
Dynamic Programming Algorithms
as Products of Weighted Logic Programs

Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

School of Computer Science
Carnegie Mellon University

{scohen,rjsimmon,nasmith}@cs.cmu.edu

Abstract. Weighted logic programming, a generalization of bottom-up logic pro-
gramming, is a successful framework for specifying dynamic programming algo-
rithms. In this setting, proofs correspond to the algorithm’s output space, such as a
path through a graph or a grammatical derivation, and are given a weighted score,
often interpreted as a probability, that depends on the score of the base axioms
used in the proof. The desired output is a function over all possible proofs, such as
a sum of scores or an optimal score. We describe the PRODUCT transformation,
which can merge two weighted logic programs into a new one. The resulting pro-
gram optimizes a product of proof scores from the original programs, constituting
a scoring function known in machine learning as a “product of experts.” Through
the addition of intuitive constraining side conditions, we show that several impor-
tant dynamic programming algorithms can be derived by applying PRODUCT to
weighted logic programs corresponding to simpler weighted logic programs.

1 Introduction

Weighted logic programming has found a number of applications in fields such as
natural language processing, machine learning, and computational biology as a tech-
nique for declaratively specifying dynamic programming algorithms. Weighted logic
programming is a generalization of bottom-up logic programming, with the numerical
scores for proofs often interpreted as probabilities, implying that the weighted logic
program implements probabilistic reasoning. Most commonly, the program finds the
“most probable proof.”

We then describe a program transformation, PRODUCT, that is of special interest
in weighted logic programming. PRODUCT transforms two weighted logic programs
into a new one that implements probabilistic inference under an unnormalized prob-
ability distribution built as a product of the input programs’ distributions, known in
machine learning as a “product of experts.” While this property has been exploited in a
variety of ways in applications, there has not, to our knowledge, been a formal analysis
or generalization in terms of the weighted logic programming representation.

The contribution of this paper is a general, intuitive, formal setting for dynamic pro-
gramming algorithms that process two or more conceptually distinct structured inputs.
Indeed, we show that many important dynamic programming algorithms can be derived
using simpler “factor” programs and the PRODUCT transformation.

2 Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

reachable(Q) :- initial(Q). (1)

reachable(Q) :- reachable(P), edge(P, Q). (2)

Fig. 1: A simple bottom-up logic program for graph reachability.

a b

c d

initial(a) = T

edge(a, c) = T

edge(a, d) = T

edge(b, b) = T

edge(c, a) = T

edge(c, d) = T

edge(d, b) = T

edge(d, c) = T

edge(d, d) = T

Fig. 2: A directed graph and the corresponding initial database.

The paper is organized as follows. In §2 we give an overview of weighted logic
programming. In §3 we describe products of experts, a concept from machine learning
that motivates our framework. In §4 we describe our framework and its connection to
product of experts. In §5 we give derivations of several well-known algorithms using
our framework.

2 Weighted logic programming

To motivate weighted logic programming, we begin with a logic program for single-
source connectivity on a directed graph, shown in Fig. 1. In the usual bottom-up inter-
pretation of this program, an initial database would describe the edge relation and one
(or more) roots as axioms of the form initial(a) for some a, and repeated forward
inference would be applied on the two rules above to find the least database closed un-
der those rules. However, in traditional logic programming this program can only be
understood as a program calculating connectivity over a graph. Solving a different but
structurally similar problem, such as a single-source shortest path, requires a rather dif-
ferent program to be written, and most solutions that have been presented require some
form of non-deterministic committed choice [13, 11].

Traditional logic programming is interpreted over Boolean values. A proof is a tree
of valid inferences, and a valid proof is one where all of the leaves of the proof tree are
axioms which are known to be true, and a true atomic proposition is one that has at least
one valid proof. In weighted logic programming we generalize this notion to axioms,
proofs, and atomic propositions “having values” rather than just “being true/valid.” A
Boolean logic program takes the value of a proof to be the conjunction of the value of
its axioms (so the proof has value “true” as long as all the propositions at the leaves are
true-valued axioms), and takes the value of a proposition to be the disjunction of the
values of its proofs (so an atomic proposition has value “true” if it has one true-valued
proof). The single-source connectivity program would describe the graph in Fig. 2 by
assigning T as the value of all the existing edges and the proposition initial(a).

Dynamic Programming Algorithms as Products of Weighted Logic Programs 3

a b

c d

8

20

4
9

16

15 2

6

initial(a) = 0
edge(a, c) = 4
edge(a, d) = 20
edge(b, b) = 8
edge(c, a) = 9

edge(c, d) = 15
edge(d, b) = 6
edge(d, c) = 16
edge(d, d) = 2

Fig. 3: A cost graph and the corresponding initial database.

a b

c d

0.2

0.3
0.4

0.6
0.8

0.5

0.9

0.2

initial(a) = 1
edge(a, c) = 0.2
edge(a, d) = 0.8
edge(b, b) = 0.9
edge(c, a) = 0.6

edge(c, d) = 0.4
edge(d, b) = 0.2
edge(d, c) = 0.3
edge(d, d) = 0.5

Fig. 4: A probabilistic graph and the corresponding initial database. With stopping probabilities
made explicit, this would encode a Markov model.

2.1 Non-Boolean programs

Weighted logic programming makes the observation that axioms and propositions can
be understood as having non-Boolean values. In Fig. 3, axioms of the form edge(X, Y)
are given a value corresponding to the cost along the edge in the graph, and the axiom
initial(a) is given the value 0. If we take the value or “score” of a proof to be the
the sum of the values of its axioms, and then take the value of a proposition to be the
minimum score over all possible proofs, then the program from Fig. 1 describes single-
source shortest path. We replace the operators :- (disjunction) and , (conjunction) with
min = and +, respectively, and interpret the program over the non-negative numbers.
With a specific execution strategy, the result is Dijkstra’s single-source shortest path
algorithm [4].

Whereas Fig. 3 describes a cost graph, in Fig. 4 weights on edges are to be inter-
preted as probabilities, so that the graph can be seen as a Markov model or probabilistic
finite-state network over which random walks are well-defined.1 If we replace :- (dis-
junction) and , (conjunction) with max = and ×, then the value of reachable(X) for
any X is the probability of the most likely path from a to X. For instance, reachable(a)
ends up with the value 1, and reachable(b) ends up with value 0.16, corresponding to
the path from a→ d→ b, whose weight is initial(a)× edge(a, d)× edge(d, b).

If we keep the initial database from Fig. 4 but change our operators from max = and
× to += and×, the result is a program for summing over the probabilities of all distinct
paths that start in a and lead to X, for each vertex X. This quantity is known as the “path
sum” [29]. The path sum for b, for instance, is 10—this is not a probability, but rather a
sum of probabilities of many paths, some of which are prefixes of each other.

These three related weighted logic programs are useful generalizations of the reach-
ability logic program. Fig. 5 gives a generic representation of all four algorithms in the

1 For each vertex, the out-going edges’ weights must be non-negative and sum to a value less
than or equal to one. Remaining probability mass is assumed to go to a “stopping” event, as
happens with probability 0.1 in vertex b in Fig. 4.

4 Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

reachable(Q) ⊕= initial(Q). (3)

reachable(Q) ⊕= reachable(P)⊗ edge(P, Q). (4)

Fig. 5: The logic program from Fig. 1, rewritten to emphasize that it is generalized to an arbitrary
semiring.

Dyna language [6]. The key difference among them is the semiring in which we inter-
pret the weights.2 Reachability uses the Boolean semiring 〈{T, F},∨,∧, F, T〉, single-
source shortest path uses 〈R≥0 ∪ {∞},min,+,∞, 0〉, the most-probable path variant
uses 〈[0, 1],max,×, 0, 1〉, and the probabilistic path-sum variant uses 〈R≥0∪{∞},+,×, 0, 1〉.
The formalism we describe here requires semirings that are closed under finite products
and infinite sums—in our running example, this corresponds to the idea that there may
be infinite paths through a graph, all with finite length.

Weighted logic programming arose in the computational linguistics community [12]
after it was argued by Shieber, Schabes, and Pereira [25] and Sikkel [26] that many
parsing algorithms for non-deterministic grammars could be represented as deductive
logic programs, and McAllester [22] showed that this representation facilitates reason-
ing about asymptotic complexity. Other developments include a connection between
weighted logic programs and hypergraphs [19], optimal A∗ search for maximizing pro-
grams [17, 9], semiring-general agenda-based implementations [7], improved k-best al-
gorithms [16], and program transformations to improve efficiency [5].

2.2 Formal definition

A weighted logic program is a set of “Horn equations” [5] describing a set of declara-
tive, usually recursive equations over an abstract semiring:

consequent(U)⊕= antecedent1(W1)⊗ . . .⊗ antecedentn(Wn).

Here U and the Wi are sequences of variables X1, . . . , Xk. If U ⊆
⋃n

i=1 Wi for
every rule, then the program is range-restricted or fully grounded.

A weighted logic program is specified on an arbitrary semiring, and can be inter-
preted in any semiring 〈K,⊕,⊗,0,1〉, as previously described.

Typically the proof and value of a specific theorem are desired. We assume that this
theorem is called goal and takes zero arguments. A computationally uninteresting but
perfectly intuitive way to present a weighted logic program is

goal⊕= axiom1(W1)⊗ ...⊗ axiomn(Wn).

The value of the proposition/theorem goal is a semiring-sum over all of its proofs,
starting from the axioms, where the value of any single proof is the semiring-product of
the axioms involved. This is effectively encoded using the inference rules as a sum of
products of sums of products of ... sums of products, exploiting distributivity and shared

2 An algebraic semiring consists of five elements 〈K,⊕,⊗,0,1〉, where K is a domain closed
under ⊕ and ⊗, ⊕ is a binary, associative, commutative operator, ⊗ is a binary, associative
operator that distributes over ⊕, 0 ∈ K is the ⊕-identity, and 1 ∈ K is the ⊗-identity.

Dynamic Programming Algorithms as Products of Weighted Logic Programs 5

substructure for efficiency. Dynamic programming algorithms, useful for problems with
a large degree of shared substructure, are often encoded as weighted logic programs.

In many practical applications, as in our reachability example in Section 2.1, values
are interpreted as probabilities to be maximized or summed or costs to be minimized.

3 Products of experts

In machine learning, probability models learned from example data are often used to
make predictions. For example, to predict the value of a random variable Y (ranging
over values denoted y in a domain denoted Y; here, Y corresponds to the set of proofs)
given that random variable X has an observed value x ∈ X (here, X ranges over initial
databases, i.e., sets of axioms), the Bayes decision rule predicts:

ŷ = argmax
y∈Y

p(Y = y | X = x) = argmax
y∈Y

p(Y = y,X = x)
p(X = x)

(5)

In other words, the prediction ŷ should be the element of Y that maximizes p(Y =
y | X = x), the likelihood of the event Y = y given that the event X = x has
happened. By the definition of conditional probability, this quantity is equivalent to the
ratio of the joint probability that X = x ∧ Y = y to the marginal probability that
X = x. Dynamic programming algorithms are available for solving many of these
maximization problems, such as when Y ranges over paths through a graph or grammar
derivations.

Of recent interest are probability models p that take a factored form, for example:

p(X = x, Y = y) ∝ p1(X = x, Y = y)× . . .× pn(X = x, Y = y) (6)

where ∝ signifies “proportional to” and suppresses the means by which the probability
distribution is re-normalized to sum to one. This kind of model is called a product of
experts [14]. Intuitively, the probability of an event under p can only be large if “all the
experts concur,” i.e. if the probability is large under each of the pi. Any single expert can
make an event arbitrarily unlikely (even impossible) by giving it very low probability.

The attraction of such probability distributions is that they modularize complex
systems [18]. They can also offer computational advantages when solving Eq. 5 [1].
Further, the expert factors can often be trained (i.e., estimated from data) separately,
speeding up expensive but powerful machine learning methods [27, 28].

This idea is still useful even when not dealing with probabilities. Suppose each
expert pi is a function X× Y→ {0, 1} that returns 1 if and only if the arguments x and
y satisfy some constraints; it implements a relation. Then the “product” relation is just
the intersection of all pairs 〈x, y〉 for which all the expert factors’ relations hold.

To the best of our knowledge, there has been no attempt to formalize the follow-
ing intuitive idea about products of experts: algorithms for summing and maximizing
mutually-constrained pairs of product-proof values should resemble the individual al-
gorithms for each of the two separate proofs’ values. Our formalization is intended to
aid in algorithm development as new kinds of random variables are coupled, with a key
practical advantage: the expert factors are known because they fundamentally underlie
the main algorithm. Indeed, we call our algorithms “products” because they are derived
from “factors.”

6 Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

reachable1(Q1) ⊕= initial1(Q1). (7)

reachable1(Q1) ⊕= reachable1(P1)⊗ edge1(P1, Q1). (8)

reachable2(Q2) ⊕= initial2(Q2). (9)

reachable2(Q2) ⊕= reachable2(P2)⊗ edge2(P2, Q2). (10)

Fig. 6: Two identical “experts” for generalized graph reachability, duplicates of the program in
Fig. 5.

reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (11)

reachable1◦2(Q1, Q2) ⊕= reachable2(P2)⊗ edge2(P2, Q2)⊗ initial1(Q1). (12)

reachable1◦2(Q1, Q2) ⊕= reachable1(P1)⊗ edge1(P1, Q1)⊗ initial2(Q2). (13)

reachable1◦2(Q1, Q2) ⊕= reachable1◦2(P1, P2)⊗ edge1(P1, Q1)⊗ edge2(P2, Q2). (14)

Fig. 7: Four rules that, in addition to the rules in Fig. 6, define the product of experts of
reachable1 and reachable2.

4 Products of weighted logic programs

In this section, we will motivate products of weighted logic programs in the context of
the running example of generalized graph reachability. We will then define the PROD-
UCT transformation precisely and describe the process of specifying new algorithms
as constrained versions of product programs.

Fig. 6 defines two “experts,” copies of the graph reachability program from Fig. 5.
We are interested in a new predicate reachable1◦2(Q1, Q2), which for any particular X
and Y should be equal to the product of reachable1(X) and reachable2(Y). We could
define the predicate by adding the following rule to the program in Fig. 6:

reachable1◦2(Q1, Q2) ⊕= reachable1(Q1)⊗ reachable2(Q2).

This program is a bit simplistic, however; it merely describes calculating the “experts”
independently and then combining them at the end. The key to the PRODUCT transfor-
mation is that the predicate of reachable1◦2 can alternatively be calculated by adding
the following four rules to Fig. 6:

reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2).
reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ reachable2(P2)⊗ edge2(P2, Q2).
reachable1◦2(Q1, Q2) ⊕= reachable1(P1)⊗ edge1(P1, Q1)⊗ initial2(Q2).
reachable1◦2(Q1, Q2) ⊕= reachable1(P1)⊗ edge1(P1, Q1)⊗

reachable2(P2)⊗ edge2(P2, Q2).

Then, because reachable1◦2(Q1, Q2) was defined above to be the product of reachable1(Q1)
and reachable2(Q2), it should be clear that the last rule can be rewritten to obtain the
factored program presented in Fig. 7. This program simply computes over pairs of paths
in two graphs.

4.1 The PRODUCT transformation

The PRODUCT program transformation is shown in Fig. 8. For each desired product
of experts, where one “expert,” the predicate p, is defined by n rules and the other expert

Dynamic Programming Algorithms as Products of Weighted Logic Programs 7

Input: A logic program P and a set S of pairs of predicates (p, q).
Output: A program P′ that extends P, additionally computing the product predicate p◦q for

every pair (p, q) ∈ S in the input.
1: P′ ← P

2: for all pairs (p, q) in S do
3: for all rules in P, of the form p(W)⊕=A1 ⊗ . . .⊗An do
4: for all rules in P, of the form q(X)⊕=B1 ⊗ . . .⊗Bm do
5: let r ← [p◦q(W,X)⊕=A1 ⊗ . . .⊗An ⊗B1 ⊗ . . .⊗Bm]
6: for all pairs of antecedents in r (s(Y), t(Z)) such that (s, t) ∈ S do
7: remove the antecedents s(Y) and t(Z) from r
8: insert the antecedent s◦t(Y,Z) to r
9: end for

10: add r to P′

11: end for
12: end for
13: end for
14: return P′

Fig. 8: This figure describes PRODUCT, a non-deterministic program transformation that adds
new rules to WLP P that compute the product of experts of predicates from the original program.
We implicitly rename variables to avoid conflicts between rules.

q by m rules, the transformation defines the product of experts for p◦q with n×m new
rules, the cross product of inference rules from the first and second experts. The value
of a coupled proposition p◦q in P′ will be equal to the semiring product of p’s value
and q’s value in P (or, equivalently, in P′).

Note that lines 6–8 are non-deterministic under certain circumstances, because if the
antecedent of the combined program is a(X)⊗ a(Y)⊗ b(Z) and the algorithm is com-
puting the product of a and b, then the resulting antecedent could be either a◦b(X, Z)⊗ a(Y)
or a◦b(Y, Z)⊗ a(X). Our procedure arbitrarily selects one of the possibilities.

4.2 Constraining the product of experts

Any program P′ that comes out after applying PRODUCT on P computes the product
of experts of p and q (where (p, q) ∈ S). More specifically, any ground instances of
p(X) and q(Y) have the same value in P and P′, and the value of p◦q(X,Y) in P′

is p(X) ⊗ q(Y).3 However, the same program could have been implemented more
straightforwardly by merely introducing a new inference rule for the goal. Why do we
need the machinery of PRODUCT?

One reason is that the output of the PRODUCT transformation is a starting point for
describing dynamic programming algorithms that do two similar actions—traversing a
graph, scanning a string, parsing a sentence—at the same time and in a coordinated
fashion. Exactly what “coordinated fashion” means depends on the problem, and an-
swering that question determines how the problem is constrained.

If we return to the running example of generalized graph reachability, the program
as written has eight rules, four from Fig. 6 and four from Fig. 7. Two examples of
constrained product programs are given in Fig. 9 and Fig. 10. In the first example in

3 The full proof can be found in [3].

8 Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

reachable1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (15)

reachable1◦2(Q1, Q2) ⊕= reachable1◦2(P1, P2)⊗ edge1(P1, Q1)⊗ edge2(P2, Q2). (16)

Fig. 9: By removing all but these two rules from the product of experts in Fig. 7, we require both
paths to have the same number of steps.

reachable1◦2(Q) ⊕= initial1(Q)⊗ initial2(Q). (17)

reachable1◦2(Q) ⊕= reachable1◦2(P)⊗ edge1(P, Q)⊗ edge2(P, Q). (18)

Fig. 10: By further constraining the program in Fig. 9 to require that the Q1 = Q2 at all points, we
require both paths to be identical.

Fig. 9, the only change is that all but two rules have been removed from the program in
Fig. 7. Whereas in the original product program reachable1◦2(Q1, Q2) corresponded
to the product of the weight of the “best” path from the initial state or states of graph 1
to Q1 and the weight of the “best” path from the initial state or states of graph 2 to Q2,
the new program computes the best paths from the two origins to the two destinations
with the additional requirement that the paths be the same length—the rules that were
deleted allowed for the possibility of a prefix on one path or the other.

If our intent is for the two paths to not only have the same length but to visit
vertices in the same sequence, then we can further constrain the program to only de-
fine reachable1◦2(Q1, Q2) where Q1 = Q2, at which point it might as well be written
reachable1◦2(Q). This is what is done in Fig. 10.

The choice of paired predicates S is important for the final WLP which PROD-
UCT returns and it also limits the way we can add constraints to derive a new WLP.
Automatically deriving S from data in a machine learning setting is an open question
for future research. When PRODUCT is applied on two copies of the same WLP (con-
catenated together to a single program), a natural schema for selecting paired predicates
arises, in which we pair a predicate from one program with the same predicate from the
other program. This natural pairing leads to the derivation of several useful, known
algorithms, to which we turn in Section 5.

5 Examples

In this section, we describe three classes of algorithms that can be understood as con-
strained products of simpler weighted logic programs.

5.1 Edit distance

Edit distances [20] are important measures of the difference between two strings, and
they underlie many algorithms in computational biology and computational linguistics.
The DNA fragment “ACTAGCACTTAG” can be encoded as a set of axioms s(a, 1),
s(c, 2), s(t, 3), . . . , s(g, 12), and we can describe a specification of the dynamic pro-
gram for edit distance by using the product of a trivial “cursor” program that scans over
a string, described in Fig. 11.

Dynamic Programming Algorithms as Products of Weighted Logic Programs 9

dist(P) ⊕= start(P). (19)

dist(P) ⊕= dist(P)⊗ staycost. (20)

dist(P + 1) ⊕= dist(P)⊗ s(C, P). (21)

Fig. 11: A program for scanning over a string.

dist1◦2(P1, P2) ⊕= start1(P1)⊗ start2(P2). (22)

dist1◦2(P1, P2 + 1) ⊕= start1(P1)⊗ dist2(P2)⊗ s(C2, P2). (23)

dist1◦2(P1 + 1, P2) ⊕= dist1(P1)⊗ s(C1, P1)⊗ start2(P2). (24)

dist1◦2(P1, P2 + 1) ⊕= dist1◦2(P1, P2)⊗ s2(C2, P2)⊗ staycost1. (25)

dist1◦2(P1 + 1, P2) ⊕= dist1◦2(P1, P2)⊗ s1(C1, P1)⊗ staycost2. (26)

dist1◦2(P1 + 1, P2 + 1) ⊕= dist1◦2(P1, P2)⊗ s2(C1, P1)⊗ s2(C2, P2) if C1 = C2. (27)

Fig. 12: Edit distance derived from the PRODUCT transformation on two copies of Fig. 11, with
a side condition (boxed).

We generally interpret Fig. 11 over the the “cost minimization” semiring, replacing
⊕= with min = and⊗with +. The value of all the axioms of the form start(P) (giving
the starting position) or s(C, P) (indicating the position of a character) is 0, but the value
of staycost is some finite, nonzero value representing the penalty if the cursor stays in
one place. Note that under this semiring interpretation, the rule (20) will never be used;
the value of staycost only becomes relevant when the PRODUCT of the scanning
program with itself is determined.

The output of PRODUCT on two copies of the scanning program is shown in
Fig. 12, though three rules are removed.4 One important change is made to clause 27,
the addition of the side condition C1 = C2, which requires that when both P1 and P2
advance, the character at position P1 in string 1 and the character at position P2 in string
two must be identical. This captures the essential requirement of the edit distance calcu-
lation: changing a symbol in one string to an identical symbol in the other string incurs
no “edit” and no cost. It is worth noting that the clause 27 could have equivalently been
written by unifying C1 with C2:

dist1◦2(P1 + 1, P2 + 1) ⊕= dist1◦2(P1, P2)⊗ s2(C, P1)⊗ s2(C, P2).

The first and last clauses in the edit distance program (22 and 27) are the essen-
tial ones; the other five clauses essentially describe extensions to edit distance that can
be added, turned off, or modified to obtain different edit distances. Clause 23 allows
a penalty-free prefix to be added to the second string, for instance matching string 1,
“BOVIK” against string 2, “HARRY BOVIK,” and clause 24 allows a penalty-free pre-
fix to be deleted from to the first string. Clause 25 describes that insertions can be made
with cost staycost1, for instance in matching string one “H. BOVIK” against “H. Q.
BOVIK”, and clause 26 describes deletions from the first string to reach the second.

4 The three removed rules are the two different combinations of clause 19 and clause 20 in
Fig. 11, as well as the combination of clause 20 with itself. These three rules are redundant if
we are computing in the minimum-cost semiring.

10 Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

goal ⊕= path(Q)⊗ final(Q). (28)

path(Q) ⊕= initial(Q). (29)

path(Q) ⊕= path(P)⊗ arc(P, Q, A). (30)

Fig. 13: The weighted logic program describing (weighted) recognition in a probabilistic finite
state automaton.

goal1◦2 ⊕= path1◦2(Q1, Q1)⊗ final1(Q2)⊗ final2(Q2). (31)

path1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (32)

path1◦2(Q1, Q2) ⊕= path1◦2(P1, P2)⊗ arc1(P1, Q1, A1)⊗ arc2(P2, Q2, A2) if A1 = A2. (33)

Fig. 14: The weighted logic program describing (weighted) recognition by an intersection of two
finite state automata, derived from Fig. 13 in the manner of Fig. 9.

5.2 Finite-state algorithms

Specifications of weighted finite-state automata (WFSAs) and transducers (WFSTs)
are superficially similar to the reachability problem of Sec. 1, but with edge relations
(edge(P, Q)) augmented by symbols (WFSAs: arc(P, Q, A)) or pairs of input-output
symbols (WFSTs: arc(P, Q, A, B)). Weighted finite-state machines are widely used in
speech and language processing [24].

Weighted finite state automata. Fig. 13 describes an algorithm for recognizing paths in
a weighted finite state automaton. (With the appropriate semirings, of course, it finds
the most probable path or the path-sum.) If the PRODUCT of that algorithm with itself
is taken, we can follow similar steps in Sec. 4.2 and add a constraint to clause 33 that
requires the two paths’ symbols to be identical, we get the recognizer for the (weighted)
intersection of the two WFSAs (itself a WFSA). Weighted intersection generalizes in-
tersection, and can be used (for example) to determine whether a specific string (itself
an FSA) is in the regular language of the FSA and, in the probabilistic case, its associ-
ated probability.

Weighted finite-state transducers. Suppose we take the PRODUCT transformation of
the WFST recognition algorithm (not shown, but similar to Fig. 13 but using arc(P, Q, A, B)
as arc axioms) with itself and constrain the result by removing all but the three inter-
esting rules (as before) and requiring that B1 (the “output” along the first edge) always
be equal to A2 (the “input” along the second edge). The result is shown in Fig. 15; this
is the recognition algorithm for the WFST resulting from composition of two WFSTs.

goal1◦2 ⊕= path1◦2(Q1, Q1)⊗ final1(Q2)⊗ final2(Q2). (34)

path1◦2(Q1, Q2) ⊕= initial1(Q1)⊗ initial2(Q2). (35)

path1◦2(Q1, Q2) ⊕= path1◦2(P1, P2) ⊗arc1(P1, Q1, A1, B1)⊗ arc2(P2, Q2, A2, B2) if B1 = A2.

Fig. 15: The weighted logic program describing a composition of two finite state transducers,
derived from Fig. 13 in the manner of Fig. 9 and Fig. 14.

Dynamic Programming Algorithms as Products of Weighted Logic Programs 11

Shay saw Robert with binoculars

NPV P NP

PPVP
VP

NP

S

NPV P NP

PP

NP
VP

NP

S

NP→ Shay unary(np, “Shay′′)
NP→ Robert unary(np, “Robert′′)
P→ with unary(p, “with′′)
.
S→ NP VP binary(s, np, vp)
VP→ V NP binary(vp, v, np)
PP→ P NP binary(pp, p, np)
NP→ NP PP binary(np, np, pp)
.

Fig. 16: An ambiguous sentence that can be parsed two ways in English (left), some of the
Chomsky normal form rules for English grammar (center), and the corresponding axioms (right).
There would also need to be five axioms of the form string(“Shay”, 1), string(“saw”, 2),
etc.

goal ⊕= start(S)⊗ length(N)⊗ c(S, 0, N). (36)

c(X, I− 1, I) ⊕= unary(X, W)⊗ string(W, I). (37)

c(X, I, K) ⊕= binary(X, Y, Z)⊗ c(Y, I, J)⊗ c(Z, J, K). (38)

Fig. 17: CKY: a weighted logic program implementing weighted CKY for algorithms involving
weighted context free grammars in Chomsky normal form. Strictly speaking, CKY refers to a
naı̈ve bottom-up evaluation strategy for this program.

Composition permits small, understandable components to be cascaded and optionally
compiled, forming complex but efficient models over strings.

5.3 Context-free parsing

Parsing natural languages is a difficult, central problem in computational linguistics
[21]. Consider the sentence “Shay saw Robert with binoculars.” One analysis (the most
likely in the real world) is that Shay had the binoculars and saw Robert through them.
Another is that Robert had the binoculars, and Shay saw the binocular-endowed Robert.
Fig. 16 shows syntactic parses into noun phrases (NP), verb phrases (VP), etc., corre-
sponding to these two meanings. It also shows part of a context-free grammar describing
English sentences in Chomsky normal form [15],5 and an encoding of the grammar and
string using axioms. A proof corresponds to a CF derivation of the string.

In [25], the authors show that parsing with CFGs (and other grammars) can be for-
malized as a logic program, and in [12] this framework is extended to the weighted
case. If weights are interpreted as probabilities, then these two semiring interpretations
can either find the “weight” of the parse with maximum weight or the total weight of all
parse trees (a measure of the “total grammaticality” of a sentence). In this section, we
give the specification of the weighted CKY algorithm [2], which is a dynamic program-
ming algorithm for parsing using a context-free grammar in Chomsky normal form. The

5 Chomsky normal form (CNF) means that the rules in the grammar are either binary with two
nonterminals or unary with a terminal. We do not allow ε rules, which in general are allowed
in CNF grammars.

12 Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

goal1◦2 ⊕= length1(N1)⊗ length2(N2) ⊗ (39)

start1(S1)⊗ start2(S2)⊗ c1◦2(S1, 0, N1, S2, 0, N2).

c1◦2(X1, I1 − 1, I1, X2, I2 − 1, I2) ⊕= unary1(X1, W1)⊗ string1(W1, I1) ⊗ (40)

unary2(X2, W2)⊗ string2(W2, I2).

c1◦2(X1, I1 − 1, I1, X2, I2, K2) ⊕= unary1(X1, W1)⊗ string1(W1, I1) ⊗ (41)

binary2(X2, Y2, Z2)⊗ c2(Y2, I2, J2)⊗ c2(Z2, J2, K2).

c1◦2(X1, I1, K1, X2, I2 − 1, I2) ⊕= unary2(X2, W1)⊗ string2(W2, I2) ⊗ (42)

binary1(X1, Y1, Z1)⊗ c1(Y1, I1, J1)⊗ c1(Z1, J1, K1).

c1◦2(X1, I1, K1, X2, I2, K2) ⊕= binary1(X1, Y1, Z1)⊗ binary2(X2, Y2, Z2) ⊗ (43)

c1◦2(Y1, I1, J1, Y2, I2, J2)⊗ c1◦2(Z1, J1, K1, Z2, K2, J2).

Fig. 18: The full output of the PRODUCT transformation on two copies of CKY in Fig. 17.

goal1◦2 ⊕= length(N)⊗ start1(S1)⊗ start2(S2)⊗ c1◦2(S1, S2, 0, N).(44)

c1◦2(X1, X2, I− 1, I) ⊕= unary1(X1, W1)⊗ string1(W1, I) ⊗ (45)

unary2(X2, W2)⊗ string2(W2, I).

c1◦2(X1, X2, I, K) ⊕= binary1(X1, Y1, Z1)⊗ binary2(X2, Y2, Z2) ⊗ (46)

c1◦2(Y1, Y2, I, J)⊗ c1◦2(Z1, Z2, J, K).

Fig. 19: The program in Fig. 18 constrained to require parsing two different sentences with the
same parse tree.

CKY algorithm is shown in Fig. 17. We show that fundamental algorithms for weighted
(probabilistic) parsing can be derived as constrained PRODUCTs of CKY.

The unconstrained PRODUCT of CKY with itself (Fig. 18) is not inherently in-
teresting. It is worth noting, however, that clause 43 there was a choice as to how to
merge the c1 and c2 possibilities. The choice would not have existed if, instead of the
presentation of CKY in Fig. 17, a common binarized variant of the algorithm, which
introduces a new predicate in order to have at most two antecedents per Horn equation,
had been fed to PRODUCT. The choice that we made in pairing was consistent with
the choice that is forced in the binarized CKY program.

Product of grammars. Fig. 19 describes a more interesting constrained version of
Fig. 18. In particular, in all cases the constraints I1 = I2, J1 = J2, K1 = K2, N1 = N2 are
added, so that instead of writing c1◦2(X1, I1, J1, X2, I2, J2) we just write c1◦2(X1, X2, I, J).
This program simultaneously parses two different sentences using two different gram-
mars, but both parses must have the same structure. This constraint, then, can be com-
pared to the constraints placed on the product of two graph-reachability programs to
ensure that both paths have the same length.

Lexicalized CFG parsing. An interesting variant of the previous rule involves lexical-
ized grammars, which are motivated in Fig. 20. Instead of describing a grammar using
nonterminals denoting phrases (e.g., NP and VP), we can define a (context-free) de-
pendency grammar [10] that encodes the syntax of a sentence in terms of parent-child

Dynamic Programming Algorithms as Products of Weighted Logic Programs 13

Shay saw Robert with binoculars

NPV P NP

PPVP
VP

NP

S

NP→ Shay
P→ with
S→ NP VP
VP→ V NP

Shay saw Robert with binoculars

Robertsaw with binoculars

withsaw
Shay

saw
saw

Shay→ Shay
with→ with
saw→ Shay saw
saw→ saw Robert

Shay saw Robert with binoculars

NP-RobertV-saw P-with NP-binoculars

PP-withVP-saw

NP-Shay

S-saw

VP-saw

NP-Shay→ Shay
P-with→ with
S-saw→ NP-Shay VP-saw
VP-saw→ V-saw NP-Robert

Fig. 20: On the left, the grammar previously shown. In the middle, a context-free dependency
grammar, whose derivations can be seen as parse trees (above) or a set of dependencies (below).
On the right, a lexicalized grammar. Sample rules are given for each grammar.

goal1◦2 ⊕= length(N)⊗ start1(S1)⊗ start2(S2)⊗ c1◦2(S1, S2, 0, N).(47)

c1◦2(X1, X2, I− 1, I) ⊕= unary1(X1, W1)⊗ unary2(X2, W2)⊗ string(W, I). (48)

c1◦2(X1, X2, I, K) ⊕= binary1(X1, Y1, Z1)⊗ binary2(X2, Y2, Z2) ⊗ (49)

c1◦2(Y1, Y2, I, J)⊗ c1◦2(Z1, Z2, J, K).

Fig. 21: Constraining Fig. 18 to simultaneously parse the same sentence with two grammars.

relationships between words. In the case of the example of Fig. 20, the arrows below
the sentence in the middle establish “saw” as the root of the sentence; the word “saw”
has three children (arguments and modifiers), one of which is the word “with,” which
in turn has the child “binoculars.”

The simplest approach to describing a dependency grammar is to define it as a
Chomsky normal form grammar where the nonterminal set is equivalent to the set of
terminal symbols (so that the terminal “with” corresponds to a unique nonterminal with,
and so on) and where all rules have the form P→ P C, P→ C P, and W → w
(where X is the nonterminal version of terminal x).

Fig. 21 describes a further constrained program that, instead of parsing two unique
strings in two different grammars with the same structure, parses a single string in two
different grammars with the same structure. This new grammar recognizes a string if
and only if both of the original grammars recognize it with isomorphic trees—a kind of
“derivation intersection.” (This is not to be confused with intersections of context-free
languages, which are not in general context-free languages [15].)

If we encode the regular grammar in the unary1 and binary1 relations and en-
code a dependency grammar in the unary2 and binary2 relations, then the product
is a lexicalized grammar, like the third example from Fig. 20. In particular, it de-
scribes a lexicalized context-free grammar with a product of experts probability model
[18], because the weight given to the production A-X→ B-X C-Y, for instance, is
the semiring-product of the weight given to the production A→ B C and the weight
given to the dependency based production X→ X Y. If, instead of the axioms of
the form binary1(X1, Y1, Z1) and binary2(X2, Y2, Z2) there were axioms of the form
binary1◦2(X1, X2, Y1, Y2, Z1, Z2) and clause 46 was changed accordingly, then the result
would be a general lexicalized CKY [8].

14 Shay B. Cohen, Robert J. Simmons, and Noah A. Smith

Synchronous parsing. Another extension to context-free parsing, synchronous pars-
ing, can be derived using PRODUCT from two instances of CKY. Here two strings
are parsed, each in a different alphabet with a different grammar (e.g., a French sen-
tence and its English translation). A synchronous derivation consists of two trees and
a correspondence between their nodes; different degrees of isomorphism may be im-
posed (e.g., in natural language, reordering is common, but dependencies tend to be
mirrored through word-level translation). Constraining the PRODUCT of CKY with
itself with side conditions to impose a one-to-one correspondence of nonterminals leads
to a weighted logic program for a formalism known as inversion transduction grammar
[30]. Constraining the PRODUCT of a more general CKY that includes empty unary
rules “X→ ε” and leaving rules that pair unary with binary antecedents removes the
requirement that the sentences have the same length. In addition, the PRODUCT of
the lexicalized CKY with itself leads to WLPs for more complex parsers like those
described in [23] and [31] for more expressive formalisms.6

6 Conclusion

We have described a general framework for dynamic programming algorithms whose
solutions correspond to proof values in two mutually constrained weighted logic pro-
grams. Our framework includes a program transformation, PRODUCT, which com-
bines the two weighted logic programs that compute over two structures into a single
weighted logic program for a joint proof. Appropriate constraints, encoded intuitively
as variable unifications or side conditions in the WLP, are then added manually. The
framework naturally captures many existing algorithms.

Acknowledgments

The authors acknowledge helpful comments from three anonymous ICLP reviewers,
Jason Eisner, Frank Pfenning, David Smith, and Sylvia Rebholz. This research was
supported by an NSF graduate fellowship to the second author and NSF grant IIS-
0713265 and an IBM faculty award to the third author.

References

1. D. Chiang. Hierarchical phrase-based translation. Computational Linguistics, 32(2):201–
228, 2007.

2. J. Cocke and J. T. Schwartz. Programming languages and their compilers: Preliminary notes.
Technical report, Courant Institute of Mathematical Sciences, New York University, 1970.

3. S. B. Cohen, R. J. Simmons, and N. A. Smith. Products of weighted logic programs. Tech-
nical Report CMU-LTI-08-009, Carnegie Mellon University, 2008.

6 To derive the general synchronous parser described in [30] we have to perform another step of
axiom generalization, described in [3]. In the non-generalized form, the axioms are factored
as well.

Dynamic Programming Algorithms as Products of Weighted Logic Programs 15

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2001.

5. J. Eisner and J. Blatz. Program transformations for optimization of parsing algorithms and
other weighted logic programs. In Proc. of Formal Grammar, 2007.

6. J. Eisner, E. Goldlust, and N. A. Smith. Dyna: A declarative language for implementing
dynamic programs. In Proc. of ACL (companion volume), 2004.

7. J. Eisner, E. Goldlust, and N. A. Smith. Compiling Comp Ling: Practical weighted dynamic
programming and the Dyna language. In Proc. of HLT-EMNLP, 2005.

8. J. Eisner and G. Satta. Efficient parsing for bilexical context-free grammars and head au-
tomaton grammars. In Proc. of ACL, 1999.

9. P. F. Felzenszwalb and D. McAllester. The generalized A∗ architecture. Journal of Artificial
Intelligence Research, 29:153–190, 2007.

10. H. Gaifman. Dependency systems and phrase-structure systems. Information and Control,
8, 1965.

11. H. Ganzinger and D. A. McAllester. Logical algorithms. In Proc. of ICLP, 2002.
12. J. Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, 1999.
13. S. Greco and C. Zaniolo. Greedy algorithms in Datalog. Theory Pract. Log. Program.,

1(4):381–407, 2001.
14. G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural

Computation, 14:1771–1800, 2002.
15. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.
16. L. Huang and D. Chiang. Better k-best parsing. In Proc. of IWPT, 2005.
17. D. Klein and C. D. Manning. A∗ parsing: Fast exact Viterbi parse selection. In Proc. of

HLT-NAACL, 2003.
18. D. Klein and C. D. Manning. Fast exact inference with a factored model for natural language

parsing. In Advances in NIPS 15, 2003.
19. D. Klein and C.D. Manning. Parsing and hypergraphs. In Proc. of IWPT, 2001.
20. V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones.

Problems of Information Transmission, 1:8–17, 1965.
21. C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.

MIT Press, 1999.
22. D. McAllester. On the complexity analysis of static analyses. In Proc. of Static Analysis

Symposium, 1999.
23. I. D. Melamed. Multitext grammars and synchronous parsers. In Proc. of HLT-NAACL,

2003.
24. M. Mohri. Finite-state transducers in language and speech processing. Computational Lin-

guistics, 23(2):269–311, 1997.
25. S. M. Shieber, Y. Schabes, and F. C. N. Pereira. Principles and implementation of deductive

parsing. Journal of Logic Programming, 24(1–2):3–36, 1995.
26. K. Sikkel. Parsing Schemata. Springer-Verlag, 1997.
27. D. A. Smith and N. A. Smith. Bilingual parsing with factored estimation: Using English to

parse Korean. In Proc. of EMNLP, 2004.
28. C. Sutton and A. McCallum. Piecewise training of undirected models. In Proc. of UAI, 2005.
29. R. E. Tarjan. A unified approach to path problems. Journal of the ACM, 28(3):577–93, 1981.
30. D. Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.

Computational Linguistics, 23(3):377–404, 1997.
31. H. Zhang and D. Gildea. Stochastic lexicalized inversion transduction grammar for align-

ment. In Proc. of ACL, 2005.

