA, a compilation framework that helps programmers navigate

124

quality-e�ciency tradeo�s when targeting quality programmable accelerators [73, 150]. QAPPA

builds on top of ACCEPT’s ability to guarantee safe execution, augments it with the ability to emu-

late errors from hardware quality-scaling mechanisms, and applies autotuning techniques [120] to

navigate design tradeo�s for general purpose C/C++ kernels. We performed a qualitative study of

di�erent quality scaling mechanisms backed by Spice circuit simulations and post-place and route

detailed power estimates. Notably we compare arbitrary quantization [73, 77, 2] against voltage

overscaling [49, 124] and demonstrate that with the right compilation framework, quality-scalable

architectures can provide much superior quality-e�ciency Pareto-optimality over voltage scaled

designs.

In Chapter 4 we propose the VTA stack, a hardware-so�ware stack built around a versatile deep

learning accelerator that captures the salient features of deep learning domain-specialized accel-

erator designs [33, 86, 45, 32, 62, 71]. VTA helps inform the design of domain-speci�c compilers

like the TVM compiler [28] for which we implemented speci�c scheduling passes to target deep

learning architectures, and tackle challenges of mapping computation down to hardware intrinsics

(like tensor operations), explicitly managing memories with automated scheduling [29], and hiding

memory latency via high-level threading abstractions. �e VTA stack forms a blueprint for how to

integrate accelerators into deep learning frameworks, and has been open sourced 1 for the commu-

nity to use. Our evaluation of VTA showed that it enables signi�cant speedups over highly tuned

CPU implementations, and that it could enable accuracy-e�ciency tradeo�s by scaling throughput

as the bit-width used to store weights gets minimized. Additionally, we showed that by supporting

a wide variety of models, VTA o�ers adaptability to evolving workloads: although it was designed

to mostly accelerate traditional dense 2D convolution operations which are common in vision neu-

ral network, we demonstrated that we could use the highly �exible so�ware stack to adapt VTA to

execute other operators such as conv2d-transpose and grouped-conv2d found in Mobilenets [66]

and DCGANs [113] respectively. �is �exibility is achieved thanks to VTA’s philosophy of “keep

the hardware simple, and o�oad the complexity of the so�ware stack”. Following this philosophy,

VTA’s JIT runtime helps o�oad tasks like low-level dependence synchronization to increase task

parallelism, micro-kernel generation to achieve �exible operator coverage, and explicit instruction

1VTA is available at: http://tvm.ai/vta

http://tvm.ai/vta

125

cache management to minimize accesses to fetch instruction data.

5.2 Beyond Academic Research

One objective of this dissertation is to facilitate the integration of customized accelerators and

foster the exploration energy-e�ciency tradeo�s in systems design and implementation. I discuss

two ways in which my work as a Ph.D. candidate has aimed to make accelerator design and op-

timization more approachable. �e �rst approach puts together class material and assignments

aimed at introducing graduate level students to accelerator implementation and pareto-e�cient

design in the context of machine learning. �e second approach, aims to popularize the repro-

ducibility and artifact evaluation of deep learning systems research, and facilitate multi-objective

comparisons of research artifacts.

5.2.1 Teaching Pareto-E�cient Deep Learning Optimization

As a graduate student I had the chance to TA the Computer Architecture class for graduate students

under Luis Ceze 2 and design my own class assignment focusing on machine learning systems

optimization. �e materials for the assignment are freely available on GitHub 3, and have been

reused by other academics teaching architecture including Trevor Carlson at NUS.

Assignment Objectives �e problem statement was to implement an FPGA based inference

accelerator for MNIST hand-wri�en digit recognition [82] that is both fast and accurate. �is

simple problem makes it easy to quickly explore a wide space of classi�ers and designs for students.

�e learning objectives of the assignment were three-fold:

• To help students explore hardware/so�ware co-design methodologies on FPGA-equipped

systems.

• To provide intuition necessary to uncover and exploit accuracy/performance tradeo�s.

• To learn how to identify system performance bo�lenecks and tackle them accordingly.

2http://courses.cs.washington.edu/courses/cse548/17sp/
3(http://github.com/uwsampa/cse548-labs)

http://courses.cs.washington.edu/courses/cse548/17sp/
http://github.com/uwsampa/cse548-labs

126

In terms of constraints, we had to assume that the assignment had to be completed in under

two weeks, and that no prior FPGA experience or machine learning background experience was

required to complete the assignment in time.

Assignment Overview �e assignment provided some sca�olding to help streamline the pro-

cess of programming FPGAs. Students had �exibility over the design of the accelerator thanks to

the productivity of HLS, but the integration of the accelerator within the FPGA shell was provided

via custom TCL scripts, and prede�ned bus interfaces. We provide each student with an FPGA

kit that includes the Pynq FPGA board, which was sold to academics for 65 US dollars. �e Pynq

board houses a dual core ARM Cortex A-9 SoC that runs Linux and consumes less than 2W of

power. �e ARM SoC houses an FPGA fabric with 630kB of on-chip SRAM storage, 220 digital

signal processing (DSP) units, and 53k Look-Up Tables (LUTs).

�e assignment was composed of three parts:

• Part 1: Pipeline Optimization Students are asked to implement a linear classi�er that per-

forms �oating point computation. Students are familiarized with the process of optimizing

hardware pipelines, increasing pipeline and SIMD parallelism, and optimizing for memory

throughput via smart banking and bu�ering.

• Part 2: Fixed Point Optimization Students are introduced to the notion of �xed-point

optimization. Speci�cally, they are asked to change the base design implemented in 32bit

�oating point to use 8bit integers. �is has implications on the way data is packed in memory,

but also requires changes to the algorithm to make sure that it still works under the new data

representation.

• Part 3: Open Ended Design Optimization Students are given free range to explore so�-

ware optimizations (e.g. improved training), hardware optimizations (narrower integer types,

input feature compression), or co-design techniques (new classi�ers that require new hard-

ware).

127

8k
 B

at
ch

 In
fe

re
nc

e
La

te
nc

y
(m

s)

1

10

100

Validation Accuracy

75% 77.5% 80% 82.5% 85% 87.5% 90%

part 1 part 2 HW/SW HW SW

Figure 5.1: Each of the students assignment submissions according to their e�ciency (8k batch

inference latency) and validation accuracy. �e Pareto frontier is represented as a green do�ed

line.

SubmissionOverview Upon receiving the student submissions, we analyzed each system based

on their accuracy and performance characteristics. Each solution is plo�ed on Figure 5.1. Students

that only got to �nishing Part 1 or Part 2 due to lack of time de�ne two clusters of solutions, that

present di�erent accuracy-performance tradeo�s. Part 1 solutions yields relatively accurate but

slow classi�ers. Part 2 solutions yield much faster classi�er but the naive post-training quantiza-

tion a�ects classi�cation accuracy.

�e students that a�empted the open ended optimization challenge are categorized according

to the optimization approach they took: hardware only (HW), so�ware only (SW), or hardware/-

so�ware co-optimization (SW+HW).

• For the HW submissions, students implemented more aggressive quantization using int4 data

types, or by further compressing the input from 256 down to only 144 features. �ese op-

128

timizations don’t change the algorithm and therefore result in very fast, but less accurate

solutions.

• For the SW submission (only one student a�empted this approach), the student implemented

a more powerful classi�er on top of the existing hardware. �ey replaced the linear classi�er

with an SVM which is be�er adapted to the problem.

• Finally for the SW+HW submissions, students implemented more ambitious classi�ers such

as multi-layer perceptrons (MLPs), which are a class of neural networks. One person even

implemented a fully binarized implementation of an XNOR net.

Overall 4 submissions were deemed Pareto optimal, and interestingly covered all 3 approaches to

systems optimization, namely: so�ware only, hardware only, and hardware-so�ware. One could

argue that the design that lives on the “knee” of the curve is the one that employs both so�ware

and hardware optimizations.

�e success of this assignment led to a follow-up class dedicated to building and optimizing

specialized deep learning systems 4 that I helped teach with Luis Ceze, where many of the concepts

from this assignment were carried over.

4https://courses.cs.washington.edu/courses/cse599s/18sp/

https://courses.cs.washington.edu/courses/cse599s/18sp/

129

5.2.2 Re�EST: A Workshop for Reproducible Deep Learning Systems Artifacts and Multi-Objective

Comparisons

PublishedAs: �ierry Moreau, Anton Lokhmotov and Grigori Fursin, Towards Reproducible and

Reusable Deep Learning Systems Research Artifacts, Machine Learning Open Source So�ware 2018:

Sustainable communities (co-located with NIPS), 2018.

I had the chance to co-organize the Re�EST workshop at ASPLOS 2018 with Grigori Fursin,

Anton Lokhmotov, and the help of Luis Ceze, Natalie Enright Jerger, Babak Falsa�, Adrian Sampson

and Phillip Stanley Marbell. I discuss the results and insights from the 1st Re�EST workshop, a

collective e�ort to promote reusability, portability and reproducibility of deep learning research ar-

tifacts within the Architecture/PL/Systems communities. Re�EST (Reproducible �ality-E�cient

Systems Tournament) exploits the open-source Collective Knowledge framework (CK) to unify

benchmarking, optimization, and co-design of deep learning systems implementations and ex-

change results via a live multi-objective scoreboard. Systems evaluated under Re�EST are di-

verse and include an FPGA-based accelerator, optimized deep learning libraries for x86 and ARM

systems, and distributed inference in Amazon Cloud and over a cluster of Raspberry Pis. We �-

nally discuss limitations to our approach, and how we plan improve upon those limitations for the

upcoming SysML artifact evaluation e�ort.

5.2.3 Re�EST Overview

�e quest to continually optimize deep learning systems has introduced new deep learning models,

frameworks, DSLs, libraries, compilers and hardware architectures. In this frantically changing

environment, is has become critical to quickly reproduce, deploy, and build on top of existing

research. While open-sourcing research artifacts is one step in the right direction, it is not su�cient

to guarantee ease of reproducibility and reusability. To enable reproducible and reusable research,

we need to provide complete, customizable, and portable work�ows that combine o�-the-shelf and

custom layers of the system stack and deploys them in a push-bu�on fashion to generate end-to-

end metrics of importance.

In an e�ort to promote reproducible, reusable, and portable work�ows in deep learning sys-

tems research, we introduced the Re�EST workshop at the ACM ASPLOS 2018 (for multidisci-

http://cknowledge.org/request/

130

plinary systems research spanning computer architecture and hardware, programming languages

and compilers, operating systems and networking). �e goal was to have computer architects,

compilers, and systems researchers submit deep learning research artifacts (code, data, and ex-

periments) using a uni�ed Collective Knowledge (CK) work�ow framework [52] to produce a

multi-objective scoreboard that would rank submissions under varied cost metrics that include:

ImageNet validation (50,000 images), latency (seconds per image), throughput (images per sec-

ond), platform price (dollars), and peak power consumption (Wa�s). To keep the task of collecting

artifacts tractable, we focused on a single problem: ImageNet classi�cation, but gave complete

freedom over what models, frameworks, libraries, compilers and hardware platforms were being

used to solve the classi�cation problem.

�e most important di�erence of Re�EST from other related workshops and tournaments

such as DawnBench [39] and LPIRC [54] is that we not only publish �nal results but also share

portable and customizable work�ows (i.e. not just Docker images) with all related research com-

ponents (models, data sets, libraries) to let the community immediately reuse, improve, and build

upon them.

�e �rst iteration of the Re�EST workshop led to �ve artifact submissions that were uni�ed

under the CK framework and evaluated (reproduced) by the organizers. What the submissions

lacked in quantity, they made up for in terms of diversity: (1) submissions spanned architecture,

compilers, and systems research, (2) utilized x86, ARM, and FPGA-based platforms; and (3) were

deployed on single-node systems as well as distributed nodes.

5.2.4 Unifying Artifacts and Work�ows with CK

Re�EST aims to promote reproducibility of experimental results and reusability/customization

of systems research artifacts by standardizing evaluation methodologies and facilitating the de-

ployment of e�cient solutions on heterogeneous platforms. For that reason, packaging artifacts

(scripts, libraries, frameworks, data sets, models) and experimental results requires a bit more in-

volvement than sharing some CSV/JSON �les or checking out a given GitHub repository. �at

is why we build our competition on top of CK [52] to provide uni�ed evaluation and a real-time

leader-board of submissions. CK is an open-source portable work�ow framework, used as stan-

http://cknowledge.org/

131

Figure 5.2: We leverage the open Collective Knowledge work�ow framework (CK) and the rigorous

ACM artifact evaluation methodology (AE) to allow the community collaboratively explore quality

vs. e�ciency trade-o�s for rapidly evolving workloads across diverse systems.

dard ACM artifact evaluation methodology from ACM and IEEE systems conferences (CGO, PPoPP,

PACT, SuperComputing).

CK works a Python wrapper framework to help users share their code and data as customizable

and reusable plugins with a common JSON API, meta description and an integrated package man-

ager, adaptable to a user platform with Linux, Windows, MacOS and Android. Researchers can then

quickly prototype experimental work�ows from shared components, crowdsource benchmarking

and autotuning across diverse models, data sets and platforms, exchange results via public score-

boards, and generate interactive reports [1].

5.3 Artifact Submissions Overview

�e Re�EST-ASPLOS’18 proceedings, available in the ACM Digital Library, include �ve papers

with Artifact Appendices and a set of ACM reproducibility badges.

�e CK repository for all Re�EST-ASPLOS’18 artifacts are documented and available at the

http://cTuning.org/ae
https://dl.acm.org
https://www.acm.org/publications/policies/artifact-review-badging

132

Figure 5.3: A live scoreboard can produce a sca�erplot of system implementations across any two

dimensions among accuracy, latency, throughput, batch size, price, model size, peak power, clock

frequency.

following link: h�ps://github.com/ctuning/ck-request-asplos18-results. �e interactive live score-

board can be accessed under the followig URL: h�p://cKnowledge.org/request-results. �e pro-

ceedings are accompanied by snapshots of Collective Knowledge work�ows covering a very di-

verse model/so�ware/hardware stack:

• Models: MobileNets, ResNet-18, ResNet-50, Inception-v3, VGG16, AlexNet, SSD.

• Data types: 8-bit integer, 16-bit �oating-point (half), 32-bit �oating-point (�oat).

• AI frameworks and libraries: MXNet, TensorFlow, Ca�e, Keras, Arm Compute Library,

cuDNN, TVM, NNVM.

• Platforms: Xilinx Pynq-Z1 FPGA, Arm Cortex CPUs and Arm Mali GPGPUs (Linaro HiKey960

and T-Fire�y RK3399), a farm of Raspberry Pi devices, NVIDIA Jetson TX1 and TX2, and Intel

Xeon servers in Amazon Web Services, Google Cloud and Microso� Azure.

In addition all of the submission account for a wide spectrum across the following objective

functions:

• Latency: 4 .. 500 milliseconds per image

https://github.com/ctuning/ck-request-asplos18-results
http://cKnowledge.org/request-results

133

• �roughput: 2 .. 465 images per second

• Top 1 accuracy: 41 .. 75 percent

• Top 5 accuracy: 65 .. 93 percent

• Model size (pre-trained weights): 2 .. 130 megabytes

• Peak power consumption: 2.5 .. 180 Wa�s

• Device frequency: 100 .. 2600 megahertz

• Device cost: 40 .. 1200 dollars

• Cloud usage cost: 2.6E-6 .. 9.5E-6 dollars per inference

�e community can now access all the above CK work�ows under permissive licenses and

continue collaborating on them via dedicated Re�EST’18 GitHub projects. First, the work�ows

can be automatically adapted to new platforms and environments by either detecting already in-

stalled dependencies (e.g. libraries) or rebuilding dependencies via an integrated package manager

supporting Linux, Windows, MacOS and Android. Second, the work�ows can be customized by

swapping in new models, data sets, frameworks, libraries, and so on. �ird, the work�ows can be

extended to expose new design and optimization choices (e.g. quantization), as well as evaluation

metrics (e.g. power or memory consumption).

Finally, the work�ows can be used for collaborative autotuning (”crowd-tuning”) to explore

huge optimization spaces using devices such as Android phones and tablets, with best solutions

being made available to the community on the online CK scoreboard.

5.4 Lessons Learned and Future Work

Our overwhelmingly positive experience has also allowed us to critically assess limitations to the

scalability to our approach. Fair competitive benchmarking between di�erent platforms, frame-

works, and models is hard work. It requires carefully considering model equivalence (e.g. per-

forming the same mix of operations), input equivalence (e.g. preprocessing the inputs in the same

way), output equivalence (e.g. validating the outputs for each input, not just calculating the usual

aggregate accuracy score), etc. Formalizing the benchmarking requirements and encapsulating

https://github.com/ctuning/ck-request-asplos18-results
https://github.com/ctuning/ck/wiki/Portable-workflows
http://cKnowledge.org/shared-packages.html
http://cKnowledge.org/rpi-crowd-tuning
https://play.google.com/store/apps/details?id=openscience.crowdsource.video.experiments
http://cKnowledge.org/dnn-crowd-benchmarking-results

134

them in shared CK components (e.g. using a framework-independent model representation such

as ONNX) and work�ows (e.g. for input conversion and output validation), should help standardize

and automate the benchmarking process.

�orough artifact evaluation can take several person-weeks. Each submi�ed work�ow needs

to be studied in detail in its original form and then converted into a common format. However, the

more reusable CK components (such as work�ows, modules/plugins, packages) are shared by the

community, the easier the conversion becomes. For example, we have successfully reused several

previously shared components for models, frameworks and libraries, as well as the universal CK

work�ow for program benchmarking and autotuning. We propose to introduce a new ACM repro-

ducibility badge for such uni�ed ”plug&play” components. �is could eventually lead to creating

a ”marketplace” for Pareto-e�cient implementations (code and data) shared as portable, customiz-

able and reusable CK components.

Finally, full experimental evaluation can take many days/weeks. �e AE commi�ee can col-

laborate with the authors to determine a minimally useful scope for evaluation whichwould still

provide insights to the community. �e community can eventually crowdsource full evaluation.

In other words, AE can be ”staged” with a quick check that the artifacts are ”functional” before

the camera-ready deadline followed by full evaluation using the Re�EST methodology. In fact,

Re�EST can grow into a non-pro�t service to conferences and journals. Sponsorship should help

a�ract experienced full-time evaluators, as well as part-time volunteers, to work on unifying and

evaluating artifacts and work�ows.

Our experience at Re�EST-ASPLOS’18 will be repurposed to organize SysML’s AE, but at a

larger scale. Our long-term vision is to dramatically reduce the complexity and costs of the devel-

opment and deployment of AI, ML, and other emerging workloads. We believe that having an open

repository (marketplace) of customizable work�ows with reusable components helps to bring to-

gether the multidisciplinary community to collaboratively co-design, optimize, and autotune com-

puter systems across the full model/so�ware/hardware stack. Systems integrators will also bene�t

from being able to assemble complete solutions by adapting such reusable components to their

speci�c usage scenarios, requirements, and constraints. We envision that our community-driven

approach and decentralized marketplace will help accelerate adoption and technology transfer of

novel AI/ML techniques similar to the open-source movement.

https://onnx.ai/
http://cKnowledge.org/shared-programs.html
http://cKnowledge.org/shared-modules.html
http://cKnowledge.org/shared-packages.html
https://github.com/ctuning/ck/wiki#user-content-reusable-ck-components
http://cKnowledge.org/rpi-crowd-tuning
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

135

5.5 Concluding Remarks: An Outlook to the Future

Hardware acceleration has become a critical component of modern computer systems, particu-

larly for scaling their capabilities as Moore’s law is running out of steam. As a result, we are

living through a renaissance era for domain-specialized hardware designs with countless new ac-

celerators being proposed and implemented in varied domains like deep learning [45, 32, 71, 62],

data bases [34, 156], graph processing [61, 5, 69] etc. In addition, we are seeing novel spatially

programmable hardware accelerators that aim to make hardware acceleration �exible across ap-

plication domains [111, 109, 140, 107, 21].

�is Cambrian explosion of hardware designs pushes our research community to rethink how

the so�ware stack is built. To support this proliferation of domain-speci�c accelerators, we will

need faster so�ware integration via high-performance libraries, which will be mostly automated

thanks to be�er DSLs [28], design space exploration tools [29], and modular so�ware-managed

accelerator designs [99]. In addition, the push to eliminate more ine�ciencies across the stack will

favor the design of accelerators that are quality-programmable [78, 49, 73, 150] and therefore can

respond to dynamic changes like �uctuating electricity costs in a datacenter, or low ba�ery levels

in a smartphone. In order to derive low-level hardware approximation se�ings from user-de�ned

quality of results constraints, we will need new programming models [124], compilers [123], and

quality auto-tuning frameworks [98, 97] that can navigate energy-e�ciency tradeo�s and provide

viable error guarantees. Finally for designs that are highly customized to speci�c use-case scenar-

ios in which energy constraints are stable, it makes sense to tailor the entire system stack to quality

bounds dictated by its use-case. In domains like deep learning, we will see more uses of vertical

optimization across the stack: highly tailored quantized models [115, 40] running on specialized

low-power hardware architectures [146]. Eventually, the generation of this domain and use-case

specialized stack will be automated with improved search and modeling techniques.

�ese strategies for eliminating waste across the stack via specialization and Pareto-optimization

will help scale the performance and capabilities of systems until a viable replacement for CMOS

technology will revitalize the computing landscape. And the lessons we have learned from design-

ing a more e�cient CMOS stack will carry across these future technologies.

136

BIBLIOGRAPHY

[1] Industrial and academic use-cases of Collective Knowledge. http://cKnowledge.
org/partners.html, 2018.

[2] Tor M Aamodt and Paul Chow. Compile-time and instruction-set methods for improving
�oating-to �xed-point conversion accuracy. ACM Transactions on Embedded Computing Sys-
tems (TECS), 7(3):26, 2008.

[3] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,
Ma�hieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al. Tensor�ow: a
system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[4] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion
Stoica. Blinkdb: queries with bounded errors and bounded response times on very large
data. In Proceedings of the 8th ACM European Conference on Computer Systems, pages 29–42.
ACM, 2013.

[5] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A scalable
processing-in-memory accelerator for parallel graph processing. ACM SIGARCH Computer
Architecture News, 43(3):105–117, 2016.

[6] Altera Corporation. Altera OpenCL Compiler.

[7] Altera Corporation. Altera SoCs.

[8] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization for �oating-point mul-
timedia applications. IEEE Transactions on Computers, 54(7):922–927, 2005.

[9] Mariano Alvira and Ryan Ri�in. An empirical comparison of snow and svms for face de-
tection. 2001.

[10] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and
Saman Amarasinghe. PetaBricks: a language and compiler for algorithmic choice, volume 44.
ACM, 2009.

[11] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A Pa�erson, William Lester Plishker, John Shalf, Samuel Webb
Williams, et al. �e landscape of parallel computing research: A view from berkeley. Tech-
nical report, Technical Report UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley, 2006.

http://cKnowledge.org/partners.html
http://cKnowledge.org/partners.html

137

[12] Woongki Baek and Trishul M Chilimbi. Green: a framework for supporting energy-
conscious programming using controlled approximation. InACMSigplan Notices, volume 45,
pages 198–209. ACM, 2010.

[13] Kevin Barker, �omas Benson, Dan Campbell, David Ediger, Roberto Gioiosa, Adolfy Hoisie,
Darren Kerbyson, Joseph Manzano, Andres Marquez, Leon Song, et al. Perfect (power e�-
ciency revolution for embedded computing technologies) benchmark suite manual. Paci�c
Northwest National Laboratory and Georgia Tech Research Institute, 2013.

[14] Bilel Belhadj, Antoine Joubert, Zheng Li, Rodolphe Héliot, and Olivier Temam. Continuous
real-world inputs can open up alternative accelerator designs. In ACM SIGARCH Computer
Architecture News, volume 41, pages 1–12. ACM, 2013.

[15] Jesse Benson, Ryan Cofell, Chris Frericks, Chen-Han Ho, Venkatraman Govindaraju, Tony
Nowatzki, and Karthikeyan Sankaralingam. Design, integration and implementation of the
dyser hardware accelerator into opensparc. In High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pages 1–12. IEEE, 2012.

[16] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. �eano: A cpu
and gpu math compiler in python. In Proc. 9th Python in Science Conf, volume 1, 2010.

[17] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. �e parsec benchmark
suite: Characterization and architectural implications. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques, pages 72–81. ACM,
2008.

[18] Hugh T Blair, Jason Cong, and Di Wu. Fpga simulation engine for customized construction
of neural microcircuits. In Computer-Aided Design (ICCAD), 2013 IEEE/ACM International
Conference on, pages 607–614. IEEE, 2013.

[19] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimizing synthesis with
metasketches. In ACM SIGPLAN Notices, volume 51, pages 775–788. ACM, 2016.

[20] Bernhard E Boser, Eduard Sackinger, Jane Bromley, Yann Le Cun, and Lawrence D Jackel. An
analog neural network processor with programmable topology. IEEE Journal of Solid-State
Circuits, 26(12):2017–2025, 1991.

[21] Doug Burger, Stephen W Keckler, Kathryn S McKinley, Mike Dahlin, Lizy K John, Calvin
Lin, Charles R Moore, James Burrill, Robert G McDonald, and William Yoder. Scaling to the
end of silicon with edge architectures. Computer, 37(7):44–55, 2004.

[22] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks. Helix-up: Relaxing
program semantics to unleash parallelization. In Proceedings of the 13th Annual IEEE/ACM

138

International Symposium on Code Generation and Optimization, pages 235–245. IEEE Com-
puter Society, 2015.

[23] Michael Carbin, Sasa Misailovic, and Martin C Rinard. Verifying quantitative reliability for
programs that execute on unreliable hardware. In ACM SIGPLAN Notices, volume 48, pages
33–52. ACM, 2013.

[24] Allan Carroll, Stephen Friedman, Brian Van Essen, Aaron Wood, Benjamin Ylvisaker, Carl
Ebeling, and Sco� Hauck. Designing a coarse-grained recon�gurable architecture for power
e�ciency. In Department of Energy NA-22 University Information Technical Interchange Re-
view Meeting, 2007.

[25] Lakshmi N Chakrapani, Bilge ES Akgul, Suresh Cheemalavagu, Pinar Korkmaz, Krishna V
Palem, and Balasubramanian Seshasayee. Ultra-e�cient (embedded) soc architectures based
on probabilistic cmos (pcmos) technology. In Design, Automation and Test in Europe, 2006.
DATE’06. Proceedings, volume 1, pages 1–6. IEEE, 2006.

[26] Lakshmi N Chakrapani, Pinar Korkmaz, Bilge ES Akgul, and Krishna V Palem. Probabilis-
tic system-on-a-chip architectures. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 12(3):29, 2007.

[27] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A �exible and e�cient machine learning library
for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[28] Tianqi Chen, �ierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Yan, Leyuan Wang, Yuwei
Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: end-to-end compilation
stack for deep learning. In SysML Conference, 2018.

[29] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, �ierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. arXiv preprint
arXiv:1805.08166, 2018.

[30] Tianshi Chen, Yunji Chen, Marc Duranton, Qi Guo, Atif Hashmi, Mikko Lipasti, Andrew
Nere, Shi Qiu, Michele Sebag, and Olivier Temam. Benchnn: On the broad potential appli-
cation scope of hardware neural network accelerators. InWorkload Characterization (IISWC),
2012 IEEE International Symposium on, pages 36–45. IEEE, 2012.

[31] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. ACM Sigplan Notices, 49(4):269–284, 2014.

[32] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-e�cient
recon�gurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-
State Circuits, 52(1):127–138, 2017.

139

[33] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,
Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning supercomputer. In Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages
609–622. IEEE Computer Society, 2014.

[34] Eric S Chung, John D Davis, and Jaewon Lee. Linqits: Big data on li�le clients. In ACM
SIGARCH Computer Architecture News, volume 41, pages 261–272. ACM, 2013.

[35] Jai-Hoon Chung, Hyunsoo Yoon, and Seung Ryoul Maeng. A systolic array exploiting the
inherent parallelisms of arti�cial neural networks. Microprocessing and Microprogramming,
33(3):145–159, 1992.

[36] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Sco� Mahlke, and Krisztian Flautner.
Application-speci�c processing on a general-purpose core via transparent instruction set
customization. In Proceedings of the 37th annual IEEE/ACM International Symposium on
Microarchitecture, pages 30–40. IEEE Computer Society, 2004.

[37] Charles J Clopper and Egon S Pearson. �e use of con�dence or �ducial limits illustrated in
the case of the binomial. Biometrika, 26(4):404–413, 1934.

[38] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew. Deep
learning with cots hpc systems. In International Conference on Machine Learning, pages
1337–1345, 2013.

[39] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter
Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An end-to-end deep
learning benchmark and competition. Training, 100(101):102, 2017.

[40] Ma�hieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. InAdvances in neural information
processing systems, pages 3123–3131, 2015.

[41] Sco� Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Ma�hew
Brookhart, Avijit Chakraborty, Will Constable, Christian Convey, Leona Cook, Omar
Kanawi, et al. Intel ngraph: An intermediate representation, compiler, and executor for
deep learning. arXiv preprint arXiv:1801.08058, 2018.

[42] Eva Darulova and Viktor Kuncak. Trustworthy numerical computation in scala. In Acm
Sigplan Notices, volume 46, pages 325–344. ACM, 2011.

[43] Florent De Dinechin, Christoph Lauter, and Guillaume Melquiond. Certifying the �oating-
point implementation of an elementary function using gappa. IEEE Transactions on Com-
puters, 60(2):242–253, 2011.

140

[44] Marc De Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An architectural
framework for so�ware recovery of hardware faults. ACM SIGARCH Computer Architecture
News, 38(3):497–508, 2010.

[45] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng,
Yunji Chen, and Olivier Temam. Shidiannao: Shi�ing vision processing closer to the sensor.
In ACM SIGARCH Computer Architecture News, volume 43, pages 92–104. ACM, 2015.

[46] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad
Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, et al. Razor: A low-power pipeline
based on circuit-level timing speculation. In Proceedings of the 36th annual IEEE/ACM Inter-
national Symposium on Microarchitecture, page 7. IEEE Computer Society, 2003.

[47] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Computer Architecture (ISCA), 2011
38th Annual International Symposium on, pages 365–376. IEEE, 2011.

[48] Hadi Esmaeilzadeh, Pooya Saeedi, Babak Nadjar Araabi, Caro Lucas, and Seid Mehdi
Fakhraie. Neural network stream processing core (nnsp) for embedded systems. In ISCAS,
2006.

[49] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture support for
disciplined approximate programming. InACM SIGPLANNotices, volume 47, pages 301–312.
ACM, 2012.

[50] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceleration for
general-purpose approximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 449–460. IEEE Computer Society, 2012.

[51] Kevin Fan, Manjunath Kudlur, Ganesh Dasika, and Sco� Mahlke. Bridging the computation
gap between programmable processors and hardwired accelerators. In High Performance
Computer Architecture, 2009. HPCA 2009. IEEE 15th International Symposium on, pages 313–
322. IEEE, 2009.

[52] Grigori Fursin, Anton Lokhmotov, and Ed Plowman. Collective knowledge: towards r&d
sustainability. In Proceedings of the 2016 Conference on Design, Automation & Test in Europe,
pages 864–869. EDA Consortium, 2016.

[53] Brian R Gaines. Stochastic computing systems. In Advances in information systems science,
pages 37–172. Springer, 1969.

[54] Kent Gauen, Rohit Rangan, Anup Mohan, Yung-Hsiang Lu, Wei Liu, and Alexander C Berg.
Low-power image recognition challenge. In Design Automation Conference (ASP-DAC), 2017
22nd Asia and South Paci�c, pages 99–104. IEEE, 2017.

141

[55] Nathan Goulding-Ho�a, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio,
Po-Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bha�, Jonathan Babb, et al. �e
greendroid mobile application processor: An architecture for silicon’s dark future. IEEE
Micro, 31(2):86–95, 2011.

[56] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dynamically
specialized datapaths for energy e�cient computing. In High Performance Computer Archi-
tecture (HPCA), 2011 IEEE 17th International Symposium on, pages 503–514. IEEE, 2011.

[57] Beayna Grigorian, Nazanin Farahpour, and Glenn Reinman. Brainiac: Bringing reliable ac-
curacy into neurally-implemented approximate computing. In High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on, pages 615–626. IEEE, 2015.

[58] Beayna Grigorian and Glenn Reinman. Dynamically adaptive and reliable approximate com-
puting using light-weight error analysis. In Adaptive Hardware and Systems (AHS), 2014
NASA/ESA Conference on, pages 248–255. IEEE, 2014.

[59] Beayna Grigorian and Glenn Reinman. Accelerating divergent applications on simd archi-
tectures using neural networks. ACM Transactions on Architecture and Code Optimization
(TACO), 12(1):2, 2015.

[60] Shantanu Gupta, Shuguang Feng, Amin Ansari, Sco� Mahlke, and David August. Bundled
execution of recurring traces for energy-e�cient general purpose processing. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pages 12–23.
ACM, 2011.

[61] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret Martonosi.
Graphicionado: A high-performance and energy-e�cient accelerator for graph analytics. In
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages
1–13. IEEE, 2016.

[62] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: e�cient inference engine on compressed deep neural network. In Com-
puter Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on, pages
243–254. IEEE, 2016.

[63] Atif Hashmi, Hugues Berry, Olivier Temam, and Mikko Lipasti. Automatic abstraction and
fault tolerance in cortical microachitectures. In ACM SIGARCH computer architecture news,
volume 39, pages 1–10. ACM, 2011.

[64] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer, 41(7), 2008.

[65] Henry Ho�mann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard. Dynamic knobs for responsive power-aware computing. In ACM SIGPLAN
Notices, volume 46, pages 199–212. ACM, 2011.

142

[66] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andree�o, and Hartwig Adam. Mobilenets: E�cient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[67] Intel Corporation. Disrupting the data center to create the digital services economy.

[68] Animesh Jain, Parker Hill, Shih-Chieh Lin, Muneeb Khan, Md E Haque, Michael A Lau-
renzano, Sco� Mahlke, Lingjia Tang, and Jason Mars. Concise loads and stores: �e case
for an asymmetric compute-memory architecture for approximation. In �e 49th Annual
IEEE/ACM International Symposium on Microarchitecture, page 41. IEEE Press, 2016.

[69] Mark C Je�rey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez. A scal-
able architecture for ordered parallelism. In Microarchitecture (MICRO), 2015 48th Annual
IEEE/ACM International Symposium on, pages 228–241. IEEE, 2015.

[70] Antoine Joubert, Bilel Belhadj, Olivier Temam, and Rodolphe Héliot. Hardware spiking
neurons design: Analog or digital? In Neural Networks (IJCNN), �e 2012 International Joint
Conference on, pages 1–5. IEEE, 2012.

[71] Norman P Jouppi, Cli� Young, Nishant Patil, David Pa�erson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance
analysis of a tensor processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on, pages 1–12. IEEE, 2017.

[72] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, Natalie Enright Jerger,
and Andreas Moshovos. Proteus: Exploiting numerical precision variability in deep neural
networks. In Proceedings of the 2016 International Conference on Supercomputing, page 23.
ACM, 2016.

[73] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas Moshovos.
Stripes: Bit-serial deep neural network computing. In Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.

[74] Andrew B Kahng and Seokhyeong Kang. Accuracy-con�gurable adder for approximate
arithmetic designs. In Proceedings of the 49th Annual Design Automation Conference, pages
820–825. ACM, 2012.

[75] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor. Moonwalk: Nre opti-
mization in asic clouds. ACM SIGOPS Operating Systems Review, 51(2):511–526, 2017.

[76] Daya S Khudia, Babak Zamirai, Mehrzad Samadi, and Sco� Mahlke. Rumba: An online
quality management system for approximate computing. In Computer Architecture (ISCA),
2015 ACM/IEEE 42nd Annual International Symposium on, pages 554–566. IEEE, 2015.

143

[77] Daya Shanker Khudia, Babak Zamirai, Mehrzad Samadi, and Sco� Mahlke. �ality control
for approximate accelerators by error prediction. IEEE Design & Test, 33(1):43–50, 2016.

[78] Sung Kim, Patrick Howe, �ierry Moreau, Armin Alaghi, Luis Ceze, and Visvesh Sathe.
Matic: Learning around errors for e�cient low-voltage neural network accelerators. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018, pages 1–6. IEEE,
2018.

[79] Sung Kim, Patrick Howe, �ierry Moreau, Armin Alaghi, Luis Ceze, and Visvesh S Sathe.
Energy-e�cient neural network acceleration in the presence of bit-level memory errors.
IEEE Transactions on Circuits and Systems I: Regular Papers, (99):1–14, 2018.

[80] Younghoon Kim, Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan. Design-
ing approximate circuits using clock overgating. In Proceedings of the 53rd Annual Design
Automation Conference, page 15. ACM, 2016.

[81] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. IEEE Transactions
on computer-aided design of integrated circuits and systems, 26(2):203–215, 2007.

[82] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwri�en digit database. AT&T Labs
[Online]. Available: h�p://yann. lecun. com/exdb/mnist, 2, 2010.

[83] Seogoo Lee, Lizy K John, and Andreas Gerstlauer. High-level synthesis of approximate hard-
ware under joint precision and voltage scaling. In Proceedings of the Conference on Design,
Automation & Test in Europe, pages 187–192. European Design and Automation Association,
2017.

[84] Larkhoon Leem, Hyungmin Cho, Jason Bau, �inn A Jacobson, and Subhasish Mitra. Ersa:
Error resilient system architecture for probabilistic applications. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, pages 1560–1565. European Design and
Automation Association, 2010.

[85] Ang Li, Shuaiwen Leon Song, Mark Wijtvliet, Akash Kumar, and Henk Corporaal. Sfu-driven
transparent approximation acceleration on gpus. In Proceedings of the 2016 International
Conference on Supercomputing, page 15. ACM, 2016.

[86] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Teman, Xi-
aobing Feng, Xuehai Zhou, and Yunji Chen. Pudiannao: A polyvalent machine learning ac-
celerator. In ACM SIGARCH Computer Architecture News, volume 43, pages 369–381. ACM,
2015.

[87] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen, and Tianshi
Chen. Cambricon: An instruction set architecture for neural networks. In ACM SIGARCH
Computer Architecture News, volume 44, pages 393–405. IEEE Press, 2016.

144

[88] Song Liu, Karthik Pa�abiraman, �omas Moscibroda, and Benjamin G Zorn. Flicker: Saving
refresh-power in mobile devices through critical data partitioning. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’09). Citeseer, 2009.

[89] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor. Asic clouds:
Specializing the datacenter. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on, pages 178–190. IEEE, 2016.

[90] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley �waites, and Hadi Es-
maeilzadeh. Towards statistical guarantees in controlling quality tradeo�s for approximate
acceleration. ACM SIGARCH Computer Architecture News, 44(3):66–77, 2016.

[91] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright Jerger. Dop-
pelgänger: a cache for approximate computing. In Proceedings of the 48th International Sym-
posium on Microarchitecture, pages 50–61. ACM, 2015.

[92] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. Load value approximation.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 127–139. IEEE Computer Society, 2014.

[93] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard. Chisel:
Reliability-and accuracy-aware optimization of approximate computational kernels. InACM
SIGPLAN Notices, volume 49, pages 309–328. ACM, 2014.

[94] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing sequential programs
with statistical accuracy tests. ACM Transactions on Embedded Computing Systems (TECS),
12(2s):88, 2013.

[95] Sasa Misailovic, Daniel M Roy, and Martin C Rinard. Probabilistically accurate program
transformations. In International Static Analysis Symposium, pages 316–333. Springer, 2011.

[96] Asit K Mishra, Rajkishore Barik, and Somnath Paul. iact: A so�ware-hardware framework
for understanding the scope of approximate computing. In Workshop on Approximate Com-
puting Across the System Stack (WACAS), 2014.

[97] �ierry Moreau, Felipe Augusto, Patrick Howe, Armin Alaghi, and Luis Ceze. Exploiting
quality-energy tradeo�s with arbitrary quantization: special session paper. In Proceedings
of the Twel�h IEEE/ACM/IFIP International Conference on Hardware/So�ware Codesign and
System Synthesis Companion, page 30. ACM, 2017.

[98] �ierry Moreau, Felipe Augusto, Patrick Howe, Armin Alaghi, and Luis Ceze. Qappa: A
framework for navigating quality-energy tradeo�s with arbitrary quantization. Technical
report, Technical Report CMU/CSE-17-03-02, 2017.

145

[99] �ierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Kr-
ishnamurthy. Vta: An open hardware-so�ware stack for deep learning. arXiv preprint
arXiv:1807.04188, 2018.

[100] �ierry Moreau, Joshua San Miguel, Mark Wyse, James Bornholt, Armin Alaghi, Luis Ceze,
Natalie Enright Jerger, and Adrian Sampson. A taxonomy of general purpose approximate
computing techniques. IEEE Embedded Systems Le�ers, 10(1):2–5, 2018.

[101] �ierry Moreau, Joshua San Miguel, Mark Wyse, James Bornholt, Luis Ceze, Natalie Enright
Jerger, and Adrian Sampson. A taxonomy of approximate computing techniques. UW CSE
Technical Report, pages 1–5, 2016.

[102] �ierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh, Luis Ceze,
and Mark Oskin. Snnap: Approximate computing on programmable socs via neural accel-
eration. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on, pages 603–614. IEEE, 2015.

[103] Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L Jones. Scalable stochastic
processors. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010,
pages 335–338. IEEE, 2010.

[104] Kyle J Nesbit and James E Smith. Data cache prefetching using a global history bu�er. In
So�ware, IEE Proceedings-, pages 96–96. IEEE, 2004.

[105] Tony Nowatzki and Karthikeyan Sankaralingam. Analyzing behavior specialized accelera-
tion. In ACM SIGARCH Computer Architecture News, volume 44, pages 697–711. ACM, 2016.

[106] NVIDIA Corporation. NVIDIA Tesla V100 GPU Architecture: �e Worldś Most Advanced
Data Center GPU, 2017.

[107] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago, Daniel
Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel, et al. Triggered in-
structions: a control paradigm for spatially-programmed architectures. In ACM SIGARCH
Computer Architecture News, volume 41, pages 142–153. ACM, 2013.

[108] Michael Powell, Se-Hyun Yang, Babak Falsa�, Kaushik Roy, and TN Vijaykumar. Gated-v
dd: a circuit technique to reduce leakage in deep-submicron cache memories. In Proceedings
of the 2000 international symposium on Low power electronics and design, pages 90–95. ACM,
2000.

[109] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Ma� Feldman, Tian Zhao, Stefan Hadjis,
Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Plasticine: A recon�gurable ar-
chitecture for parallel pa�erns. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, pages 389–402. IEEE, 2017.

146

[110] K Wojtek Przytula and Viktor K Prasanna. Parallel digital implementations of neural net-
works. Prentice-Hall, Inc., 1993.

[111] Andrew Putnam, Adrian M Caul�eld, Eric S Chung, Derek Chiou, Kypros Constantinides,
John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al. A
recon�gurable fabric for accelerating large-scale datacenter services. ACM SIGARCH Com-
puter Architecture News, 42(3):13–24, 2014.

[112] Andrew R Putnam, Dave Benne�, Eric Dellinger, Je� Mason, and Prasanna Sundararajan.
Chimps: A high-level compilation �ow for hybrid cpu-fpga architectures. In Proceedings
of the 16th international ACM/SIGDA symposium on Field programmable gate arrays, pages
261–261. ACM, 2008.

[113] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[114] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6):519–530,
2013.

[115] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classi�cation using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

[116] Rahul Razdan and Michael D Smith. A high-performance microarchitecture with hardware-
programmable functional units. In Proceedings of the 27th annual international symposium
on Microarchitecture, pages 172–180. ACM, 1994.

[117] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and Daniel Prener.
Programming with relaxed synchronization. In Proceedings of the 2012 ACM workshop on
Relaxing synchronization for multicore and manycore scalability, pages 41–50. ACM, 2012.

[118] Prasanna Venkatesh Rengasamy, Anand Sivasubramaniam, Mahmut T Kandemir, and
Chita R Das. Exploiting staleness for approximating loads on cmps. In Parallel Architec-
ture and Compilation (PACT), 2015 International Conference on, pages 343–354. IEEE, 2015.

[119] Michael Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze, and Dan Grossman.
Monitoring and debugging the quality of results in approximate programs. In ACM SIG-
PLAN Notices, volume 50, pages 399–411. ACM, 2015.

[120] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Ka-
han, Koushik Sen, David H Bailey, Costin Iancu, and David Hough. Precimonious: Tuning
assistant for �oating-point precision. In High Performance Computing, Networking, Storage
and Analysis (SC), 2013 International Conference for, pages 1–12. IEEE, 2013.

147

[121] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Sco� Mahlke. Paraprox:
Pa�ern-based approximation for data parallel applications. ACM SIGPLANNotices, 49(4):35–
50, 2014.

[122] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Sco� Mahlke.
Sage: Self-tuning approximation for graphics engines. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 13–24. ACM, 2013.

[123] Adrian Sampson, André Baixo, Benjamin Ransford, �ierry Moreau, Joshua Yip, Luis Ceze,
and Mark Oskin. Accept: A programmer-guided compiler framework for practical approxi-
mate computing. University of Washington Technical Report UW-CSE-15-01, 1, 2015.

[124] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. Enerj: Approximate data types for safe and general low-power computation.
In ACM SIGPLAN Notices, volume 46, pages 164–174. ACM, 2011.

[125] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate storage in solid-
state memories. ACM Transactions on Computer Systems (TOCS), 32(3):9, 2014.

[126] Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S McKinley, Dan Grossman,
and Luis Ceze. Expressing and verifying probabilistic assertions. ACM SIGPLAN Notices,
49(6):112–122, 2014.

[127] Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer Jaleel. �e bunker
cache for spatio-value approximation. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.

[128] Johannes Schemmel, Johannes Fieres, and Karlheinz Meier. Wafer-scale integration of ana-
log neural networks. In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Compu-
tational Intelligence). IEEE International Joint Conference on, pages 431–438. IEEE, 2008.

[129] Frank Seide and Amit Agarwal. Cntk: Microso�’s open-source deep-learning toolkit. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 2135–2135. ACM, 2016.

[130] Hardik Sharma, Jongse Park, Emmanuel Amaro, Bradley �waites, Praneetha Kotha, Anmol
Gupta, Joon Kyung Kim, Asit Mishra, and Hadi Esmaeilzadeh. Dnnweaver: From high-level
deep network models to fpga acceleration. In the Workshop on Cognitive Architectures, 2016.

[131] David E Shaw, Martin M Denero�, Ron O Dror, Je�rey S Kuskin, Richard H Larson, John K
Salmon, Cli� Young, Brannon Batson, Kevin J Bowers, Jack C Chao, et al. Anton, a special-
purpose machine for molecular dynamics simulation. Communications of the ACM, 51(7):91–
97, 2008.

148

[132] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Ho�mann, and Martin Rinard. Manag-
ing performance vs. accuracy trade-o�s with loop perforation. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of so�ware engi-
neering, pages 124–134. ACM, 2011.

[133] Sco� Sirowy and Alessandro Forin. Where’s the beef? why fpgas are so fast. Microso�
Research, Microso� Corp., Redmond, WA, 98052, 2008.

[134] James E Smith. A study of branch prediction strategies. In Proceedings of the 8th annual
symposium on Computer Architecture, pages 135–148. IEEE Computer Society Press, 1981.

[135] James E Smith. Decoupled access/execute computer architectures. In ACM SIGARCH Com-
puter Architecture News, volume 10, pages 112–119. IEEE Computer Society Press, 1982.

[136] Vilas Sridharan, Dean A Liberty, and David R Kaeli. A taxonomy to enable error recovery
and correction in so�ware. In Workshop on�ality-Aware Design. Citeseer, 2008.

[137] Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, and Christopher Bat-
ten. Architectural specialization for inter-iteration loop dependence pa�erns. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages 583–595.
IEEE Computer Society, 2014.

[138] Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley �waites, Hadi Esmaeilzadeh,
Arjang Hassibi, Luis Ceze, and Doug Burger. General-purpose code acceleration with
limited-precision analog computation. ACM SIGARCH Computer Architecture News,
42(3):505–516, 2014.

[139] Herb Su�er. �e free lunch is over: A fundamental turn toward concurrency in so�ware.
Dr. Dobb’s journal, 30(3):202–210, 2005.

[140] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. Wavescalar. In Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture, page
291. IEEE Computer Society, 2003.

[141] Simon M Tam, Bhusan Gupta, Hernan A Castro, and Mark Holler. Learning on an analog
vlsi neural network chip. In Systems, Man and Cybernetics, 1990. Conference Proceedings.,
IEEE International Conference on, pages 701–703. IEEE, 1990.

[142] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzla�, Fae Ghodrat, Ben Green-
wald, Henry Ho�man, Paul Johnson, Jae-Wook Lee, Walter Lee, et al. �e raw micropro-
cessor: A computational fabric for so�ware circuits and general-purpose programs. IEEE
micro, 22(2):25–35, 2002.

[143] Olivier Temam. A defect-tolerant accelerator for emerging high-performance applications.
ACM SIGARCH Computer Architecture News, 40(3):356–367, 2012.

149

[144] Robert M Tomasulo. An e�cient algorithm for exploiting multiple arithmetic units. IBM
Journal of research and Development, 11(1):25–33, 1967.

[145] Jonathan Ying Fai Tong, David Nagle, and Rob A Rutenbar. Reducing power by optimizing
the necessary precision/range of �oating-point arithmetic. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(3):273–286, 2000.

[146] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blo�, Philip Leong, Mag-
nus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural net-
work inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 65–74. ACM, 2017.

[147] Nicolas Vasilache, Oleksandr Zinenko, �eodoros �eodoridis, Priya Goyal, Zachary DeVito,
William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstractions. arXiv preprint
arXiv:1802.04730, 2018.

[148] Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Christos D
Antonopoulos, Nikolaos Bellas, Spyros Lalis, and Uwe Naumann. Towards automatic sig-
ni�cance analysis for approximate computing. In Code Generation and Optimization (CGO),
2016 IEEE/ACM International Symposium on, pages 182–193. IEEE, 2016.

[149] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari, and Sarita V Adve.
Approxilyzer: Towards a systematic framework for instruction-level approximate comput-
ing and its application to hardware resiliency. In �e 49th Annual IEEE/ACM International
Symposium on Microarchitecture, page 42. IEEE Press, 2016.

[150] Swagath Venkataramani, Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand
Raghunathan. �ality programmable vector processors for approximate computing. In
Microarchitecture (MICRO), 2013 46th Annual IEEE/ACM International Symposium on, pages
1–12. IEEE, 2013.

[151] Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan. Substitute-and-simplify:
A uni�ed design paradigm for approximate and quality con�gurable circuits. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013, pages 1367–1372. IEEE,
2013.

[152] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin,
Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Conservation cores:
reducing the energy of mature computations. InACMSIGARCHComputer Architecture News,
volume 38, pages 205–218. ACM, 2010.

[153] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Ho�a, Sravanthi Kota Venkata,
Michael Bedford Taylor, and Steven Swanson. Qscores: Trading dark silicon for scalable

150

energy e�ciency with quasi-speci�c cores. In Microarchitecture (MICRO), 2011 44th Annual
IEEE/ACM International Symposium on, pages 163–174. IEEE, 2011.

[154] Richard Wei, Lane Schwartz, and Vikram Adve. Dlvm: A modern compiler infrastructure
for deep learning systems. arXiv preprint arXiv:1711.03016, 2017.

[155] Daniel Wong, Nam Sung Kim, and Murali Annavaram. Approximating warps with intra-
warp operand value similarity. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 176–187. IEEE, 2016.

[156] Lisa Wu, Andrea Lo�arini, Timothy K Paine, Martha A Kim, and Kenneth A Ross. Q100: �e
architecture and design of a database processing unit. In Acm Sigplan Notices, volume 49,
pages 255–268. ACM, 2014.

[157] Xilinx, Inc. Vivado high-level synthesis.

[158] Xilinx, Inc. Xilinx all programmable SoC.

[159] Xilinx, Inc. Zynq UG479 7 series DSP user guide.

[160] Xilinx, Inc. Zynq UG585 technical reference manual.

[161] Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pejman Lot�-Kamran.
Axbench: A multiplatform benchmark suite for approximate computing. IEEE Design &
Test, 34(2):60–68, 2017.

[162] Yavuz Yetim, Margaret Martonosi, and Sharad Malik. Extracting useful computation from
error-prone processors for streaming applications. In Proceedings of the Conference on De-
sign, Automation and Test in Europe, pages 202–207. EDA Consortium, 2013.

[163] Jihan Zhu and Peter Su�on. Fpga implementations of neural networks–a survey of a decade
of progress. In International Conference on Field Programmable Logic and Applications, pages
1062–1066. Springer, 2003.

	List of Figures
	List of Tables
	Introduction
	Appendices
	Background: A Taxonomy of General Purpose Approximate Computing Techniques
	Background: An Survey of Domain Specialized Deep Learning Accelerators

	SNNAP: Approximately Mapping Diverse Regions of Code to a Single FPGA-Based Substrate via Neural Acceleration
	Introduction
	Programming
	Architecture Design for SNNAP
	Hardware Design for SNNAP
	Evaluation
	Related Work
	Conclusion

	Appendices
	SNNAC: An Error-Tolerant Low-Voltage SRAM Neural Network Accelerator ASIC

	QAPPA: Quality Autotuner for Precision Programmable Hardware Accelerators
	Introduction
	QAPPA: A Quantization Autotuner
	PERFECT Application Study
	Dynamic Quantization Scaling
	Approximation Study
	Related Works
	Conclusion.

	VTA: Software-Micromanaged Hardware For Extensible Deep Learning Acceleration
	Introduction
	VTA Stack Overview
	VTA Hardware Design
	VTA Software Stack
	Evaluation
	Related Work
	Conclusion

	Conclusion
	Accomplished Research Summary
	Beyond Academic Research
	Artifact Submissions Overview
	Lessons Learned and Future Work
	Concluding Remarks: An Outlook to the Future

	Bibliography

