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Abstract. Weighted logic programming, a generalization of bottom-up logic programming, is a successful frame-
work for specifying dynamic programming algorithms. In this setting, proofs correspond to the algorithm’s output
space, such as a path through a graph or a grammatical derivation, and are given a weighted score, often interpreted
as a probability, that depends on the score of the base axioms used in the proof. The desired output is a function
over all possible proofs, such as a sum of scores or an optimal score. We describe the PRODUCT transformation,
which can merge two weighted logic programs into a new one. The resulting program optimizes a product of proof
scores from the original programs, constituting a scoring function known in machine learning as a “product of
experts.” Through the addition of intuitive constraining side conditions, we show that several important dynamic
programming algorithms can be derived by applying PRODUCT to weighted logic programs corresponding to
simpler weighted logic programs. This report is an extended version of [3].



1 Introduction

Weighted logic programming has found a number of applications in fields such as natural language processing, ma-
chine learning, and computational biology as a technique for declaratively specifying dynamic programming algo-
rithms. Weighted logic programming is a generalization of bottom-up logic programming, with the numerical scores
for proofs often interpreted as probabilities, implying that the weighted logic program implements probabilistic rea-
soning.

We describe a program transformation, PRODUCT, that is of special interest in weighted logic programming.
PRODUCT transforms two weighted logic programs into a new one that implements probabilistic inference under
an unnormalized probability distribution built as a product of the input programs’ distributions, known in machine
learning as a “product of experts.” While this property has been exploited in a variety of ways in applications, there
has not, to our knowledge, been a formal analysis or generalization in terms of the weighted logic programming
representation.

The contribution of this paper is a general, intuitive, formal setting for dynamic programming algorithms that pro-
cess two or more conceptually distinct structured inputs. Indeed, we show that many important dynamic programming
algorithms can be derived using simpler “factor” programs and the PRODUCT transformation.

The paper is organized as follows. In §2 we give an overview of weighted logic programming. In §3 we describe
products of experts, a concept from machine learning that motivates our framework. In §4 we describe our frame-
work and its connection to product of experts. In §5 we give derivations of several well-known algorithms using our
framework.

2 Weighted Logic Programming

To motivate weighted logic programming, we begin with a logic program for single-source connectivity on a directed
graph, shown in Fig. 1. In the usual bottom-up interpretation of this program, an initial database would describe the
edge relation and one (or more) roots as axioms of the form initial(a) for some a, and repeated forward inference
would be applied on the two rules above to find the least database closed under those rules. However, in traditional
logic programming this program can only be understood as a program calculating connectivity over a graph. Solving
a different but structurally similar problem, such as a single-source shortest path, requires a rather different program
to be written, and most solutions that have been presented require some form of non-deterministic committed choice
[13,11].

Traditional logic programming is interpreted over Boolean values. A proof is a tree of valid inferences, and a
valid proof is one where all of the leaves of the proof tree are axioms which are known to be true, and a true atomic
proposition is one that has at least one valid proof. In weighted logic programming we generalize this notion: axioms,
proofs, and atomic propositions are talked about as “having values” rather than just “being true/valid.” A Boolean
logic program takes the value of a proof to be the conjunction of the value of its axioms (so the proof has value “true”
as long as all the propositions at the leaves are true-valued axioms), and takes the value of a proposition to be the
disjunction of the values of its proofs (so an atomic proposition has value “true” if it has one true-valued proof). The
single-source connectivity program would describe the graph in Fig. 2 by assigning T as the value of all the existing
edges and the proposition initial(a).

2.1 Non-Boolean Programs

With Weighted logic programming, the axioms and propositions can be understood as having non-Boolean values.
In Fig. 3, axioms of the form edge(X,Y) are given a value corresponding to the cost along the edge in the graph,
and the axiom initial(a) is given the value 0. If we take the value or “score” of a proof to be the the sum of the
values of its axioms, and then take the value of a proposition to be the minimum score over all possible proofs, then the
program from Fig. 1 describes single-source shortest path. We replace the operators :- (disjunction) and , (conjunction)
with min = and +, respectively, and interpret the program over the non-negative numbers. With a specific execution
strategy, the result is Dijkstra’s single-source shortest path algorithm.



reachable(Q) :- initial(Q). e
reachable(Q) - reachable(P), edge(P, Q). (2)

Fig. 1: A simple bottom-up logic program for graph reachability.

@ (C:)) initial(a) =T edge(c,d) =T
edge(a,c) =T edge(d,b) =T
L )\ > edge(a, d) =T edge(d, C) =T
edge(b,b) =T edge(d,d) =T
@G@ edge(c,a) =T

Fig. 2: A directed graph and the corresponding initial database.

Whereas Fig. 3 describes a cost graph, in Fig. 4 weights on edges are to be interpreted as probabilities, so that
the graph can be seen as a Markov model or probabilistic finite-state network over which random walks are well-
defined.! If we replace :- (disjunction) and , (conjunction) with max = and X, then the value of reachable(X) for
any X is the probability of the most likely path from a to X. For instance, reachable(a) ends up with the value 1, and
reachable(b) ends up with value 0.16, corresponding to the path from a — d — b, whose weight is initial(a) X
edge(a,d) X edge(d,Db).

If we keep the initial database from Fig. 4 but change our operators from max = and X to += and X, the result is
a program for summing over the probabilities of all distinct paths that start in a and lead to X, for each vertex X. This
quantity is known as the “path sum” [29]. The path sum for b, for instance, is 10—this is not a probability, but rather
a sum of probabilities of many paths, some of which are prefixes of each other.

These three related weighted logic programs are useful generalizations of the reachability logic program. Fig. 5
gives a generic representation of all four algorithms in the Dyna language [6]. The key difference among them is the
semiring in which we interpret the weights.? Reachability uses the Boolean semiring ({T, F}, V, A, F, T), single-source
shortest path uses (R>o U {00}, min, 4, 00, 0), the most-probable path variant uses ([0, 1], max, x,0,1), and the
probabilistic path-sum variant uses (R>oU{oo}, +, x, 0, 1). We require, following Goodman [12], that the semirings
we use be complete. Complete semirings are semirings with the additional property that they are closed under finite
products and infinite sums—in our running example, this corresponds to the idea that there may be infinite paths
through a graph, all with finite length. Complete semirings also have the property that infinite sums behave like finite
ones—they are associative and commutative, and the multiplicative operator distributes over them.

Weighted logic programming arose in the computational linguistics community [12] after it was argued by Shieber,
Schabes, and Pereira [25] and Sikkel [26] that many parsing algorithms for non-deterministic grammars could be rep-
resented as deductive logic programs, and McAllester [22] showed that this representation facilitates reasoning about
asymptotic complexity. Other developments include a connection between weighted logic programs and hypergraphs
[18], optimal A* search for maximizing programs [9], semiring-general agenda-based implementations [7], improved
k-best algorithms [16], and program transformations to improve efficiency [5].

! For each vertex, the out-going edges’ weights must be non-negative and sum to a value less than or equal to one. Remaining
probability mass is assumed to go to a “stopping” event, as happens with probability 0.1 in vertex b in Fig. 4.

2 An algebraic semiring consists of five elements (K, 8, ®,0,1), where K is a domain closed under & and ®, & is a binary,
associative, commutative operator, & is a binary, associative operator that distributes over @, 0 € K is the @-identity, and 1 € K
is the ®-identity.



8
@ (CZ) initial(a) =0 edge(c,d) =15
5 \20 edge(a,c) =4 edge(d,b) =6
4 > i edge(a,d) = 20 edge(d,c) = 16

@ 16@ edge(b,b) =8 edge(d,d) =2

edge(c,a) =9

1 edge(c,d) =04

edge(a,c) = 0.2 edge(d,b) = 0.2

E)‘2>060.8 0; edge(a,d) = 0.8 edge(d,c) =0.3
' b) = 0.9
0.6

edge(d,d) = 0.5

Fig. 4. A probabilistic graph and the corresponding initial database. With stopping probabilities made explicit, this would encode
a Markov model.

2.2 Formal Definition

A weighted logic program is a set of “Horn equations” [5] describing a set of declarative, usually recursive equations
over an abstract semiring:

consequent(U) &= antecedent;(W1) ® ... ® antecedent,(Wy,).

Here U and the W; are sequences of variables X1,..., X;. If U C U?:l ‘W, for every rule, then the program is
range-restricted or fully grounded.

A weighted logic program is specified on an arbitrary semiring, and can be interpreted in any semiring (K, @, ®, 0, 1),
as previously described.

Typically the proof and value of a specific theorem are desired. We assume that this theorem is called goal and
takes zero arguments. A computationally uninteresting but perfectly intuitive way to present a weighted logic program
is

goal &= axiom;(W1) ® ... ® axiom,(W,).

The value of the proposition/theorem goal is a semiring-sum over all of its proofs, starting from the axioms, where the
value of any single proof is the semiring-product of the axioms involved. This is effectively encoded using the inference
rules as a sum of products of sums of products of ... sums of products, exploiting distributivity and shared substructure
for efficiency. Dynamic programming algorithms, useful for problems with a large degree of shared substructure, are
often encoded as weighted logic programs.

In many practical applications, as in our reachability example in Section 2.1, values are interpreted as probabilities
to be maximized or summed or costs to be minimized.

3 Products of Experts

In machine learning, probability models learned from example data are often used to make predictions. For example,
to predict the value of a random variable Y (ranging over values denoted y in a domain denoted Y; here, Y corresponds
to the set of proofs) given that random variable X has an observed value = € X (here, X ranges over initial databases,
i.e., sets of axioms), the Bayes decision rule predicts:

z)

Y =y X =
g =argmaxp(Y =y | X = x) = argmax il Y,
vey yeY p(X =2)

&)



reachable(Q) &= initial(Q). 3)
reachable(Q) &= reachable(P) ® edge(P, Q). 4)

Fig. 5: The logic program from Fig. 1, rewritten to emphasize that it is generalized to an arbitrary semiring.

reachable;(Q;) &= initial(Q:). (7
reachable;(Q;) @= reachable;(P;) ® edge:(P1,Q1). ®)
reachable;(Q2) = initial,(Qo). )
reachable,(Q;) &= reachable,(P,) ® edges(P2, Qo). (10)

Fig. 6: Two identical “experts” for generalized graph reachability, duplicates of the program in Fig. 5.

In other words, the prediction ¢ should be the element of Y that maximizes p(Y = y | X = x), the likelihood of the
event Y = y given that the event X = x has happened. By the definition of conditional probability, this quantity is
equivalent to the ratio of the joint probability that X = z A'Y = y to the marginal probability that X = x. Dynamic
programming algorithms are available for solving many of these maximization problems, such as when Y ranges over
paths through a graph or grammar derivations.

Of recent interest are probability models p that take a factored form, for example:

pX=z,Y=y) xc m(X=z,Y=y)X...xpp(X=2,Y =y) 6)

where  signifies “proportional to” and suppresses the means by which the probability distribution is re-normalized
to sum to one. This kind of model is called a product of experts [14]. Intuitively, the probability of an event under p
can only be large if “all the experts concur,” i.e. if the probability is large under each of the p;. Any single expert can
make an event arbitrarily unlikely (even impossible) by giving it very low probability.

The attraction of such probability distributions is that they modularize complex systems [17,20]. They can also
offer computational advantages when solving Eq. 5 [1]. Further, the expert factors can often be trained (i.e., estimated
from data) separately, speeding up expensive but powerful machine learning methods [27, 4, 28].

This idea is still useful even when not dealing with probabilities. Suppose each expert p; is a function X x Y —
{0, 1} that returns 1 if and only if the arguments x and y satisfy some constraints; it implements a relation. Then the
“product” relation is just the intersection of all pairs (x,y) for which all the expert factors’ relations hold.

To the best of our knowledge, there has been no attempt to formalize the following intuitive idea about products of
experts: algorithms for summing and maximizing mutually-constrained pairs of product-proof values should resemble
the individual algorithms for each of the two separate proofs’ values. Our formalization is intended to aid in algorithm
development as new kinds of random variables are coupled, with a key practical advantage: the expert factors are
known because they fundamentally underlie the main algorithm. Indeed, we call our algorithms “products” because
they are derived from “factors.”

4 Products of Weighted Logic Programs

In this section, we will motivate products of weighted logic programs in the context of the running example of gen-
eralized graph reachability. We will then define the PRODUCT transformation precisely and describe the process of
specifying new algorithms as constrained versions of product programs.

Fig. 6 defines two “experts,” copies of the graph reachability program from Fig. 5. We are interested in a new
predicate reachablejss(Qs,Q2), which for any particular X and Y should be equal to the product of reachable; (X)
and reachable,(Y). We could define the predicate by adding the following rule to the program in Fig. 6:

reachableior(Q1,Q2) = reachable;(Q1) ® reachables(Qo).



reachableios(Q1,Q2) &= initiali(Q:) ® initials(Qa). (11

reachableoz(Q1, Q2) &= reachable,(P2) ® edges(P2,Q2) ® initialy(Q1). (12)
reachable;ioz(Q1, Q2) &= reachable;(P:) ® edge:(P1,Q1) ® initials(Qa). (13)
reachableios(Q1,Q2) = reachableios(P1,P2) ® edgei(P1,Q1) ® edges(P2, Qa). (14)

Fig. 7: Four rules that, in addition to the rules in Fig. 6, define the product of experts of reachable; and reachables,.

Input: A logic program P and a set S of pairs of predicates (p, q).

Output: A program P’ that extends P, additionally computing the product predicate poq for every pair (p, q) € $ in the input.
I P 7
2: for all pairs (p,q) in 8 do
3:  for all rules in P, of the formp(W)&=A41 ® ... ® A, do

4 for all rules in P, of the form q(X) &= B1 ® ... ® By, do

5: let 7 — [pog(W,X)3=A41®...0 A, ® B1 ® ... ® By]

6: for all pairs of antecedents in 7 (s(Y), t(Z)) such that (s, t) € 8 do

7 remove the antecedents s(Y') and t(Z) from r

8: insert the antecedent sot(Y, Z) to r

9: end for

10: add r to P’
11: end for

12: end for

13: end for

14: return P’
Fig. 8: This figure describes PRODUCT, a non-deterministic program transformation that adds new rules to WLP P that compute
the product of experts of predicates from the original program. We implicitly rename variables to avoid conflicts between rules.

This program is a bit simplistic, however; it merely describes calculating the “experts” independently and then combin-
ing them at the end. The key to the PRODUCT transformation is that the predicate of reachable;o, can alternatively
be calculated by adding the following four rules to Fig. 6:

reachableior(Q1,Q2) &= initiali(Q:) ® initials(Q).

reachableioz(Qi, Q2) €= initial;(Q;) ® reachable,(P2) ® edges (P2, Q2).

reachableioz(Q1,Q2) = reachable;(P;) ® edge1(P1,0Q:1) ® initials(Qo).

reachableioz(Qi, Q2) &= reachable;(Pi) ® edge:(P1,Q1) ®
reachable,(Py) ® edges (P2, Qo).

Then, because reachable;oy(Q1, Q2) was defined above to be the product of reachable; (Q;) and reachable,(Q,),
it we can replace the premises reachable;(Q;) and reachable;(Qq) with the single premise reachable;oo(Qs,Q2)
to obtain the factored program in Fig. 7. This program computes over pairs of paths in two graphs.

4.1 The PRODUCT Transformation

The PRODUCT program transformation is shown in Fig. 8. For each desired product of experts, where one “expert,”’
the predicate p, is defined by n rules and the other expert q by m rules, the transformation defines the product of
experts for poq with n x m new rules, the cross product of inference rules from the first and second experts. The
value of a coupled proposition poq in P’ will be equal to the semiring product of p’s value and q’s value in P (or,
equivalently, in ).

Note that lines 6-8 are non-deterministic under certain circumstances, because if the antecedent of the combined
program is a(X) ® a(Y) ® b(Z) and the algorithm is computing the product of a and b, then the resulting antecedent
could be either aob(X,Z) @ a(Y) or aob(Y,Z) ® a(X). Our procedure arbitrarily selects one of the possibilities.

6



reachableios(Q1,Q2) &= initiali(Q:) ® initials(Qa). (15)
reachablelog(Ql, Qg) @: reachablemz (P1, PQ) ® edge1(P1, Q1) ® edgeg (PQ, Qg) (16)

Fig. 9: By removing all but these two rules from the product of experts in Fig. 7, we require both paths to have the same number of
steps.

reachableior(Q) &= initials(Q) ® initial,(Q). 17
reachableios(Q) €= reachable;io»(P) ® edge: (P, Q) ® edges(P, Q). (18)

Fig. 10: By further constraining the program in Fig. 9 to require that the Q; = Q2 at all points, we require both paths to be identical.

4.2 Constraining the Product of Experts

Any program P’ that comes out after applying PRODUCT on P computes the product of experts of p and q (where
(p,q) € 8). More specifically, any ground instances of p(X) and q(Y') have the same value in P and P’, and the value
of poq(X,Y) in P is p(X) ® q(Y).?> However, the same program could have been implemented more straightfor-
wardly by merely introducing a new inference rule for the goal.

Yet, the output of the PRODUCT transformation is a starting point for describing dynamic programming algo-
rithms that do two similar actions—traversing a graph, scanning a string, parsing a sentence—at the same time and in a
coordinated fashion. Exactly what “coordinated fashion” means depends on the problem, and answering that question
determines how the problem is constrained.

If we return to the running example of generalized graph reachability, the program as written has eight rules, four
from Fig. 6 and four from Fig. 7. Two examples of constrained product programs are given in Fig. 9 and Fig. 10. In the
first example in Fig. 9, the only change is that all but two rules have been removed from the program in Fig. 7. Whereas
in the original product program reachable;,,(Qs, Q2) corresponded to the product of the weight of the “best” path
from the initial state or states of graph 1 to Q; and the weight of the “best” path from the initial state or states of graph
2 to Qo, the new program computes the best paths from the two origins to the two destinations with the additional
requirement that the paths be the same length—the rules that were deleted allowed for the possibility of a prefix on
one path or the other.

If our intent is for the two paths to not only have the same length but to visit vertices in the same sequence, then
we can further constrain the program to only define reachable;os(Q1, Q) where Q; = Q,, at which point it might as
well be written reachable;o(Q). This is what is done in Fig. 10.

The choice of paired predicates § is important for the final WLP which PRODUCT returns and it also limits the
way we can add constraints to derive a new WLP. Automatically deriving 8 from data in a machine learning setting
is an open question for future research. When PRODUCT is applied on two copies of the same WLP (concatenated
together to a single program), a natural schema for selecting paired predicates arises, in which we pair a predicate from
one program with the same predicate from the other program. This natural pairing leads to the derivation of several
useful, known algorithms, to which we turn in Section 5.

We conclude this section with a proof that the PRODUCT transformation results in a product of experts calcula-
tion.

Theorem 1. Let P be a weighted logic program over a set of predicates R, and let 8§ be a set of pairs of predicates
from P. Then after applying PRODUCT on (P, 8), resulting in a new program P’, the following holds:

1. Every ground instance p(X), where p € R, has the same value in P and P’
2. Forevery (p,q) € 8, the value poq(X,Y) in P is p(X) ® q(Y).

3 See proof below.



Proof: The first condition holds trivially because P’ is stratified: none of the new rules in P’ are ever used to compute
values of the form p(X), where p € R. Hence, their value is identical to their value in P.

By distributivity of the semiring at hand, we know that p(X) ® q(Y) is the sum: @ v(t) ® v(r) where t and r
t,r

range over proofs of p(X) and q(Y') respectively, with their values being v(¢) and v(r). This implies that in order to
prove 2, we need to show that there is a bijection between the set of proofs A for poq(X,Y) in P’ and the set of pairs
of proofs B for p(X) and q(Y) such that for every s € A and (t,7) € B we have v(s) = v(t) ® v(r).

Using structural induction over the proofs, we first show that every pair of proofs (¢,7) € B has a corresponding
proof s € A with the needed value. In the base case, where the proofs ¢ and 7 include a single step, the correspondence
follows trivially. Let (¢,7) € B. Without loss of generality, we will assume that both ¢ and  contain more than a single
step in their proofs. In the last step of its proof, ¢ used a rule of the form

p(X) 6=21(X1) @ ... ® a,(X,,) (19)
and 7 used a rule in its last step of the form
q(Y)e=11(Y1)®...@b,(Ym) (20)

Let ¢; be the subproofs of a,;(X;) and let r; be subproofs of b, (Y ;). It follows that PRODUCT creates from those
two rules a single inference rule of the form:

poq(X,Y)@=c1(W1) ®...®c,(Wy) 2h

where c;(W;) is either a; (Y} ) for some k, or by (Y},) for some k, or aj o by (X, Y,) for some k, £.
We resolve each case as following:

1. If ¢;(W;) = ar(Y}x) then we set s; = ty.

2. If ¢;(W;) = bi(Yx) then we set s; = 7.

3. If ¢;(W;) = ak o by(Xk, Yy) then according to the induction hypothesis, we have a proof for ay o by(X, Yy)
such that its value is v(t;) ® v(r). We set s; to be that proof.

Since we have shown there is a proof for each antecedent of p(X) o q(Y), we have shown that there is a proof for
p(X) o q(Y). That its value is indeed p(X) ® q(Y) is concluded trivially from the induction steps.
The reverse direction for the constructing the bijection is similar, using again structural induction over proofs. O

S Examples

In this section, we describe three classes of algorithms that can be understood as constrained products of simpler
weighted logic programs.

5.1 Edit Distance

Edit distances [19] are important measures of the difference between two strings, and they underlie many algorithms
in computational biology and computational linguistics. The DNA fragment “ACTAGCACTTAG” can be encoded as
a set of axioms s(a, 1), s(c, 2), s(t,3), ..., s(g, 12), and we can describe a specification of the dynamic program for
edit distance by using the product of a trivial “cursor” program that scans over a string, described in Fig. 11.

We generally interpret Fig. 11 over the the “cost minimization” semiring, replacing &= with min = and ® with +.
The value of all the axioms of the form start(P) (giving the starting position) or s(C, P) (indicating the position of a
character) is 0, but the value of staycost is some finite, nonzero value representing the penalty if the cursor stays in
one place. Note that under this semiring interpretation, the rule (23) will never be used; the value of staycost only
becomes relevant when the PRODUCT of the scanning program with itself is determined.

The output of PRODUCT on two copies of the scanning program is shown in Fig. 12, though three rules are
removed.* One important change is made to clause 30, the addition of the side condition C; = Cy, which requires that

* The three removed rules are the two different combinations of clause 22 and clause 23 in Fig. 11, as well as the combination of
clause 23 with itself. These three rules are redundant if we are computing in the minimum-cost semiring.



dist(P) &= start(P). (22)
dist(P) &= dist(P) ® staycost. (23)
dist(P+ 1) @&= dist(P) ® s(C,P). (24)

Fig. 11: A program for scanning over a string.

distion(P1,P2) @= starti(P1) ® start,(P2). (25)
distio2(P1,P2 + 1) &= start:(P1) ® dists(Ps) ® s(Ca, Py). (26)
distioo(P1 + 1,P2) @= disti(P1) ® s(C1,P1) ® starta(Ps). 27
distio2(P1,P2 + 1) &= distio2(P1,P2) ® s2(C2,P2) ® staycost;. (28)
distio2(P1 + 1,P2) &= distio2(P1,P2) ® s1(C1,P1) ® staycost,. 29)

distioa(Pt + 1,Ps + 1) B= distios(P1,P2) ® 85(C1,P1) ® 52(Cs,P)| if C1 = Co. | (30)

Fig. 12: Edit distance derived from the PRODUCT transformation on two copies of Fig. 11, with a side condition (boxed).

when both P, and P, advance, the character at position P, in string 1 and the character at position P, in string two must
be identical. This captures the essential requirement of the edit distance calculation: changing a symbol in one string
to an identical symbol in the other string incurs no “edit” and no cost. It is worth noting that the clause 30 could have
equivalently been written by unifying C; with Cy:

diStlog(Pl + 17 PQ + 1) b= dj.Stj_Oz(Pl7 PQ) ® SQ(C7 Pl) X SQ(C, Pz)

The first and last clauses in the edit distance program (25 and 30) are the essential ones; the other five clauses
essentially describe extensions to edit distance that can be added, turned off, or modified to obtain different edit
distances. Clause 26 allows a penalty-free prefix to be added to the second string, for instance matching string 1,
“BOVIK” against string 2, “HARRY BOVIK,” and clause 27 allows a penalty-free prefix to be deleted from to the first
string. Clause 28 describes that insertions can be made with cost staycost;, for instance in matching string one “H.
BOVIK” against “H. Q. BOVIK”, and clause 29 describes deletions from the first string to reach the second.

5.2 Finite-State Algorithms

Specifications of weighted finite-state automata (WFSAs) and transducers (WFSTs) are superficially similar to the
reachability problem of Sec. 1, but with edge relations (edge(P, Q)) augmented by symbols (WFSAs: arc(P,Q,A)) or
pairs of input-output symbols (WFSTs: arc(P, Q, A, B)). Weighted finite-state machines are widely used in speech and
language processing [24].

Weighted Finite State Automata. Fig. 13 describes an algorithm for recognizing paths in a weighted finite state au-
tomaton. (With the appropriate semirings, it finds the most probable path or the path-sum.) If the PRODUCT of that
algorithm with itself is taken, we can follow similar steps in Sec. 4.2 and add a constraint to clause 36 that requires the
two paths’ symbols to be identical, we get the recognizer for the (weighted) intersection of the two WFSAs (itself a
WEFSA). Weighted intersection generalizes intersection, and can be used, for example, to determine whether a specific
string (itself an FSA) is in the regular language of the FSA and, in the probabilistic case, its associated probability.

Weighted Finite-State Transducers. Suppose we take the PRODUCT transformation of the WFST recognition algo-
rithm (not shown, but similar to Fig. 13 but using arc(P, Q, A, B) as arc axioms) with itself and constrain the result by
removing all but the three interesting rules (as before) and requiring that B; (the “output” along the first edge) always
be equal to A, (the “input” along the second edge). The result is shown in Fig. 15; this is the recognition algorithm for
the WFST resulting from composition of two WESTs. Composition permits small, understandable components to be
cascaded and optionally compiled, forming complex but efficient models over strings.



goal &= path(Q) ® final(Q). 31)
path(Q) G= initial(Q). (32)
path(Q) &= path(P) ® arc(P,Q, A). (33)

Fig. 13: The weighted logic program describing (weighted) recognition in a probabilistic finite state automaton.

g0a1102 P= path1og(Q1, Q1) ® final1(Q2) X finalg(Qg). (34)
pathu)z([.-\h7 Q2) (= initial1(Q1) X initialz([\]z). (35)

pathios(Qs, G2) &= pathies(P1,P2) ® arcs(Pr, Qr, A1) @ arco(Pa, Ga, A2)[ if As = Ay | (36)

Fig. 14: The weighted logic program describing (weighted) recognition by an intersection of two finite state automata, derived
from Fig. 13 in the manner of Fig. 9.

goalios &= pathio2(Q1,Q1) ® finals(Q2) ® finals(Qe). (37)
pathlog(Ql, QQ) @: initiall(Ql) ® initialz(Qz). (38)

pathio2(Q1,Q2) ®= pathioa(P1,Ps) ®arcyi(P1, Q1, A1,B1) ® arca(Pa, Qa, A, Bz)

Fig. 15: The weighted logic program describing a composition of two finite state transducers, derived from Fig. 13 in the manner
of Fig. 9 and Fig. 14.

S\
NF‘/ /VP\ NP — Shay unary(np, “Shay”)
/ e /PP NP — Robert unary(np, “Robert”)
VNP P NP P — with unary(p, “with”)
Shay 5%w Rolb\ert wiﬁ‘h binocl;.llars S _} NP VP gi.nary(s, np, Vp)
Vo ne R /NP VP —» V NP binary(vp,v,np)
NP \ ‘ /PP PP - P NP binary(pp, p,np)
\ VP/NP NP — NP PP  binary(np,np,pp)
s .

Fig. 16: An ambiguous sentence that can be parsed two ways in English (left), some of the Chomsky normal form rules for English
grammar (center), and the corresponding axioms (right). There would also need to be five axioms of the form string(“Shay”, 1),
string(“saw”, 2), etc.

5.3 Context-Free Parsing

Parsing natural languages is a difficult, central problem in computational linguistics [21]. Consider the sentence “Shay
saw Robert with binoculars.” One analysis (the most likely in the real world) is that Shay had the binoculars and saw
Robert through them. Another is that Robert had the binoculars, and Shay saw the binocular-endowed Robert. Fig. 16
shows syntactic parses into noun phrases (NP), verb phrases (VP), etc., corresponding to these two meanings. It also
shows part of a context-free grammar describing English sentences in Chomsky normal form [15],%> and an encoding
of the grammar and string using axioms. A proof corresponds to a CF derivation of the string.

In [25], the authors show that parsing with CFGs (and other grammars) can be formalized as a logic program,
and in [12] this framework is extended to the weighted case. If weights are interpreted as probabilities, then these

> Chomsky normal form (CNF) means that the rules in the grammar are either binary with two nonterminals or unary with a
terminal. We do not allow e rules, which in general are allowed in CNF grammars.
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goal ®&= start(S) ® length(N) ® c(S,0,N). (39)
c(X,I—1,I) &= unary(X,W) ® string(W, I). (40)
c(X,I,K) &= binary(X,Y,Z) ® ¢(Y,I,J) ® ¢(Z, J,K). 41)

Fig. 17: CKY: a weighted logic program implementing weighted CKY for algorithms involving weighted context free grammars
in Chomsky normal form. Strictly speaking, CKY refers to a naive bottom-up evaluation strategy for this program.

goalior = length:(Ni) ® lengths(N2) ® (42)
starti(S:) ® starts(S2) ® c102(S1, 0, N1, S2,0,No).

Cio2(X1,I1 — 1,11,%2,Io — 1, I,) &= unary; (X1, Wi) @ string; (Wi, I1) ® 43)

unary,(Xs, W) ® strings(Wa, In).

c1o2(X1,I1 — 1, I1,X2, I2,Ks) &= unary;(Xi,W1) ® string; (Wi, I11) ® (44)
binarys (X2, Y2,Zs) ® ca(Ya, Iz, J2) @ c2(Z2, J2,Ka).

Cio2(X1,11,K1,X0,Io — 1, I5) &= unary, (X, Wi) Q@ strings(Ws, In) ® 45)
binary; (X1, Yi,Z1) ® ¢1(Y1, I1,J1) ® c1(Z1, J1,K1).

c102(X1, I1,K1, X2, Io,Ko) @&= binary; (X1, Y:,Z1) @ binarys (X2, Y2, Z2) ® (46)

C1o2(Y1, It, J1, Y2, Io, J2) ® C1o2(Z1, J1, K1, Z2, Ko, J2).

Fig. 18: The full output of the PRODUCT transformation on two copies of CKY in Fig. 17.

goalior, &= length(N) ® starti(S1) ® starta(S2) ® c102(S1,82,0,N). @7

C102(X1,X2,I — 1,I) &= unary:(Xi,Wi) ® string; (Wi, I) ® (48)
unarys(Xs, W) @ string,(Wo, I).

C102(X1, X2, I,K) @= binaryi(Xq,Y1,Z1) ® binary,(X2, Y2, Z2) ® (49)

CloQ(Y1,Y2, I, J) ® Clog(zl, ZQ, J,K)

Fig. 19: The program in Fig. 18 constrained to require parsing two different sentences with the same parse tree.

two semiring interpretations can either find the “weight” of the parse with maximum weight or the total weight of
all parse trees (a measure of the “total grammatically” of a sentence). In this section, we give the specification of the
weighted CKY algorithm [2], which is a dynamic programming algorithm for parsing using a context-free grammar in
Chomsky normal form. The CKY algorithm is shown in Fig. 17. We show that fundamental algorithms for weighted
(probabilistic) parsing can be derived as constrained PRODUCTSs of CKY.

The unconstrained PRODUCT of CKY with itself (Fig. 18) is not inherently interesting. It is worth noting, how-
ever, that clause 46 there was a choice as to how to merge the c; and c, possibilities. The choice would not have existed
if, instead of the presentation of CKY in Fig. 17, a common binarized variant of the algorithm, which introduces a
new predicate in order to have at most two antecedents per Horn equation, had been fed to PRODUCT. The choice
that we made in pairing was consistent with the choice that is forced in the binarized CKY program.

Product of Grammars. Fig. 19 describes a more interesting constrained version of Fig. 18. In particular, in all cases the
constraints I; = Iy, J3 = Jo, Ky = Ko, Ny = Nj are added, so that instead of writing c102(X1, I1, J1, Xo, I2, J2) We just
write c102(X1,Xo,I,J). This program simultaneously parses two different sentences using two different grammars,
but both parses must have the same structure. This constraint, then, can be compared to the constraints placed on the
product of two graph-reachability programs to ensure that both paths have the same length.
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S saw S-saw
/ \VP saw, VP-saw
NP Ve \ Shay / \ NP-Shay
VP PP saw with VP-saw PP-with
/N N /A V2N \ \
V NP /P |\€P saw Robert with binoculars VLo NP-Robert p_,, &, NP-binoculars
I | | I
Shay saw Robert with binoculars ~ Shay saw Robert with binoculars ~ Shay saw Robert with binoculars
NP — Shay Shay — Shay NP-Shay — Shay
P — with with — with P-with — with
S —- NP VP saw — Shay saw S-saw — NP-Shay VP-saw
VP — VNP saw — saw Robert VP-saw — V-saw NP-Robert

Fig. 20: On the left, the grammar previously shown. In the middle, a context-free dependency grammar, whose derivations can be
seen as parse trees (above) or a set of dependencies (below). On the right, a lexicalized grammar. Sample rules are given for each
grammar.

goalior, @= length(N) ® starti(S1) ® starta(S2) ® c102(S1,82,0,N). (50)
C102(X1, Xz, I-— 1, I) @: unaryi (X1, W1) ® unarys (XQ, WQ) ® string(w, I) (51)
C102 (X1, XQ, I, K) b= binary1 (X1, Y1, Zl) X binaryz (}(27 YQ, 22) ® (52)

C102(Y1,Y2, I, J) ® C102(Z1, Zs, J,K).

Fig. 21: Constraining Fig. 18 to simultaneously parse the same sentence with two grammars.

Lexicalized CFG Parsing. An interesting variant of the previous rule involves lexicalized grammars, which are mo-
tivated in Fig. 20. Instead of describing a grammar using nonterminals denoting phrases (e.g., NP and VP), we can
define a (context-free) dependency grammar [10] that encodes the syntax of a sentence in terms of parent-child rela-
tionships between words. In the case of the example of Fig. 20, the arrows below the sentence in the middle establish
“saw” as the root of the sentence; the word “saw” has three children (arguments and modifiers), one of which is the
word “with,” which in turn has the child “binoculars.”

The simplest approach to describing a dependency grammar is to define it as a Chomsky normal form grammar
where the nonterminal set is equivalent to the set of terminal symbols (so that the terminal “with” corresponds to a
unique nonterminal with, and so on) and where all rules have the foom P — P C,P — C P, and W — w (where X
is the nonterminal version of terminal x).

Fig. 21 describes a further constrained program that, instead of parsing two unique strings in two different gram-
mars with the same structure, parses a single string in two different grammars with the same structure. This new
grammar recognizes a string if and only if both of the original grammars recognize it with isomorphic trees—a kind
of “derivation intersection.” (This is not to be confused with intersections of context-free languages, which are not in
general context-free languages [15].)

If we encode the regular grammar in the unary; and binary, relations and encode a dependency grammar in the
unary, and binary, relations, then the product is a lexicalized grammar, like the third example from Fig. 20. In par-
ticular, it describes a lexicalized context-free grammar with a product of experts probability model [17], because the
weight given to the production A-X — B-X C-Y, for instance, is the semiring-product of the weight given to the pro-
duction A — B C and the weight given to the dependency based production X — X Y. If, instead of the axioms of
the form binary, (X1, Yy, Z;1) and binarys(Xa, Yo, Zo) there were axioms of the form binary;os(Xy, Xo, Y1, Yo, Z1, Z2)
and clause 49 was changed accordingly, then the result would be a general lexicalized CKY [8]. This is an instance of
a general pattern of modifications to the output of PRODUCT that we term “axiom generalization” in §6.3.

Synchronous Parsing. Another extension to context-free parsing, synchronous parsing, can be derived using PROD-
UCT from two instances of CKY. Here two strings are parsed, each in a different alphabet with a different grammar
(e.g., a French sentence and its English translation). A synchronous derivation consists of two trees and a correspon-
dence between their nodes; different degrees of isomorphism may be imposed (e.g., in natural language, reordering is
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common, but dependencies tend to be mirrored through word-level translation). Constraining the PRODUCT of CKY
with itself with side conditions to impose a one-to-one correspondence of nonterminals leads to a weighted logic pro-
gram for a formalism known as inversion transduction grammar [30]. Constraining the PRODUCT of a more general
CKY that includes empty unary rules “X — €” and leaving rules that pair unary with binary antecedents removes
the requirement that the sentences have the same length. In addition, the PRODUCT of the lexicalized CKY with
itself leads to WLPs for more complex parsers like those described in [23] and [31] for more expressive formalisms.

Interestingly, building a synchronous parser from the already-binarized CKY gives the generalization of the
“hook” trick from [8] without any extra effort (cf. Zhang and Gildea, 2006).

As with lexicalized parsing, we can keep the factorized form for the new grammar rules [27], or we can make the
new rules axioms, granting more freedom in the model [30]. See §6.3 for more about this.

6 Variations on PRODUCT

The previous sections of this paper concentrate on constrained products of weighted logic programs. Furthermore, we
always were interested in the product of two “experts” with similar structure—the constrained product of two finite-
state transducers is a composition of those transducers, the constrained product of two CFG parsers is a lexical parser.
In this section, we will elaborate on variations on this theme that are also worth considering: generalizing the form of
side conditions, running PRODUCT on two experts with different structure, and generalizing the axioms to take away
the requirement that our “experts” be factorable into a product of two experts.

6.1 More General Side Conditions

An obvious extension that is worth noting is that we can add constraints that are more interesting than the equality
constraints we considered earlier. Our constraints before were essentially “Boolean,” in the sense that they either left
the value of the proof the same if they were satisfied, or else they changed the value of the proof to 0 if they were not
satisfied (where 0 is the zero element of whatever semiring we are in). A more general constraint might be defined as
one that reduces the value of a semiring.

What do we mean by “reduce”? We can define a relation < on semirings as a < b = Jc.a & ¢ = b. If semirings
exhibit the property that

— < is a partial order
— Va.0 < a (the zero of the semiring is the least element)

...then a quantity c is a constraining value if and only if Va. c ® a < a.

A good example of using a more general side condition is in the edit distance example from Section 5.1. In Clause
30 of Fig. 12, the constraint if C; = C, was added to the rule to require that the symbol C; in the source string and the
symbol C, in the destination string be identical. This constraint is ripe for generalization.

Say we had instead used a constraint rot13(Cy, Co) which had defined axioms rot13(a,n), rot13(b, o), etc., all
with value 0 (which, recall, is the 1 of the edit distance semiring). Then we would be trying to determine the edit
distance between a string and a ROT-13 encrypted version of itself! More realistically, we can use this to express the
idea of a replacement cost that we may want to be less than the cost of a deletion followed by an insertion. In the DNA
matching program, we could replace if C; = C, with swap(Cy, C5) and define the axioms swap(A4, A), swap(C, C),
swap(G, G), and swap(7, T') to have value 0. Then, if we wanted to set a lower cost ¢ for the action of replacing A in
the source string with T in the destination string, we could define a new axiom swap(A, T) with value c.

6.2 Product of Experts Training and Decoding

Until now, we have presented the PRODUCT transformation as a transformation which operates within a single
weighted logic program, on a subset of rules, which are coupled and also possibly constrained. Sometimes, it is more
convenient to view PRODUCT as a binary operator which is applied on two different weighted logic programs, P,
and P-. In that case, the set § of pairs of predicates to be coupled in Fig. 8, S is a subset of the Cartesian product
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pathioa(Q1,Q2) &= initialien(Q1,Q2) (54)
pathio2(Q1, Q2) &= pathioa(P1,P2) ® arciea(P1, P2, Q1, Q2, At, As) (55)

Fig. 22: Weighted finite state transducers as the product of two weighted finite state machines.

@ & /'.
| XA, =00
g) =y >

Fig. 23: A finite-state transducer that can be expressed as the PRODUCT of two finite state automata.

between the set of predicates from P; and the set of predicates from P5. Then, as usual, the resulting program can be
constrained.

This view can make it more intuitive to deal with calculations over two correlated structures, each represented by
a different program, P; or Ps, which are very useful in the setting of product of experts models (§3) for training or
decoding with such models. Such useful calculations involve constraining one of the structures (e.g., fixing it to an
observed structure) and calculating over the possibilities of the other structures (and their scores) a sum or a maximum.
If the scores are probabilities, for example, we may wish to calculate p(x) = Zy p(x,y) for an observed structure
o when training our model, or to decode argmax, p(y | x) (as in equation 5). We now describe how to do that
mechanically in our setting, assuming that the structure to be fixed originates in P; and the structure to be maximized
or summed originates in Ps.

Given a structure to be “fixed,” from P, we first encode it as a single proof (i.e., a set of theorems), which will be
passed to the constrained PRODUCT program as a set of axioms. Further constraints are added to the WLP: whenever
a theorem from P appears (as part of a new, coupled theorem), a side condition is imposed on that inference rule. For
example, in synchronized CKY (Eq. 52 in Fig. 21) would become:

C102 (X1, XQ, I, K) @: binary1 (X1, Y1, 21) ® binaryz (Xz7 YQ, Zg) ® (53)
clog(Yl, Yo, I, J) ® C1o2(zi, Zy, 7, K)
whenever c2(Y2,I,J) A ¢ca(Z2, J,K)

Depending on the semiring, this change results in summing or maximizing over all possible parse trees using one
grammar, while constraining the other grammar to derive a single parse tree.

6.3 Axiom Generalization

Axiom generalization is another way of manipulating products of weighted logic programs in a way that reveals the
simple structures underlying a complex structure. Figure 22 is close to the weighted logic program in Fig. 14 that
describes the intersection of two finite state machines, but there are two differences. First, we have not forced the two
symbols to be the same; instead, we wish to interpret A; from the first expert as the transducer’s input symbol and
A, as the transducer’s output symbol. Second, we have merged initial;(Q;) ® initial,(Qy) to the single product
predicate initial;os(Q1, Q2), and likewise for arc. As a first approximation, we can just define arcjop (and, similarly,
initialjes) by a single rule of this form:

arcioo(P1, P2, Q1,Q2, A1, Ay) B=arcy(P1,Q1,A1) ® arcy(Py, Qa, Az) (56)
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OXO=0 X &=0 Bx = gx &=

Ixg=q. IxI=gq. OxP=T, Ix7=5,
gxg=¢" gxP=H IxI=TY Ix 7=z
SXg= @l X 7 =0, X 1= Ux =2

Fig. 24: The sixteen possible single-state transducers with two symbols, and possible factorings for each one—six transducers
cannot be factored, and the transducer in the upper-left corner with no transitions can be factored seven different ways.

An example is given on the left-hand-side of Fig. 23. Two finite state machines, one with two states (a and b) and
one with three states (X, Y, and z), are shown - we are interpreting over the Boolean semiring, so each present arc in
the figure corresponds to a true-valued arc axiom. The PRODUCT of these two experts in the manner of Fig. 22 is a
single finite state transducer with six states.

However, we can only describe a certain subset of finite state transducers as the direct product of finite state
machines in this way. If we consider all possible Boolean-valued finite state transducers with two symbols and one
state, we have 16 possible transducers, but only 10 that can be “factored” as two independent finite-state machines, as
shown in Fig. 24. More generally, one can show that in order for a set of axioms, of the same predicate, to be factored
into smaller components, we need to be able to represent its range (meaning, all of the variables settings for that set of
axioms) as a Cartesian product of sets, one per each range of a single variable for the axiom.

How, then, can we capture all possible transducers? The obvious solution is what could be called axiom general-
ization, which amounts to removing the requirement of equation 56 that the value of atomic propositions of the form
arci.o be the product of an atomic proposition of the form arc; and an atomic proposition of the form arc,. Instead,
if we directly define axioms of the form arc;.2, we can describe transducers in their full generality. A similar issue
arises in synchronous and lexicalized parsing; all possible synchronous and lexicalized parsers cannot be described as
the product of two CKY parsers unless we consider the generalized form of axioms.

7 Conclusion

We have described a general framework for dynamic programming algorithms whose solutions correspond to proof
values in two mutually constrained weighted logic programs. Our framework includes a program transformation,
PRODUCT, which combines the two weighted logic programs that compute over two structures into a single weighted

logic program for a joint proof. Appropriate constraints, encoded intuitively as variable unification or side conditions
in the WLP, are then added manually. The framework naturally captures many existing algorithms.
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