SNNAP:
Approximate Computing
on Programmable SoCs
via Neural Acceleration

Thierry Moreau Hadi Esmaeilzadeh
Mark Wyse Luis Ceze
Jacob Nelson Mark Oskin

Adrian Sampson

Georgia College of
" Te%h Computing

Approximate Computing

Expose quality-performance trade-ofts

Approximate Computing

Expose quality-performance trade-ofts

Accurate X Approximate
X Expensive Cheap

Approximate Computing

Expose quality-performance trade-ofts

Accurate Approximate
X Expensive Cheap

Domains include image processing, machine
learning, search, physical simulation, multimedia etc.

Neural Acceleration

>
acceleration

E]oat foo (float a, float b)
return val; . .
} approximation

Neural Acceleration

float foo (float a, float b) i
acceleration

Lo ’
; return val; - -
L approximation

t 1

FIDIX| | {M]C CPUE

Esmaeilzadeh et al. SNNAP
[IMICRO 2012]

?oat foo (float a, float b)
§ return val; : . - i
B approximation acceleration

A neural processing unit on off-the-shelt
Programmable SoCs

3.8x speedup and 2.8x efficiency gains

offers an alternative to HLS tools for neural acceleration

Talk Outline

Programming model

SNNAP design:
e Efficient neural network evaluation
* | ow-latency communication

Evaluation & Comparison with HLS

Background: Compilation
(

region detection

1. Region detection Cotd?. & program
annotation iInstrumentation
back prop.
2. ANN Training [training.data] — & topology —
search
: SNNAP
3. Code Generation binary @ >
generation CPU

Programming Model

float sobel (float* p);

Image src;
Image dst;

while (true) {

SObel l src = read_from_camera();
for (y=0; y < h; ++y) {
for (x=0; x < w; ++x) {
dst.p[y][x] = sobel(& src.p[y]l[x]);
}
}

display(dst);

Programming Model

APPROX float sobel (APPROX float* p);

APPROX Image src;
APPROX Image dst;

no side effects
executes often

while (true) {
src = read_from_camera();
for (y=0; y < h; ++y) {
for (x=0; x < w; ++x) {
\ (dst.p[y][x] = sobel(& src.p[y]l[x]);)
}
display(dst);
}

ACCEPT: compilation framework for approximate programs

Talk Outline

SNNAP design:
- Efficient neural network evaluation
* |Low-latency communication

Evaluation & Comparison with HLS

Backgrounad:
Multi-Layer Perceptrons

neural network computing a single layer

X7 We7 W57 Wa7 Il X6
xs]| = f Wes Ws3 Was [X5
X9 We9 W59 Wig Il X4
- Wa7 g
w

activation function f

s

Background: Systolic Arrays

computing a single layer systolic array

X7 We7 W57 Wa7 Il X6
xs| = f Wes Wss Was | X5
X9 We9 W59 Waig I X4

<« “« |« |«

Background: Systolic Arrays

systolic array

X6

Wi9 W48 W47 —>

Ws59 W58 W57 -

We9 Wegs We7 >

X5
X4
|
v
v
v
f
}
X7
Xs
X9

PU Micro-Architecture

systolic arra rocessin
y y P 9 1 - processing elements in DSP logic

X6 Un/t
X5
X ~ pu icineaalin
' control [E—
W39 W4g Wg7 —>
v 2 - local storage for synaptic weights
Ws9 W53 Ws7 —>
v 3 - sigmoid unit implements non-
Weo Wes We7 g . linear activation functions
/ A
M A A
X8 4 - vertically micro-coded sequencer
X9

Multi-Processing Units

(AXI Master) C scheduler)
C bus)

~pu Y[pPu V[pPU [pPU

control control control control
PE PE
PE PE
PE PE

Talk Outline

SNNAP design:

- Low-latency communication

Evaluation & Comparison with HLS

CPU-SNNAP Integration

Interface requirements:
Low-latency data transter
Fast signaling

L2
i (_)ACP DMA scheduler
SL1 .| Mmaster

SEV bus

WFE ¢—

CPU

CPU-SNNAP Integration

(Coherent reads\

& writes
with accelerator
._coherency port

Interface requirements:
Low-latency data transter
Fast signaling

L2
® (_)ACP DMA scheduler
SL1 .| Mmaster

SEV bus

WFE |[&—

CPU

CPU-SNNAP Integration

4) 4)
Interface requirements: cohgren_tt reads custom
Low-latency data transter G WIS mastering
Fast signaling with accelerator interface
._coherency port _ .

$L2
(_)ACP DMA scheduler
SL1 | Mmaster

SEV bus

WFE ¢—

CPU

CPU-SNNAP Integration

4) 4)
Interface requirements: Cohgr\?vr;itt;esads custom
Low-latency data transter . mastering
Cast S i with accelerator terface
ast sighaiing ._coherency port _ y
L2
4) : Qﬂ’) DMA 1 scheduler
low-latency SL1 . master
event
siglgnalingg?, SEVI—| bus
sleep
wakeup y CPU

.

Talk Outline

Evaluation & Comparison with HLS

Evaluation

Neural acceleration on SNNAP (8x8 configuration,
clocked at 1/4 of fcpu) vs. precise CPU execution

Evaluation

Neural acceleration on SNNAP (8x8 configuration,
clocked at 1/4 of fcpu) vs. precise CPU execution

application domain error metric
blackscholes option pricing MSE
fft DSP MSE
inversek?] robotics MSE
jmeint 3D-modeling miss rate
jpeg compression image diff
Kmeans ML image diff

sobel vision image diff

Whole Application Speedup

4.00

0
®)
S

2.00

1.00

0.00

10.8

38.1

Speedup

3.8 Factors:
- Amdahl’'s Speedup

- Cost of instructions on CPU
vs. cost of NN on SNNAP

Whole Application Speedup

4.00

0
®)
S

2.00

1.00

0.00

10.8

38.1

Speedup

3.8

Factors:

- Amdahl’'s Speedup

- Cost of instructions on CPU
vs. cost of NN on SNNAP

inversek2j kmeans

Amdahl’s

Speedup 1.47x%

>100x

CPU cost ueey 29 cycles
cycles

NN hidden

1 2

Energy Savings

4.00

3.00

N
o
S

1.00

0.00

/.8

Energy Savings

28.0 +36%

Energy = Power * Runtime
on
(DRAM
+ SoC)

HW Acceleration

Neural Acceleration with SNNAP
VS.

High Level Synthesis Compilers

which one should you use?

HLS Comparison Study

FPGA
design

neural NN compiled

transform executes down

I
— 1l —
netlist

H\LS‘ g]{ compiled down R

SNNAP

HLS Comparison Study

FPGA
design

neural NN compiled

transform executes down

I |
"1

netlist

compiled down

HLS >

Resource-normalized throughput:
pipeline invocation interval
maximum frequency
resource utilization

HLS Comparison Study

43.7

10.00 7.9 I

0.10

Neural
Acceleration
IS better

Normalized Throughput
Improvement over HLS

HLS is better

HLS Comparison Study

43.7

Precision

Virtualization

Performance

Normalized Throughput
Improvement over HLS

Programmability

HLS Comparison Study

43.7

Precision

Virtualization

Performance

Normalized Throughput
Improvement over HLS

Programmability

Conclusion

el o -
b ey \'ﬁ‘\ P o
Vg 39 3

SNNAP: apply lapproximate computing on
‘programmable SoCs\through/neural acceleration

S 3h float foo (float a, float b) {

return r;
}

J \- Y,

3.8X speedup & 2.8X energy savings

neural acceleration is a viable alternative to HLS

SNNAP:
Approximate Computing
on Programmable SoCs
via Neural Acceleration

Thierry Moreau: moreau@uw.edu

Mark Wyse Hadi Esmaeilzadeh
Jacob Nelson Luis Ceze
Adrian Sampson Mark Oskin

http://sampa.cs.washington.edu/

http://sampa.cs.washington.edu/
mailto:moreau@uw.edu

