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Approximate Computing

Expose quality-performance trade-ofts

Accurate Approximate
X Expensive Cheap

Domains include image processing, machine
learning, search, physical simulation, multimedia etc.
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?oat foo (float a, float b)
§ return val; : . - i
B approximation acceleration

A neural processing unit on off-the-shelt
Programmable SoCs

3.8x speedup and 2.8x efficiency gains

offers an alternative to HLS tools for neural acceleration
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SNNAP design:
e Efficient neural network evaluation
* | ow-latency communication

Evaluation & Comparison with HLS
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Programming Model

float sobel (float* p);

Image src;
Image dst;

while (true) {

SObel l src = read_from_camera();
for (y=0; y < h; ++y) {
for (x=0; x < w; ++x) {
dst.p[y][x] = sobel(& src.p[y]l[x]);
}
}

display(dst);




Programming Model

APPROX float sobel (APPROX float* p);

APPROX Image src;
APPROX Image dst;

no side effects
executes often

while (true) {
src = read_from_camera();
for (y=0; y < h; ++y) {
for (x=0; x < w; ++x) {
\ (dst.p[y][x] = sobel(& src.p[y]l[x]);)
}
display(dst);
}

ACCEPT: compilation framework for approximate programs



Talk Outline

SNNAP design:
- Efficient neural network evaluation
* |Low-latency communication

Evaluation & Comparison with HLS



Backgrounad:
Multi-Layer Perceptrons

neural network computing a single layer
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Background: Systolic Arrays

computing a single layer systolic array
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Background: Systolic Arrays

systolic array

X6

Wi9 W48 W47 —>

Ws59 W58 W57 -

We9 Wegs We7 >

X5
X4
|
v
v
v
f
}
X7
Xs
X9



PU Micro-Architecture
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Multi-Processing Units
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Talk Outline

SNNAP design:

- Low-latency communication

Evaluation & Comparison with HLS



CPU-SNNAP Integration

Interface requirements:
Low-latency data transter
Fast signaling
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CPU-SNNAP Integration
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Evaluation & Comparison with HLS



Evaluation

Neural acceleration on SNNAP (8x8 configuration,
clocked at 1/4 of fcpu) vs. precise CPU execution



Evaluation

Neural acceleration on SNNAP (8x8 configuration,
clocked at 1/4 of fcpu) vs. precise CPU execution

application domain error metric
blackscholes  option pricing MSE
fft DSP MSE
inversek?] robotics MSE
jmeint 3D-modeling miss rate
jpeg compression image diff
Kmeans ML image diff

sobel vision image diff



Whole Application Speedup

4.00

0
®)
S

2.00

1.00

0.00

10.8

38.1

Speedup

3.8 Factors:
- Amdahl’'s Speedup

- Cost of instructions on CPU
vs. cost of NN on SNNAP



Whole Application Speedup
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Factors:

- Amdahl’'s Speedup

- Cost of instructions on CPU
vs. cost of NN on SNNAP

inversek2j kmeans

Amdahl’s

Speedup 1.47x%

>100x

CPU cost ueey 29 cycles
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NN hidden
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Energy Savings
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HW Acceleration

Neural Acceleration with SNNAP
VS.

High Level Synthesis Compilers

which one should you use?



HLS Comparison Study
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HLS Comparison Study
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Resource-normalized throughput:
pipeline invocation interval
maximum frequency
resource utilization



HLS Comparison Study
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Conclusion
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SNNAP: apply lapproximate computing on
‘programmable SoCs\through/neural acceleration

S 3h float foo (float a, float b) {

return r;
}

J \- Y,

3.8X speedup & 2.8X energy savings

neural acceleration is a viable alternative to HLS
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