SNNAP: Approximate Computing on Programmable SoCs via Neural Acceleration

Thierry Moreau
Mark Wyse
Jacob Nelson
Adrian Sampson

Hadi Esmaeilzadeh Luis Ceze Mark Oskin

Approximate Computing

Expose quality-performance trade-offs

Approximate Computing

Expose quality-performance trade-offs

X Expensive

X Approximate

Approximate Computing

Expose quality-performance trade-offs

Approximate

Domains include image processing, machine learning, search, physical simulation, multimedia etc.

Neural Acceleration

```
float foo (float a, float b)
{
...
return val;
approximation

float foo (float a, float b)
acceleration
```

Neural Acceleration

```
float foo (float a, float b)
{
...
return val;
approximation

float foo (float a, float b)
acceleration
```


Esmaeilzadeh et al. [MICRO 2012]

SNNAP

SNNAP

```
float foo (float a, float b)
{
...
return val;
approximation

float foo (float a, float b)
acceleration
```

A neural processing unit on off-the-shelf Programmable SoCs

3.8x speedup and 2.8x efficiency gains

offers an alternative to HLS tools for neural acceleration

Talk Outline

Introduction

Programming model

SNNAP design:

- Efficient neural network evaluation
- Low-latency communication

Evaluation & Comparison with HLS

Background: Compilation

2. ANN Training

3. Code Generation

Programming Model

sobel


```
float sobel (float* p);
Image src;
Image dst;
while (true) {
   src = read_from_camera();
   for (y=0; y < h; ++y) {
      for (x=0; x < w; ++x) {
         dst.p[y][x] = sobel(& src.p[y][x]);
   display(dst);
```

Programming Model


```
sobel
```



```
APPROX float sobel (APPROX float* p);
APPROX Image src;
APPROX Image dst;
                               no side effects
while (true) {
  src = read_from_camera();
                               executes often
  for (y=0; y < h; ++y) {
     for (x=0; x < w; ++x) {
        dst.p[y][x] = sobel(& src.p[y][x]);
  display(dst);
```

ACCEPT: compilation framework for approximate programs

Talk Outline

Introduction

Programming model

SNNAP design:

- Efficient neural network evaluation
- Low-latency communication

Evaluation & Comparison with HLS

Background: Multi-Layer Perceptrons

neural network

computing a single layer

$$\begin{bmatrix} x_7 \\ x_8 \\ x_9 \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} w_{67} & w_{57} & w_{47} \\ w_{68} & w_{58} & w_{48} \\ w_{69} & w_{59} & w_{49} \end{bmatrix} \begin{bmatrix} x_6 \\ x_5 \\ x_4 \end{bmatrix}$$

activation function f

Background: Systolic Arrays

computing a single layer

$$\begin{bmatrix} X_7 \\ X_8 \\ X_9 \end{bmatrix} = f \begin{pmatrix} W_{67} & W_{57} & W_{47} \\ W_{68} & W_{58} & W_{48} \\ W_{69} & W_{59} & W_{49} \end{pmatrix} \begin{bmatrix} X_6 \\ X_5 \\ X_4 \end{bmatrix}$$

systolic array

Background: Systolic Arrays

systolic array

PU Micro-Architecture

systolic array

X6 **X**5 **X**4 W49 W48 W47 W59 W58 W57 W69 W68 W67 **X**7 Xa **X**9

processing unit

1 - processing elements in DSP logic

- 2 local storage for synaptic weights
- 3 sigmoid unit implements nonlinear activation functions

4 - vertically micro-coded sequencer

Multi-Processing Units

Talk Outline

Introduction

Programming model

SNNAP design:

- Efficient neural network evaluation
- Low-latency communication

Evaluation & Comparison with HLS

Interface requirements:

- Low-latency data transfer
- Fast signaling

Interface requirements:

- Low-latency data transfer
- Fast signaling

coherent reads & writes with accelerator coherency port

Interface requirements:

- Low-latency data transfer
- Fast signaling

coherent reads & writes with accelerator coherency port

custom mastering interface

Interface requirements:

- Low-latency data transfer
- Fast signaling

coherent reads & writes with accelerator coherency port

custom mastering interface

low-latency event signaling, sleep & wakeup

Talk Outline

Introduction

Programming model

SNNAP design:

- Efficient neural network evaluation
- Low-latency communication

Evaluation & Comparison with HLS

Evaluation

Neural acceleration on SNNAP (8x8 configuration, clocked at 1/4 of f_{CPU}) vs. precise CPU execution

Evaluation

Neural acceleration on SNNAP (8x8 configuration, clocked at 1/4 of f_{CPU}) vs. precise CPU execution

application	domain	error metric
blackscholes	option pricing	MSE
fft	DSP	MSE
inversek2j	robotics	MSE
jmeint	3D-modeling	miss rate
jpeg	compression	image diff
kmeans	ML	image diff
sobel	vision	image diff

Speedup

Factors:

- Amdahl's Speedup
- Cost of instructions on CPU vs. cost of NN on SNNAP

Speedup

Factors:

- Amdahl's Speedup
- Cost of instructions on CPU vs. cost of NN on SNNAP

	inversek2j	kmeans
Amdahl's Speedup	>100x	1.47x
CPU cost	1660 cycles	29 cycles
NN hidden layers	1	2

Energy Savings

HW Acceleration

Neural Acceleration with SNNAP vs.

High Level Synthesis Compilers

which one should you use?

Resource-normalized throughput:

- pipeline invocation interval
- maximum frequency
- resource utilization

Neural Acceleration is better

HLS is better

	Neural Accel.	HLS
Precision		
Virtualization		
Performance		
Programmability		

	Neural Accel.	HLS
Precision		
Virtualization		
Performance	~	~
Programmability		

Conclusion

3.8x speedup & 2.8x energy savings neural acceleration is a viable alternative to HLS

SNNAP:

Approximate Computing on Programmable SoCs via Neural Acceleration

Thierry Moreau: moreau@uw.edu

Mark Wyse Jacob Nelson Adrian Sampson Hadi Esmaeilzadeh Luis Ceze Mark Oskin

http://sampa.cs.washington.edu/