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Recent advances in natural language processing bring together rich 
representations and scalable machine learning algorithms. 
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Linguistic Structure 
Prediction with  
the Sparseptron

Charlotte’s Web is a children’s novel by American author E. B. White, about a pig named 
Wilbur who is saved from being slaughtered by an intelligent spider named Charlotte.” 

When reading this sentence from Wikipedia, xkcd webcomic artist Randall 
Munroe interpreted Charlotte as a would-be killer.1 While reasonable, his reading 

contradicts White’s story. Such failures give rise to humor, as in the comic this sentence 
inspired Munroe to draw, but also to confusion, especially for automated systems. Natural 
languages (NLs), like English, are full of ambiguity (unlike programming languages,  
which are designed to be unambiguous). Disambiguating NL strings is a challenge not  
just of algorithm design, but of artificial intelligence.

“

AN EXAMPLE OF NL DISAMBIGUATION
One of the key problems of natural 
language processing (NLP) is the dis-
ambiguation of sentences through 
the design of functions that map NL 
strings to “deeper,” less ambiguous 
structures. Many techniques exist for 
this kind of linguistic structure predic-
tion [1]. In this article, our running ex-
ample is one that draws on algorithms 
familiar to many computer scientists:  
dependency parsing. In explaining 
how dependency parsing works, we 
will highlight some recent research ad-
vances in NLP and machine learning.

Dependency parsing is based on 
linguistic theories that model the rela-
tionships among words in a sentence 
[2]. Figure 1 shows two different depen-

dency analyses for the phrase “by an 
intelligent spider named Charlotte.” In 
the first, by attaches to slaughtered, cor-
responding to Munroe’s comical read-

1	 Munroe titled the comic “Cirith Ungol,” which is 
derived from Tolkien’s Lord of the Rings. It is Elv-
ish for “Pass of the Spider.” Im
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ing. The second attaches by to saved, 
as presumably intended by the sen-
tence’s author since this reading aligns 
with the story. A complete dependency 
analysis attaches every word to a par-
ent, which is usually a word to which it 
serves as an argument or modifier. The 
analysis often includes labels for each 
of these word-to-word relationships.

One view of dependency parsing, 
first suggested by McDonald et al. [3], 
is that the words form the vertices of a 
graph, and each possible dependency 
tree is an arborescence (i.e., a directed 
spanning tree). If we assign a score 
to each tree by the sum of the scores 
of the arcs it includes, then parsing 
equates to finding the maximum arbo-
rescence of a weighted, directed graph. 
The maximum arborescence problem 
is solvable in quadratic time in the 
number of vertices (here, the length of 
the sentence) [4, 5, 6] (see Figure 2 for 
an illustration). Many other parsing 
approaches are available, often based 
on dynamic programming [7] or inte-

ger linear programming [8]. (Our own 
open-source dependency parser, Tur-
boParser, uses a discrete optimization 
technique called “alternating direc-
tions dual decomposition” [9].)  

A common theme is assigning 
scores to trees by adding up the scores 
of the tree’s parts—here, arcs in a de-
pendency tree—and finding a tree with 
a maximal total score. From here on, 
we will assume the availability of two 
functions:  ScoreTreeParts, which 
maps tree parts to real-valued scores, 

and FindBestTree, which maps an 
NL string and a ScoreTreeParts 
function to the maximum-scoring 
tree using a discrete optimization al-
gorithm (e.g., the maximum arbores-
cence algorithm). 

LEARNING TO SCORE TREES
Where does ScoreTreeParts come 
from? The dominant approach today is 
to use machine learning to learn how 
to score tree parts from datasets of 
examples annotated by linguists. A fa-

Figure 1. Two different dependency analyses for the phrase “by an intelligent spider 
named Charlotte.” The first corresponds to Randall Munroe’s reading and to that 
found by our parser, TurboParser; the second corresponds to the intended meaning.

… pig … who is saved from being slaughtered by an intelligent spider named Charlotte

… pig … who is saved from being slaughtered by an intelligent spider named Charlotte
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of the word slaughter is butcher, while 
spider is less likely. Some patterns are 
language-specific (e.g., in English, 
adjectives tend to attach to nouns on 
their right, while prepositions tend to 
attach to words on their left) or general 
(e.g., words tend to attach to parents 
that are not too far away in the string). 

These kinds of evidence are called 
“features.” If we think of each feature 
as a function that takes a value of 0 
(absence) or 1 (presence) for each pos-
sible dependency arc, then we can de-
fine ScoreTreeParts as a function of 
an arc a, using the vector of a’s feature 
values, f(a):

ScoreTreeParts(a, w) = f(a) ∙ w

In this expression, w is a vector of 
weights that relate each feature to the 
strength of the arc. The weight for the 
“adjective attaches to noun” feature is 
probably going to be positive, giving 
a bonus to trees that include such an 
arc, while the weight for “the parent 
and child are more than 15 string po-
sitions apart” is probably going to be 
negative, penalizing trees with longer 
attachments.

It should be clear that the quality 
of the trees our algorithm produces 
depends heavily on the choice of fea-
tures. Where do good features come 
from? There are three dimensions to 
consider when designing features. 
One is linguistic theory. The study of 
language, from ancient grammarians 
like Pa–nini and Aristotle to modern 
structuralist and generative linguists, 
has much to say about the syntax of NL 
strings, some of which informs the de-
sign of features. Linguistic theory tells 
us, for example, that certain kinds of 
tree parts are required to model cer-
tain kinds of phenomena (e.g., coordi-
nating conjunctions, such as and, usu-
ally take left and right arguments that 
are of the same category, like verbs 
or nouns) and that some kinds of at-
tachments are obligatory or ungram-
matical (e.g., intransitive verbs, like 
rain, do not have an argument on the 
right). The second concern is compu-
tational cost. There is a trade-off be-
tween the computational complexity 
of FindBestTree algorithms and the 
size of the tree parts scored by Score-
TreeParts. Note that above, we score 

mous example of such a dataset is the 
Penn Treebank, a set of 40,000 sentenc-
es from a collection of 1980s Wall Street 
Journal articles annotated with phrase 
structures [10]. There are now a range 
of treebanks built for additional lan-
guages, and they use a range of differ-
ent linguistic representations [11, 12].

Learning a good ScoreTreeParts 
function hinges on combining many 
different kinds of evidence that reveal 
which candidate tree parts are likely 

to be part of a correct analysis of a sen-
tence. Grammatical patterns, like the 
tendency of adjectives to be modifiers 
of nouns, provide one kind of evidence 
that can be used if words in the sen-
tence to be parsed have been assigned 
parts of speech (typically accom-
plished by a different linguistic struc-
ture predictor called a “part-of-speech 
tagger”). Lexical patterns that depend 
on specific words are another kind of 
evidence. For example, a likely subject 

Figure 3. The sparseptron algorithm.

input:  dataset D, number of iterations T, feature groups {Fg}, and group budget B
output:  weight vector w with at most B active groups
initialize w = 0
for t = 1 to T: 
	 from D, select a sentence x and its parse y
	 z ← FindBestTree(x, ScoreTreeParts(∙, w))
	 set step size η ←t / |D| –1/2  
	 update w ← w + η ∙ [Σa∈y f(a) – Σa∈z f(a)] 
	 divide each group-wise subvector of w by log2 |Fg| and sort the result by decreasing L2 norms:
		  ||w1|| / (log2 |F1|) ≥ ||w2|| / (log2 |F2|) ≥ …
	 set σ ← [||wB|| / (log2 |FB|) + ||wB+1|| / (log2 |FB+1|)] / 2 
	 for each group g:
		  set wg ← max{0, (||wg|| – σ log2 |Fg|) / ||wg||} ∙ wg 
return w

Figure 2. A graph showing all possible attachments (edges) between all words 
(vertices) in the sentence “While reasonable, this contradicts White’s story.”  
The correct dependency parse, and the one produced by our parser, TurboParser,  
is shown in blue. The extra √ symbol is used to fix the root of the arborescence.
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single arcs; if we scored all pairs of 
contiguous arcs, then FindBestTree 
would correspond to an NP-hard prob-
lem [13]. Finally, we have the statisti-
cal challenge of using data to select 
the coefficients w. Again, we have a 
tradeoff: More complex features will 
occur at lower frequencies in data, and 
so more data will be required to esti-
mate the coefficients well. Similarly, 
many features suggested by theory or 
the data may in fact not be generally 
helpful, and we would like to elimi-
nate them by setting their coefficients 
to zero. The remainder of this article is 
about a learning algorithm designed 
specifically for selecting the coeffi-
cients w in linguistic structure predic-
tion problems.

THE SPARSEPTRON
Machine learning offers a wide range 
of algorithms for problems like lin-
guistic structure prediction. For lan-
guage-related learning, we require 
a learning algorithm with a few key 
properties. First, it must be able to 
take advantage of high-dimensional 
input, since dependency parsers tend 
to make use of millions of features. 
Second, we would like learning to be 
fast. While there is no simple way to 
select values of w that will perform 
well, there are iterative algorithms 
that have provable convergence prop-
erties. The algorithm we describe 
here will converge to a solution 
whose objective value differs by at 
most ε from the optimal model (for 
a given set of features), known as an 
ε-accurate solution, in O(1/ε2) itera-
tions over the training data. Third, 
we want the learned coefficients to 
achieve high accuracy not just on the 
training data, but also to generalize 
well to new examples to which it has 
not been exposed. 

Generalization is a special chal-
lenge in NLP. This is because lan-
guage varies so much with the situa-
tion in which it is used, the individual 
speaker, and the matter being talked 
about. When working with very high-
dimensional inputs, one compelling 
approach to good generalization is to 
aim for sparsity:  Since many features 
in ScoreTreeParts correlate with 
each other or are not needed for good 
performance, we hope for their coeffi-

generalizes to overlapping groups 
[20], but we consider the simpler non-
overlapping case here for clarity.) Let 
Fg denote the set of features included 
in group g, and let wg denote the sub-
vector of coefficients for Fg. Our algo-
rithm, the sparseptron, is shown in 
Figure 3.

On each iteration, the sparseptron 
algorithm considers one training sen-
tence and updates the weights based 
on the difference between the correct 
parse y and the current prediction z. 
This update is equivalent to the classic 
perceptron [21], adapted for structured 
problems by Collins [22]. After the up-
date, a transformation on the weights 
explicitly moves groups of weights to 
zero to respect the budget B.

DISCUSSION
We have given a specific instance of 
an online sparse proximal-gradient 
algorithm, which can handle a wide 
range of alternative loss functions and 
regularizers. Our instance is based on 
the perceptron, which minimizes the 
“hinge” loss, and a group-L1 regularizer 
for group sparsity. Other special cases 
are reported by Martins et al. [20]; one 
is the “truncated gradient” algorithm of 
Langford et al. [23], which corresponds 
to a standard L1 regularizer. This variant 
is notable because it is famous: some-
times called the “lasso” [14], it leads to 
sparse—but not group-sparse—coef-

cients to be set at zero (i.e., w becomes 
a sparse vector). Well-known in statis-
tics [14], sparse learners have received 
a great deal of attention in recent ma-
chine learning [15, 16, 17, 18, 19]. Here 
we go farther, seeking sparsity among 
whole groups of features. For example, 
one of our smaller datasets consists 
of trees in Slovene, a language with 
rich inflective morphology (i.e., words 
change their form depending on gram-
matical gender, number, case, etc.). We 
do not expect the words themselves to 
serve as reliable cues for Slovene de-
pendency attachment decisions, since 
most words in the training data will 
be seen only in one or a few contexts. 
(This is less of a problem in a language 
with less inflective morphology, like 
English, which has no grammatical 
gender or case for nouns.)

We assume here that the features 
are partitioned into non-overlapping 
groups, indexed by g. (Our algorithm 

Dependency parsing 
is based on linguistic 
theories that model 
the relationships 
among words  
in a sentence.

Table 1: Selected dependency parsing results, B = 400. The “state of the art” 
column represents the best published scores on this task across a range of systems 
including our own and those of Koo et al. [25], many using complex tree parts in 
SCORETREEPARTS, and generally not inducing sparsity. Variation across languages is 
due to the inherent properties of the language, the idiosyncratic style of the text data 
selected for Treebank annotation, and the amount of data annotated. For comparison, 
the best reported accuracy for the English Penn Treebank task is 93 percent.

Language
Attachment 

Accuracy (%)

Accuracy, 
Compared to 
Non-Sparse 

Model (%)

Nonzero  
Coefficients 

(%)
State of the Art 

(%)
Arabic 78.2 +0.1 59 81.1

Danish 89.9 0.0 48 91.9

Japanese 93.1 +0.2 22 93.7

Slovene 83.2 0.0 49 87.0

Spanish 83.0 -0.9 47 87.0

Turkish 75.6 +0.3 46 77.6
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ficient vectors. To simulate L1 regular-
ization with the sparseptron, simply as-
sign each feature to its own group.

We recommend using the sparsep-
tron as a first pass for selecting feature 
groups, followed by warm-start learn-
ing with a strong cost-aware (but non-
sparse) learning algorithm such as 
the margin-infused relaxation algo-
rithm (MIRA) [24] on only the selected 
feature groups; this second stage is 
known in statistics as “debiasing.”

To measure the accuracy of a lin-
guistic structure predictor, we com-
pare its output with a gold standard 
dataset similar to the training data. 
By ensuring this test dataset is dis-
tinct from the training data, we test 
the generalization ability of our pre-
dictor. We applied the sparseptron 
with debiasing to several NLP prob-
lems and compared its accuracy to 
the state-of-the-art MIRA [24]. Select-
ed results for dependency parsing are 
shown in Table 1, using an arc-scor-
ing ScoreTreeParts function. In ad-
dition, the sparseptron achieved:

•	 On an English text chunking task, 
indistinguishable accuracy from MIRA, 
with 3 percent as many features, using 
B = 20.

•	 On a named entity recognition task 
in English, Dutch, and Spanish, strictly 
better accuracy than MIRA and a sparse 
L1-regularized model, with 4–11 percent 
as many features, using B = 200.

For more detailed experimental re-
sults, see Martins et al. [20].

CONCLUSIONS
Disambiguating NL text is central 
to developing applications that can 
summarize, translate, answer ques-
tions, and extract structured infor-
mation. Recent advances in NLP have 
hinged on rich representations (e.g., 
millions of features of local disam-
biguation decisions suggested by 
humans, as explored here) and so-
phisticated, scalable learning algo-
rithms that make the most of those 
representations, including the elimi-
nation of features unhelpful for gen-
eralization. Learning algorithms 
that allow the use of rich linguistic 
features, but can infer from data how 
to eliminate whole groups of unnec-
essary ones, can lead to accurate and 
efficient disambiguation.


