
Stacking Dependency Parsers

André F. T. Martins∗† Dipanjan Das∗ Noah A. Smith∗ Eric P. Xing∗
∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

†Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal
{afm,dipanjan,nasmith,epxing}@cs.cmu.edu

Abstract

We explore a stacked framework for learn-
ing to predict dependency structures for natu-
ral language sentences. A typical approach in
graph-based dependency parsing has been to
assume a factorized model, where local fea-
tures are used but a global function is opti-
mized (McDonald et al., 2005b). Recently
Nivre and McDonald (2008) used the output
of one dependency parser to provide features
for another. We show that this is an example
of stacked learning, in which a second pre-
dictor is trained to improve the performance
of the first. Further, we argue that this tech-
nique is a novel way of approximating rich
non-local features in the second parser, with-
out sacrificing efficient, model-optimal pre-
diction. Experiments on twelve languages
show that stacking transition-based and graph-
based parsers improves performance over ex-
isting state-of-the-art dependency parsers.

1 Introduction

In this paper we address a representation-efficiency
tradeoff in statistical natural language processing
through the use of stacked learning (Wolpert,
1992). This tradeoff is exemplified in dependency
parsing, illustrated in Fig. 1, on which we focus in
this paper:

• Exact algorithms for dependency parsing (Eis-
ner and Satta, 1999; McDonald et al., 2005b)
are tractable only when the model makes very
strong, linguistically unsupportable independence

assumptions, such as “arc factorization” for non-
projective dependency parsing (McDonald and
Satta, 2007).

• Feature-rich parsers must resort to search or
greediness, (Ratnaparkhi et al., 1994; Sagae and
Lavie, 2005; Hall et al., 2006), so that parsing
solutions are inexact and learned models may be
subject to certain kinds of bias (Lafferty et al.,
2001).

A solution that leverages the complementary
strengths of these two approaches—described in de-
tail by McDonald and Nivre (2007)—was recently
and successfully explored by Nivre and McDonald
(2008). Our contribution begins by reinterpreting
and generalizing their parser combination scheme as
a stacking of parsers.

We give a new theoretical motivation for stacking
parsers, in terms of extending a parsing model’s fea-
ture space. Specifically, we view stacked learning as
a way of approximating non-local features in a lin-
ear model, rather than making empirically dubious
independence (McDonald et al., 2005b) or structural
assumptions (e.g., projectivity, Eisner, 1996), using
search approximations (Sagae and Lavie, 2005; Hall
et al., 2006; McDonald and Pereira, 2006), solving a
(generally NP-hard) integer linear program (Riedel
and Clarke, 2006), or adding latent variables (Titov
and Henderson, 2007). Notably, we introduce the
use of very rich non-local approximate features in
one parser, through the output of another parser.
Related approaches are the belief propagation algo-
rithm of Smith and Eisner (2008), and the “trading
of structure for features” explored by Liang et al.

Figure 1: A projective dependency graph.

Figure 2: Non-projective dependency graph.

those that assume each dependency decision is in-
dependent modulo the global structural constraint
that dependency graphs must be trees. Such mod-
els are commonly referred to as edge-factored since
their parameters factor relative to individual edges
of the graph (Paskin, 2001; McDonald et al.,
2005a). Edge-factored models have many computa-
tional benefits, most notably that inference for non-
projective dependency graphs can be achieved in
polynomial time (McDonald et al., 2005b). The pri-
mary problem in treating each dependency as in-
dependent is that it is not a realistic assumption.
Non-local information, such as arity (or valency)
and neighbouring dependencies, can be crucial to
obtaining high parsing accuracies (Klein and Man-
ning, 2002; McDonald and Pereira, 2006). How-
ever, in the data-driven parsing setting this can be
partially adverted by incorporating rich feature rep-
resentations over the input (McDonald et al., 2005a).

The goal of this work is to further our current
understanding of the computational nature of non-
projective parsing algorithms for both learning and
inference within the data-driven setting. We start by
investigating and extending the edge-factored model
of McDonald et al. (2005b). In particular, we ap-
peal to the Matrix Tree Theorem for multi-digraphs
to design polynomial-time algorithms for calculat-
ing both the partition function and edge expecta-
tions over all possible dependency graphs for a given
sentence. To motivate these algorithms, we show
that they can be used in many important learning
and inference problems including min-risk decod-
ing, training globally normalized log-linear mod-
els, syntactic language modeling, and unsupervised

learning via the EM algorithm – none of which have
previously been known to have exact non-projective
implementations.

We then switch focus to models that account for
non-local information, in particular arity and neigh-
bouring parse decisions. For systems that model ar-
ity constraints we give a reduction from the Hamilto-
nian graph problem suggesting that the parsing prob-
lem is intractable in this case. For neighbouring
parse decisions, we extend the work of McDonald
and Pereira (2006) and show that modeling vertical
neighbourhoods makes parsing intractable in addi-
tion to modeling horizontal neighbourhoods. A con-
sequence of these results is that it is unlikely that
exact non-projective dependency parsing is tractable
for any model assumptions weaker than those made
by the edge-factored models.

1.1 Related Work
There has been extensive work on data-driven de-
pendency parsing for both projective parsing (Eis-
ner, 1996; Paskin, 2001; Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; McDonald et al.,
2005a) and non-projective parsing systems (Nivre
and Nilsson, 2005; Hall and Nóvák, 2005; McDon-
ald et al., 2005b). These approaches can often be
classified into two broad categories. In the first cat-
egory are those methods that employ approximate
inference, typically through the use of linear time
shift-reduce parsing algorithms (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Nivre and
Nilsson, 2005). In the second category are those
that employ exhaustive inference algorithms, usu-
ally by making strong independence assumptions, as
is the case for edge-factored models (Paskin, 2001;
McDonald et al., 2005a; McDonald et al., 2005b).
Recently there have also been proposals for exhaus-
tive methods that weaken the edge-factored assump-
tion, including both approximate methods (McDon-
ald and Pereira, 2006) and exact methods through in-
teger linear programming (Riedel and Clarke, 2006)
or branch-and-bound algorithms (Hirakawa, 2006).

For grammar based models there has been limited
work on empirical systems for non-projective pars-
ing systems, notable exceptions include the work
of Wang and Harper (2004). Theoretical studies of
note include the work of Neuhaus and Böker (1997)
showing that the recognition problem for a mini-

$ Figure 1: A projective dependency graph.

Figure 2: Non-projective dependency graph.

those that assume each dependency decision is in-
dependent modulo the global structural constraint
that dependency graphs must be trees. Such mod-
els are commonly referred to as edge-factored since
their parameters factor relative to individual edges
of the graph (Paskin, 2001; McDonald et al.,
2005a). Edge-factored models have many computa-
tional benefits, most notably that inference for non-
projective dependency graphs can be achieved in
polynomial time (McDonald et al., 2005b). The pri-
mary problem in treating each dependency as in-
dependent is that it is not a realistic assumption.
Non-local information, such as arity (or valency)
and neighbouring dependencies, can be crucial to
obtaining high parsing accuracies (Klein and Man-
ning, 2002; McDonald and Pereira, 2006). How-
ever, in the data-driven parsing setting this can be
partially adverted by incorporating rich feature rep-
resentations over the input (McDonald et al., 2005a).

The goal of this work is to further our current
understanding of the computational nature of non-
projective parsing algorithms for both learning and
inference within the data-driven setting. We start by
investigating and extending the edge-factored model
of McDonald et al. (2005b). In particular, we ap-
peal to the Matrix Tree Theorem for multi-digraphs
to design polynomial-time algorithms for calculat-
ing both the partition function and edge expecta-
tions over all possible dependency graphs for a given
sentence. To motivate these algorithms, we show
that they can be used in many important learning
and inference problems including min-risk decod-
ing, training globally normalized log-linear mod-
els, syntactic language modeling, and unsupervised

learning via the EM algorithm – none of which have
previously been known to have exact non-projective
implementations.

We then switch focus to models that account for
non-local information, in particular arity and neigh-
bouring parse decisions. For systems that model ar-
ity constraints we give a reduction from the Hamilto-
nian graph problem suggesting that the parsing prob-
lem is intractable in this case. For neighbouring
parse decisions, we extend the work of McDonald
and Pereira (2006) and show that modeling vertical
neighbourhoods makes parsing intractable in addi-
tion to modeling horizontal neighbourhoods. A con-
sequence of these results is that it is unlikely that
exact non-projective dependency parsing is tractable
for any model assumptions weaker than those made
by the edge-factored models.

1.1 Related Work
There has been extensive work on data-driven de-
pendency parsing for both projective parsing (Eis-
ner, 1996; Paskin, 2001; Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; McDonald et al.,
2005a) and non-projective parsing systems (Nivre
and Nilsson, 2005; Hall and Nóvák, 2005; McDon-
ald et al., 2005b). These approaches can often be
classified into two broad categories. In the first cat-
egory are those methods that employ approximate
inference, typically through the use of linear time
shift-reduce parsing algorithms (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Nivre and
Nilsson, 2005). In the second category are those
that employ exhaustive inference algorithms, usu-
ally by making strong independence assumptions, as
is the case for edge-factored models (Paskin, 2001;
McDonald et al., 2005a; McDonald et al., 2005b).
Recently there have also been proposals for exhaus-
tive methods that weaken the edge-factored assump-
tion, including both approximate methods (McDon-
ald and Pereira, 2006) and exact methods through in-
teger linear programming (Riedel and Clarke, 2006)
or branch-and-bound algorithms (Hirakawa, 2006).

For grammar based models there has been limited
work on empirical systems for non-projective pars-
ing systems, notable exceptions include the work
of Wang and Harper (2004). Theoretical studies of
note include the work of Neuhaus and Böker (1997)
showing that the recognition problem for a mini-

$

Figure 1: A projective dependency parse (top), and a non-
projective dependency parse (bottom) for two English
sentences; examples from McDonald and Satta (2007).

(2008).
This paper focuses on dependency parsing, which

has become widely used in relation extraction (Cu-
lotta and Sorensen, 2004), machine translation
(Ding and Palmer, 2005), question answering (Wang
et al., 2007), and many other NLP applications.
We show that stacking methods outperform the ap-
proximate “second-order” parser of McDonald and
Pereira (2006) on twelve languages and can be used
within that approximation to achieve even better re-
sults. These results are similar in spirit to (Nivre and
McDonald, 2008), but with the following novel con-
tributions:

• a stacking interpretation,

• a richer feature set that includes non-local features
(shown here to improve performance), and

• a variety of stacking architectures.

Using stacking with rich features, we obtain results
competitive with Nivre and McDonald (2008) while
preserving the fast quadratic parsing time of arc-
factored spanning tree algorithms.

The paper is organized as follows. We discuss re-
lated prior work on dependency parsing and stacking
in §2. Our model is given in §3. A novel analysis of
stacking in linear models is given in §4. Experiments
are presented in §5.

2 Background and Related Work

We briefly review work on the NLP task of depen-
dency parsing and the machine learning framework
known as stacked learning.

2.1 Dependency Parsing
Dependency syntax is a lightweight syntactic rep-
resentation that models a sentence as a graph where
the words are vertices and syntactic relationships are
directed edges (arcs) connecting heads to their argu-
ments and modifiers.

Dependency parsing is often viewed computa-
tionally as a structured prediction problem: for each
input sentence x, with n words, exponentially many
candidate dependency trees y ∈ Y(x) are possible in
principle. We denote each tree by its set of vertices
and directed arcs, y = (Vy, Ay). A legal depen-
dency tree has n + 1 vertices, each corresponding to
one word plus a “wall” symbol, $, assumed to be the
hidden root of the sentence. In a valid dependency
tree, each vertex except the root has exactly one par-
ent. In the projective case, arcs cannot cross when
depicted on one side of the sentence; in the non-
projective case, this constraint is not imposed (see
Fig. 1).

2.1.1 Graph-based vs. transition-based models
Most recent work on dependency parsing can be

categorized as graph-based or transition-based. In
graph-based parsing, dependency trees are scored
by factoring the tree into its arcs, and parsing is
performed by searching for the highest scoring tree
(Eisner, 1996; McDonald et al., 2005b). Transition-
based parsers model the sequence of decisions of
a shift-reduce parser, given previous decisions and
current state, and parsing is performed by greedily
choosing the highest scoring transition out of each
successive parsing state or by searching for the best
sequence of transitions (Ratnaparkhi et al., 1994;
Yamada and Matsumoto, 2003; Nivre et al., 2004;
Sagae and Lavie, 2005; Hall et al., 2006).

Both approaches most commonly use linear mod-
els to assign scores to arcs or decisions, so that a
score is a dot-product of a feature vector f and a
learned weight vector w.

In sum, these two lines of research use different
approximations to achieve tractability. Transition-
based approaches solve a sequence of local prob-
lems in sequence, sacrificing global optimality guar-
antees and possibly expressive power (Abney et al.,
1999). Graph-based methods perform global in-
ference using score factorizations that correspond
to strong independence assumptions (discussed in

§2.1.2). Recently, Nivre and McDonald (2008) pro-
posed combining a graph-based and a transition-
based parser and have shown a significant improve-
ment for several languages by letting one of the
parsers “guide” the other. Our stacked formalism
(to be described in §3) generalizes this approach.

2.1.2 Arc factorization
In the successful graph-based method of McDon-

ald et al. (2005b), an arc factorization independence
assumption is used to ensure tractability. This as-
sumption forbids any feature that depends on two
or more arcs, permitting only “arc-factored” features
(i.e. features that depend only on a single candidate
arc a ∈ Ay and on the input sequence x). This in-
duces a decomposition of the feature vector f(x, y)
as:

f(x, y) =
∑

a∈Ay

fa(x).

Parsing amounts to solving arg maxy∈Y(x)

w>f(x, y), where w is a weight vector. With
a projectivity constraint and arc factorization, the
parsing problem can be solved in cubic time by
dynamic programming (Eisner, 1996), and with a
weaker “tree” constraint (permitting nonprojective
parses) and arc factorization, a quadratic-time
algorithm exists (Chu and Liu, 1965; Edmonds,
1967), as shown by McDonald et al. (2005b). In
the projective case, the arc-factored assumption can
be weakened in certain ways while maintaining
polynomial parser runtime (Eisner and Satta, 1999),
but not in the nonprojective case (McDonald and
Satta, 2007), where finding the highest-scoring tree
becomes NP-hard.

McDonald and Pereira (2006) adopted an approx-
imation based on O(n3) projective parsing followed
by rearrangement to permit crossing arcs, achieving
higher performance. In §3 we adopt a framework
that maintains O(n2) runtime (still exploiting the
Chu-Liu-Edmonds algorithm) while approximating
non arc-factored features.

2.2 Stacked Learning
Stacked generalization was first proposed by
Wolpert (1992) and Breiman (1996) for regression.
The idea is to include two “levels” of predictors. The
first level, “level 0,” includes one or more predictors
g1, . . . , gK : Rd → R; each receives input x ∈ Rd

and outputs a prediction gk(x). The second level,
“level 1,” consists of a single function h : Rd+K →
R that takes as input 〈x, g1(x), . . . gK(x)〉 and out-
puts a final prediction ŷ = h(x, g1(x), . . . gK(x)).
The predictor, then, combines an ensemble (the gk)
with a meta-predictor (h).

Training is done as follows: the training data are
split into L partitions, and L instances of the level
0 predictor are trained in a “leave-one-out” basis.
Then, an augmented dataset is formed by letting
each instance output predictions for the partition that
was left out. Finally, each level 0 predictor is trained
using the original dataset, and the level 1 predictor
is trained on the augmented dataset, simulating the
test-time setting when h is applied to a new instance
x concatenated with 〈gk(x)〉k.

This framework has also been applied to classifi-
cation, for example with structured data. Some ap-
plications (including here) use only one classifier at
level 0; recent work includes sequence labeling (Co-
hen and de Carvalho, 2005) and inference in condi-
tional random fields (Kou and Cohen, 2007). Stack-
ing is also intuitively related to transformation-based
learning (Brill, 1993).

3 Stacked Dependency Parsing

We next describe how to use stacked learning for
efficient, rich-featured dependency parsing.

3.1 Architecture

The architecture consists of two levels. At level 0
we include a single dependency parser. At runtime,
this “level 0 parser” g processes an input sentence x
and outputs the set of predicted edges that make up
its estimation of the dependency tree, ŷ0 = g(x). At
level 1, we apply a dependency parser—in this work,
always a graph-based dependency parser—that uses
basic factored features plus new ones from the edges
predicted by the level 0 parser. The final parser pre-
dicts parse trees as h(x, g(x)), so that the total run-
time is additive in calculating h(·) and g(·).

The stacking framework is agnostic about the
form of g and h and the methods used to learn them
from data. In this work we use two well-known,
publicly available dependency parsers, MSTParser
(McDonald et al., 2005b),1 which implements ex-

1http://sourceforge.net/projects/mstparser

act first-order arc-factored nonprojective parsing
(§2.1.2) and approximate second-order nonprojec-
tive parsing, and MaltParser (Nivre et al., 2006),
which is a state-of-the-art transition-based parser.2

We do not alter the training algorithms used in prior
work for learning these two parsers from data. Us-
ing the existing parsers as starting points, we will
combine them in a variety of ways.

3.2 Training

Regardless of our choices for the specific parsers and
learning algorithms at level 0 and level 1, training is
done as sketched in §2.2. Let D be a set of training
examples {〈xi, yi〉}i.

1. Split training data D into L partitions
D1, . . . ,DL.

2. Train L instances of the level 0 parser in the fol-
lowing way: the l-th instance, gl, is trained on
D−l = D \ Dl. Then use gl to output predic-
tions for the (unseen) partition Dl. At the end,
an augmented dataset D̃ =

⋃L
l=1 D̃l is built, so

that D̃ = {〈xi, g(xi), yi〉}i.
3. Train the level 0 parser g on the original training

data D.
4. Train the level 1 parser h on the augmented train-

ing data D̃.

The runtime of this algorithm is O(LT0+T1), where
T0 and T1 are the individual runtimes required for
training level 0 and level 1 alone, respectively.

4 Two Views of Stacked Parsing

We next describe two motivations for stacking
parsers: as a way of augmenting the features of a
graph-based dependency parser or as a way to ap-
proximate higher-order models.

4.1 Adding Input Features

Suppose that the level 1 classifier is an arc-factored
graph-based parser. The feature vectors will take the
form3

f(x, y) = f1(x, y) ^ f2(x, ŷ0, y)
=

∑
a∈Ay

f1,a(x) ^ f2,a(x, g(x)),

2http://w3.msi.vxu.se/∼jha/maltparser
3We use ^ to denote vector concatenation.

where f1(x, y) =
∑

a∈Ay
f1,a(x) are regu-

lar arc-factored features, and f2(x, ŷ0, y) =∑
a∈Ay

f2,a(x, g(x)) are the stacked features. An
example of a stacked feature is a binary feature
f2,a(x, g(x)) that fires if and only if the arc a was
predicted by g, i.e., if a ∈ Ag(x); such a feature was
used by Nivre and McDonald (2008).

It is difficult in general to decide whether the in-
clusion of such a feature yields a better parser, since
features strongly correlate with each other. How-
ever, a popular heuristic for feature selection con-
sists of measuring the information gain provided by
each individual feature. In this case, we may obtain
a closed-form expression for the information gain
that f2,a(x, g(x)) provides about the existence or not
of the arc a in the actual dependency tree y. Let A
and A′ be binary random variables associated with
the events a ∈ Ay and a′ ∈ Ag(x), respectively. We
have:

I(A;A′) =
∑

a,a′∈{0,1}
p(a, a′) log2

p(a, a′)
p(a)p(a′)

= H(A′)−
∑

a∈{0,1}
p(a)H(A′|A = a).

Assuming, for simplicity, that at level 0 the prob-
ability of false positives equals the probability of
false negatives (i.e., Perr , p(a′ = 0|a = 1) =
p(a′ = 1|a = 0)), and that the probability of
true positives equals the probability of true negatives
(1 − Perr = p(a′ = 0|a = 0) = p(a′ = 1|a = 1)),
the expression above reduces to:

I(A;A′) = H(A′) + Perr log2 Perr

+ (1− Perr) log2(1− Perr)
= H(A′)−Herr,

where Herr denotes the entropy of the probability of
error on each arc’s prediction by the level 0 classi-
fier. If Perr ≤ 0.5 (i.e. if the level 0 classifier is
better than random), then the information gain pro-
vided by this simple stacked feature increases with
(a) the accuracy of the level 0 classifier, and (b) the
entropy H(A′) of the distribution associated with its
arc predictions.

4.2 Approximating Non-factored Features
Another way of interpreting the stacking framework
is as a means to approximate a higher order model,

such as one that is not arc-factored, by using stacked
features that make use of the predicted structure
around a candidate arc. Consider a second-order
model where the features decompose by arc and by
arc pair:

f(x, y) =
∑

a1∈Ay

fa1(x) ^
∑

a2∈Ay

fa1,a2(x)

 .

Exact parsing under such model, with arbitrary
second-order features, is intractable (McDonald and
Satta, 2007). Let us now consider a stacked model
in which the level 0 predictor outputs a parse ŷ. At
level 1, we use arc-factored features that may be
written as

f̃(x, y) =
∑

a1∈Ay

fa1(x) ^
∑

a2∈Aŷ

fa1,a2(x)

 ;

this model differs from the previous one only by re-
placing Ay by Aŷ in the index set of the second sum-
mation. Since ŷ is given, this makes the latter model
arc-factored, and therefore, tractable. We can now
view f̃(x, y) as an approximation of f(x, y); indeed,
we can bound the score approximation error,

∆s(x, y) =
∣∣∣w̃>f̃(x, y)−w>f(x, y)

∣∣∣ ,
where w̃ and w stand respectively for the parameters
learned for the stacked model and those that would
be learned for the (intractable) exact second order
model. We can bound ∆s(x, y) by spliting it into
two terms: ∆s(x, y) =∣∣∣(w̃ −w)>f̃(x, y) + w>(f̃(x, y)− f(x, y))

∣∣∣
≤

∣∣∣(w̃ −w)>f̃(x, y)
∣∣∣︸ ︷︷ ︸

,∆str(x,y)

+
∣∣∣w>(f̃(x, y)− f(x, y))

∣∣∣︸ ︷︷ ︸
,∆sdec(x,y)

;

where we introduced the terms ∆str and ∆sdec that
reflect the portion of the score approximation error
that are due to training error (i.e., different parame-
terizations of the exact and approximate models) and
decoding error (same parameterizations, but differ-
ent feature vectors). Using Hölder’s inequality, the
former term can be bounded as:

∆str(x, y) =
∣∣∣(w̃ −w)>f̃(x, y)

∣∣∣
≤ ‖w̃ −w‖1 · ‖f̃(x, y)‖∞
≤ ‖w̃ −w‖1 ;

where ‖.‖1 and ‖.‖∞ denote the `1-norm and sup-
norm, respectively, and the last inequality holds
when the features are binary (so that ‖f̃(x, y)‖∞ ≤
1). The proper way to bound the term ‖w̃ −w‖1

depends on the training algorithm. As for the de-
coding error term, it can bounded for a given weight
vector w, sentence x, candidate tree y, and level 0
prediction ŷ. Decomposing the weighted vector as
w = w1 ^ w2, w2 being the sub-vector associ-
ated with the second-order features, we have respec-
tively: ∆sdec(x, y) =∣∣∣w>(f̃(x, y)− f(x, y))

∣∣∣
=

∣∣∣∣∣∣
∑

a1∈Ay

w>
2

 ∑
a2∈Aŷ

fa1,a2(x)−
∑

a2∈Ay

fa1,a2(x)

∣∣∣∣∣∣
≤

∑
a1∈Ay

∑
a2∈Aŷ∆Ay

∣∣∣w>
2 fa1,a2(x)

∣∣∣
≤

∑
a1∈Ay

|Aŷ∆Ay| · max
a2∈Aŷ∆Ay

∣∣∣w>
2 fa1,a2(x)

∣∣∣
=

∑
a1∈Ay

2L(y, ŷ) · max
a2∈Aŷ∆Ay

∣∣∣w>
2 fa1,a2(x)

∣∣∣ ,
where Aŷ∆Ay , (Aŷ −Ay) ∪ (Ay −Aŷ) denotes
the symmetric difference of the sets Aŷ and Ay,
which has cardinality 2L(y, ŷ), i.e., twice the Ham-
ming distance between the sequences of heads that
characterize y and the predicted parse ŷ. Using
Hölder’s inequality, we have both∣∣∣w>

2 fa1,a2(x)
∣∣∣ ≤ ‖w2‖1 · ‖fa1,a2(x)‖∞

and
∣∣∣w>

2 fa1,a2(x)
∣∣∣ ≤ ‖w2‖∞ · ‖fa1,a2(x)‖1.

Assuming that all features are binary valued, we
have that ‖fa1,a2(x)‖∞ ≤ 1 and that ‖fa1,a2(x)‖1 ≤
Nf,2, where Nf,2 denotes the maximum number of
active second order features for any possible pair of
arcs (a1, a2). Therefore:

∆sdec(x, y) ≤ 2nL(y, ŷ) min{‖w2‖1, Nf,2·‖w2‖∞},

where n is the sentence length. Although this bound
can be loose, it suggests (intuitively) that the score
approximation degrades as the predicted tree ŷ gets
farther away from the true tree y (in Hamming dis-
tance). It also degrades with the magnitude of
weights associated with the second-order features,

Name Description
PredEdge Indicates whether the candidate edge

was present, and what was its label.
Sibling Lemma, POS, link label, distance and

direction of attachment of the previous
and and next predicted siblings

GrandParents Lemma, POS, link label, distance and
direction of attachment of the grandpar-
ent of the current modifier

PredHead Predicted head of the candidate modifier
(if PredEdge=0)

AllChildren Sequence of POS and link labels of all
the predicted children of the candidate
head

Table 1: Feature sets derived from the level 0 parser.

Subset Description
A PredEdge
B PredEdge+Sibling
C PredEdge+Sibling+GrandParents
D PredEdge+Sibling+GrandParents+PredHead
E PredEdge+Sibling+GrandParents+PredHead+

AllChildren

Table 2: Combinations of features enumerated in Table 1
used for stacking. A is a replication of (Nivre and Mc-
Donald, 2008), except for the modifications described in
footnote 4.

which suggests that a separate regularization of the
first-order and stacked features might be beneficial
in a stacking framework.

As a side note, if we set each component of
the weight vector to one, we obtain a bound
on the `1-norm of the feature vector difference,∥∥∥f̃(x, y)− f(x, y)

∥∥∥
1
≤ 2nL(y, ŷ)Nf,2.

5 Experiments

In the following experiments we demonstrate the ef-
fectiveness of stacking parsers. As noted in §3.1, we
make use of two component parsers, the graph-based
MSTParser and the transition-based MaltParser.

5.1 Implementation and Experimental Details
The publicly available version of MSTParser per-
forms parsing and labeling jointly. We adapted this
system to first perform unlabeled parsing, then la-
bel the arcs using a log-linear classifier with access
to the full unlabeled parse (McDonald et al., 2005a;

McDonald et al., 2005b; McDonald and Pereira,
2006). In stacking experiments, the arc labels from
the level 0 parser are also used as a feature.4

In the following subsections, we refer to our mod-
ification of the MSTParser as MST 1O (the arc-
factored version) and MST 2O (the second-order
arc-pair-factored version). All our experiments use
the non-projective version of this parser. We refer to
the MaltParser as Malt .

We report experiments on twelve languages from
the CoNLL-X shared task (Buchholz and Marsi,
2006).5 All experiments are evaluated using the
labeled attachment score (LAS), using the default
settings.6 Statistical significance is measured us-
ing Dan Bikel’s randomized parsing evaluation com-
parator with 10,000 iterations.7 The additional fea-
tures used in the level 1 parser are enumerated in
Table 1 and their various subsets are depicted in Ta-
ble 2. The PredEdge features are exactly the six fea-
tures used by Nivre and McDonald (2008) in their
MSTMalt parser; therefore, feature set A is a repli-
cation of this parser except for modifications noted
in footnote 4. In all our experiments, the number of
partitions used to create D̃ is L = 2.

5.2 Experiment: MST 2O + MST 2O

Our first experiment stacks the highly accurate
MST 2O parser with itself. At level 0, the parser
uses only the standard features (§5.1), and at level 1,
these are augmented by various subsets of features
of x along with the output of the level 0 parser, g(x)
(Table 2). The results are shown in Table 3. While
we see improvements over the single-parser baseline

4We made other modifications to MSTParser, implement-
ing many of the successes described by (McDonald et al.,
2006). Our version of the code is publicly available at http:
//www.ark.cs.cmu.edu/MSTParserStacked. The
modifications included an approximation to lemmas for datasets
without lemmas (three-character prefixes), and replacing mor-
phology/word and morphology/lemma features with morphol-
ogy/POS features.

5The CoNLL-X shared task actually involves thirteen lan-
guages; our experiments do not include Czech (the largest
dataset), due to time constraints. Therefore, the average results
plotted in the last rows of Tables 3, 4, and 5 are not directly
comparable with previously published averages over thirteen
languages.

6http://nextens.uvt.nl/∼conll/software.html
7http://www.cis.upenn.edu/∼dbikel/software.

html

MST 2O
+MST 2O

, A

+MST 2O
, B

+MST 2O
, C

+MST 2O
, D

+MST 2O
, E

Arabic 67.88 66.91 67.41 67.68 67.37 68.02
Bulgarian 87.31 87.39 87.03 87.61 87.57 87.55
Chinese 87.57 87.16 87.24 87.48 87.42 87.48
Danish 85.27 85.39 85.61 85.57 85.43 85.57
Dutch 79.99 79.79 79.79 79.83 80.17 80.13
German 87.44 86.92 87.32 87.32 87.26 87.04
Japanese 90.93 91.41 91.21 91.35 91.11 91.19
Portuguese 87.12 87.26 86.88 87.02 87.04 86.98
Slovene 74.02 74.30 74.30 74.00 74.14 73.94
Spanish 82.43 82.17 82.35 82.81 82.53 82.75
Swedish 82.87 82.99 82.95 82.51 83.01 82.69
Turkish 60.11 59.47 59.25 59.47 59.45 59.31
Average 81.08 80.93 80.94 81.05 81.04 81.05

Table 3: Results of stacking MST 2O with itself at both level 0 and level 1. Column 2 enumerates LAS for MST 2O.
Columns 3–6 enumerate results for four different stacked feature subsets. Bold indicates best results for a particular
language.

for nine languages, the improvements are small (less
than 0.5%). One of the biggest concerns about this
model is the fact that it stacks two predictors that
are very similar in nature: both are graph-based and
share the features f1,a(x). It has been pointed out by
Breiman (1996), among others, that the success of
ensemble methods like stacked learning strongly de-
pends on how uncorrelated the individual decisions
made by each predictor are from the others’ deci-
sions.8 This experiment provides further evidence
for the claim.

5.3 Experiment: Malt + MST 2O

We next use MaltParser at level 0 and the second-
order arc-pair-factored MST 2O at level 1. This
extends the experiments of Nivre and McDonald
(2008), replicated in our feature subset A.

Table 4 enumerates the results. Note that the
best-performing stacked configuration for each and
every language outperforms MST 2O, corroborat-
ing results reported by Nivre and McDonald (2008).
The best performing stacked configuration outper-
forms Malt as well, except for Japanese and Turk-
ish. Further, our non-arc-factored features largely
outperform subset A, except on Bulgarian, Chinese,

8This claim has a parallel in the cotraining method (Blum
and Mitchell, 1998), whose performance is bounded by the de-
gree of independence between the two feature sets.

and Japanese. On average, the best feature config-
uration is E, which is statistically significant over
Malt and MST 2O with p < 0.0001, and over fea-
ture subset A with p < 0.01.

5.4 Experiment: Malt + MST 1O

Finally, we consider stacking MaltParser with the
first-order, arc-factored MSTParser. We view this
approach as perhaps the most promising, since it is
an exact parsing method with the quadratic runtime
complexity of MST 1O.

Table 5 enumerates the results. For all twelve
languages, some stacked configuration outperforms
MST 1O and also, surprisingly, MST 2O, the sec-
ond order model. This provides empirical evi-
dence that using rich features from MaltParser at
level 0, a stacked level 1 first-order MSTParser can
outperform the second-order MSTParser.9 In only
two cases (Japanese and Turkish), the MaltParser
slightly outperforms the stacked parser.

On average, feature configuration D performs
the best, and is statistically significant over Malt ,
MST 1O, and MST 2O with p < 0.0001, and over
feature subset A with p < 0.05. Encouragingly, this
configuration is barely outperformed by configura-

9Recall that MST 2O uses approximate search, as opposed
to stacking, which uses approximate features.

Malt MST 2O
Malt + MST 2O

, A

Malt + MST 2O
, B

Malt + MST 2O
, C

Malt + MST 2O
, D

Malt + MST 2O
, E

Arabic 66.71 67.88 68.56 69.12 68.64 68.34 68.92
Bulgarian 87.41 87.31 88.99 88.89 88.89 88.93 88.91
Chinese 86.92 87.57 88.41 88.31 88.29 88.13 88.41
Danish 84.77 85.27 86.45 86.67 86.79 86.13 86.71
Dutch 78.59 79.99 80.75 81.47 81.47 81.51 81.29
German 85.82 87.44 88.16 88.50 88.56 88.68 88.38
Japanese 91.65 90.93 91.63 91.43 91.59 91.61 91.49
Portuguese 87.60 87.12 88.00 88.24 88.30 88.18 88.22
Slovene 70.30 74.02 76.62 76.00 76.60 76.18 76.72
Spanish 81.29 82.43 83.09 83.73 83.47 83.21 83.43
Swedish 84.58 82.87 84.92 84.60 84.80 85.16 84.88
Turkish 65.68 60.11 64.35 64.51 64.51 65.07 65.21
Average 80.94 81.08 82.52 82.58 82.65 82.59 82.71

Table 4: Results of stacking Malt and MST 2O at level 0 and level 1, respectively. Columns 2–4 enumerate LAS for
Malt , MST 2O and Malt + MST 2O as in Nivre and McDonald (2008). Columns 5–8 enumerate results for four other
stacked feature configurations. Bold indicates best result for a language.

tion A of Malt + MST 2O (see Table 4), the dif-
ference being statistically insignificant (p > 0.05).
This shows that stacking Malt with the exact, arc-
factored MST 1O bridges the difference between the
individual MST 1O and MST 2O models, by approx-
imating higher order features, but maintaining an
O(n2) runtime and finding the model-optimal parse.

5.5 Disagreement as a Confidence Measure

In pipelines or semisupervised settings, it is use-
ful when a parser can provide a confidence measure
alongside its predicted parse tree. Because stacked
predictors use ensembles with observable outputs,
differences among those outputs may be used to es-
timate confidence in the final output. In stacked de-
pendency parsing, this can be done (for example) by
measuring the Hamming distance between the out-
puts of the level 0 and 1 parsers, L(g(x), h(x)). In-
deed, the bound derived in §4.2 suggests that the
second-order approximation degrades for candidate
parses y that are Hamming-far from g(x); therefore,
if L(g(x), h(x)) is large, the best score s(x, h(x))
may well be “biased” due to misleading neighbor-
ing information provided by the level 0 parser.

We illustrate this point with an empirical analysis
of the level 0/1 disagreement for the set of exper-
iments described in §5.3; namely, we compare the

0 2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L(g(x),h(x))

Se
nt

en
ce

 A
ve

ra
ge

d
A

cc
ur

ac
y

Level 0
Level 1
Level 0 (Overall)
Level 1 (Overall)

Figure 2: Accuracy as a function of token disagreement
between level 0 and level 1. The x-axis is the Hamming
distance L(g(x), h(x)), i.e., the number of tokens where
level 0 and level 1 disagree. The y-axis is the accuracy
averaged over sentences that have the specified Hamming
distance, both for level 0 and level 1.

Malt MST 1O
MST 2O

Malt + MST 1O
, A

Malt + MST 1O
, B

Malt + MST 1O
, C

Malt + MST 1O
, D

Malt + MST 1O
, E

Arabic 66.71 66.81 67.88 68.40 68.50 68.20 68.42 68.68
Bulgarian 87.41 86.65 87.31 88.55 88.67 88.75 88.71 88.79
Chinese 86.92 86.60 87.57 87.67 87.73 87.83 87.67 87.61
Danish 84.77 84.87 85.27 86.59 86.27 86.21 86.35 86.15
Dutch 78.59 78.95 79.99 80.53 81.51 80.71 81.61 81.37
German 85.82 86.26 87.44 88.18 88.30 88.20 88.36 88.42
Japanese 91.65 91.01 90.93 91.55 91.53 91.51 91.43 91.57
Portuguese 87.60 86.28 87.12 88.16 88.26 88.46 88.26 88.36
Slovene 70.30 73.96 74.02 75.84 75.64 75.42 75.96 75.64
Spanish 81.29 81.07 82.43 82.61 83.13 83.13 83.09 82.99
Swedish 84.58 81.88 82.87 84.86 84.62 84.64 84.82 84.76
Turkish 65.68 59.63 60.11 64.49 64.97 64.47 64.63 64.61
Average 80.94 80.33 81.08 82.28 82.42 82.29 82.44 82.41

Table 5: Results of stacking Malt and MST 1O at level 0 and level 1, respectively. Columns 2–4 enumerate LAS for
Malt , MST 1O and MST 2O. Columns 5–9 enumerate results for five different stacked feature configurations. Bold
indicates the best result for a language.

level 0 and level 1 predictions under the best overall
configuration (configuration E of Malt + MST2O).
Figure 2 depicts accuracy as a function of level 0-
level 1 disagreement (in number of tokens), aver-
aged over all datasets.

We can see that performance degrades steeply
when the disagreement between levels 0 and 1 in-
creases in the range 0–4, and then behaves more ir-
regularly but keeping the same trend. This suggests
that the Hamming distance L(g(x), h(x)) is infor-
mative about parser performance and may be used
as a confidence measure.

6 Conclusion

In this work, we made use of stacked learning to im-
prove dependency parsing. We considered an archi-
tecture with two layers, where the output of a stan-
dard parser in the first level provides new features
for a parser in the subsequent level. During learning,
the second parser learns to correct mistakes made by
the first one. The novelty of our approach is in the
exploitation of higher-order predicted edges to simu-
late non-local features in the second parser. We pro-
vided a novel interpretation of stacking as feature
approximation, and our experimental results show
rich-featured stacked parsers outperforming state-
of-the-art single-layer and ensemble parsers. No-

tably, using a simple arc-factored parser at level 1,
we obtain an exact O(n2) stacked parser that outper-
forms earlier approximate methods (McDonald and
Pereira, 2006).

Acknowledgments

The authors thank the anonymous reviewers for
helpful comments, Vitor Carvalho, William Cohen,
and David Smith for interesting discussions, and
Ryan McDonald and Joakim Nivre for providing
us their code and preprocessed datasets. A.M. was
supported by a grant from FCT through the CMU-
Portugal Program and the Information and Com-
munications Technologies Institute (ICTI) at CMU.
N.S. was supported by NSF IIS-0713265 and an
IBM faculty award. E.X. was supported by NSF
DBI-0546594, DBI-0640543, and IIS-0713379.

References
S. P. Abney, D. A. McAllester, and F. Pereira. 1999. Re-

lating probabilistic grammars and automata. In Pro-
ceedings of ACL.

A. Blum and T. Mitchell. 1998. Combining labeled
and unlabeled data with co-training. In Proceedings
of COLT.

L. Breiman. 1996. Stacked regressions. Machine Learn-
ing, 24:49.

E. Brill. 1993. A Corpus-Based Approach to Language
Learning. Ph.D. thesis, University of Pennsylvania.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task
on multilingual dependency parsing. In Proceedings
of CoNLL.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

W. W. Cohen and V. Rocha de Carvalho. 2005. Stacked
sequential learning. In Proceedings of IJCAI.

A. Culotta and J. Sorensen. 2004. Dependency tree ker-
nels for relation extraction. In Proceedings of ACL.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mar. In Proceedings of ACL.

J. Edmonds. 1967. Optimum branchings. Journal of Re-
search of the National Bureau of Standards, 71B:233–
240.

J. Eisner and G. Satta. 1999. Efficient parsing for bilex-
ical context-free grammars and head automaton gram-
mars. In Proceedings of ACL.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. In Proceedings of
COLING.

J. Hall, J. Nivre, and J. Nilsson. 2006. Discriminative
classifiers for deterministic dependency parsing. In
Proceedings of ACL.

Z. Kou and W. W. Cohen. 2007. Stacked graphical mod-
els for efficient inference in Markov random fields. In
Proceedings of SDM.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings
of ICML.

P. Liang, H. Daumé, and D. Klein. 2008. Structure com-
pilation: trading structure for features. In Proceedings
of ICML.

R. McDonald and J. Nivre. 2007. Characterizing the
errors of data-driven dependency parsing models. In
Proceedings of EMNLP-CoNLL.

R. T. McDonald and F. C. N. Pereira. 2006. Online learn-
ing of approximate dependency parsing algorithms. In
Proceedings of EACL.

R. McDonald and G. Satta. 2007. On the complexity
of non-projective data-driven dependency parsing. In
Proceedings of IWPT.

R. McDonald, K. Crammer, and F. Pereira. 2005a. On-
line large-margin training of dependency parsers. In
Proceedings of ACL.

R. T. McDonald, F. Pereira, K. Ribarov, and J. Ha-
jic. 2005b. Non-projective dependency parsing us-
ing spanning tree algorithms. In Proceedings of HLT-
EMNLP.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-
lingual dependency analysis with a two-stage discrim-
inative parser. In Proceedings CoNLL.

J. Nivre and R. McDonald. 2008. Integrating graph-
based and transition-based dependency parsers. In
Proceedings of ACL-HLT.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-based
dependency parsing. In Proceedings of CoNLL.

J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov.
2006. Labeled pseudo-projective dependency pars-
ing with support vector machines. In Proceedings of
CoNLL.

A. Ratnaparkhi, S. Roukos, and R. T. Ward. 1994. A
maximum entropy model for parsing. In Proceedings
of ICSLP.

S. Riedel and J. Clarke. 2006. Incremental integer linear
programming for non-projective dependency parsing.
In Proceedings of EMNLP.

K. Sagae and A. Lavie. 2005. A classifier-based parser
with linear run-time complexity. In Proceedings of
IWPT.

D. A. Smith and J. Eisner. 2008. Dependency parsing by
belief propagation. In Proceedings of EMNLP.

I. Titov and J. Henderson. 2007. A latent variable model
for generative dependency parsing. In Proceedings of
IWPT.

M. Wang, N. A. Smith, and T. Mitamura. 2007. What is
the Jeopardy model? A quasi-synchronous grammar
for QA. In Proceedings of EMNLP-CoNLL.

D. Wolpert. 1992. Stacked generalization. Neural Net-
works, 5(2):241–260.

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Pro-
ceedings of IWPT.

