
44 X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

feature

Recent advances in natural language processing bring together rich
representations and scalable machine learning algorithms.

By Noah A. Smith and André F. T. Martins
DOI: 10.1145/2425676.2425690

Linguistic Structure
Prediction with
the Sparseptron

Charlotte’s Web is a children’s novel by American author E. B. White, about a pig named
Wilbur who is saved from being slaughtered by an intelligent spider named Charlotte.”

When reading this sentence from Wikipedia, xkcd webcomic artist Randall
Munroe interpreted Charlotte as a would-be killer.1 While reasonable, his reading

contradicts White’s story. Such failures give rise to humor, as in the comic this sentence
inspired Munroe to draw, but also to confusion, especially for automated systems. Natural
languages (NLs), like English, are full of ambiguity (unlike programming languages,
which are designed to be unambiguous). Disambiguating NL strings is a challenge not
just of algorithm design, but of artificial intelligence.

“

AN EXAMPLE OF NL DISAMBIGUATION
One of the key problems of natural
language processing (NLP) is the dis-
ambiguation of sentences through
the design of functions that map NL
strings to “deeper,” less ambiguous
structures. Many techniques exist for
this kind of linguistic structure predic-
tion [1]. In this article, our running ex-
ample is one that draws on algorithms
familiar to many computer scientists:
dependency parsing. In explaining
how dependency parsing works, we
will highlight some recent research ad-
vances in NLP and machine learning.

Dependency parsing is based on
linguistic theories that model the rela-
tionships among words in a sentence
[2]. Figure 1 shows two different depen-

dency analyses for the phrase “by an
intelligent spider named Charlotte.” In
the first, by attaches to slaughtered, cor-
responding to Munroe’s comical read-

1 Munroe titled the comic “Cirith Ungol,” which is
derived from Tolkien’s Lord of the Rings. It is Elv-
ish for “Pass of the Spider.” Im

ag
e

co
ur

te
sy

 o
f R

an
da

ll
M

un
ro

e.
 h

tt
p:

//
xk

cd
.c

om
/1

0
87

/

45X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

ing. The second attaches by to saved,
as presumably intended by the sen-
tence’s author since this reading aligns
with the story. A complete dependency
analysis attaches every word to a par-
ent, which is usually a word to which it
serves as an argument or modifier. The
analysis often includes labels for each
of these word-to-word relationships.

One view of dependency parsing,
first suggested by McDonald et al. [3],
is that the words form the vertices of a
graph, and each possible dependency
tree is an arborescence (i.e., a directed
spanning tree). If we assign a score
to each tree by the sum of the scores
of the arcs it includes, then parsing
equates to finding the maximum arbo-
rescence of a weighted, directed graph.
The maximum arborescence problem
is solvable in quadratic time in the
number of vertices (here, the length of
the sentence) [4, 5, 6] (see Figure 2 for
an illustration). Many other parsing
approaches are available, often based
on dynamic programming [7] or inte-

ger linear programming [8]. (Our own
open-source dependency parser, Tur-
boParser, uses a discrete optimization
technique called “alternating direc-
tions dual decomposition” [9].)

A common theme is assigning
scores to trees by adding up the scores
of the tree’s parts—here, arcs in a de-
pendency tree—and finding a tree with
a maximal total score. From here on,
we will assume the availability of two
functions: ScoreTreeParts, which
maps tree parts to real-valued scores,

and FindBestTree, which maps an
NL string and a ScoreTreeParts
function to the maximum-scoring
tree using a discrete optimization al-
gorithm (e.g., the maximum arbores-
cence algorithm).

LEARNING TO SCORE TREES
Where does ScoreTreeParts come
from? The dominant approach today is
to use machine learning to learn how
to score tree parts from datasets of
examples annotated by linguists. A fa-

figure 1. two different dependency analyses for the phrase “by an intelligent spider
named Charlotte.” the first corresponds to Randall munroe’s reading and to that
found by our parser, turboParser; the second corresponds to the intended meaning.

… pig … who is saved from being slaughtered by an intelligent spider named Charlotte

… pig … who is saved from being slaughtered by an intelligent spider named Charlotte

46

feature

X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

of the word slaughter is butcher, while
spider is less likely. Some patterns are
language-specific (e.g., in English,
adjectives tend to attach to nouns on
their right, while prepositions tend to
attach to words on their left) or general
(e.g., words tend to attach to parents
that are not too far away in the string).

These kinds of evidence are called
“features.” If we think of each feature
as a function that takes a value of 0
(absence) or 1 (presence) for each pos-
sible dependency arc, then we can de-
fine ScoreTreeParts as a function of
an arc a, using the vector of a’s feature
values, f(a):

ScoreTreeParts(a, w) = f(a) · w

In this expression, w is a vector of
weights that relate each feature to the
strength of the arc. The weight for the
“adjective attaches to noun” feature is
probably going to be positive, giving
a bonus to trees that include such an
arc, while the weight for “the parent
and child are more than 15 string po-
sitions apart” is probably going to be
negative, penalizing trees with longer
attachments.

It should be clear that the quality
of the trees our algorithm produces
depends heavily on the choice of fea-
tures. Where do good features come
from? There are three dimensions to
consider when designing features.
One is linguistic theory. The study of
language, from ancient grammarians
like Pa–nini and Aristotle to modern
structuralist and generative linguists,
has much to say about the syntax of NL
strings, some of which informs the de-
sign of features. Linguistic theory tells
us, for example, that certain kinds of
tree parts are required to model cer-
tain kinds of phenomena (e.g., coordi-
nating conjunctions, such as and, usu-
ally take left and right arguments that
are of the same category, like verbs
or nouns) and that some kinds of at-
tachments are obligatory or ungram-
matical (e.g., intransitive verbs, like
rain, do not have an argument on the
right). The second concern is compu-
tational cost. There is a trade-off be-
tween the computational complexity
of FindBestTree algorithms and the
size of the tree parts scored by Score-
TreeParts. Note that above, we score

mous example of such a dataset is the
Penn Treebank, a set of 40,000 sentenc-
es from a collection of 1980s Wall Street
Journal articles annotated with phrase
structures [10]. There are now a range
of treebanks built for additional lan-
guages, and they use a range of differ-
ent linguistic representations [11, 12].

Learning a good ScoreTreeParts
function hinges on combining many
different kinds of evidence that reveal
which candidate tree parts are likely

to be part of a correct analysis of a sen-
tence. Grammatical patterns, like the
tendency of adjectives to be modifiers
of nouns, provide one kind of evidence
that can be used if words in the sen-
tence to be parsed have been assigned
parts of speech (typically accom-
plished by a different linguistic struc-
ture predictor called a “part-of-speech
tagger”). Lexical patterns that depend
on specific words are another kind of
evidence. For example, a likely subject

figure 3. the sparseptron algorithm.

input: dataset D, number of iterations T, feature groups {Fg}, and group budget B
output: weight vector w with at most B active groups
initialize w = 0
for t = 1 to T:
 from D, select a sentence x and its parse y
 z ← FindBesttree(x, scoretreeParts(∙, w))
 set step size η ←t / |D| –1/2
 update w ← w + η ∙ [Σa∈y f(a) – Σa∈z f(a)]
 divide each group-wise subvector of w by log2 |Fg| and sort the result by decreasing l2 norms:
 ||w1|| / (log2 |F1|) ≥ ||w2|| / (log2 |F2|) ≥ …
 set σ ← [||wB|| / (log2 |FB|) + ||wB+1|| / (log2 |FB+1|)] / 2
 for each group g:
 set wg ← max{0, (||wg|| – σ log2 |Fg|) / ||wg||} ∙ wg
return w

figure 2. a graph showing all possible attachments (edges) between all words
(vertices) in the sentence “while reasonable, this contradicts white’s story.”
the correct dependency parse, and the one produced by our parser, turboParser,
is shown in blue. the extra √ symbol is used to fix the root of the arborescence.

While

,

this

contradicts

White

's

story

.

reasonable

47X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

single arcs; if we scored all pairs of
contiguous arcs, then FindBestTree
would correspond to an NP-hard prob-
lem [13]. Finally, we have the statisti-
cal challenge of using data to select
the coefficients w. Again, we have a
tradeoff: More complex features will
occur at lower frequencies in data, and
so more data will be required to esti-
mate the coefficients well. Similarly,
many features suggested by theory or
the data may in fact not be generally
helpful, and we would like to elimi-
nate them by setting their coefficients
to zero. The remainder of this article is
about a learning algorithm designed
specifically for selecting the coeffi-
cients w in linguistic structure predic-
tion problems.

THE SPARSEPTRON
Machine learning offers a wide range
of algorithms for problems like lin-
guistic structure prediction. For lan-
guage-related learning, we require
a learning algorithm with a few key
properties. First, it must be able to
take advantage of high-dimensional
input, since dependency parsers tend
to make use of millions of features.
Second, we would like learning to be
fast. While there is no simple way to
select values of w that will perform
well, there are iterative algorithms
that have provable convergence prop-
erties. The algorithm we describe
here will converge to a solution
whose objective value differs by at
most ε from the optimal model (for
a given set of features), known as an
ε-accurate solution, in O(1/ε2) itera-
tions over the training data. Third,
we want the learned coefficients to
achieve high accuracy not just on the
training data, but also to generalize
well to new examples to which it has
not been exposed.

Generalization is a special chal-
lenge in NLP. This is because lan-
guage varies so much with the situa-
tion in which it is used, the individual
speaker, and the matter being talked
about. When working with very high-
dimensional inputs, one compelling
approach to good generalization is to
aim for sparsity: Since many features
in ScoreTreeParts correlate with
each other or are not needed for good
performance, we hope for their coeffi-

generalizes to overlapping groups
[20], but we consider the simpler non-
overlapping case here for clarity.) Let
Fg denote the set of features included
in group g, and let wg denote the sub-
vector of coefficients for Fg. Our algo-
rithm, the sparseptron, is shown in
Figure 3.

On each iteration, the sparseptron
algorithm considers one training sen-
tence and updates the weights based
on the difference between the correct
parse y and the current prediction z.
This update is equivalent to the classic
perceptron [21], adapted for structured
problems by Collins [22]. After the up-
date, a transformation on the weights
explicitly moves groups of weights to
zero to respect the budget B.

DISCUSSION
We have given a specific instance of
an online sparse proximal-gradient
algorithm, which can handle a wide
range of alternative loss functions and
regularizers. Our instance is based on
the perceptron, which minimizes the
“hinge” loss, and a group-L1 regularizer
for group sparsity. Other special cases
are reported by Martins et al. [20]; one
is the “truncated gradient” algorithm of
Langford et al. [23], which corresponds
to a standard L1 regularizer. This variant
is notable because it is famous: some-
times called the “lasso” [14], it leads to
sparse—but not group-sparse—coef-

cients to be set at zero (i.e., w becomes
a sparse vector). Well-known in statis-
tics [14], sparse learners have received
a great deal of attention in recent ma-
chine learning [15, 16, 17, 18, 19]. Here
we go farther, seeking sparsity among
whole groups of features. For example,
one of our smaller datasets consists
of trees in Slovene, a language with
rich inflective morphology (i.e., words
change their form depending on gram-
matical gender, number, case, etc.). We
do not expect the words themselves to
serve as reliable cues for Slovene de-
pendency attachment decisions, since
most words in the training data will
be seen only in one or a few contexts.
(This is less of a problem in a language
with less inflective morphology, like
English, which has no grammatical
gender or case for nouns.)

We assume here that the features
are partitioned into non-overlapping
groups, indexed by g. (Our algorithm

Dependency parsing
is based on linguistic
theories that model
the relationships
among words
in a sentence.

table 1: Selected dependency parsing results, b = 400. the “state of the art”
column represents the best published scores on this task across a range of systems
including our own and those of koo et al. [25], many using complex tree parts in
SCoRetReePaRtS, and generally not inducing sparsity. variation across languages is
due to the inherent properties of the language, the idiosyncratic style of the text data
selected for treebank annotation, and the amount of data annotated. for comparison,
the best reported accuracy for the english Penn treebank task is 93 percent.

Language
Attachment

Accuracy (%)

Accuracy,
Compared to
Non-Sparse

Model (%)

Nonzero
Coefficients

(%)
State of the Art

(%)
Arabic 78.2 +0.1 59 81.1

Danish 89.9 0.0 48 91.9

Japanese 93.1 +0.2 22 93.7

Slovene 83.2 0.0 49 87.0

Spanish 83.0 -0.9 47 87.0

Turkish 75.6 +0.3 46 77.6

48

feature

X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

on Parsing Technologies (Prague, June 23-24).
Association for Computational linguistics,
Stroudsburg, PA, 2007, 121–132.

[14] Tibshirani, R. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society,
Series B (Methodological) 58, 1 (1996), 267–288.

[15] Guyon, I. and Elisseeff, A. An introduction to variable
and feature selection. Journal of Machine learning
Research 3 (March 2003), 1157–1182,.

[16] Kazama, J.; Tsujii, J. Evaluation and extension
of maximum entropy models with inequality
constraints. In Proceedings of the Conference on
Empirical Methods in natural language Processing
(Sapporo, Japan, July 11-12). Association for
Computational linguistics, Stroudsburg, PA, 2003,
137–144.

[17] Goodman, J. Exponential priors for maximum
entropy models. In Proceedings of Annual Meeting
of the north American Chapter of the Association
for Computational linguistics, HlT-nAACl 2004
(Boston, May 2-7). Association for Computational
linguistics, Stroudsburg, PA, 2004, 305–312.

[18] Jenatton, R., Audibert, J.-y., AnDBach, F. Structured
variable selection with sparsity inducing norms.
Technical report. arXiv:0904.3523. 2009.

[19] Wright, S., nowak, R., and Figueiredo, M. A. T. Sparse
reconstruction by separable approximation. IEEE
Transactions on Signal Processing 57, 7 (2009),
2479–2493.

[20] Martins, A. F. T., Smith, n. A., Figueiredo, M. A. T., and
Aguiar, P. M. Q. Structured sparsity for structured
prediction. In Proceedings of the Conference
on Empirical Methods in natural language
Processing (Edinburgh, July 27-31). Association for
Computational linguistics, Stroudsburg, PA, 2011,
1500–1511.

[21] Rosenblatt, F. The perceptron: A probabilistic model
for information storage and organization in the
brain. Psychological Review 65, 6 (1958), 386-408.

[22] Collins, M. Discriminative training methods for
hidden Markov models: theory and experiments
with perceptron algorithms. In Proceedings of
the Conference on Empirical Methods in natural
language Processing (Philadelphia, July 6-7).
Association for Computational linguistics,
Stroudsburg, PA, 2002, 1–8.

[23] langford, J., li, l., and Zhang, T. Sparse online
learning via truncated gradient. Journal of Machine
learning Research 10 (March 2009), 777–801.

[24] Crammer, K., Dekel, o., Keshet, J., Shalev-Shwartz,
S., and Singer, y. online passive-aggressive
algorithms. Journal of Machine learning Research 7
(March 2006), 551–585.

[25] Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and
Sontag, D. Dual decomposition for parsing with
non-projective head automata. In Proceedings of
the Conference on Empirical Methods for natural
language Processing (Cambridge, MA, oct.
9-11). Association for Computational linguistics,
Stroudsburg, PA, 2010, 1288–1298.

biographies

noah A. Smith is the Finmeccanica Associate Professor
of language Technologies and Machine learning in the
School of Computer Science at Carnegie Mellon University.
He received his Ph.D. in computer science, as a Hertz
Foundation Fellow, from Johns Hopkins University in 2006
and his B.S. in computer science and B.A. in linguistics
from the University of Maryland in 2001. His research
interests include statistical natural language processing,
especially unsupervised methods, machine learning for
structured data, and applications of natural language
processing.

André Martins is a research scientist in the Machine
learning Group at Priberam labs, in Portugal. He received
his dual Ph.D. in language technologies from Instituto
Superior Técnico and Carnegie Mellon University, in 2012.
His research interests include statistical natural language
processing, machine learning for structured data, and
optimization algorithms.

© 2013 ACM 1529-4972/13/03 $15.00

ACKNOWLEDGMENTS
We acknowledge our collaborators on
the sparseptron and TurboParser, Pe-
dro Aguiar, Mário Figueiredo, and Eric
Xing. A. M. was supported by a FCT/ICTI
grant through the CMU-Portugal Pro-
gram, and also by Priberam. N. S. was
supported by NSF CAREER IIS-1054319.
This work was partially supported by
the FET programme (EU FP7), under
the SIMBAD project (contract 213250).

References

[1] Smith, n. A. linguistic Structure Prediction. Morgan
and Claypool, 2011.

[2] Tesnière, l. Éléments de syntaxe structurale.
Klincksieck, 1959.

[3] McDonald, R., Pereira, F., Ribarov, K., and Hajič,
J. non-projective dependency parsing using
spanning tree algorithms. In Proceedings of Human
language Technology Conference and Conference
on Empirical Methods in natural language
Processing (vancouver, oct. 6-8). Association for
Computational linguistics, Stroudsburg, PA, 2005,
523–530.

[4] Chu, y. J. and liu, T. H. on the shortest arborescence
of a directed graph. Science Sinica 14 (1965),
1396–1400.

[5] Edmonds, J. optimum branchings. Journal of
Research of the national Bureau of Standards 71B, 4
(1967), 233–240.

[6] Tarjan, R. E. Finding optimum branchings. networks
7, 1 (1977), 25–35.

[7] Eisner, J. Three new probabilistic models for
dependency parsing: an exploration. In Proceedings
of the 16th Conference on Computational linguistics
(Copenhagen, Denmark, Aug. 5-6). Association for
Computational linguistics, Stroudsburg, PA, 1996,
340–345.

[8] Martins, A. F. T., Smith, n. A., and Xing, E. P. Concise
integer linear programming formulations for
dependency parsing. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the
Association for Computational linguistics and
the 4th International Joint Conference on natural
language Processing of the Asian Federation of
natural language Processing (Singapore, Aug.
2-7). Association for Computational linguistics,
Stroudsburg, PA, 2009, 342–350.

[9] Martins, A. F. T., Smith, n. A., Aguiar, P. M. Q., and
Figueiredo, M. A. T. Dual decoposition with many
overlapping components. In Proceedings of the
Conference on Empirical Methods in natural
language Processing (Edinburgh, July 27-31).
Association for Computational linguistics,
Stroudsburg, PA, 2011, 238–249. TurboParser
download: http://www.ark.cs.cmu.edu/TurboParser/

[10] Marcus, M. P., Santorini, B., and Marcinkiewicz, M.
A. Building a large annotated corpus of English: The
Penn treebank. Computational linguistics 19, 2
(1993), 313–330.

[11] Buchholz, S. and Marsi, E. The Conll-X shared
task on multilingual dependency parsing. In
Proceedings of the Conference on Computational
natural language learning (new york, June
8-9). Association for Computational linguistics,
Stroudsburg, PA, 2006, 149–164.

[12] nivre, J., Hall, J., Kübler, S., McDonald, R., nilsson,
J., Riedel, S., and yuret, D. The Conll 2007 shared
task on dependency parsing. In Proceedings of
the Joint Conference on Empirical Methods in
natural language Processing and Computational
natural language learning, (Prague, June 28-
30). Association for Computational linguistics,
Stroudsburg, PA, 2007, 915–932.

[13] McDonald, R. and Satta, G. on the complexity of
non-projective data-driven dependency parsing.
In Proceedings of the International Conference

ficient vectors. To simulate L1 regular-
ization with the sparseptron, simply as-
sign each feature to its own group.

We recommend using the sparsep-
tron as a first pass for selecting feature
groups, followed by warm-start learn-
ing with a strong cost-aware (but non-
sparse) learning algorithm such as
the margin-infused relaxation algo-
rithm (MIRA) [24] on only the selected
feature groups; this second stage is
known in statistics as “debiasing.”

To measure the accuracy of a lin-
guistic structure predictor, we com-
pare its output with a gold standard
dataset similar to the training data.
By ensuring this test dataset is dis-
tinct from the training data, we test
the generalization ability of our pre-
dictor. We applied the sparseptron
with debiasing to several NLP prob-
lems and compared its accuracy to
the state-of-the-art MIRA [24]. Select-
ed results for dependency parsing are
shown in Table 1, using an arc-scor-
ing ScoreTreeParts function. In ad-
dition, the sparseptron achieved:

• On an English text chunking task,
indistinguishable accuracy from MIRA,
with 3 percent as many features, using
B = 20.

• On a named entity recognition task
in English, Dutch, and Spanish, strictly
better accuracy than MIRA and a sparse
L1-regularized model, with 4–11 percent
as many features, using B = 200.

For more detailed experimental re-
sults, see Martins et al. [20].

CONCLUSIONS
Disambiguating NL text is central
to developing applications that can
summarize, translate, answer ques-
tions, and extract structured infor-
mation. Recent advances in NLP have
hinged on rich representations (e.g.,
millions of features of local disam-
biguation decisions suggested by
humans, as explored here) and so-
phisticated, scalable learning algo-
rithms that make the most of those
representations, including the elimi-
nation of features unhelpful for gen-
eralization. Learning algorithms
that allow the use of rich linguistic
features, but can infer from data how
to eliminate whole groups of unnec-
essary ones, can lead to accurate and
efficient disambiguation.

