
A Discriminative Graph-Based Parser
for the Abstract Meaning Representation

Jeffrey Flanigan Sam Thomson Jaime Carbonell Chris Dyer Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{jflanigan,sthomson,jgc,cdyer,nasmith}@cs.cmu.edu

Abstract

Abstract Meaning Representation (AMR)
is a semantic formalism for which a grow-
ing set of annotated examples is avail-
able. We introduce the first approach
to parse sentences into this representa-
tion, providing a strong baseline for fu-
ture improvement. The method is based
on a novel algorithm for finding a maxi-
mum spanning, connected subgraph, em-
bedded within a Lagrangian relaxation of
an optimization problem that imposes lin-
guistically inspired constraints. Our ap-
proach is described in the general frame-
work of structured prediction, allowing fu-
ture incorporation of additional features
and constraints, and may extend to other
formalisms as well. Our open-source sys-
tem, JAMR, is available at:
http://github.com/jflanigan/jamr

1 Introduction

Semantic parsing is the problem of mapping nat-
ural language strings into meaning representa-
tions. Abstract Meaning Representation (AMR)
(Banarescu et al., 2013; Dorr et al., 1998) is a
semantic formalism in which the meaning of a
sentence is encoded as a rooted, directed, acyclic
graph. Nodes represent concepts, and labeled di-
rected edges represent the relationships between
them–see Figure 1 for an example AMR graph.
The formalism is based on propositional logic and
neo-Davidsonian event representations (Parsons,
1990; Davidson, 1967). Although it does not
encode quantifiers, tense, or modality, the set of
semantic phenomena included in AMR were se-
lected with natural language applications—in par-
ticular, machine translation—in mind.

In this paper we introduce JAMR, the first pub-
lished system for automatic AMR parsing. The

system is based on a statistical model whose pa-
rameters are trained discriminatively using anno-
tated sentences in the AMR Bank corpus (Ba-
narescu et al., 2013). We evaluate using the
Smatch score (Cai and Knight, 2013), establishing
a baseline for future work.

The core of JAMR is a two-part algorithm
that first identifies concepts using a semi-Markov
model and then identifies the relations that ob-
tain between these by searching for the maximum
spanning connected subgraph (MSCG) from an
edge-labeled, directed graph representing all pos-
sible relations between the identified concepts. To
solve the latter problem, we introduce an appar-
ently novel O(|V |2 log |V |) algorithm that is sim-
ilar to the maximum spanning tree (MST) algo-
rithms that are widely used for dependency pars-
ing (McDonald et al., 2005). Our MSCG algo-
rithm returns the connected subgraph with maxi-
mal sum of its edge weights from among all con-
nected subgraphs of the input graph. Since AMR
imposes additional constraints to ensure seman-
tic well-formedness, we use Lagrangian relaxation
(Geoffrion, 1974; Fisher, 2004) to augment the
MSCG algorithm, yielding a tractable iterative al-
gorithm that finds the optimal solution subject to
these constraints. In our experiments, we have
found this algorithm to converge 100% of the time
for the constraint set we use.

The approach can be understood as an alterna-
tive to parsing approaches using graph transduc-
ers such as (synchronous) hyperedge replacement
grammars (Chiang et al., 2013; Jones et al., 2012;
Drewes et al., 1997), in much the same way that
spanning tree algorithms are an alternative to us-
ing shift-reduce and dynamic programming algo-
rithms for dependency parsing.1 While a detailed

1To date, a graph transducer-based semantic
parser has not been published, although the Bolinas
toolkit (http://www.isi.edu/publications/
licensed-sw/bolinas/) contains much of the neces-
sary infrastructure.

want-01

boy

visit-01

city

name

“New” “York” “City”

ARG0

ARG1

ARG0
ARG1

name

op1 op2 op3

(a) Graph.

(w / want-01
:ARG0 (b / boy)
:ARG1 (g / visit-01

:ARG0 b
:ARG1 (c / city

:name (n / name
:op1 "New"
:op2 "York"
:op3 "City"))))

(b) AMR annotation.

Figure 1: Two equivalent ways of representing the AMR
parse for the sentence, “The boy wants to visit New York
City.”

comparison of these two approaches is beyond the
scope of this paper, we emphasize that—as has
been observed with dependency parsing—a diver-
sity of approaches can shed light on complex prob-
lems such as semantic parsing.

2 Notation and Overview

Our approach to AMR parsing represents an AMR
parse as a graph G = 〈V,E〉; vertices and edges
are given labels from sets LV and LE , respec-
tively. G is constructed in two stages. The first
stage identifies the concepts evoked by words and
phrases in an input sentence w = 〈w1, . . . , wn〉,
each wi a member of vocabulary W . The second
stage connects the concepts by adding LE-labeled
edges capturing the relations between concepts,
and selects a root in G corresponding to the focus
of the sentence w.

Concept identification (§3) involves segmenting
w into contiguous spans and assigning to each
span a graph fragment corresponding to a concept
from a concept set denoted F (or to ∅ for words
that evoke no concept). In §5 we describe how
F is constructed. In our formulation, spans are
contiguous subsequences of w. For example, the

words “New York City” can evoke the fragment
represented by

(c / city
:name (n / name

:op1 "New"
:op2 "York"
:op3 "City"))))

We use a sequence labeling algorithm to identify
concepts.

The relation identification stage (§4) is similar
to a graph-based dependency parser. Instead of
finding the maximum-scoring tree over words, it
finds the maximum-scoring connected subgraph
that preserves concept fragments from the first
stage, links each pair of vertices by at most one
edge, and is deterministic2 with respect to a spe-
cial set of edge labels L∗E ⊂ LE . The set L∗E
consists of the labels ARG0–ARG5, and does not
include labels such as MOD or MANNER, for ex-
ample. Linguistically, the determinism constraint
enforces that predicates have at most one semantic
argument of each type; this is discussed in more
detail in §4.

To train the parser, spans of words must be la-
beled with the concept fragments they evoke. Al-
though AMR Bank does not label concepts with
the words that evoke them, it is possible to build
an automatic aligner (§5). The alignments are
used to construct the concept lexicon and to train
the concept identification and relation identifica-
tion stages of the parser (§6). Each stage is a
discriminatively-trained linear structured predic-
tor with rich features that make use of part-of-
speech tagging, named entity tagging, and depen-
dency parsing.

In §7, we evaluate the parser against gold-
standard annotated sentences from the AMR Bank
corpus (Banarescu et al., 2013) under the Smatch
score (Cai and Knight, 2013), presenting the first
published results on automatic AMR parsing.

3 Concept Identification

The concept identification stage maps spans of
words in the input sentence w to concept graph
fragments from F , or to the empty graph fragment
∅. These graph fragments often consist of just
one labeled concept node, but in some cases they
are larger graphs with multiple nodes and edges.3

2By this we mean that, at each node, there is at most one
outgoing edge with that label type.

3About 20% of invoked concept fragments are multi-
concept fragments.

Concept identification is illustrated in Figure 2 us-
ing our running example, “The boy wants to visit
New York City.”

Let the concept lexicon be a mapping clex :
W ∗ → 2F that provides candidate graph frag-
ments for sequences of words. (The construc-
tion of F and clex is discussed below.) Formally,
a concept labeling is (i) a segmentation of w
into contiguous spans represented by boundaries
b, giving spans 〈wb0:b1 ,wb1:b2 , . . .wbk−1:bk〉, with
b0 = 0 and bk = n, and (ii) an assignment of
each phrase wbi−1:bi to a concept graph fragment
ci ∈ clex (wbi−1:bi) ∪ ∅.

Our approach scores a sequence of spans b and
a sequence of concept graph fragments c, both of
arbitrary length k, using the following locally de-
composed, linearly parameterized function:

score(b, c;θ) =
∑k

i=1 θ
>f(wbi−1:bi , bi−1, bi, ci)

(1)
where f is a feature vector representation of a span
and one of its concept graph fragments in context.
The features are:

• Fragment given words: Relative frequency es-
timates of the probability of a concept graph
fragment given the sequence of words in the
span. This is calculated from the concept-word
alignments in the training corpus (§5).
• Length of the matching span (number of to-

kens).
• NER: 1 if the named entity tagger marked the

span as an entity, 0 otherwise.
• Bias: 1 for any concept graph fragment from F

and 0 for ∅.

Our approach finds the highest-scoring b and
c using a dynamic programming algorithm: the
zeroth-order case of inference under a semi-
Markov model (Janssen and Limnios, 1999). Let
S(i) denote the score of the best labeling of the
first i words of the sentence, w0:i; it can be calcu-
lated using the recurrence:

S(0) = 0

S(i) = max
j:0≤j<i,

c∈clex(wj:i)∪∅

{
S(j) + θ>f(wj:i, j, i, c)

}

The best score will be S(n), and the best scor-
ing concept labeling can be recovered using back-
pointers, as in typical implementations of the
Viterbi algorithm. Runtime is O(n2).

clex is implemented as follows. When clex is
called with a sequence of words, it looks up the
sequence in a table that contains, for every word
sequence that was labeled with a concept fragment
in the training data, the set of concept fragments it
was labeled with. clex also has a set of rules for
generating concept fragments for named entities
and time expressions. It generates a concept frag-
ment for any entity recognized by the named entity
tagger, as well as for any word sequence matching
a regular expression for a time expression. clex
returns the union of all these concept fragments.

4 Relation Identification

The relation identification stage adds edges among
the concept subgraph fragments identified in the
first stage (§3), creating a graph. We frame the
task as a constrained combinatorial optimization
problem.

Consider the fully dense labeled multigraph
D = 〈VD, ED〉 that includes the union of all la-
beled vertices and labeled edges in the concept
graph fragments, as well as every possible labeled
edge u `−→ v, for all u, v ∈ VD and every ` ∈ LE .4

We require a subgraph G = 〈VG, EG〉 that re-
spects the following constraints:

1. Preserving: all graph fragments (including la-
bels) from the concept identification phase are
subgraphs of G.

2. Simple: for any two vertices u and v ∈ VG,EG
includes at most one edge between u and v. This
constraint forbids a small number of perfectly
valid graphs, for example for sentences such as
“John hurt himself”; however, we see that< 1%
of training instances violate the constraint. We
found in preliminary experiments that including
the constraint increases overall performance.5

3. Connected: G must be weakly connected (ev-
ery vertex reachable from every other vertex, ig-
noring the direction of edges). This constraint
follows from the formal definition of AMR and
is never violated in the training data.

4. Deterministic: For each node u ∈ VG, and for
each label ` ∈ L∗E , there is at most one outgoing
edge in EG from u with label `. As discussed in
§2, this constraint is linguistically motivated.
4To handle numbered OP labels, we pre-process the train-

ing data to convert OPN to OP, and post-process the output by
numbering the OP labels sequentially.

5In future work it might be treated as a soft constraint, or
the constraint might be refined to specific cases.

The boy wants to visit New York City

ø øboy want-01 visit-01

city

name

“New”

“York”

“City”

name
op1

op2

op3

Figure 2: A concept labeling for the sentence “The boy wants to visit New York City.”

One constraint we do not include is acyclicity,
which follows from the definition of AMR. In
practice, graphs with cycles are rarely produced
by JAMR. In fact, none of the graphs produced on
the test set violate acyclicity.

Given the constraints, we seek the maximum-
scoring subgraph. We define the score to decom-
pose by edges, and with a linear parameterization:

score(EG;ψ) =
∑

e∈EG
ψ>g(e) (2)

The features are shown in Table 1.
Our solution to maximizing the score in Eq. 2,

subject to the constraints, makes use of (i) an al-
gorithm that ignores constraint 4 but respects the
others (§4.1); and (ii) a Lagrangian relaxation that
iteratively adjusts the edge scores supplied to (i)
so as to enforce constraint 4 (§4.2).

4.1 Maximum Preserving, Simple, Spanning,
Connected Subgraph Algorithm

The steps for constructing a maximum preserving,
simple, spanning, connected (but not necessar-
ily deterministic) subgraph are as follows. These
steps ensure the resulting graph G satisfies the
constraints: the initialization step ensures the pre-
serving constraint is satisfied, the pre-processing
step ensures the graph is simple, and the core al-
gorithm ensures the graph is connected.

1. (Initialization) Let E(0) be the union of the
concept graph fragments’ weighted, labeled, di-
rected edges. Let V denote its set of vertices.
Note that 〈V,E(0)〉 is preserving (constraint 4),
as is any graph that contains it. It is also sim-
ple (constraint 4), assuming each concept graph
fragment is simple.

2. (Pre-processing) We form the edge set E by in-
cluding just one edge from ED between each
pair of nodes:

• For any edge e = u
`−→ v in E(0), include e in

E, omitting all other edges between u and v.

• For any two nodes u and v, include only the
highest scoring edge between u and v.

Note that without the deterministic constraint,
we have no constraints that depend on the label
of an edge, nor its direction. So it is clear that
the edges omitted in this step could not be part
of the maximum-scoring solution, as they could
be replaced by a higher scoring edge without vi-
olating any constraints.

Note also that because we have kept exactly one
edge between every pair of nodes, 〈V,E〉 is sim-
ple and connected.

3. (Core algorithm) Run Algorithm 1, MSCG, on
〈V,E〉 and E(0). This algorithm is a (to our
knowledge novel) modification of the minimum
spanning tree algorithm of Kruskal (1956).
Note that the directions of edges do not matter
for MSCG.

Steps 1–2 can be accomplished in one pass
through the edges, with runtime O(|V |2). MSCG

can be implemented efficiently in O(|V |2 log |V |)
time, similarly to Kruskal’s algorithm, using a
disjoint-set data structure to keep track of con-
nected components.6 The total asymptotic runtime
complexity is O(|V |2 log |V |).

The details of MSCG are given in Algorithm 1.
In a nutshell, MSCG first adds all positive edges to
the graph, and then connects the graph by greedily
adding the least negative edge that connects two
previously unconnected components.
Theorem 1. MSCG finds a maximum spanning,
connected subgraph of 〈V,E〉

Proof. We closely follow the original proof of cor-
rectness of Kruskal’s algorithm. We first show by
induction that, at every iteration of MSCG, there
exists some maximum spanning, connected sub-
graph that contains G(i) = 〈V,E(i)〉:

6For dense graphs, Prim’s algorithm (Prim, 1957) is
asymptotically faster (O(|V |2)). We conjecture that using
Prim’s algorithm instead of Kruskall’s to connect the graph
could improve the runtime of MSCG.

Name Description
Label For each ` ∈ LE , 1 if the edge has that label
Self edge 1 if the edge is between two nodes in the same fragment
Tail fragment root 1 if the edge’s tail is the root of its graph fragment
Head fragment root 1 if the edge’s head is the root of its graph fragment
Path Dependency edge labels and parts of speech on the shortest syntactic path between any two

words in the two spans
Distance Number of tokens (plus one) between the two concepts’ spans (zero if the same)
Distance indicators A feature for each distance value, that is 1 if the spans are of that distance
Log distance Logarithm of the distance feature plus one.
Bias 1 for any edge.

Table 1: Features used in relation identification. In addition to the features above, the following conjunctions are used (Tail and
Head concepts are elements of LV): Tail concept ∧ Label, Head concept ∧ Label, Path ∧ Label, Path ∧ Head concept, Path ∧
Tail concept, Path ∧ Head concept ∧ Label, Path ∧ Tail concept ∧ Label, Path ∧ Head word, Path ∧ Tail word, Path ∧ Head
word ∧ Label, Path ∧ Tail word ∧ Label, Distance ∧ Label, Distance ∧ Path, and Distance ∧ Path ∧ Label. To conjoin the
distance feature with anything else, we multiply by the distance.

input : weighted, connected graph 〈V,E〉
and set of edges E(0) ⊆ E to be
preserved

output: maximum spanning, connected
subgraph of 〈V,E〉 that preserves
E(0)

let E(1) = E(0) ∪ {e ∈ E | ψ>g(e) > 0};
create a priority queue Q containing
{e ∈ E | ψ>g(e) ≤ 0} prioritized by scores;
i = 1;
while Q nonempty and 〈V,E(i)〉 is not yet
spanning and connected do

i = i+ 1;
E(i) = E(i−1);
e = argmaxe′∈Qψ

>g(e′);
remove e from Q;
if e connects two previously unconnected
components of 〈V,E(i)〉 then

add e to E(i)

end
end
return G = 〈V,E(i)〉;

Algorithm 1: MSCG algorithm.

Base case: ConsiderG(1), the subgraph contain-
ing E(0) and every positive edge. Take any maxi-
mum preserving spanning connected subgraph M
of 〈V,E〉. We know that such an M exists be-
cause 〈V,E〉 itself is a preserving spanning con-
nected subgraph. Adding a positive edge to M
would strictly increase M ’s score without discon-
necting M , which would contradict the fact that
M is maximal. Thus M must contain G(1).

Induction step: By the inductive hypothesis,
there exists some maximum spanning connected

subgraph M = 〈V,EM 〉 that contains G(i).
Let e be the next edge added to E(i) by MSCG.
If e is in EM , then E(i+1) = E(i) ∪ {e} ⊆ EM ,

and the hypothesis still holds.
Otherwise, since M is connected and does not

contain e, EM ∪ {e} must have a cycle containing
e. In addition, that cycle must have some edge e′

that is not in E(i). Otherwise, E(i) ∪ {e} would
contain a cycle, and e would not connect two un-
connected components of G(i), contradicting the
fact that e was chosen by MSCG.

Since e′ is in a cycle in EM ∪ {e}, removing it
will not disconnect the subgraph, i.e. (EM∪{e})\
{e′} is still connected and spanning. The score of
e is greater than or equal to the score of e′, oth-
erwise MSCG would have chosen e′ instead of e.
Thus, 〈V, (EM ∪{e}) \ {e′}〉 is a maximum span-
ning connected subgraph that containsE(i+1), and
the hypothesis still holds.

When the algorithm completes, G = 〈V,E(i)〉
is a spanning connected subgraph. The maximum
spanning connected subgraph M that contains it
cannot have a higher score, because G contains
every positive edge. Hence G is maximal.

4.2 Lagrangian Relaxation

If the subgraph resulting from MSCG satisfies con-
straint 4 (deterministic) then we are done. Oth-
erwise we resort to Lagrangian relaxation (LR).
Here we describe the technique as it applies to our
task, referring the interested reader to Rush and
Collins (2012) for a more general introduction to
Lagrangian relaxation in the context of structured
prediction problems.

In our case, we begin by encoding a graph G =
〈VG, EG〉 as a binary vector. For each edge e in
the fully dense multigraph D, we associate a bi-

nary variable ze = 1{e ∈ EG}, where 1{P} is
the indicator function, taking value 1 if the propo-
sition P is true, 0 otherwise. The collection of ze
form a vector z ∈ {0, 1}|ED|.

Determinism constraints can be encoded as a
set of linear inequalities. For example, the con-
straint that vertex u has no more than one outgoing
ARG0 can be encoded with the inequality:∑
v∈V

1{u ARG0−−−→ v ∈ EG} =
∑
v∈V

z
u

ARG0−−−→v
≤ 1.

All of the determinism constraints can collectively
be encoded as one system of inequalities:

Az ≤ b,

with each row Ai inA and its corresponding entry
bi in b together encoding one constraint. For the
previous example we have a row Ai that has 1s
in the columns corresponding to edges outgoing
from u with label ARG0 and 0’s elsewhere, and a
corresponding element bi = 1 in b.

The score of graph G (encoded as z) can be
written as the objective function φ>z, where φe =
ψ>g(e). To handle the constraint Az ≤ b, we in-
troduce multipliers µ ≥ 0 to get the Lagrangian
relaxation of the objective function:

Lµ(z) = maxz (φ
>z+ µ>(b−Az)),

z∗µ = argmaxz Lµ(z).

And the dual objective:

L(z) = min
µ≥0

Lµ(z),

z∗ = argmaxz L(z).

Conveniently, Lµ(z) decomposes over edges:

Lµ(z) = maxz (φ
>z+ µ>(b−Az))

= maxz (φ
>z− µ>Az)

= maxz ((φ−A>µ)>z).

So for any µ, we can find z∗µ by assigning edges
the new Lagrangian adjusted weights φ − A>µ
and reapplying the algorithm described in §4.1.
We can find z∗ by projected subgradient descent,
by starting with µ = 0, and taking steps in the
direction:

−∂Lµ
∂µ

(z∗µ) = Az∗µ.

If any components of µ are negative after taking a
step, they are set to zero.

L(z) is an upper bound on the unrelaxed ob-
jective function φ>z, and is equal to it if and
only if the constraints Az ≤ b are satisfied. If
L(z∗) = φ>z∗, then z∗ is also the optimal solu-
tion to the constrained solution. Otherwise, there
exists a duality gap, and Lagrangian relaxation
has failed. In that case we still return the sub-
graph encoded by z∗, even though it might vio-
late one or more constraints. Techniques from in-
teger programming such as branch-and-bound or
cutting-planes methods could be used to find an
optimal solution when LR fails (Das et al., 2012),
but we do not use these techniques here. In our
experiments, with a stepsize of 1 and max number
of steps as 500, Lagrangian relaxation succeeds
100% of the time in our data.

4.3 Focus Identification

In AMR, one node must be marked as the focus of
the sentence. We notice this can be accomplished
within the relation identification step: we add a
special concept node root to the dense graph D,
and add an edge from root to every other node,
giving each of these edges the label FOCUS. We
require that root have at most one outgoing FO-
CUS edge. Our system has two feature types for
this edge: the concept it points to, and the shortest
dependency path from a word in the span to the
root of the dependency tree.

5 Automatic Alignments

In order to train the parser, we need alignments be-
tween sentences in the training data and their an-
notated AMR graphs. More specifically, we need
to know which spans of words invoke which con-
cept fragments in the graph. To do this, we built
an automatic aligner and tested its performance on
a small set of alignments we annotated by hand.

The automatic aligner uses a set of rules to
greedily align concepts to spans. The list of rules
is given in Table 2. The aligner proceeds down
the list, first aligning named-entities exactly, then
fuzzy matching named-entities, then date-entities,
etc. For each rule, an entire pass through the AMR
graph is done. The pass considers every concept in
the graph and attempts to align a concept fragment
rooted at that concept if the rule can apply. Some
rules only apply to a particular type of concept
fragment, while others can apply to any concept.
For example, rule 1 can apply to any NAME con-
cept and its OP children. It searches the sentence

for a sequence of words that exactly matches its
OP children and aligns them to the NAME and OP

children fragment.
Concepts are considered for alignment in the or-

der they are listed in the AMR annotation (left to
right, top to bottom). Concepts that are not aligned
in a particular pass may be aligned in subsequent
passes. Concepts are aligned to the first match-
ing span, and alignments are mutually exclusive.
Once aligned, a concept in a fragment is never re-
aligned.7 However, more concepts can be attached
to the fragment by rules 8–14.

We use WordNet to generate candidate lemmas,
and we also use a fuzzy match of a concept, de-
fined to be a word in the sentence that has the
longest string prefix match with that concept’s la-
bel, if the match length is ≥ 4. If the match length
is < 4, then the concept has no fuzzy match. For
example the fuzzy match for ACCUSE-01 could be
“accusations” if it is the best match in the sen-
tence. WordNet lemmas and fuzzy matches are
only used if the rule explicitly uses them. All to-
kens and concepts are lowercased before matches
or fuzzy matches are done.

On the 200 sentences of training data we
aligned by hand, the aligner achieves 92% preci-
sion, 89% recall, and 90% F1 for the alignments.

6 Training

We now describe how to train the two stages of the
parser. The training data for the concept identifi-
cation stage consists of (X,Y) pairs:

• Input: X , a sentence annotated with named
entities (person, organization, location, mis-
ciscellaneous) from the Illinois Named Entity
Tagger (Ratinov and Roth, 2009), and part-of-
speech tags and basic dependencies from the
Stanford Parser (Klein and Manning, 2003; de
Marneffe et al., 2006).
• Output: Y , the sentence labeled with concept

subgraph fragments.

The training data for the relation identification
stage consists of (X,Y) pairs:

7As an example, if “North Korea” shows up twice in
the AMR graph and twice in the input sentence, then the
first “North Korea” concept fragment listed in the AMR gets
aligned to the first “North Korea” mention in the sentence,
and the second fragment to the second mention (because the
first span is already aligned when the second “North Korea”
concept fragment is considered, so it is aligned to the second
matching span).

1. (Named Entity) Applies to name concepts and their
opn children. Matches a span that exactly matches its
opn children in numerical order.

2. (Fuzzy Named Entity) Applies to name concepts and
their opn children. Matches a span that matches the
fuzzy match of each child in numerical order.

3. (Date Entity) Applies to date-entity concepts
and their day, month, year children (if exist).
Matches any permutation of day, month, year, (two digit
or four digit years), with or without spaces.

4. (Minus Polarity Tokens) Applies to - concepts, and
matches “no”, “not”, “non.”

5. (Single Concept) Applies to any concept. Strips
off trailing ‘-[0-9]+’ from the concept (for example
run-01 → run), and matches any exact matching
word or WordNet lemma.

6. (Fuzzy Single Concept) Applies to any concept.
Strips off trailing ‘-[0-9]+’, and matches the fuzzy match
of the concept.

7. (U.S.) Applies to name if its op1 child is united
and its op2 child is states. Matches a word that
matches “us”, “u.s.” (no space), or “u. s.” (with space).

8. (Entity Type) Applies to concepts with an outgoing
name edge whose head is an aligned fragment. Up-
dates the fragment to include the unaligned concept.
Ex: continent in (continent :name (name
:op1 "Asia")) aligned to “asia.”

9. (Quantity) Applies to .*-quantity concepts with
an outgoing unit edge whose head is aligned. Up-
dates the fragment to include the unaligned concept. Ex:
distance-quantity in (distance-quantity
:unit kilometer) aligned to “kilometres.”

10. (Person-Of, Thing-Of) Applies to person and
thing concepts with an outgoing .*-of edge whose
head is aligned. Updates the fragment to include
the unaligned concept. Ex: person in (person
:ARG0-of strike-02) aligned to “strikers.”

11. (Person) Applies to person concepts with a sin-
gle outgoing edge whose head is aligned. Updates
the fragment to include the unaligned concept. Ex:
person in (person :poss (country :name
(name :op1 "Korea")))

12. (Goverment Organization) Applies to concepts
with an incoming ARG.*-of edge whose tail is an
aligned government-organization concept. Up-
dates the fragment to include the unaligned concept. Ex:
govern-01 in (government-organization
:ARG0-of govern-01) aligned to “government.”

13. (Minus Polarity Prefixes) Applies to - concepts
with an incoming polarity edge whose tail is aligned
to a word beginning with “un”, “in”, or “il.” Up-
dates the fragment to include the unaligned concept.
Ex: - in (employ-01 :polarity -) aligned to
“unemployment.”

14. (Degree) Applies to concepts with an incoming
degree edge whose tail is aligned to a word ending
is “est.” Updates the fragment to include the unaligned
concept. Ex: most in (large :degree most)
aligned to “largest.”

Table 2: Rules used in the automatic aligner.

• Input: X , the sentence labeled with graph frag-
ments, as well as named enties, POS tags, and
basic dependencies as in concept identification.
• Output: Y , the sentence with a full AMR

parse.8

Alignments are used to induce the concept label-
ing for the sentences, so no annotation beyond the
automatic alignments is necessary.

We train the parameters of the stages separately
using AdaGrad (Duchi et al., 2011) with the per-
ceptron loss function (Rosenblatt, 1957; Collins,
2002). We give equations for concept identifica-
tion parameters θ and features f(X,Y). For a
sentence of length k, and spans b labeled with a
sequence of concept fragments c, the features are:

f(X,Y) =
∑k

i=1 f(wbi−1:bi , bi−1, bi, ci)

To train with AdaGrad, we process examples in
the training data ((X1, Y 1), . . . , (XN , Y N)) one
at a time. At time t, we decode (§3) to get Ŷ t and
compute the subgradient:

st = f(Xt, Ŷ t)− f(Xt, Y t)

We then update the parameters and go to the next
example. Each component i of the parameter vec-
tor gets updated like so:

θt+1
i = θti −

η√∑t
t′=1 s

t′
i

sti

η is the learning rate which we set to 1. For
relation identification training, we replace θ and
f(X,Y) in the above equations with ψ and

g(X,Y) =
∑

e∈EG
g(e).

We ran AdaGrad for ten iterations for concept
identification, and five iterations for relation iden-
tification. The number of iterations was chosen by
early stopping on the development set.

7 Experiments

We evaluate our parser on the newswire section
of LDC2013E117 (deft-amr-release-r3-proxy.txt).
Statistics about this corpus and our train/dev./test
splits are given in Table 3.

8Because the alignments are automatic, some concepts
may not be aligned, so we cannot compute their features. We
remove the unaligned concepts and their edges from the full
AMR graph for training. Thus some graphs used for training
may in fact be disconnected.

Split Document Years Sentences Tokens
Train 1995-2006 4.0k 79k
Dev. 2007 2.1k 40k
Test 2008 2.1k 42k

Table 3: Train/dev./test split.

Train Test
P R F1 P R F1

.92 .90 .91 .90 .79 .84
Table 4: Concept identification performance.

For the performance of concept identification,
we report precision, recall, and F1 of labeled spans
using the induced labels on the training and test
data as a gold standard (Table 4). Our concept
identifier achieves 84% F1 on the test data. Pre-
cision is roughly the same between train and test,
but recall is worse on test, implicating unseen con-
cepts as a significant source of errors on test data.

We evaluate the performance of the full parser
using Smatch v1.0 (Cai and Knight, 2013), which
counts the precision, recall and F1 of the concepts
and relations together. Using the full pipeline
(concept identification and relation identification
stages), our parser achieves 58% F1 on the test
data (Table 5). Using gold concepts with the re-
lation identification stage yields a much higher
Smatch score of 80% F1. As a comparison, AMR
Bank annotators have a consensus inter-annotator
agreement Smatch score of 83% F1. The runtime
of our system is given in Figure 3.

The large drop in performance of 22% F1 when
moving from gold concepts to system concepts
suggests that joint inference and training for the
two stages might be helpful.

8 Related Work

Our approach to relation identification is inspired
by graph-based techniques for non-projective syn-
tactic dependency parsing. Minimum span-
ning tree algorithms—specifically, the optimum
branching algorithm of Chu and Liu (1965) and
Edmonds (1967)—were first used for dependency
parsing by McDonald et al. (2005). Later ex-

Train Test
concepts P R F1 P R F1

gold .85 .95 .90 .76 .84 .80
automatic .69 .78 .73 .52 .66 .58

Table 5: Parser performance.

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

sentence length (words)

av
er

ag
e

ru
nt

im
e

(s
ec

on
ds

)

Figure 3: Runtime of JAMR (all stages).

tensions allow for higher-order (non–edge-local)
features, often making use of relaxations to solve
the NP-hard optimization problem. Mcdonald and
Pereira (2006) incorporated second-order features,
but resorted to an approximate algorithm. Oth-
ers have formulated the problem as an integer lin-
ear program (Riedel and Clarke, 2006; Martins et
al., 2009). TurboParser (Martins et al., 2013) uses
AD3 (Martins et al., 2011), a type of augmented
Lagrangian relaxation, to integrate third-order fea-
tures into a CLE backbone. Future work might ex-
tend JAMR to incorporate additional linguistically
motivated constraints and higher-order features.

The task of concept identification is similar in
form to the problem of Chinese word segmenta-
tion, for which semi-Markov models have success-
fully been used to incorporate features based on
entire spans (Andrew, 2006).

While all semantic parsers aim to transform nat-
ural language text to a formal representation of
its meaning, there is wide variation in the mean-
ing representations and parsing techniques used.
Space does not permit a complete survey, but we
note some connections on both fronts.

Interlinguas (Carbonell et al., 1992) are an im-
portant precursor to AMR. Both formalisms are
intended for use in machine translation, but AMR
has an admitted bias toward the English language.

First-order logic representations (and exten-
sions using, e.g., the λ-calculus) allow variable
quantification, and are therefore more power-
ful. In recent research, they are often associ-
ated with combinatory categorial grammar (Steed-
man, 1996). There has been much work on sta-
tistical models for CCG parsing (Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2010, inter alia), usually using

chart-based dynamic programming for inference.
Natural language interfaces for querying

databases have served as another driving applica-
tion (Zelle and Mooney, 1996; Kate et al., 2005;
Liang et al., 2011, inter alia). The formalisms
used here are richer in logical expressiveness than
AMR, but typically use a smaller set of concept
types—only those found in the database.

In contrast, semantic dependency parsing—in
which the vertices in the graph correspond to the
words in the sentence—is meant to make semantic
parsing feasible for broader textual domains. Al-
shawi et al. (2011), for example, use shift-reduce
parsing to map sentences to natural logical form.

AMR parsing also shares much in common
with tasks like semantic role labeling and frame-
semantic parsing (Gildea and Jurafsky, 2002; Pun-
yakanok et al., 2008; Das et al., 2014, inter alia).
In these tasks, predicates are often disambiguated
to a canonical word sense, and roles are filled
by spans (usually syntactic constituents). They
consider each predicate separately, and produce
a disconnected set of shallow predicate-argument
structures. AMR, on the other hand, canonical-
izes both predicates and arguments to a common
concept label space. JAMR reasons about all con-
cepts jointly to produce a unified representation of
the meaning of an entire sentence.

9 Conclusion

We have presented the first published system for
automatic AMR parsing, and shown that it pro-
vides a strong baseline based on the Smatch eval-
uation metric. We also present an algorithm for
finding the maximum, spanning, connected sub-
graph and show how to incorporate extra con-
straints with Lagrangian relaxation. Our feature-
based learning setup allows the system to be easily
extended by incorporating new feature sources.

Acknowledgments

The authors gratefully acknowledge helpful cor-
respondence from Kevin Knight, Ulf Hermjakob,
and André Martins, and helpful feedback from
Nathan Schneider, Brendan O’Connor, Waleed
Ammar, and the anonymous reviewers. This
work was sponsored by the U. S. Army Research
Laboratory and the U. S. Army Research Office
under contract/grant number W911NF-10-1-0533
and DARPA grant FA8750-12-2-0342 funded un-
der the DEFT program.

References
Hiyan Alshawi, Pi-Chuan Chang, and Michael Ring-

gaard. 2011. Deterministic statistical mapping of
sentences to underspecified semantics. In Proc. of
ICWS.

Galen Andrew. 2006. A hybrid markov/semi-markov
conditional random field for sequence segmentation.
In Proc. of EMNLP.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. of the Linguistic Annota-
tion Workshop and Interoperability with Discourse.

Shu Cai and Kevin Knight. 2013. Smatch: an eval-
uation metric for semantic feature structures. In
Proc. of ACL.

Jaime G. Carbonell, Teruko Mitamura, and Eric H. Ny-
berg. 1992. The KANT perspective: A critique
of pure transfer (and pure interlingua, pure trans-
fer, . . .). In Proc. of the Fourth International Con-
ference on Theoretical and Methodological Issues
in Machine Translation: Empiricist vs. Rationalist
Methods in MT.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proc. of ACL.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and ex-
periments with perceptron algorithms. In Proc. of
EMNLP.

Dipanjan Das, André F. T. Martins, and Noah A. Smith.
2012. An exact dual decomposition algorithm for
shallow semantic parsing with constraints. In Proc.
of the Joint Conference on Lexical and Computa-
tional Semantics.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-semantic parsing. Computational Linguis-
tics, 40(1):9–56.

Donald Davidson. 1967. The logical form of action
sentences. In Nicholas Rescher, editor, The Logic of
Decision and Action, pages 81–120. Univ. of Pitts-
burgh Press.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proc. of LREC.

Bonnie Dorr, Nizar Habash, and David Traum. 1998.
A thematic hierarchy for efficient generation from
lexical-conceptual structure. In David Farwell, Lau-
rie Gerber, and Eduard Hovy, editors, Machine
Translation and the Information Soup: Proc. of
AMTA.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Ha-
bel. 1997. Hyperedge replacement graph gram-
mars. In Handbook of Graph Grammars, pages 95–
162. World Scientific.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159, July.

Jack Edmonds. 1967. Optimum branchings. National
Bureau of Standards.

Marshall L. Fisher. 2004. The Lagrangian relaxation
method for solving integer programming problems.
Management Science, 50(12):1861–1871.

Arthur M Geoffrion. 1974. Lagrangean relaxation for
integer programming. Springer.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguis-
tics, 28(3):245–288.

Jacques Janssen and Nikolaos Limnios. 1999. Semi-
Markov Models and Applications. Springer, Octo-
ber.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hyper-
edge replacement grammars. In Proc. of COLING.

Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to transform natural to
formal languages. In Proc. of AAAI.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proc. of ACL.

Joseph B. Kruskal. 1956. On the shortest spanning
subtree of a graph and the traveling salesman prob-
lem. Proc. of the American Mathematical Society,
7(1):48.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proc. of EMNLP.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proc. of ACL.

André F. T. Martins, Noah A. Smith, and Eric P. Xing.
2009. Concise integer linear programming formula-
tions for dependency parsing. In Proc. of ACL.

André F. T. Martins, Noah A. Smith, Pedro M. Q.
Aguiar, and Mário A. T. Figueiredo. 2011. Dual
decomposition with many overlapping components.
In Proc. of EMNLP.

André F. T. Martins, Miguel Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective Turbo parsers. In Proc. of ACL.

Ryan Mcdonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proc. of EACL, page 81–88.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proc. of
EMNLP.

Terence Parsons. 1990. Events in the Semantics of En-
glish: A study in subatomic semantics. MIT Press.

Robert C. Prim. 1957. Shortest connection networks
and some generalizations. Bell System Technology
Journal, 36:1389–1401.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proc. of CoNLL.

Sebastian Riedel and James Clarke. 2006. Incremental
integer linear programming for non-projective de-
pendency parsing. In Proc. of EMNLP.

Frank Rosenblatt. 1957. The perceptron–a perceiving
and recognizing automaton. Technical Report 85-
460-1, Cornell Aeronautical Laboratory.

Alexander M. Rush and Michael Collins. 2012. A
tutorial on dual decomposition and Lagrangian re-
laxation for inference in natural language process-
ing. Journal of Artificial Intelligence Research,
45(1):305—-362.

Mark Steedman. 1996. Surface structure and interpre-
tation. Linguistic inquiry monographs. MIT Press.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proc. of AAAI.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proc. of UAI.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In In Proc. of EMNLP-CoNLL.

