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Abstract

This thesis is about estimating probabilistic models to uncover useful hidden struc-
ture in data; specifically, we address the problem of discovering syntactic structure in nat-
ural language text. We present three new parameter estimation techniques that generalize
the standard approach, maximum likelihood estimation, in different ways. Contrastive
estimation maximizes the conditional probability of the observed data given a “neighbor-
hood” of implicit negative examples. Skewed deterministic annealing locally maximizes
likelihood using a cautious parameter search strategy that starts with an easier optimiza-
tion problem than likelihood, and iteratively moves to harder problems, culminating in
likelihood. Structural annealing is similar, but starts with a heavy bias toward simple
syntactic structures and gradually relaxes the bias.

Our estimation methods do not make use of annotated examples. We consider their
performance in both an unsupervised model selection setting, where models trained under
different initialization and regularization settings are compared by evaluating the training
objective on a small set of unseen, unannotated development data, and supervised model
selection, where the most accurate model on the development set (now with annotations)
is selected. The latter is far superior, but surprisingly few annotated examples are required.

The experimentation focuses on a single dependency grammar induction task, in
depth. The aim is to give strong support for the usefulness of the new techniques in one
scenario. It must be noted, however, that the task (as defined here and in prior work) is
somewhat artificial, and improved performance on this particular task is not a direct contri-
bution to the greater field of natural language processing. The real problem the task seeks
to simulate—the induction of syntactic structure in natural language text—is certainly of
interest to the community, but this thesis does not directly approach the problem of ex-
ploiting induced syntax in applications. We also do not attempt any realistic simulation of
human language learning, as our newspaper text data do not resemble the data encoun-
tered by a child during language acquisition. Further, our iterative learning algorithms
assume a fixed batch of data that can be repeatedly accessed, not a long stream of data
observed over time in tandem with acquisition. (Of course, the cognitive criticisms apply
to virtually all existing learning methods in natural language processing, not just the new
ones presented here.) Nonetheless, the novel estimation methods presented are, we will
argue, better suited to adaptation for real engineering tasks than the maximum likelihood
baseline.

Our new methods are shown to achieve significant improvements over maximum
likelihood estimation and maximum a posteriori estimation, using the EM algorithm, for
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a state-of-the-art probabilistic model used in dependency grammar induction (Klein and
Manning, 2004). The task is to induce dependency trees from part-of-speech tag sequences;
we follow standard practice and train and test on sequences of ten tags or fewer. Our
results are the best published to date for six languages, with supervised model selection:
English (improvement from 41.6% directed attachment accuracy to 66.7%, a 43% relative
error rate reduction), German (54.4→ 71.8%, a 38% error reduction), Bulgarian (45.6%→
58.3%, a 23% error reduction), Mandarin (50.0%→ 58.0%, a 16% error reduction), Turkish
(48.0%→ 62.4%, a 28% error reduction, but only 2% error reduction from a left-branching
baseline, which gives 61.8%), and Portuguese (42.5%→ 71.8%, a 51% error reduction). We
also demonstrate the success of contrastive estimation at learning to disambiguate part-
of-speech tags (from unannotated English text): 78.0% to 88.7% tagging accuracy on a
known-dictionary task (a 49% relative error rate reduction), and 66.5% to 78.4% on a more
difficult task with less dictionary knowledge (a 35% error rate reduction).

The experiments presented in this thesis give one of the most thorough explorations
to date of unsupervised parameter estimation for models of discrete structures. Two sides
of the problem are considered in depth: the choice of objective function to be optimized
during training, and the method of optimizing it. We find that both are important in un-
supervised learning. Our best results on most of the six languages involve both improved
objectives and improved search.

The methods presented in this thesis were originally presented in Smith and Eisner
(2004, 2005a,b, 2006). The thesis gives a more thorough exposition, relating the methods
to other work, presents more experimental results and error analysis, and directly
compares the methods to each other.

Thesis committee (∗readers, †advisor):
∗†Jason Eisner (Assistant Professor, Computer Science, Johns Hopkins University)
Dale Schuurmans (Professor, Computing Science, University of Alberta)
Paul Smolensky (Professor, Cognitive Science, Johns Hopkins University)
∗David Yarowsky (Professor, Computer Science, Johns Hopkins University)

iii



For K.R.T.

iv



Acknowledgments

I would have written a shorter letter, but I did not have the time.
—attributed to Cicero (106–43 BCE), Blaise Pascal (1623–1662),
Mark Twain (1835–1910), and T. S. Eliot (1888–1965)

First, I would like to thank my advisor, Jason Eisner, for many helpful and insightful
technical conversations during the course of my graduate work. He usually knew when
to let me tread on my own and when to grab me by the ankles and drag me (kicking and
screaming) to the True Path,1 and when to let me go play in the woods. Most importantly
he taught me to do well by doing good. If I can emulate in my entire career half of the
rhetorical flair, vision, or enthusiasm he’s displayed in the course of my Ph.D., then I’ll
count it a success. Thanks also to Debbie and Talia, who on occasion dined sans Jason
because of me.

My committee, consisting of David Yarowsky, Paul Smolensky, Dale Schuurmans,
and, of course, Jason Eisner, have been supportive beyond the call of duty. They have
provided valuable insight and held this work to a high standard. (Any errors that re-
main are of course my own.) Other current and former members of the CLSP faculty
have kindly spent time and shared ideas with me: Bill Byrne, Bob Frank, Keith Hall,
Fred Jelinek,2 Damianos Karakos, Sanjeev Khudanpur,2 and Zak Shafran. Other profes-
sors have contributed to my grad experience by teaching great classes: Yair Amir, Scott
Smith, Rao Kosaraju, and Jong-Shi Pang. I thank researchers from other places for their
helpful comments and discussions of many kinds at various times over the years: Eric
Brill, Eugene Charniak, Michael Collins, Joshua Goodman, Mark Johnson, Rebecca Hwa,
Dan Klein, John Lafferty, Chris Manning, Miles Osborne, Dan Roth, and Giorgio Satta; also
anonymous reviewers on my papers. Deep gratitude especially to Philip Resnik and Dan
Melamed, who provided early encouragement, continued mentoring, sunlight, and water.

My work during the academic years from 2001 through 2006 was supported gener-
ously by the Fannie and John Hertz Foundation. While I can’t predict the future impact of
the work in these pages, I am certain that it would have been significantly reduced without
the rare opportunity for unfettered exploration that this fellowship has offered. I am es-
pecially grateful for my annual progress meetings with Lowell Wood; special thanks also

1This statement is not meant to insinuate that Jason ever inappropriately touched my ankles. He is also not
to be blamed for my liberal use of footnotes.

2Special thanks to these individuals, who voluntarily read drafts and gave feedback. Any remaining errors
are of course my own.

v



to John Holzrichter, Barbara Nichols, and Linda Kubiak. Research included in this disser-
tation was also supported (during the summers of 2003, 2005, and 2006) by grant number
IIS-0313193 from the National Science Foundation to Jason Eisner.

My student colleagues at Hopkins have made the time fun and the atmosphere con-
structively critical and always creative—a never-ending brainstorm. Their exceptional in-
telligence need no mention. Thanks to: Radu “Hans” Florian, Silviu Cucerzan, Rich Wicen-
towski, Jun Wu, Charles Schafer, Gideon Mann, Shankar Kumar, John Hale, Paola Virga,
Ahmed Emami, Peng Xu, Jia Cui, Yonggang Deng, Veera Venkataramani, Woosung Kim,
Yu David Liu, Paul Ruhlen (R.I.P.), Elliott Drábek,3 Reza Curtmola, Sourin Das, Geetu
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Chapter 1

Introduction

Grammar is not a set of rules; it is something inherent in the language, and language
cannot exist without it. It can be discovered, but not invented.

—Charlton Laird (1901–1984)

This thesis is about uncovering hidden structure in natural language and other se-
quence data. It presents three new unsupervised parameter estimation techniques: con-
trastive estimation, skewed deterministic annealing, and structural annealing. These
methods are used to obtain significant improvements over the state-of-the-art, predomi-
nant approach to estimation of syntax models from sequences alone (the EM algorithm of
Dempster, Laird, and Rubin (1977), presented at length in Chapter 3), applied to six diverse
natural languages: German, English, Bulgarian, Mandarin, Turkish, and Portuguese. We
achieve the best published performance to date on all six languages. Importantly, these
are very general methods that can be applied to a wide variety of unsupervised learning
problems.

The experiments presented give one of the most thorough explorations to date of pa-
rameter estimation in the unsupervised learning of structured models. Two problems are
addressed: what function should be optimized when searching for model parameter val-
ues, and how should we optimize it?

Unlike most prior work on statistical language learning, the novelty in this thesis is
in the estimation methods, rather than in learning the topology of the model or in defining
new types of models. To set the stage for describing the baseline and novel estimation ap-
proaches, a certain amount of historical and technical background are required; otherwise
the thesis will not be very exciting to read and its relevance will be lost on the reader. This
chapter aims to concisely situate the contributions of the thesis in the context of the larger
field of natural language processing (hereafter, NLP) and other approaches to the study of
formal and natural languages.

1.1 The Empirical Revolution in NLP

A paradigm shift took place in NLP during the 1990s. Prior to that time, approaches
to solving natural language problems—including parsing and understanding text—were
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predominantly symbolic. Due largely to the efforts of speech recognition researchers at
IBM in the late 1980s and early 1990s, statistical or empirical methods became prominent.
The empirical view, which is assumed throughout this thesis, is that language is a natural
phenomenon whose effects are observable in the world as speech and text data. If we want
to build a computer program that can do useful things with this kind of data, the best thing
to do is to learn from the data.

The first argument for empirical techniques is that they work extremely well, given
the right kind and a sufficient quantity of data. Beyond that, a number of obvious facts
about natural language—for example, that many sentences are ambiguous, having more
than one meaning—are very nicely handled in a probabilistic framework that can tell us
not only which analyses are possible, but how much more likely one is than another.1 Some
excellent reviews have been written on the scientific merits of statistical approaches to lan-
guage; see Abney (1996) and Pereira (2000).

Empirical methods have all but taken over most problems in natural language pro-
cessing. Borrowing from the fields of pattern recognition, information theory, and ma-
chine learning, many (but not all) researchers now believe that the limiting factor for the
successful solution of any particular NLP task is the availability of the right kind of data.

1.1.1 Parsing

A frequently discussed example today—and the one of central focus in this thesis—is
parsing. The reader is taken to be familiar with the problem of natural language parsing:
given a sentence and a grammar, find the sentence’s linguistic structure (or derivation).
This problem has many sides to it:

• What constitutes linguistic structure? What representations should be used to de-
scribe natural language syntax and/or semantics? Good representations will permit
phenomena that do occur in language data and disallow those that do not. This prob-
lem is tackled largely by researchers who call themselves linguists or computational
linguists.

• What algorithms can be developed to make parsing fast? For example, Eisner and
Satta (1999) developed new, asymptotically faster methods for certain kinds of pars-
ing formalisms that we exploit in this thesis.

• What data is required to learn to parse, empirically? One of the major events in the
empirical revolution in NLP was the development of the Penn Treebank (Marcus,
Santorini, and Marcinkiewicz, 1993), a million-word dataset of examples of phrase-
structure trees for actual English news text sentences. This thesis attempts to learn
to parse from data that does not include such trees, but the work here would not be
possible without some trees for evaluation.

1Of course, “empirical” and “probabilistic” are not equivalent and neither implies the other.
Transformation-based learning (Brill and Marcus, 1992), for instance, is empirical but not probabilistic; some
parsers have manually-chosen weights that are not empirical (Allen, Miller, Ringger, and Sikorski, 1996).
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• What symbolic and/or statistical models are appropriate for natural language syn-
tactic descriptions? For example, a debate in recent years was over the usefulness of
bilexical features in parsing (Klein and Manning, 2003b; Bikel, 2004).

• What learning methods are appropriate for parsing models? A notable recent ad-
vance is the use of large-margin training to learn the parameters of a weighted pars-
ing model (Taskar, Klein, Collins, Koller, and Manning, 2004; McDonald, Crammer,
and Pereira, 2005a).

After more than ten years of research, there are several widely-used English statisti-
cal parsing systems built using the Penn Treebank (Collins, 1999; Charniak and Johnson,
2005). From a state-of-the-art perspective, parsing illustrates the best and worst of NLP
in a nutshell: the empirical revolution was hugely successful at developing better parsers
and led to a renewed emphasis on replicability and empirical evaluation of new ideas. Yet
there remains a nagging concern. How widely useful are these robust treebank-trained
parsers? Are they worth the effort that researchers have put into them?

1.1.2 Is Parsing Useful?

Only in startlingly recent years have papers been published that demonstrated quite
solidly that statistical parsing—broadly construed—can be very useful in natural language
engineering applications. Beneficiary applications include machine translation (Chiang,
2005), information extraction (Ramshaw, Boschee, Bratus, Miller, Stone, Weischedel, and
Zamanian, 2001; Viola and Narasimhan, 2005), speech recognition (Chelba and Jelinek,
1998), text correction (Shieber and Tao, 2003), and natural language interfaces to databases
(Zettlemoyer and Collins, 2005). Not all systems of these kinds make use of parsers, and—
tellingly—the parsing models and methods used in the cited systems are not usually the
same as those published in parsing papers describing state-of-the-art parsing results.

In almost all of the papers cited in the last paragraph (exceptions are Ramshaw et al.
(2001) and Shieber and Tao (2003)), in fact, the parsing model was designed for the spe-
cific task. In Chiang’s and Zettlemoyer and Collins’ work, no annotated syntactic struc-
tures were used in learning at all. That is, the models of syntactic structure (in Chiang’s
case, bilingual phrase structure, and in Zettlemoyer and Collins’ case, a categorial gram-
mar) were acquired without treebanks. Importantly, these papers achieved state-of-the-art
results on their tasks and were immediately recognized with best paper awards at their
respective conferences.

In our view, the fact that these two home runs for parsing shunned the now-classic
treebank paradigm is no coincidence. Learning to parse from treebanks has its advan-
tages—it is an example of supervised learning, which is very well studied—but it has
the limitation of domain dependence. A parser trained using state-of-the-art techniques and
models from a given treebank tends to be very good at parsing data within that treebank’s
domain, and less good at parsing data outside the domain. This has spurred an area of
research on parser adaptation (Hwa, 1999; McClosky, Charniak, and Johnson, 2006b).

Taking the domain problem to the extreme, we have the language problem. Tree-
banks are not available in all languages for which demand for language applications exists,
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though there are new treebanks in new languages appearing every year; see Buchholz and
Marsi (2006). These treebanks, however, are for the most part significantly smaller than
the original Penn Treebank, and they still suffer from the domain problem. Beyond that,
they are expensive and slow to build, and due to linguistic and treebank-convention dif-
ferences, models designed for one language must in many cases be carefully altered for
use with another language and treebank (Collins, Hajič, Ramshaw, and Tillmann, 1999).

A further limitation of treebanks is that their developers are always forced to choose
conventions. How many nonterminal category types, and what kinds? What part-of-
speech tags, and how fine-grained? How much structure belongs inside of noun phrases?
Is projectivity required in the annotations? Should lexical heads be annotated, and accord-
ing to which theory? Computational linguistics researchers frequently complain about
the conventions chosen for the treebank, and any thoughtful researcher is left to won-
der whether some changes to the conventions would improve performance on a given
application. Indeed, there is much research focused on transforming the Penn Treebank
for improved parsing performance, starting with Johnson (1998) and continuing more re-
cently with Matsuzaki, Miyao, and Tsujii (2005); Petrov, Barrett, Thibaux, and Klein (2006);
Dreyer and Eisner (2006), who use the treebank with unsupervised learning to improve on
it.

How far can unsupervised learning go, and are treebanks even necessary? Almost
as long as there have been empirical approaches to parsing, there have been empirical
approaches to unsupervised parsing—learning about the syntactic structure of a natural
language from examples of sentences in the language that have not been (fully) annotated
(Carroll and Charniak, 1992; Pereira and Schabes, 1992). Unsupervised parsing would
require only unannotated text (though, as we will see, permitting the use of a small set
of annotated examples is advantageous in most unsupervised learning settings). Since
unannotated text is practically free, the domain- and language-dependence issues vanish
(apart from the problem of filtering to get a pure corpus of text in the desired domain and
language).

Further, it ought to be much cheaper to change conventions (and formalisms and
stochastic models) when applying unsupervised learning methods than when using tree-
banks: simply redefine the model, implement the appropriate statistical inference and de-
coding algorithms, and retrain. Taking this idea a step farther, parsing models ought to
be trainable to be useful for any given application, from unannotated data in any given
language and domain, with a minimum of human effort.

1.2 Unsupervised Parsing and Grammar Induction

To summarize so far, modeling syntactic structure appears to be useful, but the “right”
kind of syntactic structure seems to depend heavily on the beneficiary task. There have
been studies comparing different kinds of syntactic structure for their usefulness as lin-
guistic explanations (Schneider, 1998) or on specific tasks (Gildea, 2004), and there has
been a great deal of work on designing models that can be learned from unannotated data
(Klein and Manning, 2001a, 2004). A tremendous amount of research has gone into the
learning—through symbolic or statistical means—of categorial information about natural

4



language structure. This includes, for example, learning which rules should go into a
grammar (e.g., production rules in a context-free grammar or the topology of a finite-state
model of language; see Stolcke and Omohundro (1994) and Chen (1995)).

While many of these techniques fit neatly (or almost neatly) into the parameter esti-
mation scheme espoused in this thesis, some do not. We review the latter here, leaving
discussion of more closely related papers to the chapter in which each is most relevant.

1.2.1 Non-Model-Based Grammar Induction

Several notable attempts to learn language structure without explicit generative mod-
els have used measurable statistics in the text stream to discover structure. For example,
Magerman and Marcus (1990) found positions of low pointwise mutual information be-
tween word tokens and predicted that these fell between grammatical constituents. Brill
and Marcus (1992) compared the distributional behavior of two-tag sequences to the be-
havior of tags and merged instances of the latter into context-free production rules when
they were sufficiently similar to the former. Reminiscent of this work is Yuret (1998),
who sought to discover lexical dependency structures by choosing links between words
with high mutual information, and the modeling of lexical relationships using raw text
described in Paskin (2002). Lin (1999) used mutual information to discover non-composi-
tional compounds in unannotated text.

Also reminiscent of this work is the alignment-based learning (ABL) paradigm of van
Zaanen (2001). Van Zaanen’s algorithm consists of two passes; first, sentences in a corpus
are aligned (every sentence with every other sentence) and common parts are proposed as
candidate constituents. The second pass considers the hypotheses and seeks an optimal
bracketing of the whole corpus, using ad hoc scoring methods and dynamic programming.
Optionally, a grammar may be extracted from the now-labeled data. Similar in spirit is the
EMILE system (Adriaans, 1992), which uses word contexts to infer categorial grammar
categories.

More cognitively inspired models with similar information-theoretic criteria (e.g., “re-
dundancy reduction”) are described by Solan, Horn, Ruppin, and Edelman (2003). This
work is notable for its use of the CHILDES corpus (MacWhinney, 1994), a corpus of tran-
scriptions of parent-to-child speech.

1.2.2 The Probabilistic Approach

The greatest recent successes in grammar induction—when success is measured by
parsing accuracy on gold-standard data—have used generative probabilistic models and
unsupervised parameter estimation techniques, specifically maximum likelihood estima-
tion using the EM algorithm (Klein and Manning, 2002a, 2004). The idea is very simple.
Define a probabilistic model that jointly scores syntactic analyses with sentences, then es-
timate the parameters of the model to optimize some function of the data. Depending on
the model, this can often be done without any learning of grammar rules at all. Here we
simply specify all of the rules possible (having specified the form of the model) and learn
the parameters for them.
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1.3 Related Scientific Work

The focus of this thesis is natural language engineering, but problems of learning
languages—by people or machines—have fascinated theoretical computer scientists and
linguists since long before the empirical revolution or even the birth of NLP. We review
some of the key results here and refer the interested reader to an excellent (if perhaps now
dated) review by Lee (1996).

1.3.1 Theoretical Computer Science

The first formalization of language learnability was by Gold (1967) who defined iden-
tifiability in the limit. In Gold’s very strict setting, a learner observes only positive examples
(well-formed strings) from a language in a known class. The learner receives an infinite
stream of examples and is guaranteed to eventually see every string in the language. A
language family is identifiable in the limit if there exists a learner that will, eventually,
settle on the right language and never again change its hypothesis. The learner need not
know when it has reached that point.

Gold proved that no superfinite family (i.e., a family of languages containing all finite
languages and at least one infinite language) is identifiable in the limit in this setting. This,
of course, includes regular languages and context-free languages. Gold’s second setting
(less commonly cited) involves an “informant” that provides positive and negative exam-
ples (strings not in the language), and he shows that superfinite families are learnable in
the limit in this setting. A later negative result due to Angluin (1990) is that the additional
ability to query whether a hypothesis is correct (and get a counterexample if it is not) does
not aid learnability.

Gold’s learning framework is rather limiting: it does not consider the probabilistic
setting. Indeed, if the positive examples are drawn from the distribution of a probabilistic
context-free language, then that language is learnable in the limit without negative exam-
ples (Horning, 1969). This distributional information has been taken to be a kind of nega-
tive evidence (Seidenberg and MacDonald, 1999; Lewis and Elman, 2001); we will describe
an even stronger form of negative evidence in the probabilistic setting (Chapter 4).

1.3.2 Language Acquisition in Humans

Partly bolstered by Gold’s theorem (though without explicitly relying on it), very
strong voices in theoretical linguistics have argued against the learnability of language
by humans (Chomsky, 1965). The Chomskyan theory, in a nutshell, is that the capacity
for linguistic competence is innate (not learned) and that language acquisition in children
boils down to the setting of a few discrete parameters based on the positive evidence (and
no negative evidence, such as corrective feedback) received from parents. Under the as-
sumption that children do learn the correct grammar of a language, this is taken to mean
that humans have an extensive innate grammatical knowledge.

This claim is controversial, with most of the contention revolving around three issues
alluded to above:
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• Language and learning are assumed to be purely symbolic (rather than probabilistic
or connectionist) constructs.

• The “poverty-of-stimulus” argument, that children receive only positive evidence,
has been criticized (Pullum, 1996; Pullum and Scholz, 2002).

• It is not clear that all native speakers of a language “know” the same, fully correct
grammar.

Another approach to the question of language learnability comes from psychologists
and cognitive scientists who study child language learning empirically. Of course, when
a child learns proficiency in her first language, she acquires more than just syntax. For
example, the meanings of words (and ontological relationships among those meanings)
must also be acquired. Much debate has been given to the primacy of syntax versus lexical
semantics in child language learning. Some evidence suggests that knowing syntax helps
learning word meanings (the syntactic bootstrapping hypothesis; Gleitman, 1990), while
nativists argue that syntactic categories are innate and the assignment of words to cate-
gories is learned using earlier-acquired semantic knowledge (the semantic bootstrapping
hypothesis; Pinker, 1994). Other studies suggest that children bootstrap syntactic knowl-
edge from phonological (Morgan, 1986) or prosodic features of the speech they encounter
(Saffran, Newport, and Aslin, 1996, inter alia). To a coarse approximation, the field of child
language learning is focused on two scientific questions: what features do children use to
acquire linguistic proficiency, and when do these different features come into play?

While this thesis does not seek to address human language learning at all, the compu-
tational contributions may be useful tools to researchers who seek to model these phenom-
ena, computationally and statistically (Brent, 1996). In Chapter 4 we introduce new ways
to carry out unsupervised learning of log-linear models, which permit joint modeling of
arbitrary features of the data. Importantly, this chapter will present a new way to math-
ematically formulate implicit negative evidence in the probabilistic setting. In Chapter 6
we present a framework for changing the feature set of a model during learning. While
our models and data are somewhat different from those used by language acquisition re-
searchers, these ideas are not dissimilar in spirit from the underlying scientific questions
of child language acquisition.

1.4 Aim of the Thesis

The problem faced in this thesis is distinct from both the formal problem faced by
Gold’s theorem and the cognitive problem of human language acquisition.

In contrast with Gold, we are not interested in identifying the “correct” language.
Our aim is to build a structural classifier that will accurately hypothesize syntactic struc-
ture (in our case, a very simple form of syntactic structure) for sentences in a given nat-
ural language. We do learn from positive examples, but we are not above building in
domain knowledge that will help performance, insofar as this can be done cleanly and
with mathematical justification (as in Chapter 4). As it happens, our approach will bear
an interesting relationship to negative evidence, exploiting a notion of implicit negative
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evidence to improve the accuracy of the learned model.2 Further, our methods aim to be
theory-independent and applicable to any statistical model for which efficient inference
algorithms exist.

In contrast with human language learning, our inputs are text rather than speech. In
fact we go farther and assume we even know the correct segmentation into words (for lan-
guages like Mandarin) and the syntactic categories (also known as word classes or parts
of speech) for the words in the data. We also often assume a small set of annotated ex-
amples to select from models learned in slightly different settings, and an additional set
for evaluation. Our measure of the quality of learning is not a yes/no question (“was the
correct language learned?”)—we care about the quality of the structural classifier learned,
measured on several different metrics (see Section 2.5). We do note that there is research
related to what we present that has the explicit goal of arguing against the innateness hy-
pothesis (Clark, 2001), but we make no claims about cognitive plausibility of the learning
methods presented here.

The setting faced by NLP practitioners differs in principle very much from the formal
and cognitive work, as well as what we present in this thesis. The case can be made that
the World-Wide Web presents a (practically) infinite stream of text data in many languages.
This data is not perfect; it contains mistakes (and they are not labeled as such). We do
not suggest ways to deal with noisy Web data (Resnik and Smith, 2003) or the problem
of identifying which language a sample of text or speech is in (see, for instance, White,
Shafran, and Gauvain, 2006).

The learning framework in this thesis is rather traditional: we assume a finite set of
clean examples. We define a parametric model family and consider how we can improve
learning by changing the way the parameters of the model are estimated (or “trained”)
from the data. Parameter estimation is usually described as the optimization of a numerical
function defined by the data and the form of the model. The most common parameter
estimation technique is maximum likelihood estimation. Familiar alternatives include
maximum a posteriori, maximum margin, minimum risk, and minimum error training.
In this thesis, we will explore well-motivated, mathematically clean ways to modify the
objective function for improved accuracy of the learned model.

A Possible Criticism The experimentation in this thesis focuses, for the most part, on a
single task. It is conceded that the dependency grammar induction task on which perfor-
mance improvements are demonstrated is an “Olympic sport” in that it only approximates
real world problems faced by the NLP practitioner. The problem is certainly artificial in
certain respects. We consider only learning from newspaper text, and only in limited quan-
tities. We assume that the syntactic categories (part-of-speech tags) in the training and test
data are correctly disambiguated (except in Section 7.2). We only consider a single, very
simple representation of syntactic structure, unlabeled dependency trees (though we eval-
uate the accuracy of the constituent structures implied by the dependencies in Section 7.3).
Our model cannot take advantage of many clearly attested linguistic phenomena (see Sec-

2In computational learnability research, “negative evidence” typically refers to examples of strings noted
to not be in the language. In child language learning research, it most often refers to explicit feedback or
corrections from parents when the learning child makes a mistake (Marcus, 1993).
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tion 2.3.3). The learning algorithms tested are not cognitively plausible, in that they as-
sume a batch of unchanging data (rather than a stream) which can be perfectly recollected
on each iteration of a parameter-refinement algorithm.

We argue that progress on such tasks is still important for the development of the field
when the task is replicable and the progress is substantial, two requirements we have been
careful to meet. Indeed, experimentation on standard datasets and task definitions has
been widely accepted in the research community as an important force in improving com-
ponents of NLP. Examples include supervised parsing on the Penn Treebank (Collins, 1999;
Charniak and Johnson, 2005, inter alia), and organized competitions like SENSEVAL (Ed-
monds, 2002), the CoNLL shared tasks for text chunking (Tjong Kim Sang and Buchholz,
2000), clause identification (Tjong Kim Sang and Déjean, 2001), named entity recognition
(Tjong Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003), semantic role labeling
(Carreras and Màrquez, 2004, 2005), and dependency parsing (Buchholz and Marsi, 2006),
and the PASCAL textual entailment challenge (Dagan, Glickman, and Magnini, 2005). To
bolster the case for our methods, we include a great deal of experimentation on variations
of the task, and also on another task (part-of-speech tagging, Section 4.7).

1.5 Road Map

The thesis proceeds as follows. Chapter 2 defines the specific grammar induction
problem we seek to solve, the model we will estimate to solve it (due to Klein and Manning
(2004)), the relevant algorithms for inference with that model, and the measures used to
evaluate performance. An illustrations of the kind of dependency structure sought after in
the thesis is shown in Figure 1.1, including gold standard and hypothesized structures for
which performance was typical under each method, with error counts.

Chapter 3 describes the standard method for unsupervised grammar induction with
probabilistic models: the Expectation-Maximization approach to maximum likelihood es-
timation from partially-observed examples. Simply put, this approach maximizes:

max
model

p(data | model) (1.1)

We present baseline performance results on English data and show how MLE with a prior
can improve performance slightly:

max
model

p(model) · p(data | model) (1.2)

EM achieves 41.6% directed attachment accuracy on the English data (62.2% undirected).3

Two major problems that have been widely noted in the literature (but not fully addressed)
are that (a) likelihood is not a good predictor of accuracy and (b) likelihood is a bumpy
function that is difficult to optimize because of shallow local optima. Chapters 4 and 5
address (a) and (b), respectively, and Chapter 6 addresses both.

Chapter 4 presents contrastive estimation (Smith and Eisner, 2005a,b), which corre-
sponds to a different objective function for unsupervised learning. Contrastive estimation

3Our accuracy measures are defined in Section 2.5.
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NNP  NNP   CD   VBZ   DT  NN  IN    JJ        JJ          NN
Mr.    Smith,  39,  retains the  title  of  chief financial officer.

errors (undirected)

NNP  NNP   CD   VBZ   DT  NN  IN    JJ        JJ          NN
Mr.    Smith,  39,  retains the  title  of  chief financial officer.

EM: 6 (4)

NNP  NNP   CD   VBZ   DT  NN  IN    JJ        JJ          NN
Mr.    Smith,  39,  retains the  title  of  chief financial officer.

CE: 5 (3)

NNP  NNP   CD   VBZ   DT  NN  IN    JJ        JJ          NN
Mr.    Smith,  39,  retains the  title  of  chief financial officer.

SA: 2 (2)

NNP  NNP   CD   VBZ   DT  NN  IN    JJ        JJ          NN
Mr.    Smith,  39,  retains the  title  of  chief financial officer.

supervised: 0 (0)

Figure 1.1: An example sentence from our test set, drawn from the Penn Treebank, with
four dependency parses: the gold standard, the baseline method (EM, supervisedly se-
lected), two of our methods (contrastive estimation and structural annealing, supervisedly
selected), and a supervised model. This example was chosen because performance on it
was typical for each parser (close to the parser’s average). The numbers shown are the at-
tachment errors and the undirected attachment errors (defined in Section 2.5). Errors with
respect to the gold standard are shown as dashed lines. See Figures 6.14 (page 151) and 9.1
(page 9.1) for more examples.
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is really a class of objective functions in which likelihood is one (extreme) example. At
the core of the idea is that each observed positive example implicates a set of soft negative
examples that should (roughly speaking) on average, be less probable than the observed
one. It maximizes:

max
model

p(model) · p(D = data | model, D ∈ (data ∪ data′)) (1.3)

where data′ is perturbed data, taken to be implicitly negative. (D is a random variable over
datasets; Equations 1.1 and 1.2 might have referenced it explicitly, writing “D = data” in-
stead of simply “data.”) A mathematical formulation is presented, and we show how
designing different negative evidence classes affects learning. Substantial improvements
over EM are demonstrated on the English parsing task, with some kinds of implicit nega-
tive evidence—this chapter achieves 57.6% accuracy (69.0% undirected). CE is also demon-
strated to be highly successful (more so than EM) at learning to disambiguate part-of-
speech tags in unannotated text. We also present preliminary experiments with a log-linear
model of dependency trees that does not fit the stochastic grammar framework well, and
show that its performance can be improved using spelling features (also not well-handled
by stochastic grammars).

Chapter 5 turns to the problem of parameter search on the bumpy likelihood surface
that EM faces. Focusing on the maximum likelihood problem solved (locally) by EM, we
show how deterministic annealing (Rose, 1998) can be applied to find better solutions to
likelihood (Smith and Eisner, 2004). Deterministic annealing makes use of a sequence of
objective functions related to likelihood but less bumpy. It starts with the easiest of these,
solving the (very easy) problem

max
model

entropy(p(trees | data,model)) (1.4)

Over time, this function “morphs” into likelihood. DA iteratively uses the solution to the
previous problem to initialize parameter search on the next problem, until eventually it is
likelihood that is optimized.

We generalize deterministic annealing, presenting skewed deterministic annealing
(Smith and Eisner, 2004) as a novel search method that out-performs both EM and de-
terministic annealing—importantly, though, not because it finds better local optima of the
likelihood function. The performance gains in this chapter are relatively small (46.7% ac-
curacy). These results support the case that novel objective functions, not just improved
search, hold the key to better grammar induction.

Chapter 6 presents a blended approach, structural annealing (Smith and Eisner, 2006),
that does not change the objective as fundamentally as contrastive estimation does, but
does impose a bias on the model distribution during learning. The bias under primary
consideration will be a preference for string-locality in syntactic relationships. Simply in-
troducing this bias, with the right strength, achieves 45.5% accuracy. If we start out with a
very strong bias toward local trees and gradually anneal its strength, weakening the bias,
we can achieve 66.7% accuracy (73.1% undirected). We also consider a different kind of
bias, toward connectedness in syntactic structures, and see a similar, but less pronounced
trend.
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Chapter 7 compares the various methods under different settings, including train-
ing and testing datasets with longer sentences, noisy training data with induced part-of-
speech tags, constituent-based evaluation, and random initializers. Structural annealing
and contrastive estimation change training in orthogonal ways; here we experiment with
combining them and see similar patterns of improvement.

The cross-lingual validity of these methods is tested and demonstrated in Chapter 8,
where we show that our methods achieve the best published accuracy to date on gram-
mar induction in six languages (Smith and Eisner, 2006). See Table 8.10 (page 180) and
Figures 8.2 (page 182) and 8.3 (page 183) for a summary of the improvements by language
and a graphical comparison of all methods on all six languages tested. We conclude in
Chapter 9. Appendix A gives dynamic programming equations (in the Dyna language)
for implementing the inference and decoding methods required for models presented in
this thesis. Appendix B gives additional details on the datasets used for experimentation.

Unfortunately, it is impossible to write an entirely self-contained thesis. The reader
is assumed to be familiar with probabilistic sequence models like hidden Markov mod-
els and stochastic context-free grammars (well-explained in Manning and Schütze, 1999).
More recent approaches to estimating these kinds of models (Lafferty, McCallum, and
Pereira, 2001) and their log-linear variants are also good to know about. Understanding
dynamic programming algorithms will help, but is not essential (a great start is Goodman,
1999). Basic familiarity with the idea of optimizing a continuous function f : Rn → R, with
or without constraints, and without convexity assumptions, is also required (our favorite
reference is Bertsekas, 1995, which may be overly theoretical).
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Chapter 2

Problem Definition

[...] each word has a particular and roughly stable likelihood of occurring as argu-
ment, or operator, with a given other word, though there are many cases of uncertainty,
disagreement among speakers, and change through time.

—Zellig Harris (1909–1992; Harris, 1988)

We have stated that our goal is to uncover syntactic structure in natural language
text through statistical modeling. In this thesis, we will focus almost exclusively on a
single probabilistic model of syntactic structure, called here Model A, due to Klein and
Manning (2004).1 In this chapter we motivate and define this model in the context of prior
work, noting the algorithms required for inference and decoding and measures used for
evaluation.

2.1 Dependency Structure

Dependency grammar (Tesnière, 1959; Gaifman, 1965; Hudson, 1984; Mel’čuk, 1988;
Fraser, 1989) refers to a variety of formal theories of natural language that focus on the
relationships between words in a sentence. At its simplest, dependency structure is one
of the most concise ways to describe natural language syntax. Essentially, each word is
viewed as the dependent—either an argument or an adjunct—of one other word, with the
exception of a single word (usually the matrix verb or matrix auxiliary verb) that is the
root of the sentence. An example of a very simple, unlabeled dependency analysis for a
zeugmatic sentence is shown in Figure 2.1. In this figure the arrows point from parents to
their children.

2.1.1 Why Dependencies?

Before we formalize the notion of a dependency tree and present Model A, which
assigns probabilities to dependency trees, it is worth commenting on the choice of the for-
malism. An important trend in the statistical parsing literature of the past decade has been

1The model is also similar to head-driven parsing models described in in Collins (1999), albeit without
lexicalization.
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Lorie bore a son and a resemblance to a young Carol Burnett.

Figure 2.1: A projective, unlabeled dependency tree. The root is bore. The handling of
the conjunction and is according to one of many conventions; English conjunctions are a
classic difficulty for dependency grammars.

the use of lexicalized formalisms such as lexicalized tree adjoining grammar (Schabes, 1992),
lexicalized context-free grammars (Collins, 1996), and other, less grammar-driven models
based on lexical features (Magerman, 1995).2 Indeed, many modern linguistic theories
emphasize lexical relationships, as well (Pollard and Sag, 1994; Steedman, 2000; Bresnan,
2001). The Penn Treebank does not include dependency annotations, though Collins (1999)
provides a set of rules for augmenting the phrase-structure trees with dependencies.

Eisner (1996) explored a “bare bones” approach to dependency grammar as a “clean
testbed” for exploring the usefulness of lexical affinity relationships in parsing. Klein and
Manning (2004) also adopted such a model, mainly because they—as we do here—were
trying to find syntactic structure without annotated examples and wanted the simplest,
most plausibly learnable kind of structure imaginable. Their dependency model is unlexi-
calized, modeling only the relationships between syntactic categories (parts of speech) and
the valency of each tag type. These simple models and representations are arguably use-
ful on their own (see below), but one can also imagine using them as a starting point for
learning grammars in more complicated formalisms.

A second motivation for probabilistic dependency grammars is that they are a very
natural generalization of n-gram models used in language modeling for speech recogni-
tion and other applications (Jelinek, 1997). Dependency models have often been presented
as a more linguistically-motivated model of natural language in which, given a previous
sequence of words, the next word is predicted not by n − 1 most recent words (as in an
n-gram model), but rather by words to which it has some syntactic relationship (Lafferty,
Sleator, and Temperley, 1992; Chelba and Jelinek, 1998). Eisner and Smith (2005) consid-
ered the spectrum of models between bigram models and bilexical dependency models
by imposing and varying constraints on the distance between two words in a dependency
relationship, a theme we will return to in the context of structural annealing (Chapter 6).

Recent work on supervised dependency parsing has been quite successful at integrat-
ing state-of-the-art machine learning techniques for training with rich feature sets (see, for
example, Yamada and Matsumoto, 2003; Nivre and Scholz, 2004; Nivre and Nilsson, 2005;
McDonald, Pereira, Ribarov, and Hajič, 2005b). The NLP community appears to be very in-
terested in dependency models, as evidenced by the recent CoNLL shared task, involving
dependency parsing in thirteen languages (Buchholz and Marsi, 2006). Dependency pars-
ing has recently been used in relation extraction (Culotta and Sorensen, 2004), machine

2There has more recently been a counter-trend that questions the importance of the role of lexicalization in
parsing (Klein and Manning, 2003b).

14



We saw a house in June that we bought.

Figure 2.2: A non-projective dependency tree.

translation (Ding and Palmer, 2005), synonym generation (Shinyama, Sekine, Sudo, and
Grishman, 2002), inference rule discovery (Lin and Pantel, 2001), and hypernym discovery
(Snow, Jurafsky, and Ng, 2004). Current work in NLP on semantic processing, including
the problems of semantic role labeling (Carreras and Màrquez, 2004, 2005) and textual en-
tailment (Dagan et al., 2005), very often makes use of dependency analyses (e.g., Cohn and
Blunsom, 2005; Raina, Haghighi, Cox, Finkel, Michels, Toutanova, MacCartney, de Marn-
effe, Manning, and Ng, 2005).

2.1.2 Formal Description

Let Σ be a finite set of symbols. Let x = 〈x1, ..., xn〉 be a sequence in Σ∗. Then a
dependency tree is a connected, directed, acyclic graph on the nodes in x. The single
source of the graph is called the root. If there is an edge from xi to xj , then we say xi is the
parent of xj and xj is the child of xi. An example is given in Figure 2.1.

In this thesis we add the constraint (not empirically supported for all natural lan-
guages; see McDonald et al. (2005b)) that the trees be projective. Informally, this means
no links cross when all edges are drawn on the same side of the nodes (which are laid out
in sequence), and no links “cover” the root of the tree; see Figure 2.2. More formally, pro-
jective dependency trees obey a linear precedence constraint: if two subtrees are disjoint,
then all nodes in one yield linearly precede all nodes in the other yield. This constraint
makes dependency grammars that are defined using tree-local rules an instance of lexi-
calized context-free grammars. The proof is omitted (see Gaifman, 1965); an example of the
correspondence between the derivations structures is shown in Figure 2.3, and we discuss
the relationship further in Section 2.3.1.

In our notation, y denotes a dependency tree, and Yx denotes the set of possible de-
pendency trees consistent with a sequence x (that is, trees that obey the constraints laid
out above). We use y : {0, 1, ..., |x|} → 2{1,2,...,|x|} to refer to the mapping of nodes to their
children; y(0) contains a single node (the root).

Variants of dependency trees that we will touch upon in this thesis include a for-
malism where y(0) can contain more than one node (“vine grammar;” Eisner and Smith,
2005), and a formalism where the edges are undirected (similar to link grammar; Sleator
and Temperley, 1993).3 More linguistically interesting dependency grammars can be de-
fined that include labels on the edges and less local constraints on configurations in the
tree. Successful learning of our model might be helpful in learning such grammars.

3Link grammar structures need not be trees (cycles are allowed). They consist of undirected, planar, con-
nected graphs with labeled edges. Link grammars are also lexical by design, unlike our models.
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2.2 Probabilistic Models over Discrete Structures

A probabilistic model is a way of assigning probability mass to a set of events.4 For-
mally, let W be a set of discrete outcomes (possibly infinite, for example, Σ∗ or dependency
structures over Σ∗.). A model p is a function W→ [0, 1] such that:∑

w∈W

p(w) ≤ 1 (2.1)

A consistent model is one where the above holds with equality. Models that assign proba-
bility mass to ill-formed structures that are not in W are sometimes called deficient. (In this

thesis, unless otherwise noted, W
def= {〈x,y〉 : x ∈ Σ∗,y ∈ Yx}.)

2.2.1 Two Parameterizations of Models over Infinite Structures

If |W| is finite, we can define a model by listing the events in W paired with their
probabilities. This is called a multinomial distribution and underlies many stochastic
models over discrete sets. For example, stochastic context-free grammars are defined using
one multinomial distribution over production rules for each nonterminal type.

Many classes of models—including stochastic CFGs—assign probability in a different
way that does not involve an enumeration of W. For large W, enumeration would be
inefficient (and it is probably very difficult to accurately estimate the probabilities from
data). For infinite W—like Σ∗—enumeration is not possible in finite time or space.

The standard approach is to define the probability of a structure w as a product of
probabilities corresponding to steps taken in a stochastic process that “generates” w. Each
step is independent of the others (corresponding to independence assumptions about parts
of w with respect to other parts of w). Stochastic CFGs and hidden Markov models are
two examples of stochastic models based on multinomial distributions. In the remainder
of the thesis, we use the term stochastic model to refer to multinomial-based models that
correspond to stochastic processes.5

Another kind of model is a log-linear model. Like stochastic models, these define
a probability by multiplying together R-valued factors for different pieces of structure.
Unlike stochastic models, these weights need not be interpretable as probabilities or steps
in a stochastic process; though they can be. (If they are, we have a stochastic model, which
is just a special case.) To make sure that Equation 2.1 is satisfied, log-linear models divide
the product of weights by a constant factor.

Notation. Both kinds of models are parameterized by the probability or weight factors.
We use ~λ to refer to the set of stochastic model probabilities in a given model or the set of
log-linear weights. We use ~θ to denote the logarithms of those weights. When we write λ or
θ with a subscript, we are referring to a specific step’s or feature’s weight. We use p~θ

and

4In this thesis, we deal only with discrete events, but the idea of course generalizes to continuous sets of
events, too.

5Sometimes these are called generative models, but in our view that name conflates the model’s parameter-
ization and estimation procedure.
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p~λ
equivalently to mean the model parameterized by ~θ = log~λ; it will be clear from the

context whether the model is stochastic or just log-linear.

2.2.2 Weighted Dependency Grammars

In the most general form, a weighted dependency grammar defines not only the set
of possible trees Yx for every sentence x ∈ Σ∗ (a set that may be empty for some x), but
also a R-valued score for each tree. This is the central idea behind statistical parsing, which
we motivated in Section 1.1.1. Given a weighted grammar, we can pick the highest-scoring
parse tree for a sentence, or, more generally, rank possible parses by their scores and define
distributions over trees.

Having argued that dependency grammar is a compelling tool for modeling natural
language syntax, we note that the parameter estimation methods presented in this thesis
are in principle applicable to a much broader class of models, including other kinds of
weighted grammars. Smith and Eisner (2005a), for example, applied contrastive estima-
tion (Chapter 4) to a hidden Markov model.

2.3 Model A

We now define the probabilistic model used in experiments throughout the thesis,
which we call Model A. Model A is due to (Klein and Manning, 2004), who called it the
“dependency model with valence.” It is a highly simplified model of parent-child syntactic
relationships between part-of-speech tags and valency of heads (i.e., number of children
a head has). In Model A, Σ is a finite set of tag types. The hidden structures modeled
by Model A are unlabeled, directed, projective trees over finite tag sequences in Σ∗. It is
not crucial to understand the workings of the model to understand the (rather general)
estimation techniques defined in the thesis.

However, it is important to note that the choice of model topology (in our case, the
grammar rules or features of a tree) has important implications for the accuracy of the
learned parameters. Indeed, an important contribution of Klein and Manning (2004) (cap-
italized on heavily in this thesis) is the extension of earlier statistical dependency models
for unsupervised learning (e.g., Carroll and Charniak, 1992) with the notion of head va-
lency. An alternative path, not taken here, would be to explore alternative feature choices
for grammar induction, both independently and in combination with the novel estimation
procedures presented in this thesis.

There are two ways to think about Model A. First we present it as a stochastic branch-
ing process (a stochastic context-free grammar). Then we describe it as a log-linear model
of specific features of the sequence x and the tree y. We then relate it to other models in
the literature and suggest some ways it could be enhanced in future work.

2.3.1 Stochastic Process (Model A as a SCFG)

Assuming that the reader is familiar with stochastic lexicalized context free grammars,
we first present Model A in that form (though it lexicalizes to part-of-speech tags, not
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words). What do CFGs have to do with dependency grammars? Under the projectivity as-
sumption, dependency grammars produce context-free languages, and the transformation
is rather simple. The derivations of the stochastic CFG we describe next are in a one-to-one
correspondence with those of Model A (see Figure 2.3).6

In the following rule schemata, x and x′ are taken to be terminal symbols (part-of-
speech tags) in Σ. Upper-case letters denote nonterminals. The λs on the left correspond
to the parameters of the model, which are nonnegative weights (probabilities). In our
models, these rules are instantiated for all tags x and x′ (where referenced), both ∈ Σ
(so they should all be understood under universal quantification, which is not written
explicitly, for clarity).

corresponding weight context-free rule schema
λroot(x) S → N [x]

λstop(x,right,false) N [x]→ L0[x]
λcontinue(x,right,false) N [x]→ Rc0 [x]

λchild(x,right,x′) Rc0 [x]→ R[x] N [x′]
λstop(x,right,true) R[x]→ L0[x]

λcontinue(x,right,true) R[x]→ Rc[x]
λchild(x,right,x′) Rc[x]→ R[x] N [x′]
λstop(x,left,false) L0[x]→ x

λcontinue(x,left,false) L0[x]→ Lc0 [x]
λchild(x,left,x′) Lc0 [x]→ N [x′] L[x]

λstop(x,left,true) L[x]→ x

λcontinue(x,left,true) L[x]→ Lc[x]
λchild(x,left,x′) Lc[x]→ N [x′] L[x] (2.2)

The production rules above may be somewhat confusing. In plain English, a tag x
first decides (stochastically) whether it has any children on the right. If so, it generates the
first one, then repeatedly decides whether there are any more and, if so, generates the next
one. The children are generated from the most distant inward.7 The same process is then
applied on the left of the head. Each child generated (on the left or right) then recursively
generates its own set of children. Figure 2.3 gives an example of a dependency structure
in both formats.

To see how the production rules relate to the process described, consider that the non-
terminals do not provide any information that the dependency tree does not provide. They
are merely there to keep track of the state of a head tag during its child-generation process.
N [x], for example, means that the token x has not generated any children yet. Rc0 [x] means

6Because the correspondence is one-to-one, there is no concern over deficiency. SCFGs are not deficient,
and neither is Model A.

7In the present parameterization, this makes no difference. Klein and Manning (2004) described the model
as generating children from the head outward, but we opt for the opposite because it makes the CFG exposition
clearer.
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λroot(VBD)

·λcontinue(VBD,right,false)

·λchild(VBD,right,NNP)

·λstop(VBD,right,true) · λstop(NNP,right,false)

·λcontinue(VBD,left,false) · λcontinue(NNP,left,false)

·λchild(VBD,left,NNP) · λchild(NNP,left,JJ)

·λstop(NNP,right,false) · λstop(VBD,left,true) · λstop(JJ,right,false) · λstop(JJ,left,false)

·λstop(NNP,left,false) · λstop(NNP,left,true)

Figure 2.3: A dependency tree (left) and its representation as a context-free derivation tree
under Model A (right). Note that binary production rules are in a one-to-one correspon-
dence with dependencies. No Rc[·] or Lc[·] nonterminals appear because no word has more
than one child. The expression at the bottom gives the score of the tree. Each λ corresponds
to one production rule, and they laid out in a pattern similar to the context-free derivation
tree.
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that x will generate a first child on the next production, and Rc[x] means x will generate a
non-first child. L0[x] signifies that all the right children of x have been generated, and now
the (possibly empty) sequence of left children will be generated. It is not important that
these rules generate the right children first, then the left children—that was an arbitrary
choice for exposition—but it is important that they are generated independently of each
other, given the head.

Note that the λs (probabilities in the SCFG) do not refer to the nonterminals at all.
The nonterminals are, however, helpful in telling us what constraints to place on the λs to
make the model into a valid distribution over dependency trees. For a weighted CFG to
be a consistent stochastic CFG, the weights for rules that share a left-hand side nonterminal
must be nonnegative and must sum up to one. This gives:

∀λ•, λ• ≥ 0 (2.3)∑
x∈Σ

λroot(x) = 1

∀x ∈ Σ,∀d ∈ {left, right},∀b ∈ {true, false}, λstop(x,d,b) + λcontinue(x,d,b) = 1

∀x ∈ Σ,∀d ∈ {left, right},
∑
x′∈Σ

λchild(x,d,x′) = 1

Note that in the SCFG, some distributions are tied; though Rc0 [x] and Rc[x] are dis-
tinct in their roles within the process, they have identical distributions over right-hand
sides (similarly Lc0 [x] and Lc[x]). Because we have written the parameters, λ, as variables
independently of the rules they are tied to, the constraints above are sufficient. In this the-
sis, we may refer in general to a partition of R, by which we mean non-overlapping subsets
of the rules in R (whose union is R) such that there is one subset for each multinomial dis-
tribution; these are denoted Ri, which will never take any other meaning here.

Given a sequence x and a dependency tree y, we can succinctly write the probability
under Model A of 〈x,y〉 using a recursive equation and a predicate:

p~λ
(x,y) = P (xr;~λ,y)λstart(xr) (2.4)

P (xi;~λ,y) =

 ∏
j∈y(i):j<i

λcontinue(xi,left,f(j))λchild(xi,left,xj)

 λstop(xi,left,[y(i)>0])

×

 ∏
j∈y(i):j>i

λcontinue(xi,right,f(j))λchild(xi,right,xj)

 λstop(xi,right,[y(i)>0])

(2.5)

f(j) =
{

true if j is the nearest child on the left or right to its parent
false otherwise

(2.6)

For example, the tree in Figure 2.3 gets the probability obtained by multiplying to-
gether the λ factors shown (also in the figure).
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2.3.2 Features, and Model A as a Log-Linear Model

Talking about the model as a stochastic process is only part of the picture. What as-
sumptions does it make, and what features does it really capture? We can treat Model A as
a log-linear (or exponential) model where each λ corresponds to a piece of local structure
in the tree. For each piece of structure, we multiply in its weight.

More formally, let R be a set of structural features. In Model A, these include the
following; note that all instances of left can be replaced with right as well, and the features
are instantiated for all x, x′ ∈ Σ:

• root(x): x ∈ Σ is the root of y.

• child(x, left, x′): x ∈ Σ has x′ ∈ Σ as a left child.

• stop(x, left, false): x ∈ Σ has no left children.

• continue(x, left, false): x ∈ Σ has at least one left child.

• stop(x, left, true): x ∈ Σ has only one left child.

• continue(x, left, true): x ∈ Σ has a non-first left child.

For each feature r ∈ R, let fr(x,y) be the number of times the feature occurs in the
structure 〈x,y〉. Then we define the log-linear score of x and y as:

ü~λ
(x,y) def=

∏
r∈R

λ
fr(x,y)
r (2.7)

where each λ is constrained only to be nonnegative. The double-dot notation is a reminder,
throughout the thesis, that the model is log-linear. It is often easier to talk in terms of
completely unconstrained R-valued parameters, in which case we let θr = log λr and write:

ü~θ
(x,y) def= exp

∑
r∈R

θr · fr(x,y) (2.8)

The subscript of ü is overloaded, but we will always use ~λ for the multiplicative weights
and ~θ for the additive, log-domain weights.

To turn these scores ü into a probability distribution, we normalize by the sum of
scores of all productions:

p̈~θ
(x,y) def=

ü~θ
(x,y)∑

x′∈Σ∗
∑

y′∈Yx′
ü~θ

(x′,y′)
=

ü~θ
(x,y)∑

w∈W ü~θ
(w)

(2.9)

When summing over log-linear scores, we use the shorthand Z̈~θ
(W) to denote the summa-

tion of scores over the set W.

p̈~θ
(x,y) =

ü~θ
(x,y)

Z̈~θ
(W)

(2.10)
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The stochastic version of Model A, given in Section 2.3.1, constrains the parameters in
such a way that Z̈~θ

(W) is always equal to 1.8 The denominator is deceptively simple; there
are some problems it presents that we will discuss in Chapter 3. For example, if W is of
infinite size (as it is here), Z̈~θ

(W) may not be finite, and the probability distribution is not
well-formed. We will return to this matter in Section 3.5.1.

2.3.3 Limitations of Model A

Given its feature set, Model A cannot capture some syntactic phenomena:

• Effects among tags that share a parent. For example, ditransitive verbs (like give)
should take one direct object and one indirect object; once such a verb has generated
the direct object, it should either generate an indirect object or possibly stop.

• Lexical subcategorization effects. The verb give is likely to take a direct object, but
the verb rain is less likely to do so. Model A treats them both equivalently because
they are both verbs.

• Lexical selection effects. I am likely to eat things like bagels, but not tables. To Model
A, bagels and tables are both plural nouns.

• Effects between children and their grandparents. For example, in the sentence I like
to chase cats, the embedded sentence is not well-formed on its own (it has an infinitive
verb and no subject). Since the verb chase is a child of like, the distribution over its
left children should disfavor a subject and strongly prefer the infinitive marker to.

• Locality effects. Short dependencies are much more common than long ones; dis-
tance between parents and children is not explicitly modeled as a feature in Model
A. We will return to this idea in Chapter 6.

If we treat Model A as a log-linear model, there is no mathematical problem with
incorporating features to try to account for the above phenomena. Features relating the
relevant bits of structure can be thrown into the mix and given weights. This is the beauty
of log-linear models, but it does not come for free. Computing the normalized proba-
bility of a tree may become tricky, involving some pattern matching, but, more critically,
summing and maximizing over trees can become computationally expensive and perhaps
even intractable—though all of the effects above can be treated in models that are tractable.
Speaking very generally, the more structurally local that features are, the less expensive
they are to incorporate into the model, giving a dynamic programming algorithm with
fewer items and ways to combine items (see Section 2.4).

8It is possible for the denominator to be less than one, if the Model is not “tight” (Chi and Geman, 1998).
For stochastic context-free grammars, the tightness property is a matter of formal concern (Booth and Thomp-
son, 1973; Wetherell, 1980) but not of great practical concern. Chi and Geman (1998) showed that maximum
likelihood estimation of SCFGs from annotated or unannotated examples always results in tight models. The
result was extended by Nederhof and Satta (2006).
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2.3.4 Related Models

We described Model A as a stochastic or log-linear lexicalized context-free grammar.
It can also be described as a split head automaton grammar. Head automaton grammar
(Alshawi, 1996) is a context-free formalism in which each terminal symbol generates a se-
quence of children outward from the head. Split head automaton grammar (Eisner, 1997;
Eisner and Satta, 1999) adds the constraint that the left children are conditionally inde-
pendent of the right children, given the head. Model A meets this constraint, as we have
noted, which is advantageous for computational reasons in inference and decoding (Sec-
tion 2.4 below). Our SCFG exposition of Model A actually generates more distant children
first and proceeds inward to the head, but this is not important here, since the children
are generated completely independently of each other and identically regardless of their
relative positions.

As pointed out by Klein and Manning (2004), Model A is very similar to other mod-
els used in experimental work in unsupervised dependency grammar induction (Carroll
and Charniak, 1992; Yuret, 1998; Paskin, 2002). Carroll and Charniak’s and Yuret’s mod-
els are similar to Model A in their modeling of associations between elements of Σ, with
directionality (Carroll and Charniak modeled tag sequences, like Model A, Yuret mod-
eled words). Yuret’s model is not formulated as a generative process but involves similar
features. Paskin (2002) presents a model with similar features in which the graph y is gen-
erated first, chosen randomly and uniformly from among possible trees given the length
of the sentence, then the words are filled in. All of those models lack the valency features
present in Model A. Models commonly used in supervised lexicalized or dependency pars-
ing include far more interesting feature sets to score productions (Collins, 1999) or edges
(McDonald et al., 2005a).

A formally more powerful version of Model A might allow non-projective trees. Mc-
Donald et al. (2005b) described a weighted grammar that includes local relationships be-
tween parents and children, and trained it using large-margin techniques. Their model
was highly effective for English and for Czech (the treebank for which includes non-
projective trees). Decoding with their model (finding the best tree for a sentence; see
Section 2.4) is done using a maximum spanning tree algorithm in O(n2) runtime for an
n-length sequence. Unfortunately, exact inference algorithms have not been developed for
computing expectations over the non-projective trees.9 Adding features that do not cor-
respond simply to edges in the graph (like Model A’s valence features) makes decoding
less straightforward (and even intractable, depending on the locality of the features; see
McDonald and Pereira, 2006).

2.4 Inference and Decoding

We have seen how Model A assigns probabilities to dependency trees. This is not
particularly useful on its own. To train Model A, apply it to parsing, and evaluate its
quality, we need efficient algorithms for inference (computing distributions over parse

9Such an algorithm is likely to exist and to be tractable, given that there is a polynomial-time algorithm for
counting spanning trees (Kirchhoff, 1847). Counting and score-summing algorithms are often closely related.
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trees, given sentences) and decoding (choosing a tree, given a sentence). We turn to these
tasks next; in the next section we consider how to evaluate Model A as a parser.

The quantities we require are listed below. The solution to each, for Model A and
many weighted grammar formalisms in general, is a semiring dynamic programming al-
gorithm. Readers unfamiliar with dynamic programming as a general method for parsing
are referred to Goodman (1999), Eisner, Goldlust, and Smith (2004), and Eisner, Goldlust,
and Smith (2005).

1. For a given sequence x ∈ Σ∗, what is the most probable hidden structure:

ŷ = argmax
y∈Yx

p~λ
(y | x) = argmax

y∈Yx

ü~θ
(x,y)

This is called maximum a posteriori (MAP) decoding (not to be confused with MAP
estimation in Chapter 3). Although alternative decoding methods exist (Goodman,
1996), MAP is the most common and the one we will use throughout the thesis.
This is solved by a “Viterbi” dynamic programming algorithm using the 〈max,×〉
semiring with a backtrace.10

2. For a given sequence x ∈ Σ∗, what is its total score under the model, summing over
parse trees: ∑

y∈Yx

ü~θ
(x,y) = Z̈~θ

({x} × Yx)

This is solved by the same algorithm as the MAP decoding problem, but with the
〈+,×〉 semiring. This is known as an Inside algorithm.

3. For a given sequence x ∈ Σ∗ and a given model feature r ∈ R, what is the expected
value of the feature function fr over trees compatible with x, under the model:

Ep~λ
(Y|x) [fr(x,Y)] = Ep̈~θ

(Y|x) [fr(x,Y)]

This is solved by the Inside algorithm followed by a related algorithm derivable from
the Inside algorithm, known as the Outside algorithm.

The semiring dynamic programming algorithm we use for Model A is due to Eisner
and Satta (1999), slightly specialized.11 Its runtime is cubic in the length of the sequence.

The implementation of these follows the general form described in Eisner et al. (2005).
It is not necessary to deeply understand the algorithms or their implementation to un-
derstand the thesis. The algorithm for Model A is given in Dyna-style pseudocode, in a
semiring-independent form, in Appendix A.

10The term “Viterbi” comes from the original such algorithm, for hidden Markov models, due to Viterbi
(1967).

11Because Model A is an SCFG, one could use the semiring versions of Earley’s algorithm (Earley, 1970) or,
since the grammar contains only binary and unary rules, a slight adaptation of the CKY algorithm (Kasami,
1965; Younger, 1967; Cocke and Schwartz, 1970). The fact that Model A is lexicalized makes this approach
markedly less efficient, as pointed out by Eisner and Satta (1999). We instead use their cubic-time algorithm.
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One important point about these dynamic programming algorithms is that they are
exactly the same for the SCFG and log-linear parameterizations of Model A. Recall that
the normalizing factor Z̈~θ

(W) is the only difference between the two parameterizations.
Because this is a constant with respect to x and y, it does not affect the maximization done
by the Viterbi algorithm. The Inside algorithm can be described as computing Z̈~θ

({x}×Yx)
(a sum of unnormalized scores,

∑
y∈Yx

ü~θ
(x,y)), which is divided out to compute feature

expectations. We will use Z̈~θ
(x) to denote this sum of scores.

2.5 Evaluation of Dependency Parsers

Another advantage of dependency parsing is that it is extremely easy to evaluate
given a gold standard (Lin, 1995). Let y∗ be a gold-standard tree (from a treebank or a
treebank augmented with lexical heads using head rules) for sentence x. Let y be our hy-
pothesis, obtained typically by decoding x under a particular model (here, usually Model
A with the parameters ~λ trained using some estimation method).

Informally, the accuracy of a dependency parse hypothesized by a parser (in our case,
after decoding under a given model) is the fraction of attachments it gets correct. Below
we formally define four variations on this theme.

Directed accuracy is the fraction of words in x that are correctly attached to the ap-
propriate parent word:

accuracydirected (y;x,y∗) def=

n∑
i=1

{
1 if ∃j 6= 0 : i ∈ y(j), i ∈ y∗(j)
0 otherwise

n− 1
(2.11)

The n−1 factor in the denominator corresponds to the total number of attachments possible
in an n-word sentence, which is one per word, excluding the root. Undirected accuracy is
a less stringent measure that counts an attachment as correct even if the parent and child
roles are reversed:

accuracyundirected (y;x,y∗) def=

n∑
i=1

{
1 if ∃j 6= 0 : i ∈ y(j), (i ∈ y∗(j) or j ∈ y∗(i))
0 otherwise

n− 1
(2.12)

Sometimes gold standard treebanks define disconnected trees that have more than
one root. (This is also possible for parsers; these are known as partial parsers.) In that case,
we can define precision and recall measures:

precision(y;x,y∗) def=

n∑
i=1

{
1 if ∃j 6= 0 : i ∈ y(j), i ∈ y∗(j)
0 otherwise
n∑

i=1

{
1 if ∃j 6= 0 : i ∈ y(j)
0 otherwise

(2.13)
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recall(y;x,y∗) def=

n∑
i=1

{
1 if ∃j 6= 0 : i ∈ y(j), i ∈ y∗(j)
0 otherwise

n∑
i=1

{
1 if ∃j 6= 0 : i ∈ y∗(j)
0 otherwise

(2.14)

(The above are directed precision and recall measures; undirected precision and recall can
be defined in the obvious way.) When this is required, we will report the harmonic mean of
precision and recall, known as the F1 measure; this will not happen until Chapter 8, where
we evaluate on treebanks that have this property. When both y and y∗ are connected
dependency trees, each with a single root, directed accuracy, precision, recall, and F1 are
equal.

In Section 7.3 we will evaluate our models with PARSEVAL scores (Black, Abney,
Flickenger, Gdaniec, Grishman, Harrison, Hindle, Ingria, Jelinek, Klavans, Liberman, Mar-
cus, Roukos, Santorini, and Strzalkowski, 1991), a community standard for evaluating
phrase-structure parses against a gold-standard. Another alternative would be to consider
the accuracy of dependencies between content words only (or specific classes of content
words), taking the transitive attachment relationships between such words into account
and ignoring other words. For example, in the dependency structure sat on the chair, with
sat → on, on → chair, the ← chair, the words on and the would be ignored, and the transi-
tive dependency (grandparent relationship) between sat and chair would be treated as an
attachment. This style of evaluation was suggested by Lin (1995).

In this thesis, we will micro-average all accuracy measures, summing up the numera-
tors and the denominators separately over an entire corpus of examples before taking the
ratio. This gives a per-dependency accuracy measure rather than a per-sentence average
accuracy (“macro-averaging”) that would inflate our performance numbers because most
parsers tend to be more accurate on shorter sentences.
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Chapter 3

Likelihood and EM

What most experimenters take for granted before they begin their experiments is in-
finitely more interesting than any results to which their experiments lead.

—Norbert Weiner (1894–1964)

In the last chapter we described a stochastic model, Model A, that we would like to
apply to the task of learning syntactic structure from a set of unparsed sequences. Learn-
ing in this setting involves choosing values for the weights ~λ in the model. The standard
approach, which is very widely used, is to apply partial-data maximum likelihood esti-
mation (MLE), and the most common computational solution to MLE is the Expectation-
Maximization (EM) algorithm. As a baseline method, we review MLE/EM and describe
how Model A performs when estimated this way. We also describe an important alterna-
tive, maximum a posteriori (MAP) estimation, and show how it performs.

This chapter does not present many novel ideas or results; it presents the state-of-
the-art baseline on the problem tackled by the remaining chapters. (The idea of explicitly
supervised model selection may be novel, and the evaluation here goes beyond prior work
with the model we call Model A.) This baseline, EM training of Model A, is a thorough
replication of work described in Klein and Manning (2004), with additional commentary,
evaluation, and error analysis. A recurring theme will be that maximizing likelihood does
not in practice equate to maximizing accuracy.

3.1 Partial-Data Maximum Likelihood Estimation

Let ~xt =
〈
xt

1,x
t
2, ...,x

t
|~xt|

〉
be an unannotated training dataset.1 We assume that there

are hidden structures yt
i for each xt

i , but we do not know what those hidden structures are.
In this thesis, xt

i is a sequence of part-of-speech tags and yt
i is an unlabeled dependency

tree. Recall that W is used to denote the set of all sequences in Σ∗ paired with all of their
possible hidden structures.

1The t superscript reminds us that we are looking at training data.
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Given a parameterized model family p~θ
that defines a distribution over W, the maxi-

mum likelihood estimate given the partially observed dataset, is:

~θMLE
def= argmax

~θ

p~θ
(~xt) = argmax

~θ

∑
~y

p~θ
(~xt, ~y) (3.1)

Noting that p~θ
defines a distribution over W, not W∗, we add an independence assumption

among the examples in ~xt: we assume that they were sampled independently from the
same underlying distribution.

~θMLE = argmax
~θ

|~xt|∏
i=1

p~θ
(xt

i) = argmax
~θ

|~xt|∏
i=1

∑
y∈Yx

p~θ
(xt

i,y) (3.2)

Let p̃ be the empirical distribution over Σ∗ (that is, p̃(x) is the relative frequency of x
in the training set ~xt). Then MLE is equivalent to minimizing the cross-entropy:

~θMLE = argmin
~θ

HC

(
p~θ

∥∥∥∥ p̃

)
= argmin

~θ

−
∑
x∈Σ∗

p̃(x) log p~θ
(x)︸ ︷︷ ︸∑

y∈Yx

p~θ
(x,y)

(3.3)

The algebraic derivation is straightforward and omitted.
Maximum likelihood estimation has the attractive property that it unifies supervised

and unsupervised learning. If no variables are hidden in the training data (supervised
learning; there is no hidden structure yt), then the same objective—p~θ

(~xt)—can be used.
Notwithstanding the fact that MLE (with any model) is no longer the state-of-the-art super-
vised learning approach, a common framework for supervised and unsupervised learning
offers the advantage of straightforward combination and gradation between the two. For
example, Merialdo (1994) combined unlabeled data and labeled data into a single objec-
tive function.2 Pereira and Schabes (1992) estimated a model of phrase structure using a
partially-bracketed corpus. In this thesis, we only ever train on unannotated examples,
though we often use some annotated examples to choose among models trained using the
same paradigm but with slightly different settings.

3.1.1 Experiments

We next describe some experimental baselines and a simple randomized method for
choosing model parameters. The experimental setup will remain essentially unchanged
until Chapter 8.

Corpus Following Klein and Manning (2002a) and Klein and Manning (2004), our train-
ing data consist of sentences, stripped of punctuation, of length ≤ 10 from the Wall Street
Journal Penn Treebank (Marcus et al., 1993). Words are replaced by their (gold-standard)
part-of-speech tags. Our training set is 5,301 sentences; we use an additional 531 sentences
for development data and an additional 530 as test data. Σ consists of 35 tags, defined by
the Penn Treebank. The gold-standard dependencies come from the rules of Collins (1999).

2In fact, Merialdo only used the labeled data to initialize unsupervised training of the model.
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Baselines Two obvious baseline methods are to attach each tag as a child of its immedi-
ate right or left neighbor. The former, ATTACH-RIGHT achieves 39.5% directed accuracy;
ATTACH-LEFT achieves 22.6% directed accuracy. The two behave identically on the undi-
rected accuracy measure, achieving 62.1%. In this chapter, very few methods will match
the performance of ATTACH-RIGHT.3 We noted in Section 2.5 that it is possible to compute
attachment recall and precision; this corpus and parsing model are such that the two are
identical, since every sentence is annotated with a single connected tree in both the gold
standard and the hypothesis. Therefore recall, precision, and accuracy (whether the three
are directed or undirected) are equal.

We will see shortly that partial-data MLE can be carried out using the EM algorithm
to optimize the likelihood function. First, however, we consider an alternative, very simple
randomized method for approximating partial-data MLE.

The method is to repeatedly sample randomly (and uniformly) from the space of valid
models. Assuming that our model is a stochastic grammar whose parameters are multi-
nomial probability distributions—true of the stochastic CFG form of Model A—this can be
done by picking points on simplices of the right numbers of dimensions, one point for each
multinomial distribution in the model. Rubin (1981) and Smith and Tromble (2004) (with
a slight correction) provide a method for efficient uniform sampling from this set. In our
case, we pick points uniformly from the set that satisfy the constraints in Equations 2.3.

We generated 100 models this way. The distribution of their accuracy scores (directed
and undirected) is shown in Figure 3.1.1. Among these models, different selection strate-
gies are possible:

• The model with the highest likelihood on the training data. This model achieved
21.9% directed accuracy and 38.1% undirected accuracy on test data.

• The model with the highest accuracy on an annotated development dataset. This
model achieved 31.9% directed accuracy and 45.4% undirected accuracy on test data.

Already we see that higher likelihood on the training data does not imply higher accuracy.
Note also that neither model is as good as ATTACH-RIGHT.

The joint distribution among these 100 ~θs over test-data accuracy and training-data
log-likelihood is shown in Figure 3.1.1. Note that the two scores show no strong correlation
(r = 0.12), and that models with high likelihood tend to have a wide range of accuracies.
Perhaps a correlation would emerge if we had more models with higher likelihood. We will
see in Figure 3.7 that if likelihood is much higher (indeed, locally optimal), accuracy tends
to be high, but not well correlated with likelihood. We do not show undirected accuracy
here (see Figure 3.7); its correlation with likelihood is even smaller (r = 0.05). This is one

3The accuracy scores reported by Klein and Manning (2004) differ somewhat from ours. We suggest four
reasons for the (minor) discrepancy. First, our accuracy measure does not count the correct (incorrect) choice
for the root of the sentence for (against) a parser, to avoid doubly penalizing a wrong choice of root word.
(Incorrectly choosing the root necessarily implies at least one other error in the tree.) In a complete tree,
getting the root wrong implies at least one other error. Second, Klein used the entire dataset for both training
and testing; we separate out training, development, and testing data. Third, there may be slight differences in
the application of Collins’ head rules, which in some cases are not unambiguous. Fourth, our implementation
of their initializer in EM training is not exactly identical to theirs.
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Figure 3.1: Accuracy on test data (directed vs. undirected): 100 random models. The
ATTACH-LEFT and ATTACH-RIGHT baselines are also plotted.

of the major problems with partial-data MLE: likelihood does not predict accuracy with
any consistency.

3.2 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a general technique for optimizing
the likelihood function p~θ

(~xt) (and some other, related functions, as we will see). It was
introduced by Dempster et al. (1977) as a generalization of the Baum-Welch algorithm for
estimating the parameters of a hidden Markov model (Baum, 1972). EM has been widely
studied (Neal and Hinton, 1998; Riezler, 1999). EM is a self-scaling hillclimbing method in
the space of ~θ that finds a convergent sequence of parameter estimates

〈
~θ(0), ~θ(1), ...

〉
such

that p~θ(t+1)(~xt) ≥ p~θ(t)(~xt). When EM converges, and ~θ(i) = ~θ(i−1), then a stationary point
of the likelihood has been found.

Here we give a brief review of the EM algorithm.4 We have opted for an intuitive
exposition with enough formulas to allow concreteness and clarity, but we omit proofs and
derivations (with one exception). Readers wishing more detail are advised to see tutorials
by Berger (1998), Bilmes (1997), and Collins (1997b). Unfortunately the notation varies
greatly in different expositions; here we aim for consistency with the rest of the thesis. The
EM algorithm is given in Figure 3.3.

EM feels a bit circular; the current parameters are used to get an estimate of the pos-
terior q over hidden structures (value of Y), then the posterior is used to reestimate the

4We stay with the discrete random variable case, because it is more applicable to the problems at hand.
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Figure 3.2: Accuracy on test data vs. log-likelihood on training data: 100 random models.

EXPECTATION-MAXIMIZATION:

1. Initialize ~θ(0) and let i← 0.

2. (E step) For each observed xt in ~xt and each possible value y ∈ Yxt , let

q(y | xt)← p~θ(i)(y | xt) =
p~θ(i)(xt,y)∑

y′∈Yxt

p~θ(i)(xt,y′)
(3.4)

3. (M step) Let
~θ(i+1) ← argmax

~θ

Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
]

(3.5)

This is equivalent to MLE from complete data, where q is taken to be the conditional
distribution over Y for each xt. In the complete data case, q would be replaced by
the empirical distribution over Y given x.

4. If ~θ(i+1) ≈ ~θ(i) then stop; otherwise let i← i + 1 and go to step 2.

Figure 3.3: The Expectation-Maximization algorithm for locally optimizing likelihood
with partially-observed data. This is the discrete data case.
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parameters. How is it that EM effects an improvement in the likelihood?

3.2.1 Demonstration that EM Iterations Increase −HC

There are many ways to think about EM; the most appropriate at this juncture is to
think about the mapping from ~θ(t) to ~θ(t+1). (In Chapter 5 we will present another way
to think about EM: coordinate ascent on ~θ and q to optimize a related function.) When
picking the next estimate of ~θ during an M step, EM optimizes a function, the expectation
Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
]
.5 This function is often called an “auxiliary function,” and we

will write it Q~θ(t)(~θ). The subscript ~θ(t) is a reminder that Q depends on q (a posterior),
which was chosen using ~θ(t).

What does this function Q~θ(t) have to do with the original log-likelihood function to

be maximized (−HC

(
p~θ(t+1)

∥∥∥∥ p̃

)
)? Consider their difference, keeping in mind that this is a

function of ~θ, which is what EM is optimizing:

−HC

(
p~θ

∥∥∥∥ p̃

)
−Q~θ(t)(~θ) (3.6)

= −HC

(
p~θ

∥∥∥∥ p̃

)
−Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
]

=
∑
x∈Σ∗

p̃(x) log
∑
y∈Yx

p~θ
(x,y)−

∑
x∈Σ∗

∑
y∈Yx

p̃(x)q(y | x) log p~θ
(x,y)

=
∑
x∈Σ∗

p̃(x)
∑
y∈Yx

q(y | x) log
∑

y′∈Yx

p~θ
(x,y′)−

∑
x∈Σ∗

p̃(x)
∑
y∈Yx

q(y | x) log p~θ
(x,y)

(3.7)

The last step above simply sums over y inside the outer sum; y does not appear inside the
logarithm, so this move just makes the first term look more similar to the second.

=
∑
x∈Σ∗

p̃(x)
∑
y∈Yx

q(y | x)

log
∑

y′∈Yx

p~θ
(x,y′)− log p~θ

(x,y)


= −

∑
x∈Σ∗

p̃(x)
∑
y∈Yx

q(y | x) log
p~θ

(x,y)∑
y′∈Yx

p~θ
(x,y′)

= −
∑
x∈Σ∗

p̃(x)
∑
y∈Yx

q(y | x) log p~θ
(y | x)

= −Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

(3.8)

5The reader may notice that this equates to minimizing the cross-entropy HC

„
p~θ

‚‚‚‚ p̃ · q
«

.
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We can therefore write:

−HC

(
p~θ

∥∥∥∥ p̃

)
=

term 1︷ ︸︸ ︷
Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
] term 2︷ ︸︸ ︷
−Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

(3.9)

Our goal is to show that −HC

(
p~θ(t+1)

∥∥∥∥ p̃

)
≥ −HC

(
p~θ(t)

∥∥∥∥ p̃

)
. To do this, we will

show that an iteration of EM increases both terms in Equation 3.9, a sufficient condition
for increasing their sum. Term 1 is simple: by definition of the M step, ~θ(t+1) maximizes
term 1, and therefore for all ~θ, including the previous estimate ~θ(t),

Ep̃(X)·q(Y|X)

[
log p~θ(t+1)(X,Y)

]
≥ Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
]

(3.10)

Turning to term 2 in Equation 3.9, note that

Ep̃(X)·q(Y|X)

[
log p~θ(t)(Y | X)

]
−Ep̃(X)·q(Y|X)

[
log p~θ(t+1)(Y | X)

]
= Ep̃(X)·q(Y|X) [log q(Y | X)]−Ep̃(X)·q(Y|X)

[
log p~θ(t+1)(Y | X)

]
= Ep̃(X)

[
D

(
q

∥∥∥∥ p~θ(t+1)

)]
≥ 0 (3.11)

(since the Kullback-Leibler divergence can never be negative). Therefore term 2 is also im-
proved by an EM iteration. Minka (1998) also discusses EM as a lower bounding method.

3.2.2 Relation to Gibbs Sampling

Gibbs sampling is a general, randomized technique for generating a sample from a
joint probability distribution of more than one random variable. Such a sample can be
used to approximate the joint distribution or to compute expected values under the joint
distribution. Casella and George (1992) provide a good starting point for understanding
Gibbs sampling.

We can think of our model as including three random variables: ~Θ (the parameters), ~X
(the observed data), and ~Y (the hidden structure). Gibbs sampling would proceed by first
locking ~X to be ~xt, the observed training data. We then alternate between sampling a value
of ~Y given our current view of ~Θ (and ~X) and sampling a new value of ~Θ given our current
view of ~Y (and ~X). At each step, ~Y and ~Θ are each set to a specific value. The effect, over
time, is to sample from the joint distribution over ~Y and ~Θ given ~X. The computational
steps required for this kind of sampling are quite expensive, and Gibbs sampling is likely
to require a very long runtime. (Sampling Y given x and ~θ can be done, for weighted
grammar models like Model A, by running the Inside algorithm and sampling derivation
paths from the chart.)

EM can be described as a deterministic version of Gibbs sampling. Instead of sam-
pling a value for ~Y, we infer the entire distribution over ~Y given the current estimate of
~Θ and ~xt—this is the E step. Instead of sampling a value for ~Θ, we take the maximum
likelihood estimate (M step).
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3.2.3 Practical Concerns

The choice of the initial model ~θ(0) matters tremendously, because EM is a hillclimb-
ing method and the likelihood surface it aims to climb typically has many shallow local
optima.6 De Marcken (1995a) describes the bumpiness problem in detail and with illus-
trations, for a simple model with a small number of parameters. In practice, initialization
(step 1) is typically done in a “clever” way that brings some prior knowledge to bear on
the problem.

Numerous papers can be found addressing the convergence properties of EM (Demp-
ster et al., 1977; Wu, 1983; Redner and Walker, 1984; Xu and Jordan, 1996; Jordan and Xu,
1996). When numerical optimization is carried out in software, floating point errors can
occur. For this reason, when an algorithm like EM is “near” convergence, tiny changes in
the objective function should not be trusted. In practice, the changes in the parameters and
the objective function tend to vanish over time (without reaching zero). To keep runtime
manageable, we stop optimization of the function f (here, likelihood) when the relative
change in the objective function falls below some small value ε:

f
(
~θ(t)

)
− f

(
~θ(t−1)

)
f

(
~θ(t−1)

) < ε (3.12)

3.3 EM for Stochastic Grammars

Using EM, we should be able to take an instance of Model A (with specified parameter
values) and find a new parameter estimate that is at least as “good” on the likelihood
function. Running this to convergence will lead us to a local optimum on the likelihood
surface.

Here we outline the computational steps required for efficient EM with stochastic
grammars like Model A. Importantly, we make use of Model A’s Inside algorithm (Sec-
tion 2.4). Inside algorithms were arguably invented in service of EM (Baum, 1972; Baker,
1979; Jelinek, Lafferty, and Mercer, 1991).7

The important point is that the E step as shown in Figure 3.3 is computationally in-
tractable, since there may be exponentially many values of y for each xt

i in ~xt. Representing
the distribution q directly, however, is not necessary. In order to carry out the M step, we
only need the sufficient statistics to carry out complete-data MLE under the joint distribu-
tion p̃(X) · q(Y | X). For stochastic grammars, these statistics are the expected counts
under p̃(X) · q(Y | X) of each of the grammar rules, computable by the Inside-Outside
algorithm. EM for a stochastic grammar is defined in Figure 3.4.

Notice that the Inside and Outside algorithms are carried out on each example in the
training set on each iteration. While EM is guaranteed to converge, it may take a very long

6Charniak (1993) gives anecdotal evidence for a weighted grammar induction problem in which hundreds
of initializers each led to a different local optimum under EM search. We will see a similar effect in Sec-
tion 3.3.2.

7The paper by Baum is believed to be the first description of an EM algorithm. Dempster et al. (1977) gave
a more general form.
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EXPECTATION-MAXIMIZATION (stochastic grammars):

1. Initialize ~θ(0) and let i← 0.

2. (E step) For each rule r ∈ R (the rules of the grammar) let cr ← 0. For each example
xt in ~xt:

• Run the relevant Inside and Outside algorithms to compute p~θ(i)(x) and (for all
r ∈ R) let cr ← cr + Ep~θ(i) (Y|xt)

[
fr(xt,Y)

]
.

~c now contains sufficient statistics for the parameters of the model.

3. (M step) Compute ~θ(i+1) by normalizing ~c. That is, if r is in the partition Ri of the
grammar rules, let θr ←

cr∑
r′∈Ri

cr′
. This is the maximum likelihood estimate given the

sufficient statistics.

4. If ~θ(i+1) ≈ ~θ(i) then stop; otherwise let i← i + 1 and go to step 2.

Figure 3.4: EM for stochastic grammars.

time to do so, partly because of the computational expense of the dynamic programming.

3.3.1 Experiments

In Section 3.1.1 we described how choosing the MLE ~θ from among a randomly-
generated set of ~θs for Model A performed on parsing English data. Here we use EM
to optimize the estimate and show markedly improved performance.

Initializers: The model, ~θ, consists of 2,765 probabilities, including |Σ| = 35 root prob-
abilities, 8|Σ| = 280 stop/continue probabilities, and 2|Σ|2 = 2, 450 child probabilities.8

We make use of three initializers, each consisting of a single special E step followed by
an M step. None of these defines a joint distribution; they simply provide unnormalized
scores over all parses for a given xt, which are then normalized (implicitly by running the
Inside-Outside algorithm) to give the posterior q.

Zero The special E step is the usual Inside-Outside pass, but with all λi = 1. Note that this
is not a valid stochastic grammar (because Equations 2.3 are not satisfied), but the
posterior q computed indirectly is a valid posterior; in fact it is the uniform posterior
over hidden dependency trees for each sentence, with the unnormalized scores given

8The number of degrees of freedom is |Σ| − 1 (for root), plus 4|Σ| (for stop), plus 2|Σ|(|Σ| − 1) (for child),
totaling 2,554.
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by:9

∀y ∈ Yxt , u(xt,y) = 1 (3.13)

We call this the Zero initializer because the parameters in the logarithmic domain are
all set to zero.

K&M Recall that for dependency trees, we use y(i) to denote the set of children of the
ith word in the sentence. We start with a special E step that involves no dynamic
programming, defining the posterior as follows for each example xt:

p(xi is the root) =
1
|xt|

p(j ∈ y(i)) = Z(|xt|, j) 1
|i− j|

where Z(n, j) is an appropriate constant for the jth word in an n-length sentence,
equal to (1 − |xt|−1)

/∑
i∈{1,...,j−1,j+1,...,|x|} |i− j|−1 . The unnormalized score, then,

is simply:

∀y ∈ Yxt , u(xt,y) =
|xt|∏
i=1

∏
j∈y(i)

1
|i− j|

(3.14)

This is roughly the initializer used by Klein and Manning (2004).

Local The special E step scores trees as follows, using a variant of the Inside-Outside al-
gorithm:

∀y ∈ Yxt , u(xt,y) =
|xt|∏
i=1

∏
j∈y(i)

(
1 +

1
|i− j|

)
Similar to K&M, this initializer favors local attachments, but in a softer way. As in
the case of Zero, the Inside-Outside computation will give a valid posterior over
dependency trees even though the above expression does not have a normalizer.

Convergence: See Equation 3.12; here we set ε = 10−10 and note performance at possible
earlier ε values. Beyond this experiment, we will always use the stopping criterion that
either ε = 10−5 or 100 iterations have passed, whichever comes first.

Table 3.1 shows, for each of the three initializers, how many iterations it takes to get
to each convergence criterion ε, the state of the cross-entropy HC in bits, and the directed
and undirected attachment accuracies at that stage.

To summarize Table 3.1, likelihood does not predict either kind of accuracy with any
kind of consistency. Before training, the Zero initializer performs best—it is the favored

9Interestingly, ~θ(0) need not correspond to a feasible point in the log-probability simplex for the given
stochastic grammar. It is perfectly reasonable to initialize with any real vector, since such a vector has an
interpretation as a log-linear model, and expected values of rule counts can be computed under that model.
Under the M step, those counts will lead to a feasible estimate. For some models (none in this thesis), Yx is
not finite, and this kind of initialization could lead to divergence of Z̈~θ(x).
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contestant.10 But as EM iterations improve its cross-entropy, its directed accuracy falls, and
its undirected accuracy fluctuates. Even though Zero appeared to be the best initializer, it
did not find the deepest valley among the three initializers on the cross-entropy surface
(equivalently, the highest mountain on the likelihood surface).

The K&M initializer achieved by far the best accuracy. Recall how similar it was to
the Local initializer, which performed very poorly. This highlights how precarious the
situation is with regard to choosing an initializer: two initializers that appear to pick up
on the same basic idea may lead to very different results.

In all cases, iterations past ε = 10−5 show severely diminishing returns on cross-
entropy, given the number of iterations that must be run to achieve successively tighter
convergence requirements. (E.g., running to ε = 10−10 is more than ten times as slow.) For
the remainder of the thesis, we will use ε = 10−5 as the stopping criterion for all objective
functions and datasets.

A more detailed error analysis of a slightly improved version of this training method
follows in Section 3.4.1.

3.3.2 Multiple Random Initializations

Before describing the next set of experiments, we describe an important method used
throughout the thesis wherever a choice must be made among many close but distinct
variations on a training algorithm.

Model Selection

We can view a deterministic numerical optimization algorithm like EM as a mapping
opt : Rn → Rn from initial point estimates to local optima of the objective function. In-
stead of starting with a single initializer, we might start with many different ones, chosen
randomly (as in Section 3.1.1) or from some engineered set. If T is the set of initializers
under consideration, We then choose:

~θ∗ ← max
~θ∈T

f(opt(~θ)) (3.15)

where f is some selection function. In this thesis, we will apply two kinds of model selec-
tion. Supervised model selection sets f to be the directed attachment accuracy of a model
on the development data. Unsupervised model selection uses likelihood of the unan-
notated development data (computed with help from the Inside-Outside algorithm). We
will use these approaches throughout the thesis (the former is far more successful, though
we will see that very little annotated data is needed for the level of performance obtained
by supervised selection). They have the important property—for research and practical
use—that no retraining needs to be done if we wish to change the selection function f . If a
different objective criterion were defined for an application (like machine translation), we

10If ties are broken randomly in decoding, then this initializer equates to a random classifier that uniformly
picks from among the structures in Yx, given x.
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could measure the goodness of each model using that application and pick the appropriate
model from the set.11

Obviously, as |T| increases, the quality (measured by f ) of the estimate will increase.
This can become very computationally expensive, since iterative numerical optimization
algorithms like EM can have long runtimes. One option might be to start training with
many different initial models synchronously and strategically allocate computational re-
sources to the different instantiated runs of the algorithm based on the current quality
of each iterate. Different strategies are imaginable (see, for example, Gomes and Selman,
2001). In the following section, we simply apply EM to each of the 100 randomly-generated
models from Section 3.1.1, one at a time. After the training of the kth model, we apply
model selection among the k models trained so far.

3.3.3 Experiments

Figure 3.5 shows performance as a function of the number of EM iterations. The su-
pervised model selection method obtains 63.4% directed accuracy (71.7% undirected), but
requires 3,144 total iterations of EM (39 random restarts). Unsupervised model selection
does not perform nearly as well and does not improve monotonically with the number of
random restarts.

When we consider the 100 random models used as initializers and the 100 EM-trained
models, we see a marked difference in their accuracy (Figure 3.6). EM training does consis-
tently improve accuracy on random models (though not on all models—recall Table 3.1);
see Figure 3.8, which includes Zero, K&M, and Local.

Figure 3.7 shows that there is small variation in the training data log-likelihood after
EM training, and (as before) no clear relationship between likelihood and accuracy. The
evidence in this figure is particularly damning of partial-data MLE: note that initialization
has little effect on the likelihood of the learned model, but accuracy is still very much
spread out. The fact that there are so many different learned models is further evidence
that the likelihood function has many, many local optima.

3.3.4 Variants

For completeness, we now describe an approximate method (Viterbi EM) and an incre-
mental variant. We have not applied these variants to Model A; they are generally viewed
as approximations to be used when E steps are too computationally expensive (statistical
machine translation is a typical example; Brown, Cocke, Della Pietra, Della Pietra, Jelinek,
Lafferty, Mercer, and Roossin, 1990; Brown, Pietra, Pietra, and Mercer, 1993), though there
are theoretical justifications (Neal and Hinton, 1998).

11It is natural to ask whether there are better ways to use annotated examples than simply for selection
among purely unsupervisedly trained models. We will address this question directly, for completeness, in
Section 3.4.2. Supervised model selection in this thesis works on the assumption that human annotators’
syntactic choices are likely to improve task performance—it is still up for debate whether those choices are
optimal or even appropriate for any given NLP task.
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Figure 3.6: Accuracy on test data (directed vs. undirected): 100 random models (and our
three initializers) before and after EM training. Small type is before training, and large is
after—note that Zero and Local are at essentially the same point in this plot after training.
The ATTACH-LEFT and ATTACH-RIGHT baselines are also plotted.

Winner-take-all or “Viterbi” EM

Maximizing (“Viterbi”) dynamic programs often are less expensive in practice to run
than their summing (Inside) counterparts. For some problems involving scores of discrete
structures, like matchings on weighted bipartite graphs (Melamed, 2000; Smith, 2002) and
spanning trees on weighted graphs (McDonald et al., 2005b), maximization algorithms are
known and efficient, but summing algorithms are not. Even in cases where polynomial
Inside algorithms are known, the Viterbi variant usually runs faster in practice because
heuristic search methods can be employed (Charniak, Goldwater, and Johnson, 1998; Cara-
ballo and Charniak, 1998; Klein and Manning, 2003c).

The “Viterbi” variant of EM replaces the Inside-Outside algorithm with a Viterbi al-
gorithm in the E step. This amounts to an approximation of the posterior probability dis-
tribution by its mode:

p~θ(i)(y | xt) ≈
{

1 if y = argmaxy′ p~θ(i)(y′ | xt)
0 otherwise

(3.16)

In practice, Viterbi EM equates to iteratively labeling the data (using the Bayes deci-
sion rule and the current model), then re-estimating the model on the labeled data using
full-data maximum likelihood estimation. The algorithm is given in Figure 3.9.

41



 10

 20

 30

 40

 50

 60

 70

-60 -55 -50 -45 -40 -35 -30 -25 -20

di
re

ct
ed

 a
cc

ur
ac

y 
(t

es
t)

log-likelihood (training)

Zero
K&M

Local

Zero

K&M

Local

random models
after EM training

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

-60 -55 -50 -45 -40 -35 -30 -25 -20

un
di

re
ct

ed
 a

cc
ur

ac
y 

(t
es

t)

log-likelihood (training)

Zero

K&M
Local

Zero

K&M
Local

random models
after EM training

Figure 3.7: Accuracy on test data vs. log-likelihood on training data: 100 random models
(and our three initializers) before and after EM training. The plot above shows directed
accuracy, the plot below undirected. Small labels correspond to our initializers before
training, large labels to after training. Zero and Local are at essentially the same point
in this plot. The correlation (computed on random models only) between likelihood and
directed accuracy increases from r = 0.12 to r = 0.40; the correlation between likelihood
and undirected accuracy increases from r = 0.05 to r = 0.23. Even among local maxima,
there is not a strong correlation between likelihood and accuracy.
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EM training. The text labels correspond to the more carefully designed initializers. The line
is y = x.

VITERBI-EM:

1. Initialize ~θ(0) and let i← 0.

2. (E step) For each xt ∈ ~xt, let best(xt) = argmaxy p~θ(i)(y | xt), and let the distribution
q(best(xt) | xt) ← 1 (and 0 for all y 6= best(xt)). Typically in practice ties are broken
arbitrarily, though one might also divide q among all of the top equally-ranked ys.

3. (M step) Let ~θ(i+1) ← argmax~θ
Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
]
. This is equivalent to as-

suming that the labels selected in the E step are correct, and applying maximum
likelihood estimation (from complete data).

4. If ~θ(i+1) ≈ ~θ(i) then stop; otherwise let i← i + 1 and go to step 2.

Figure 3.9: Viterbi EM.
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Incremental EM

Another variant of EM is incremental EM. Instead of computing sufficient statistics
over the whole training dataset before running an M step, run an M step after updating the
statistics for each example. Neal and Hinton (1998) describe how this is mathematically
justified; here we note that it may have the benefit of faster training.

3.4 Maximum a Posteriori Estimation

Maximum likelihood estimates are known to be prone to “over-fit” the training data.
That is, the model that best fits the training data (in terms of likelihood) may not generalize
well to unseen examples.

A classical example of this is an mth order Markov chain ((m + 1)-gram model) over
words. Suppose m = 2; a trigram model trained on a finite dataset and then used to
compute the probability of a new sentence will typically assign probability 0, because some
trigram will appear in the new sentence that was never seen in training. Under the MLE,
that trigram has probability 0 (more precisely, p(x3 | x1, x2) = 0). The term smoothing is
used to describe a technique—mathematically clean or not—for making the probability
estimate less brittle and allowing events not seen in training to receive some probability.

Many smoothing methods can be described as maximum a posteriori (MAP) estimation
methods. Instead of maximizing likelihood (Equation 3.1), MAP estimates:

~θMAP = argmax
~θ

π(~θ)p~θ
(~xt) = argmax

~θ

log π(~θ) + log p~θ
(~xt) (3.17)

where π is a prior density over parameters. The field of Bayesian statistics has a lot to
say about priors (we recommend MacKay, 2003). For engineering purposes, priors can
present some computational challenges, which we avoid by choosing a family of priors
that is simple and fits neatly into EM training.

Dirichlet Priors

An example for multinomial-based models (including stochastic grammars) is so-
called “add-λ” smoothing, which adds to the (expected) count of each rule r ∈ R a fixed
value λ > 0 before renormalizing. This is equivalent to MAP estimation with a special
symmetric case of a Dirichlet prior over ~θ. The form of the Dirichlet follows. Let E be a
finite set of events, and suppose we wish to define a probability distribution over multi-
nomial distributions over E.12 The Dirichlet is parameterized by a vector ~α ∈ R≥0 and
defines:

πDirichlet(~λ; ~α) =
1

B(α)

∏
e∈E

λαe−1
e (3.18)

where B is the Beta function; this term simply normalizes so the density integrates to 1
over the probability simplex.

12Remember that valid multinomials are ~λ : E → R≥0 such that
P

e∈E λ(e) = 1.
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In practice, MAP estimation of a multinomial with any Dirichlet prior simply requires
adding the pseudo-count αe − 1 to the (expected) count (i.e., sufficient statistic) for e. So,
to carry out MAP estimation with stochastic grammars, we modify the E step slightly and
add αe−1 to the expected count of rule event e. Add-λ is the special case where αe = λ+1
for all e ∈ E.

Interestingly, values of αe that are less than one also give a valid Dirichlet prior. The
effect is sparsity: many of the model parameters are 0 in the MAP estimate (Mark Johnson,
personal communication). Such a prior, however, may require a more complicated M step
than simple renormalization of counts.

3.4.1 Experiments

We applied MAP estimation, using EM with the symmetric Dirichlet (add-λ), to the
same weighted grammar induction problem. Results are presented in Table 3.2. Notice
that, within initializers, the best trial for training set accuracy is less heavily smoothed
(smaller λ) than the best trial for test set accuracy. For better generalization to test data, a
stronger prior is required.

Note that cross-entropy lessens with the strength of the prior. The prior essentially
adds a term to the objective function (see Equation 3.17), so that fitting the training data
(low cross-entropy) becomes relatively less important as λ increases. It is also interesting
to note that convergence occurs more quickly (as a general trend) with more smoothing.

When exploring many different training settings (here, there are 3 initializers × 7 val-
ues of λ), it is appropriate to apply model selection. This is done as described in Sec-
tion 3.3.2, above.13 In addition to unsupervised and supervised model selection, we re-
port oracle model selection, which refers to the model that performs best on the test data
~xτ . In this setting, both unsupervised and supervised model selection result in the same
choice, which is only slightly worse than oracle model selection (see the last three lines of
Table 3.2). This model, initialized by K&M and trained with λ = 10−2/3, will serve as a
baseline in the experiments in the next few chapters, where we consider how to change the
objective function to improve accuracy. It achieves 41.6% directed accuracy (not shown in
Table 3.2) and 62.2% undirected accuracy.

3.4.2 Supervised and Semisupervised Training

Our use of annotated data for the selection among models trained with different hy-
perparameters (so far, the initializer ~θ(0) and the prior parameter λ) had little effect in the
experiment of Section 3.4.1—supervised and unsupervised model selection resulted in the
same choice (K&M initializer and λ = 10−2/3). Later, we will see that supervised model
selection greatly outperforms unsupervised selection for some other training methods.

First, as an upper bound, we note that training Model A using supervised maximum
a posteriori estimation on the training set (i.e., assume the trees are observed) and model

13We did not—here or elsewhere in the thesis—apply model selection over the randomly-initialized models.
The rationale for this is that training 100 randomly initialized models is extremely computationally expensive,
especially when other hyperparameters are to be considered. Instead, we stick to a few values for each hyper-
parameter, then take the cross-product over those settings.
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Figure 3.10: Different uses of the development dataset, as the size of the development
dataset changes. “Supervised” training refers to using (only) the development dataset to
estimate Model A (with add-1 smoothing). “Supervised initialization” refers to using the
supervised MLE model trained from the development dataset to initialize EM training on
unlabeled data. Merialdo (1994) essentially compared curves like these first two, for a
different task. “EM with supervised selection” shows how the experiments in Section 3.3.3
would change if the 531-sentence annotated development dataset were diminished in size
(from the plot, we see that very little would change); the “U” marks the performance of
unsupervised selection and can be seen as the limit of the curve as the value of x→ 0. The
“semisupervised” curves show training from different initializers, where the E-counts (on
each E step) are augmented with supervised counts from the development dataset—this
is equivalent to defining a Dirichlet prior (from the annotated data) for MAP/EM training
on the unannotated data.
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selection across λ achieves 82.5% directed accuracy on the test data. If we use the devel-
opment dataset alone to estimate Model A (with MLE), we can achieve 81.1% accuracy.
Figure 3.10 shows how this changes if the annotated development dataset is decreased in
size; 56% accuracy can be achieved with only five annotated examples (shown in the same
figure).

This is fairly damning for our paradigm of unsupervised estimation with supervised
model selection, which (so far) has achieved only 41.6% accuracy (diminished with a
smaller development dataset; see Figure 3.10).

It might be expected that semisupervised training—that is, learning from both the an-
notated and the unannotated examples—could outperform either method. One reasonable
technique is to train the model supervisedly (using MLE or MAP, for example) on the an-
notated data, then initialize EM training with that model. Here we initialized training with
a supervised MAP estimate (symmetric λ = 1 Dirichlet prior). Strikingly, using the unan-
notated data in this way does not improve the quality of the model over training with the
annotated development dataset alone (see the first two curves in Figure 3.10), unless only
a tiny number (10 or fewer) of annotated examples are available. This is easy to explain:
after the first iteration, the supervised initializer is forgotten, and the unlabeled data have
complete control over all future iterations. Similar results were found for part-of-speech
tagging by Merialdo (1994).

Another reasonable technique for semisupervised estimation is maximum likelihood
on the full dataset (here, unannotated training data plus annotated development data).
This can be achieved by running EM on the union of the annotated and unannotated
datasets. (This is equivalent to using the sufficient statistics from the annotated data to
define a Dirichlet prior—see Section 3.4)—then carrying out MAP/EM training on the
unannotated training dataset.) This approach lets the annotated data influence learning
throughout EM, not just at the beginning. Figure 3.10 shows how this performs for four
different initializers (Zero, K&M, Local, and the supervised initializer suggested above)—
for the K&M initializer the curve is the same or better as unsupervised estimation, but for
Zero and Local at least 100 annotated examples are needed to outperform our unsuper-
vised training/supervised selection method. The supervised initializer and mixed-data
MLE is on par with the same initializer used with MLE on only the unlabeled data.

It is not difficult to imagine more clever ways of combining the labeled and unlabeled
data. The annotated examples might be weighted more heavily, or their influence might
be gradually reduced (indeed, we will explore such a possibility in Section 5.3.3). While
such an exploration is clearly important, it is beyond the scope of this thesis and is left to
future work.

To sum up this section, our unsupervised estimation/supervised selection paradigm
is not the best way to use annotated training data to construct accurate models. Con-
sistent with much prior work, our attempts to combine unannotated and annotated data
have not even matched the performance of training with tiny amounts of annotated data
alone. Considerably more sophisticated semisupervised learning techniques have been
developed, and could be applied to that problem (e.g., Ando and Zhang, 2005).

Importantly, the stated goal of the work in this thesis is to learn without supervision.
We are therefore faced with a choice: (a) we might forgo the use of annotated data com-
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pletely (even for model selection), (b) we might use extrinsic tasks to select models, or (c)
we might use annotated data for model selection as a proxy for such tasks. We follow
(a) and (c). Our best reported results will be achieved using annotated data for model
selection, and this is arguably a methodological weakness.

We offer two defenses here before leaving the matter to lie. First, unsupervised learn-
ing in NLP nearly always reports performance in comparison to a gold standard test
dataset. In parsing, for example, it simply makes sense to evaluate an unsupervised parser
against a gold standard. When such results are reported in publication, typically model
selection is glossed over (see, e.g., Klein and Manning (2004); counterexamples include
Smith and Eisner (2005a,b, 2006)). The full publication record over the past two decades
show improvements on related grammar induction tasks, and each paper takes into ac-
count lessons learned in the previous one. It is arguable that recent work on unsupervised
approaches to this problem (and likely others) has involved implicit supervised model se-
lection over time—possibly on the test datasets—through the biases imposed by knowing
prior work, and possibly by selective reporting of results.14 Indeed, the methodology in
this thesis is distinct from prior work in making explicit the use of development data (how
much, whether annotated, and when it is used). Arguably all research in this area, then,
is using supervised model selection—it is only now that we are saying so. This argument
from the status quo is not meant to denigrate prior work. Indeed, we believe this kind
of gold-standard evaluation is highly appropriate for unsupervised learning, at least at
present (see Section 1.4).

The second defense comes from a larger point already made about appropriate hid-
den structure. Ideally, we should evaluate unsupervised learning methods for parsing in
the context of several applications that use parsers (option b, above). That kind of evalu-
ation offers the advantage of the researcher being agnostic about precisely which trees (or
distributions over trees) should be discovered in the data. While we, personally, are ag-
nostic about whether Treebank trees (or dependency versions of them) are ideal or even
appropriate for any given task, this is the best approximation we know of to date for a real
application that accepts parsers modularly. An important line of future work, then, is to
explore the use of parsers in such settings. As suggested by results in Chiang (2005) and
Zettlemoyer and Collins (2005), among others, it is unclear whether gold standard parsing
accuracy is a good predictor of system performance. Since test-beds of this kind (b) are
unavailable, we opt for (c), which uses annotated data as a proxy for the task of interest.

In the context of contrastive estimation (Chapter 4) and structural annealing (Chap-
ter 6), we will briefly note the performance of semisupervised training in comparison
to our unsupervised estimation/supervised selection approach (Sections 4.6.6, 5.3.3, and
6.2.3).

3.4.3 Error Analysis

Table 3.3 breaks down the performance of the selected MAP/EM model by undi-
rected, unordered link types, showing undirected precision and recall for the most com-

14This may only hold for English, on which most unsupervised syntax learning experiments have been
performed.
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mon link types in the hypothesized and gold-standard annotations. The model does rela-
tively well with common noun-phrase internal links: determiner/noun (DT/NN), adjec-
tive/noun (JJ/NN), and proper noun compounds (NNP/NNP).

A major problem is the failure to connect nouns to the tags they hold syntactic/sem-
antic relationships to, including prepositions (IN/NN) and verbs (NN/VBD, NN/VBZ).
This is the result of the model having learned that determiners are the parents of nouns,
rather than the reverse. It has been pointed out (in particular by Klein and Manning (2004))
that there is a valid linguistic argument for making determiners the heads of noun phrases,
and the convention of making the noun the head is not necessarily the best choice (Abney,
1987). The point is well taken; notice that undirected attachment measures do not directly
penalize the reversal of the determiner-noun link, but such a mistake does prevent the
noun from attaching as a child to the appropriate preposition or verb. At best, the de-
terminer (rather than the noun) will attach to the preposition or verb, and undirected ac-
curacy will penalize that error. Notice the over-hypothesizing of preposition/determiner
(DT/IN) and verb/determiner (DT/VBD, DT/VBZ) links. Another problem is the under-
hypothesizing of adverb-verb links (RB/VBZ, RB/VBD).

Table 3.4 breaks undirected and directed precision and recall down by the length of the
attachment—that is, the string distance between a tag and its hypothesized or true parent
tag. Each column of the table corresponds to a given distance between words, and only
word pairs of that distance are counted in the numerators and denominators for precision
and recall scores in that column. The table tells us that the model is more accurate (both
in precision and recall) on shorter dependencies. The smaller numbers break down the
dependencies by direction of the child (left or right). We see that the model tends to attach
tags as adjacent right children too frequently, for example. (This is consistent with the DT
→ NN problem mentioned above.) Notice (by comparing the top and bottom rows, of
counts) that the overall distribution of dependency lengths is approximately correct.

Path Analysis

Later in the thesis, we will treat the MAP/EM condition as a baseline against which
other methods will be compared. While directed and undirected accuracy are perfectly
reasonable ways to measure the quality of a dependency model, there is the nagging ques-
tion of how much to penalize a model for getting directionality wrong.

Consider this simple example. Suppose we have the subsequence “foams/VBZ at/IN
the/DT mouth/NN.” The gold standard would probably posit that foams/VBZ is the parent
of at/IN, at/IN is the parent of mouth/NN, and mouth/NN is the parent of the/DT. If the
model wrongly makes the the parent of mouth, but correctly attaches the phrase (the/DT
mouth/NN) as a child of at—by making the the child of at—then even the undirected at-
tachment loss will still be worse by a point, since the gold standard does not posit a de-
pendency in either direction between at/IN and the/DT.

We suggest a novel solution to this issue.15 Rather than a simple 0–1 loss for attach-
ments, we consider the tree distance from each tag to its correct parent.16 Using a simple

15Paths through parse trees have been measured for other purposes (Bunescu and Mooney, 2005; Swanson
and Gordon, 2006).

16For the purposes of this measure, the root tag attaches to a special wall symbol, denoted $ and placed by
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DT NN 231 94.4 95.6 228
NNP NNP 207 60.9 70.4 179

IN NN 73 89.0 50.8 128
NN VBD 23 100.0 19.2 120
JJ NN 116 79.3 78.0 118

NN VBZ 16 100.0 14.7 109
JJ NNS 62 98.4 75.3 81

IN NNS 61 75.4 62.2 74
NNS VBD 51 90.2 67.6 68
NN NN 59 84.7 75.8 66
NN NNS 42 88.1 60.7 61
IN VBD 36 83.3 50.8 59
RB VBD 2 100.0 3.6 56
NN NNP 35 74.3 46.4 56

NNS VBP 31 93.5 56.9 51
NNP VBD 40 37.5 31.3 48
CD CD 54 83.3 97.8 46
RB VBZ 5 60.0 6.8 44

NNP VBZ 40 37.5 34.1 44
CD NN 49 73.5 83.7 43
PRP VBD 40 87.5 85.4 41
CD IN 72 38.9 70.0 40
TO VBD 42 92.9 100.0 39
PRP VBZ 45 86.7 100.0 39
DT NNS 42 88.1 94.9 39
MD VB 38 97.4 97.4 38
TO VB 34 100.0 100.0 34
CD TO 65 26.2 51.5 33
CD NNS 33 78.8 78.8 33
IN NNP 38 60.5 71.9 32
IN VBN 32 84.4 93.1 29
IN VBZ 33 42.4 73.7 19
DT VBZ 78 16.7 100.0 13
DT IN 82 4.9 100.0 4
DT VBD 74 4.1 100.0 3

Table 3.3: Undirected precision and recall of the K&M, λ = 10−2/3 trial of MAP/EM (the
selected trial), by the unordered tag-pair type. Note that attachments in either direction
and with the tags in either order are counted together. Tag-pair types with a count ≥ 30 in
the hypothesized annotation or the gold-standard are listed.
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MAP/EM:
length: 1 2 3 4 5 6 7 8 9

hyp. count: 2222 547 237 85 41 17 7 1 1
838 1384 233 314 109 128 47 38 24 17 12 5 6 1 0 1 1 0

precision: 68.1 56.9 39.7 32.9 26.8 23.5 14.3 0.0 100.0
64.1 34.5 19.3 47.8 14.7 43.0 19.1 36.8 12.5 23.5 0.0 20.0 0.0 0.0 – 0.0 100.0 –

recall: 77.2 44.7 33.1 24.1 20.0 13.3 8.3 0.0 100.0
43.1 66.9 14.4 39.2 15.1 30.9 18.0 21.2 8.8 19.0 0.0 6.3 0.0 – 0.0 – 100.0 –

gold count: 1960 696 284 116 55 30 12 4 1
1246 714 313 383 106 178 50 66 34 21 14 16 11 1 3 1 1 0

ATTACH-RIGHT:
length: 1 2 3 4 5 6 7 8 9

hyp. count: 3158 0 0 0 0 0 0 0 0
3158 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

precision: 62.1 – – – – – – – –
39.5 – – – – – – – – – – – – – – – – –

recall: 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100.0 – 0.0 – 0.0 – 0.0 – 0.0 – 0.0 – 0.0 – 0.0 – 0.0 –

gold count: 1960 696 284 116 55 30 12 4 1
1246 714 313 383 106 178 50 66 34 21 14 16 11 1 3 1 1 0

Table 3.4: Precision and recall by string distance between parent and child, for the
MAP/EM trial with λ = 10−2/3, initialized with K&M (the selected trial). ATTACH-RIGHT

is also shown. To be clear, a given column’s precision and recall scores count only attach-
ments (hypothesized or gold-standard) between words of a certain distance apart. The
large-typeface numbers show the undirected attachment precision and recall of dependen-
cies at different lengths. Small-typeface numbers give the directed attachment precision
and recall for left children and right children, by length.
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ATTACH-RIGHT MAP/EM
% of tag tokens % of tag tokens
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1 55.3 36.0 64.9 47.3
2 20.0 9.6 25.2 21.1
3 9.8 5.0 7.1 5.8
4 5.3 3.6 2.0 1.3
5 3.1 2.5 0.7 0.5
6 2.8 2.4 0.0 0.0
7 1.8 1.8 0.0 0.0
8 1.1 1.1 0.0 0.0
9 0.6 0.6 0.0 0.0
∞ – 37.4 – 23.9

Table 3.5: Path analysis of the selected MAP/EM model. The macro-averaged undirected
path length in hypothesized trees between a word and its gold-standard parent is 1.31; for
ATTACH-RIGHT it is 1.50. Note that attachment accuracy is not identical to the first line
because here we count paths to the special wall symbol at the left side of the sentence (for
these purposes, just another node in the tree), whereas our usual accuracy measures do
not count attachments to the wall.

search algorithm, we can compute the length of the directed path from each tag xi to its
gold-standard parent,17 and we can also compute the length of the undirected path.18 The
former is said to have infinite length if it does not exist. In the case of the latter, which is
always finite, we can compute a micro-average (by tags in the test corpus) and a macro-
average (average over sentences of the mean path child-parent path length in the sentence).
For the selected MAP/EM model, these statistics are given in Table 3.5.

3.5 EM with Log-Linear Grammars

This section considers EM for log-linear grammars. In this thesis we will not carry
out EM directly on log-linear grammars with unconstrained weights, for computational
reasons and because for Model A it is equivalent to EM on the stochastic grammar (as we
will demonstrate in Section 3.5.1).

EM for weighted (log-linear) grammars is more computationally demanding than for
stochastic grammars. As in the stochastic case, dynamic programming (Inside and Out-

convention at the left side of the sentence.
17This path is unique in a directed tree, if it exists.
18This path always exists and is unique in a connected tree.
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side) algorithms obviate the explicit representation of q. The sufficient statistics for the
log-linear model are identical to those for the multinomial model in the case where the
log-linear features ~f correspond exactly to the counts of grammar rules R in a derivation.19

The added expense comes in the M step. For log-linear models, there is no closed form
for the complete-data maximum likelihood estimate. Finding the MLE requires solving a
convex optimization problem:20

max
~θ

Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
]
≡ min

~θ
HC

(
p~θ

∥∥∥∥ p̃ · q
)

(3.19)

Many methods exist (e.g., Benson and Moré, 2001), but they can take a long time to con-
verge. We would prefer to avoid this doubly-nested optimization problem. One way
to do this (not applied here), introduced by Dempster et al. (1977) and applied by Rie-
zler (1999), is a generalized EM (GEM) algorithm. The idea is simple: on the M step,
instead of maximizing Equation 3.19, with respect to ~θ, simply choose ~θ(i+1) such that

HC

(
p~θ(i+1)

∥∥∥∥ p̃ · q
)
≤ HC

(
p~θ(i)

∥∥∥∥ p̃ · q
)

. In the case of a log-linear model, a single step

down the cross-entropy hill (in the gradient direction and of the appropriate size, usually
found by a line search, e.g., Armijo (1966)) satisfies this requirement. Another option is a
single iteration of an iterative scaling algorithm (Darroch and Ratcliff, 1972). This elimi-
nates the double loop.

The ability to compute the objective function value and gradient permits the appli-
cation of standard numerical optimization techniques like gradient ascent, conjugate gra-
dient, and quasi-Newton methods. While not necessarily simple to compute, the general
form of the gradient is:

∇~θ
(−HC

(
p~θ

∥∥∥∥ p̃ · q
)

) =

constant w.r.t. ~θ; sufficient statistics︷ ︸︸ ︷
Ep̃(X)·q(Y|X)

[
~f(X,Y)

]
−Ep~θ

(X,Y)

[
~f(X,Y)

]
(3.20)

Interestingly, the second derivative ∂2/∂θi∂θj is equivalent to a difference in covariances; a
proof is omitted since we do not make use of second derivatives in this thesis. While GEM
methods are not applied in this work, the form of the gradient is similar to a gradient we
do require (in the next chapter).

19In the more general case, with arbitrary features, we require the expected value of each feature’s count. If
these are no more coarse-grained than the grammar rules, then obtaining these expectations is not costly and
can be done by bookkeeping in the dynamic program.

20 The unconstrained optimization problem for fully-observed-data MLE with log-linear models turns out to
be the dual of a constrained maximum entropy problem on a given feature set F, namely:

max~θ H
`
p~θ

´
such that ∀f ∈ F,Ep~θ

(W) [f(W)] = Ep̃(W) [f(W)]

This is why log-linear models are often called “maximum entropy” models. The solution to the maximum
entropy problem above is always the log-linear model that maximizes likelihood. See Ratnaparkhi (1997);
Berger (1998) for a thorough discussion.
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3.5.1 Convergence of Z̈~θ

A problem still remains for weighted grammars. Note that we have assumed that ~θ

can take any value in Rn (for n features). The trouble is that for some values of ~θ, the
partition function Z̈~θ

(W) does not converge to a finite value. To see why not, consider the
following log-linear CFG that generates sequences in W = x+:

λ1 S → x

λ2 S → S S

If λ1 = λ2 = 1, then each of the infinitely many derivations receives score ü~λ
= 1. Their

summation, Z̈~λ
(x+), is infinite.

In this case the model is not well-formed, and the expected values of the features
are undefined. Indeed, the solution to an M step (for example) cannot have this form;
likelihood for any finite dataset approaches zero as Z̈~λ

(W) approaches +∞. The difficulty
is that, while the maximum likelihood solution (on a given M step) will always have a
convergent Z̈~λ

(W), finding that solution may involve moving to infeasible ~λ.
In the language of numerical optimization, there is a constraint on ~θ (~λ), and we have

a constrained optimization problem:

max
~θ

log p̈~θ
(~xt)

such that Z̈~θ
(W) <∞ (3.21)

This kind of constraint expression, “k(~θ) is finite,” is not to be found in standard texts
on constrained numerical optimization (Bertsekas, 1995; Nocedal and Wright, 1999). More
typically, we see “k(~θ) = 0” or “k(~θ) ≤ 0,” possibly with k a multivariate function and ~θ
including the variables of interest and perhaps additional variables to be optimized over.
To convert the problem into the more standard optimization setting, we seek a sufficient
(and ideally necessary) condition in the right form that forces Z̈~θ

(W) <∞. Ideally this con-
dition will restrict ~θ to a closed, convex subset of Rn, though there is no reason to believe
that the feasible set is closed or convex. In fact, the set must be open if Z̈~θ

is continuous,
since it is the inverse image of an open set (the finite reals) under the Z̈~θ

.
An obvious solution is to consider the problem in terms of probabilities instead of log-

probabilities, which effectively eliminates the constraint in Equation 3.21, since p̈~θ
goes to

zero as Z̈~θ
goes to +∞. If the constraint can be eliminated in the probability domain,

then it can be eliminated in the log-probability domain as well (indeed, if at a particular
value ~θ the objective value is −∞, corresponding to probability zero, then ~θ cannot be a
local maximum). To our knowledge, no optimization algorithm can guarantee that every
iterate ~θ(i) will have finite Z̈~θ(i) , since one of the iterative updates could always lead to
parameters that are infeasible from the perspective of Equation 3.21. “Traveling” outside
the feasible region creates a real problem for gradient-based methods, since the gradient
(differences of feature expectations) are not well-defined where Z̈~θ

(W) is not finite. If the
feature expectations and therefore the gradient are taken to be zero, then the parameters
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will be taken to have converged, which is incorrect. If they are taken to diverge, then we
have an infinite gradient in some or all directions.

At the very least, a method for detecting whether Z̈~θ
(W) converges is required. This

would allow us to enforce, on each iteration, a sufficiently small step to keep Z̈~θ
(W) finite.

Solving for Z̈~θ
(W), when it exists, typically involves solving a set of non-linear equations

(linear equations in the case of finite-state models), subject to non-negativity constraints.
Efficiently detecting that no (feasible) solution exists, usually just part of the job of the
solver, may be a non-trivial problem by itself.

Importantly, this problem with MLE on log-linear models over unboundedly many
structures is not specific to the hidden variable case. Even if the examples are fully ob-
served, Z̈~θ

(W) is required for maximum likelihood estimation. While the problem is prob-
ably surmountable, most NLP practitioners prefer to avoid it. This is evidenced by the use
of conditional estimation, a topic to which we will return in Section 4.1. In Chapter 4 we
will present contrastive estimation, a solution that manages to avoid the issue and that has
other fortunate advantages.

3.5.2 Viterbi/MCLE Approximation

An interesting attempt to combine EM with log-linear models, not explored experi-
mentally in this thesis, can be found in Klein and Manning (2001a). The idea is to approx-
imate the E step using the Viterbi approximation, and also replace the M step with maxi-
mum conditional likelihood estimation (MCLE). We will return to MCLE in Section 4.1; here
we simply give the form of the objective:

~θMCLE
def= argmax

~θ

p~θ
(~̂y | ~xt) (3.22)

MCLE deals only in conditional probabilities, so the all-events partition function Z̈~θ
(W)

never needs to be computed and does not even need to be finite. It is replaced with
Z̈~θ

({x} × Yx), which is finite if |Yx| is finite. This is the most common supervised training
method for log-linear models, and we will draw inspiration from this idea in Chapter 4.

This approach to estimation, in which a model is encouraged to become more confi-
dent about its current hypotheses, is sometimes called self-training (Nigam and Ghani,
2000) and recently achieved very good results in semi-supervised parsing with the Penn
Treebank and two million additional unannotated sentences (McClosky, Charniak, and
Johnson, 2006a). The danger is that the model will learn to generalize its own errors, per-
forming worse as training proceeds.21

Together, the Viterbi and MCLE approximations do not correspond to an obvious ob-
jective function. The approximate E step in combination with the standard MLE M step
does locally optimize an objective function that is related in an interesting way to likelihood
(see Chapter 5). The approximate M step (MCLE) in combination with the standard E step
corresponds to a flat objective function.

21Co-training is similar in spirit but uses two learners in different feature spaces to “teach” each other (Blum
and Mitchell, 1998). Co-training and self-training are usually described as semi-supervised methods that start
with supervised classifiers and use unannotated data to improve them.
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These approximations did give Klein and Manning the best published bracketing-
grammar induction results up to 2001 (on the ATIS corpus). In later work, however, Klein
and Manning (2002a) switched to a stochastic version of the model and replaced the esti-
mation with standard MLE/EM, with substantial performance gains. A similar approach
has been used in automatic speech recognition, notably by Gunawardana and Byrne (2001)
for speaker adaptation (see also Leggetter and Woodland (1995) and Woodland, Pye, and
Gales (1996) for comparable work in the MLE paradigm). Typically in speech recognition,
a further approximation is made, in which a lattice or k-best list is used in lieu of all possi-
ble structures compatible with x. That is, p~θ

(y | x) is replaced by p~θ
(y | x,Y ∈ Y′) where

Y′ ⊆ Yx, a set of top hypotheses for y (rather than all).

3.5.3 Locally-Normalized Models

A hybrid alternative to log-linear grammars and classical multinomial-based gram-
mars, not explored in this thesis, is to use a stochastic grammar in which the probability
distributions are defined as log-linear models (for examples, see Charniak (2000), McCal-
lum, Freitag, and Pereira (2000), and Eisner (2001)). This allows the incorporation of arbi-
trary features over the rules themselves.

To take an example, suppose we have a context-free grammar with rule set R, nonter-
minal set N, and terminal set Σ. The rules in a given distribution are of the form n → α,
where n ∈ N and α ∈ (N × Σ)∗. The stochastic grammar must define a probability distri-
bution

p(α | n),∀α : (n→ α) ∈ R

The multinomial parameterization of the model simply gives each such α some prob-
ability mass. The log-linear parameterization defines

p~θ
(α | n) =

exp
[
~θ · ~f(n→ α)

]
Z̈~θ

(n)
=

exp
[
~θ · ~f(n→ α)

]
∑

α′:(n→α′)∈R

exp
[
~θ · ~f(n→ α′)

] (3.23)

Features might include an indicator for (n → α), or anything of smaller granularity,
such as an indicator for α alone or subsequences of α. Of course, it is possible to define a
log-linear distribution over infinitely many αs, for example by making the above model a
log-linear Markov model. In that case, the convergence problem returns.

Interestingly, the formulation above is equivalent to the usual log-linear parameteri-
zation in which an indicator feature function is added for n (the parent nonterminal). That
feature function’s corresponding weight is a function of the remaining feature weights.

fParent=n(n′ → α) =
{

1 if n = n′

0 otherwise

θParent=n(n→ α) = − log
∑

α′:(n→α′)∈R

exp
[
~θ · ~f(n→ α′)

]
In this formulation, θParent=n is not a free parameter; it is a function of the other parameters.
With a finite set of rules in R, this approach has the advantage of allowing arbitrary (local
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fine-grained) features without requiring an explicit summation over W. This is because,
like classical SCFGs, this model forces Z̈~θ

(W) = 1 by design. The same trick can be applied
to locally normalize markovized distributions, of course. A GEM algorithm or gradient
descent method could be applied to locally optimize likelihood for this model.

3.5.4 Equivalence of Log-Linear and Stochastic CFGs

For many models, including Model A, all of this worry about convergence of Z̈~θ
(W)

turns out to be unnecessary. Recall from Sections 2.3.1 and 2.3.2 that Model A is a stochas-
tic CFG, which is a special case of a log-linear (weighted) CFG. In a recent result that ex-
tends some theorems by Chi (1999) and Abney, McAllester, and Pereira (1999), Smith and
Johnson (in review) proved that, despite their extra degrees of freedom and relaxed con-
straints, log-linear CFGs cannot represent conditional distributions that stochastic CFGs
cannot represent.

A log-linear context-free grammar with rules R and weights ~θ always defines p~θ
(Y |

X) if |Yx| is finite. Smith and Johnson showed how any such log-linear CFG can be trans-
formed into a stochastic CFG that defines exactly the same distribution with the same set of
rules—just different weights. Hence the two classes of distributions are equally powerful
for expressing distributions over derivation trees given yield sequences.

Indeed, the stochastic and log-linear models even define likelihood (and related prob-
abilistic quantities) using the same function of the weights ~θ. The difference is that the
former only defines the function in the portion of Rn where simplex constraints are met
(Equations 2.3). Maximizing likelihood with either model, then, means optimizing the
same function. For SCFGs, we add constraints to the problem.

It follows that to get a local maximum likelihood estimate for the log-linear grammar,
we can carry out local maximum likelihood estimation (by EM as in Section 3.3, for ex-
ample) on the stochastic version of the grammar. Any specialized method for optimizing
over the distributions given by one class of models (log-linear or stochastic) automatically
optimizes over the other, as well.

A limitation of this result is that, if the log-linear grammar includes fine-grained fea-
tures of the production rules (as suggested in Section 3.5.3), those features’ weights will
not appear as free parameters in the stochastic CFG. In Model A, each production rule has
exactly one parameter, so this is not a problem.

3.5.5 Gaussian Priors

Recall from Section 3.4 that maximum a posteriori estimation can be a useful way to
prevent overfitting to the training data, using a prior over parameters. The most com-
monly used prior distribution, which is used in the next chapter, for the parameters of
log-linear models is the Gaussian. It is parameterized by a vector of means ~µ and a (sym-
metric, positive-definite) covariance matrix Σ:

πGaussian(~θ; ~µ,Σ) =
1

Z(Σ)
exp

(
~θ − ~µ

)>
Σ−1

(
~θ − ~µ

)
(3.24)
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(The normalizing term Z(Σ) is equal to
√

(2π)|E||Σ|.) The most common application of
the Gaussian prior sets all µe = 0 and Σ = σI for a fixed value σ > 0. The larger σ is, the
lighter the smoothing. This approach to smoothing log-linear models is due to Chen and
Rosenfeld (2000) and has since been widely applied.

The term “regularization” is often used to refer to techniques that modify learning to
prevent overfitting (as discussed in Section 3.4). This term was originally used in the neural
network community. If fitting the training data corresponds to maximizing a function f(~θ),
then the L2-regularized objective function is:

max
~θ

f(~θ)− c
∑

i

θ2
i (3.25)

where c > 0 is a scalar constant that corresponds to the strength of the regularizer. If f cor-
responds to the log-likelihood of the data under a log-linear model, the above is equivalent
to MAP estimation with a diagonal Gaussian prior (~µ = 〈0, 0, ..., 0〉 and Σ =

√
cI).

We noted in the last section that MLE on stochastic grammars and log-linear gram-
mars was equivalent if the features in the latter were counts of the grammar rules in
the former. Adding a prior changes things. For example, Dirichlet-smoothed SCFGs and
Gaussian-smoothed log-linear CFGs will behave differently.

Although they are not directly applied in this thesis, readers interested in alternative
smoothing/regularization methods for log-linear models are referred to Kazama and Tsujii
(2005) and Goodman (2004), which give a thorough presentation of some newer techniques
that give empirically good performance.

3.6 Related Work

Partial-data MLE and EM have been widely used in NLP. We reviewed work on de-
pendency grammar induction in Section 2.3.4. Here we note some other important papers
that used EM for unsupervised language learning in various settings.

3.6.1 EM for Grammars

MLE for stochastic CFGs from sequences alone, with parse structure taken as the hid-
den variable Y, was applied to constituent-based models by Lari and Young (1990), word
dependency models by Carroll and Charniak (1992), and to stochastic CFGs with partially-
bracketed text by Pereira and Schabes (1992). These attempts met with mixed success at
best, certainly in part due to the usual problems with the EM algorithm (local optima and
disconnect between likelihood and accuracy) that this thesis aims to address. Klein and
Manning (2004) note that Charniak and Carroll’s model performed poorly in part due to
random initialization, and that better performance is possible with a better initializer. An
excellent discussion of these difficulties can be found in de Marcken (1995a).

In later work, Hwa (1999) found that Pereira and Schabes’ partial-bracketing approach
could be successful when adapting a probabilistic grammar from one domain to another,
and that if only some data were to be labeled in this framework, higher-level constituents
were more helpful for learning (cf. Pereira and Schabes, 1992). This is consistent with
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our finding (in Chapter 6) that guiding a learner to focus on local structure first, before
attempting to learn long-distance dependencies, can improve performance.

Klein and Manning (2001a) described a generative probabilistic (log-linear) model of
sentences given binary bracketings in which the yield (a part-of-speech tag sequence) of
each constituent and its context (the tags on either side) are independently chosen. The
“yield” and context of each non-constituent subsequence is also predicted in a similar way.
Klein and Manning (2002a) made the model generative (with greatly improved results,
although the model was quite deficient). These constituent-context models (CCM) were then
combined with the dependency model we call Model A, during training and decoding, to
achieve the best reported (to date) unlabeled PARSEVAL scores for English, German, and
Mandarin grammar induction on the ATIS corpus and the WSJ-10 corpus.22

Merialdo (1994) explored the possibility of using some part-of-speech tagged text to
initialize a trigram tag model (second order HMM), followed by iterations of EM on unla-
beled text. He found that the latter generally failed to improve the initial model’s tagging
accuracy. This is consistent with our findings in this chapter (and many others); similar
results were achieved by Elworthy (1994).

Clark (2001) addressed morphology induction using pair hidden Markov models (PH-
MMs; Durbin, Eddy, Krogh, and Mitchison (1998)) to model transduction between root
and morphologically-inflected forms of words. Rather than addressing unsupervised mor-
phology learning directly, he argued that word categories (such as “past tense verb”) could
be learned without supervision (a problem he also addressed) and that morphology could
be reduced to finding a matching between roots and inflected forms.23 Clark used the EM
algorithm to estimate parameters for his PHMMs and posteriors over root/inflected form
matchings; the models were applied successfully to English past tenses but met with less
success on Arabic.

3.6.2 Minimum Description Length

Estimation is only part of unsupervised learning; the structure of the model—in our
case, the rules in the grammar—must either be specified from the start (as we have done)
or learned. A typical strategy is to allow all possible rules (provided only a finite number
can be specified, as in Model A but not in unbinarized CFGs). This leaves it to the estima-
tion algorithm to “weed out” rules that aren’t needed, by giving them zero or nearly-zero
probability (or, in the log-linear case, weights approaching −∞). Approaches to the direct
learning of model structure have generally employed the minimum description length
principle.

22I.e., the sentences in the Penn Treebank of ten words or fewer, after the removal of punctuation punctua-
tion; the set from which corpora used in experiments in this chapter were drawn.

23Clark looked for a matching in the formal sense: he viewed the root forms and inflected forms as a bipartite
graph, and he sought the best matching, except that the weights on the edges were not given explicitly. They
were given by PHMMs, whose parameters must be learned. His approximate approach to dealing with the
seemingly intractable problem (inside EM) of summing over all possible weighted matchings of a bipartite
graph (equivalently, computing the permanent of a matrix) can be contrasted with the greedy approximation
(competitive linking) of Melamed (2000) and the Viterbi approximation to EM—via solving the maximum
weighted bipartite matching problem—of Smith (2002).
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The minimum description length (MDL) principle (Rissanen, 1978) is a kind of learn-
ing in which a bias toward simpler models is integrated into the objective function. Rather
than simply finding the model to maximize the probability of the data, MDL seeks the
model to minimize the number of bits required to describe the model plus the number of
bits required to describe the data given the model. Since under optimal coding conditions,
the number of bits required to describe an event is equal to the negative log of the event’s
probability (see, for example, Cover and Thomas, 1991), MDL equates to:

max
model

log pmodel(data) + log p(model) (3.26)

where the probability of the model is inversely proportional to its complexity. It should
be noted that the MDL criterion does not inherently admit a good search procedure or a
good prior “model over models,” and approaches to MDL generally involve non-optimal
search. MDL is essentially equivalent to MAP estimation (Section 3.4), with the selection
of a prior that prefers simpler models (cf. the Dirichlet used in Section 3.4, which does not
care about simplicity).

In the experiments of this thesis, we have always assumed that parameter search takes
place for a fixed model structure. For weighted grammars, this means a fixed set of rules.
For log-linear models, this means a fixed feature set, and in our case we used all possible
rules (since there are only finitely many in Model A for a fixed Σ). MDL approaches tend
to be associated with the search for the set of rules themselves.

For example, several researchers have applied MDL to problems in morphology and
lexicon induction. Brent (1993) used MDL to discover suffixes in a corpus. de Marcken
(1995b) went farther, seeking to segment Chinese and (whitespace-purged) English cor-
pora by finding character subsequences to add to a lexicon (using an MDL criterion).
Goldsmith (2001) used the MDL criterion and heuristic search to discover the analyses of
English words that annotators might select. Kazakov (1997) used an MDL criterion with
genetic algorithms for search to find “naı̈ve” morphology, or word segmentations.

Chen (1995) applied MDL to the search for grammar structure, beginning with an
extremely simple grammar capable of generating the entire (unlabeled) training corpus.
First, he considered in turn each sentence and rules that might be added to the grammar
to modify the parse of the sentence. His algorithm greedily considers adding each such
rule to the grammar, accepting it if it improves the overall likelihood objective. After one
pass over the corpus, he ran the EM algorithm to improve the parameter weights. Chen
reported perplexity gains over an n-gram model and the inside-outside algorithm without
structure learning. He did not evaluate the parses produced against a gold standard, since
his goal was to improve language modeling.

Stolcke and Omohundro (1994) used a similar approach, but their search began with
a model that described the full data set in detail (without generality). The (greedy) search
proceeded by merging nonterminals (or, in the HMM case, states) with similar production
rule properties. and creating new nonterminals to rewrite to short sequences of nonter-
minals with a high affinity for each other. Stolcke and Omohundro (1994) applied this
algorithm with success to a variety of toy problems.
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3.6.3 EM with Knowledge Sources

As noted in the last section, a common approach is to assume that the model structure
is known, perhaps from an expert. Beil, Carroll, Prescher, and Rooth (1999), for example,
started with a known grammar (a lexicalized CFG), and used EM to estimate parameters.
Riezler, Prescher, Kuhn, and Johnson (2000) also did this for a lexical-functional grammar,
Osborne and Briscoe (1997) for a stochastic categorial grammar, and Carroll and Rooth
(1998) started with a hand-built lexicalized grammar and used EM to learn subcategoriza-
tion frames.

Charniak (2001) applied the EM algorithm to learning the internal structure of names
(i.e., segmentation into descriptors, honorifics, first, middle, and last names, etc.) using
possible (hidden) coreference relations. In other words, candidate previous mentions of
the same named entity are used to help constrain the possible labelings.

A related technique involves exploiting unambiguous instances in data for estimation.
Hindle and Rooth (1993) and Ratnaparkhi (1998) used the unambiguous attachments in
part-of-speech-tagged, NP-bracketed text to estimate a model for predicting attachment of
prepositional phrases (PPs) to candidate nouns and verbs. The model was then applied
to PPs whose attachment was ambiguous; no iterative training was done. Similar work
for coordinated nouns inside a PP was done by Goldberg (1999). This approach relies on
knowledge of which examples are ambiguous and which are not (in these cases annotation
is not needed for that knowledge). Brill (1995) used this kind of approach, albeit within a
transformation-based learning framework rather than in a model, for unsupervised part-
of-speech tagging.

3.7 Future Work

In this chapter we have presented one approach to the problem of selecting hyperpa-
rameters (here, the initializer ~θ(0) and the smoothing λ): train with a variety of hyperparam-
eter values and use development data to select a model (supervisedly or unsupervisedly).
This is computationally expensive and not practical when there are many hyperparam-
eter settings to choose from, as we will see in later chapters. How are we to know, for
instance, that selecting a different value for λ—one we did not test yet—would not further
improve our performance? In the future, great computational savings would be provided
by a method that automatically searched for good hyperparameter settings (that is, opti-
mized parameters like the smoothing λ) without having to train a huge number of models
to completion. This kind of technique would benefit all of the methods presented in this
thesis.

Under the assumption that some quantity of annotated data is available, it remains an
open question how it should be used. Here we use it primarily to select among a set of
unsupervisedly trained models (see Section 3.3.2), but we also explored its use in building
initializers and priors for MAP/EM training (see Section 3.4.2). The initialization idea
is originally due to Merialdo (1994). There is now a huge literature in the area called
“semisupervised” learning (see, e.g., Yarowsky, 1995; Blum and Mitchell, 1998; Ando and
Zhang, 2005).
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Another line of future work is the exploration of online algorithms (such as online-
EM) in combination with hyperparameter choices. Throughout the thesis we use a learning
setting where a fixed set of tagged sentences are used as training data, but the reality is that
new natural language data is generated every day. Learning algorithms should be able to
continue learning as long as more data is available. This is certainly possible with EM (see
Section 3.3.4).

A limitation of the experiments presented here (and throughout the thesis) is that we
do not train or test on sentences of longer than ten words. Longer sentences are likely to
contain syntactic constructions that short sentences do not. The main reason for this is the
computational expense. The Inside-Outside algorithm has cubic runtime in the sentence
length, so EM (and other iterative methods with similar subroutines, as in later chapters)
can be run on short sentences and converge in a matter of hours (on a modern computer).
This will not scale up well to long sentences; we suggest some solutions.

The first is to use a simpler model, such as vine grammar (Eisner and Smith, 2005),
that has faster inference algorithms. Vine grammars can be designed to have similar fea-
tures to Model A, but they permit an asymptotic speedup in the dynamic programming
algorithms by constraining the trees (specifically, by disallowing long dependencies). A
second solution is to use an incremental learning algorithm (see Section 3.3.4), which may
give faster convergence. A third option is to use a small training set for estimation, but in-
corporate distributional features learned from a larger, unannotated corpus. In grammar
induction, for example, we might gather cooccurrence statistics from a very large corpus
and use them as features of potential attachments. Features of this kind were used by
Taskar, Lacoste-Julien, and Klein (2005) for word alignment for machine translation. To do
that, we would need a model that let us incorporate arbitrary features of the data (e.g., a
log-linear model).

3.8 Summary

The most widely applied unsupervised learning method is the Expectation-Maximiza-
tion algorithm.24 Though in most textbooks it is mentioned in the same breath as Gaussian
mixture models or other continuous data clustering approaches, EM is a very broadly
applicable technique. We have described how it can be applied to stochastic grammars and
shown its performance, as a baseline, at uncovering linguistic dependency structure, both
in maximum likelihood estimation and maximum a posteriori estimation. EM suffers from
several difficulties, illustrated in this chapter, which this thesis aims to address. The first is
that the function maximized by EM—likelihood of the data or, with a prior, the posterior
probability of the model—is not a good predictor of accuracy. The second problem is that,
as a local hillclimber, EM is highly sensitive to the initialization method. Good initializers
appear to be crucial to its success, but very difficult to find.

The dependency grammar induction task to which EM was applied in this chapter
will continue to be the focus of application in the remainder of the thesis.25 The next two

24At the forty-third annual meeting of the Association for Computational Linguistics in Barcelona in 2004,
around 15% of the papers presented included some application of an EM algorithm.

25The reader is reminded that this task, while difficult, is somewhat artificial in its definition and evaluation
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test accuracy
directed undirected

ATTACH-RIGHT 39.5 62.1
MLE/EM (s-sel.) 41.7 62.1
MAP/EM (s-sel.) 41.6 62.2

Table 3.6: Summary of results in this chapter.

chapters present novel estimation techniques that seek to address each of these problems
in turn by changing the objective criterion (Chapter 4) and changing the search (Chapter 5).
We will see that both approaches can lead to improved accuracy. The following chapter,
Chapter 6, will borrow ideas from both techniques and achieve even better performance.

criteria (essentially, to match human annotators). See Section 1.4.
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Chapter 4

Contrastive Estimation

Use the word cybernetics, Norbert, because nobody knows what it means. This will
always put you at an advantage in arguments.

—Claude Shannon (1916–2001)

Where there is much light, the shadow is deep.

—Johann Wolfgang von Göthe (1749–1832; Götz von Berlichingen, 1773)

In this chapter we present contrastive estimation (CE), a novel technique for estimat-
ing the parameters of models of hidden structure. The technique addresses two of the
main difficulties encountered in applying MLE to log-linear models. First, CE provides
a way to estimate models over infinitely many structures (such as log-linear grammars)
without summing over all those structures (as would be required for MLE). (Recall from
Section 3.5.1 that the possible divergence of Z̈~θ

(W) poses a problem for estimating such
models.) Second, CE provides a mechanism for injecting a particular kind of general do-
main knowledge into the learner.

This chapter applies CE to Model A, but we emphasize that the idea is potentially
much more broadly applicable. Wherever log-linear models are used in structured mod-
eling, CE may be helpful. To our knowledge, this is the first principled approach to unsu-
pervised learning with log-linear models over infinite discrete spaces. The experimental
results in this chapter, while substantially better than those achieved by EM, are not the
best in the thesis. This should not be taken as a flaw in contrastive estimation, but rather in
our creativity in developing appropriate instances of it (neighborhood functions, defined
below) for this task.

CE was originally introduced and applied with great success to part-of-speech tag-
ging in Smith and Eisner (2005a) and to weighted grammar induction in Smith and Eisner
(2005b). These results are presented here, with a focus on grammar induction (the tag-
ging experiments are in Section 4.7). This chapter goes beyond those papers in more care-
fully exploring the effect of initializers and regularization and additional neighborhood
functions for grammar induction. The exposition is more leisurely, and we provide more
substantial error analysis and apply CE to a new model.
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4.1 Maximum Conditional Likelihood Estimation

We begin by reviewing an estimation criterion, maximum conditional likelihood, ap-
propriate for supervised learning of models to be used in classification. Recall that ~xt refers
to our training data (hence the t). Because MCLE is a supervised method, it also has access
to the correct hidden structures ~yt for the training examples. The objective function is:

~θMCLE
def= argmax

~θ

p~θ
(~yt | ~xt) (4.1)

This technique is “discriminative,” meaning that it does not attempt to model the
input/observed variable X at all.1 For models of discrete structure, this approach has been
notably applied by Lafferty et al. (2001), who trained a log-linear bigram HMM for part-of-
speech tagging. In that case each xt is a sequence of words, and each yt is a sequence of
part-of-speech tags. They call the model a conditional random field (CRF).

Since the original paper, CRFs have been very widely applied to sequence labeling
tasks in information extraction (e.g., McCallum and Li, 2003) and shallow natural language
processing (e.g., Sha and Pereira, 2003). The same idea was applied to parsing with a
log-linear CFG by Miyao and Tsujii (2002) and more recently to reranking of parses by
Charniak and Johnson (2005).

There are three advantages to MCLE over MLE:

1. When the model has a log-linear parameterization, MLE requires the iterative com-
putation of Z̈~θ

(W), the sum of scores of all structures allowed by the model.2 This
term might diverge; see Section 3.5.1. MCLE deals only in conditional probabilities
and therefore requires only Z̈~θ

(xt) to normalize the distribution p̈~θ
(Y | xt) for each

training example. Related quantities needed for estimation are feature expectations
under the model. For this, MLE requires Ep̈~θ

(X,Y) [fi(X,Y)], while MCLE requires
Ep̃(X)·p̈~θ

(Y|X) [fi(X,Y)].

2. Because those quantities are straightforward to compute for many log-linear models
using Inside algorithms, arbitrary features of the data, examples x and y, can be
incorporated.3 This is not true of MLE with classical stochastic models.

3. MCLE is discriminative rather than generative. That means that the estimation method
is designed to assign the correct y to each x, rather than model x and y together.
For interesting comparisons in the NLP domain, see Johnson (2001) and Klein and
Manning (2002b).

Unfortunately, MCLE cannot be directly applied when learning from ~xt alone (with-
out ~yt). To see why, consider that the hidden structures yt must be known if we want
to compute the quantity to be maximized. If we marginalize over them in the numerator

1Minka (2005) argues for thinking of this as a joint model where we simply do not estimate the marginal
distribution p(X).

2The double-dot notation merely reminds us that the model is log-linear.
3As noted earlier, the more local the features are, the easier they are to incorporate. Features that consider

large substructures 〈x,y〉 can result in more expensive inference and decoding algorithms.
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(which is what MLE does), we end up with a ratio where the numerator and denominator
are equal—such an objective function is flat and not interesting to optimize. Contrastive
estimation is inspired by the MCLE approach, but aims to achieve the benefits listed above
in the partial data setting.

4.2 Implicit Negative Evidence

Why, intuitively, does discriminative modeling outperform generative modeling? If
estimation of a model is in service of a particular task (here, structural classification) then
there is no strong reason to model x (the input), since it will always be given to the clas-
sifier. Generative approaches model both x and y, as we have seen throughout the thesis.
Discriminative modeling only estimates what is needed to make the decision among differ-
ent y ∈ Yx.4 One of the most compelling arguments for (certain) discriminative methods
is that they have provable error generalization bounds.

A word of warning: the form of the model and the estimation criterion should be con-
sidered orthogonal, modulo computational efficiency. A stochastic grammar, for instance,
can in principle be estimated using MCLE (discriminative) or MLE (generative), as can a
log-linear grammar. It is for computational and historical reasons that stochastic models
tend to be associated with MLE and log-linear models with MCLE. It is also worth men-
tioning that many other discriminative approaches exist and have been applied to different
kinds of weighted grammars, including the perceptron (Collins, 2002), support-vector ma-
chines (Altun, Johnson, and Hofmann, 2003), and maximum margin methods (Taskar et al.,
2004; McDonald et al., 2005a).

In our probabilistic setting, we can think of MCLE as manipulating the distributions
p~θ

(Y | xt
i). Since we know the correct yt

i , the goal is to “move” probability mass from
other y ∈ Yxt

i
onto yt

i .
5 This must be done by manipulating the model parameters, and it

is carried out by solving the numerical optimization problem shown in Equation 4.1. The
“other” y ∈ Yx \ {yt

i} are treated as a class of implicitly negative instances that should be
made improbable (given xt

i) to maximize the objective function.
Because the log-linear model has a parameterized form—it does not simply enumerate

structures in W and map them to probabilities—moving probability mass must be done
by manipulating the parameters ~θ. Changing a particular θi will have an effect on some
examples, and the goal of estimation is to change all θi together so that the net effect is the
discrimination between each yt

i and its (incorrect) competitors.
Turning to the partial data setting, we want, analogously, to specify a class of negative

instances. The central idea in contrastive estimation is to use knowledge of the domain
and the intended task of the model to design such a class of “implicit negative evidence”
for each example xt. Let N : Σ∗ → 2Σ∗

be a function that maps every possible observed
structure to a set of structures in Σ∗. Then contrastive estimation seeks:

4For an extensive discussion of generative and discriminative approaches to machine learning, see Jebara
(2003), who aims to unify the best of both worlds.

5More generally, we can say that in the training data, for a given xt ∈ Σ∗, we may have observed more
than one hidden structure—the training data provides a distribution over hidden structures for each xt, which
the learner is to try to match.
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~θCE
def= argmax

~θ

|~xt|∏
i=1

p~θ
(X = xt

i | X ∈ N(xt
i)) = argmax

~θ

|~xt|∏
i=1

p~θ
(xt

i)∑
x∈N(xt

i)

p~θ
(x)

(4.2)

CE tries to move probability mass from each example’s negative evidence class onto the
example itself. For log-linear models, this becomes:

max
~θ

|~xt|∏
i

p̈~θ
(xt

i)∑
x∈N(xt

i)

p̈~θ
(x)

(4.3)

≡ max
~θ

|~xt|∏
i

∑
y∈Yxt

i

p̈~θ
(xt

i,y)

∑
x∈N(xt

i)

∑
y∈Yx

p̈~θ
(x,y)

(4.4)

≡ max
~θ

|~xt|∏
i

∑
y∈Yxt

i

ü~θ
(xt

i,y)

Z̈~θ
(W)

∑
x∈N(xt

i)

∑
y∈Yx

ü~θ
(x,y)

Z̈~θ
(W)

(4.5)

≡ max
~θ

|~xt|∏
i

∑
y∈Yxt

i

ü~θ
(xt

i,y)

∑
x∈N(xt

i)

∑
y∈Yx

ü~θ
(x,y)

(4.6)

≡ max
~θ

|~xt|∏
i

Z̈~θ
(xt

i)

Z̈~θ
(N(xt

i))
(4.7)

Like MCLE, CE deals only in conditional probabilistic quantities, and the Z̈~θ
(W) terms

cancel out. Even if Z̈~θ
(W) is infinite, the above quantity can be defined and manipulated.

Crucially, if the summations in each numerator and denominator are all over finitely many
structures—that is, ∀x, |Yx| < ∞ and |N(x)| < ∞—then there are no worries about con-
vergence and standard unconstrained optimization techniques can be applied on ~θ.

Apart from its computational properties, CE makes explicit an important distinction
for structured learning. There may be more than one kind of hidden structure latent in
the training data. Choosing an implicit negative evidence class corresponds to choosing
what kind of structure the learner should find, by deciding what the learner is supposed
to explain in the data.
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4.3 Neighborhoods

Having seen the general form of contrastive estimation, we turn now to the function
N. We find it useful to think of N as a perturbation function that returns a set of “nearby”
examples that are, in some sense, deprecated or damaged. This forces the model to dis-
criminate between observed x and its perturbed neighbors that, given our understanding
of the domain, should be unlikely. From here on, we call N a neighborhood function.

Suppose we wish to estimate a model of the syntax of the language (for example,
Model A). If we want the syntactic model to “explain” the observed ordering of words in
each sentence, the neighborhood of a sentence x might be taken to be the set of permu-
tations of the elements in x: x1, x2, ..., x|x|. This would encourage the model to use the
hidden structure to explain the ordering of the sentence.6

4.3.1 Selective Perturbation

Another way to think about syntax learning with CE is to imagine a scenario in which
the learner observes an utterance x and understands what it means, without having a
fully-formulated syntax model. If the surface form x and the meaning are known, then
the inferred syntax should be chosen so as to make x the best choice among competing
surface forms for the known meaning. So the implicit negative examples should be like
x in that, if observed, they would lead to the same meaning, but different from x in that
they presumably violate syntactic well-formedness and should be made unlikely under
the model. The goal is to perturb syntactic quality without affecting semantics.

If we know of an operation Σ∗ → Σ∗ or Σ∗ → 2Σ∗
that damages syntax but preserves

semantic interpretation, CE will allow us to use it to aid syntax learning. Perhaps surpris-
ingly, no explicit representation of semantics is needed! In this thesis, our perturbation
operations for building N are relatively crude but sometimes surprisingly successful.

The neighborhood function allows us to inject into the learner systematic domain
knowledge of the following form: our observation of x would make us surprised to ob-
serve examples in the set of perturbations of x, N(x) \ {x}.7 When selecting such a per-
turbation in the observable space (Σ∗ in this thesis), we guide the learner to structure in
the hidden structural domain (Y) by requiring that it explain, via hidden structure, why the
perturbation damages the data.

4.3.2 Selective Destruction

Here we give another presentation of CE, suggested by Dale Schuurmans (p.c.). Sup-
pose our observed random variable, X ∈ X = Xc×Xs, breaks into two sub-events, Xc ∈ Xc

(implicit content) and Xs ∈ Xs (implicit syntax). While X is observable, it is not easy to

6There are up to |x|! distinct reorderings of x, so there may be computational problems with this approach;
we will return in Section 4.5 to the question of efficiency.

7In this thesis, N(x) always includes x itself, making the quantity to be maximized a conditional probability.

69



discern Xc and Xs. MLE maximizes:8

p~θ
(xc,xs) =

p~θ
(xc,xs)∑

x′c,x′s

p~θ

(
x′c,x

′
s

) (4.8)

CE, on the other hand, uses a neighborhood function N that preserves Xc but obliter-
ates Xs. Ideally, this neighborhood only varies the implicit syntax (not the implicit content)
of the message:

N(x) = N(xc,xs) = {(xc,x′s) : x′s ∈ Xs} (4.9)

Then CE maximizes:

p~θ
(xc,xs | N(xc,xs)) =

p~θ
(xc,xs)∑

x′s

p~θ

(
xc,x′s

) = p~θ
(xs | xc) (4.10)

So to the extent that N(x) expands alternative syntactic analyses without altering the
implicit content, CE will (unlike MLE) avoid modeling content and more appropriately
model just syntax. Here we are concerned with a joint model p~θ

(X,Y). Where Y is a
hidden variable that is supposed to capture syntax and not content. Dividing X into Xc

and Xs as before, we see that MLE maximizes:

p~θ
(xc,xs) =

∑
y∈Yx

p~θ
(xc,xs,y)∑

x′=(x′c,x′s)

∑
y∈Yx′

p~θ

(
x′c,x

′
s,y

′) (4.11)

But CE still maximizes:

p~θ
(xc,xs | N(xc,xs)) = p~θ

(xs | xc) =
∑
y∈Yx

p~θ
(xs,y | xc) (4.12)

so that Y’s distribution will be manipulated to maximize syntax given content, matching
Xs given Xc.

Generally speaking, if we wanted to design Y to maximize p~θ
(X,Y) where the mar-

ginal p(X) was fixed, then the solution is Y = X. In our case, the marginal is not fixed;
it is what we want to maximize, and the generative model can be stated as p~θ

(Y)p~θ
(X |

Y). Assuming, as we do here, that both factors can be manipulated, the best solution to
maximizing p(X) is still to set Y = X. Doing so will make p~θ

(X = x | Y = y) = 1
when x = y, or 0 when x 6= y, and p~θ

(Y) ≡ p~θ
(X) will be learned to match the empirical

distribution p̃(X).9

Similarly, if the goal is to maximize p(Y,Xs | Xc), where the marginal p(Xs | Xc) is
fixed, then the best solution is Y = Xs | Xc. Here the marginal is not fixed; it is what

8In this section we leave out the product over the training dataset, for clarity.
9Indeed, we do not have so much freedom to manipulate these two factors, since X is a sentence and Y is

a tree. MLE learning will, nonetheless, try to use the model over Y to make the observed X probable.
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we want to maximize, and the generative model can be stated as p~θ
(Y)p~θ

(Xc | Y)p~θ
(Xs |

Xc,Y).
The solution Y = Xs given a fixed value for Xc leads to the following equalities:

p(y) =
∑
xc

p(xc)p(y | xc)

=
∑
xc

p(xc)p(xs | xc) (4.13)

p(xc | y) =
p(y | xc)p(xc)

p(xs)

=
p(xs | xc)p(xc)∑
xc

p(xc)p(y | xc)
(4.14)

p(xs | xc,y) = p(y | xc,y)
= 1 (4.15)

Therefore the objective function ∑
y p~θ

(y)p~θ
(xc | y)p~θ

(xs | xc,y)∑
y,x′s

p~θ
(y)p~θ

(xc | y)p~θ
(x′s | xc,y)

=
p~θ

(xs | xc)p~θ
(xc)∑

x′s
p(xs | xc)p~θ

(xc)
(4.16)

= p~θ
(xs | xc) (4.17)

which is exactly as desired. We have demonstrated that, under CE, the best choice of the
hidden variable Y is to match the distribution over the part of the observation that the
neighborhood obliterates, given the part of the observation that is kept intact.

4.4 CE as a Generalization of Other Methods

A number of earlier approaches, including MLE, can be seen as special cases of CE.

4.4.1 MLE as a Case of CE

MLE is, trivially, CE with the neighborhood function N(x) = Σ∗, for all x. Thinking
contrastively, what does this tell the learner? Hardly anything—it tells the learner to find
a syntax model that makes x more likely than anything else in Σ∗ (balancing among all of
the observed examples). There are many ways in which a particular x is different from all
of the other x′ ∈ Σ∗.

For example, suppose x contains the word coffee and not granola, and we are trying to
estimate a lexicalized version of Model A. One way for a learner to improve likelihood is to
make coffee more likely, for example by increasing the weight of every feature function that
notices the presence of the word coffee. Another way to improve likelihood is to decrease all
granola feature functions. This has nothing to do with syntactic structure—it has to do with
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content. Why should the sentence Coffee can be reheated, when observed, result in decreased
probability for a never-before seen (but grammatical) sentence like Granola watched carefully
does not become tasty as well as the ungrammatical Coffee jar be reheated?

In this thesis, we do not want the model to do the work of predicting content. Indeed,
the content of x is always known anyway; it is an input to the parser! MLE, we suggest,
demands that the model do far more explanation than necessary. In this sense CE aims to
be discriminative (Section 4.2).

4.4.2 Riezler’s Approximation

Riezler (1999) and Riezler et al. (2000) employed a generalized EM algorithm to carry
out unsupervised training with a log-linear model corresponding to a weighted lexical-
functional grammar. In order to avoid the partition function Z̈~θ

(W), Riezler made the
assumption that Σ∗ ≈ X̃ = {xt

i}i. Therefore the partition function becomes Z̈~θ
(X̃), which

with a finite training set is guaranteed to be finite.10 In fact, the method achieved some
good results for Riezler. This is an instance of contrastive estimation where the neigh-
borhood of each example is the set of all observed examples in training: N(x) = X̃. In the
contrastive interpretation, this seems difficult to justify and even circular: probability mass
is to be moved onto each example in the training set, at the expense of the others.

4.4.3 CE and Conditional EM

Conditional EM is a method used to optimize MCLE when there are hidden variables
involved that are not part of the input or output of the model. Suppose W = Σ∗ × Y × T,
and examples ~xt with annotations ~yt are given, but T is always unobserved. Then MCLE
requires summing over values of T:

max
~θ

|~xt|∏
i=1

p~θ
(yt

i | xt
i) ≡ max

~θ

|~xt|∏
i=1

∑
t∈T

p~θ
(yt

i , t | xt
i) (4.18)

Conditional EM locally optimizes the above. If we think of this as an unsupervised learn-
ing problem, where T is the variable whose distribution we wish to infer and X and Y are
the observed part of the data, then N(x,y) = {(x,y′) : y′ ∈ Yx}.

As it happens, CE with any neighborhood function that defines an equivalence rela-
tion

R(x,x′)⇔ x′ ∈ N(x)

equates to this hidden-variable MCLE. An example is the permutation neighborhood de-
scribed earlier (Section 4.3). In this case, the neighborhood of a sequence corresponds to
all reorderings of the elements in the sequence. Σ∗ is therefore partitioned into all possible
bags of words; there are infinitely many equivalence classes, each containing a finite set
of sequences. To see how this is an example of MCLE with a hidden variable, we must
redefine the variables. Let x correspond to a bag of words (histogram). Let y correspond

10Note that estimating the model in this way does not necessarily result in a model that gives zero probabil-
ity mass to x not seen in training, just as MLE doesn’t.
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to the sequence and let t correspond to the syntactic structure. Then MCLE (maximiz-
ing p~θ

(~y | ~x), summing over all t) corresponds exactly to CE with the all-permutations
neighborhood.

CE in general, however, is not just a shell game on the random variables. The neigh-
borhood function need not define an equivalence relation, and in this thesis, it usually does
not, and when CE performs best, it does not. In the next section, we will consider some
novel neighborhood functions.

4.5 Computational Considerations

Contrastive estimation is a very natural fit for log-linear models. Let us consider what
is required computationally for parameter estimation of a log-linear model as shown in
Equation 4.6. To apply a gradient-based numerical optimization algorithm, we need the
value of the function and the gradient. As with many parameter estimation methods, we
will maximize a summation over log-ratios:

max
~θ

|~xt|∏
i=1

∑
y∈Yxt

i

ü~θ
(xt

i,y)

∑
x∈N(xt

i)

∑
y∈Yx

ü~θ
(x,y)

≡ max
~θ

|~xt|∑
i=1

log
∑

y∈Yxt
i

ü~θ
(xt

i,y)

︸ ︷︷ ︸
A

− log
∑

x∈N(xt
i)

∑
y∈Yx

ü~θ
(x,y)

︸ ︷︷ ︸
B

 (4.19)

For a given example, we must compute two terms (labeled A and B above). The A
terms correspond to log Z̈~θ

(xt) terms that can be computed by an Inside algorithm. If
the cardinality of N(xt

i) is finite, we can compute the B terms by taking a logarithm of
the sum of each Z̈~θ

(x) term in the neighborhood and carrying out the Inside algorithm
separately for each of the x ∈ N(xt

i). This will scale runtime (for us, already cubic) by the
size of the neighborhood, unfortunately—but we will show a speedup applicable to many
neighborhoods.

The first derivative of the contrastive objective in Equation 4.19 with respect to an
arbitrary θj is:

∂

∂θj
=

|~xt|∑
i=1

(
Ep~θ

(Y|xt
i)

[
fj(xt

i,Y)
]
−Ep~θ

(X,Y|X∈N(xt
i))

[fj(X,Y)]
)

(4.20)

The gradients of the A and B terms (the two expectations above) can be computed
using the Inside and Outside algorithms. The reader may note the similarity between the
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natural language is a delicate thing

Figure 4.1: Lattice representation of the sentence Natural language is a delicate thing.

above gradient and Equation 3.20, which gave the gradient for partial-data MLE with log-
linear models.11

When our data are sequences (in Σ∗), there is a computational trick that can make
term B and its gradient far more efficient to compute. Recognizing that many of the x′

in N(x) may share structure with each other, we can represent the neighborhood as an
acyclic finite-state machine, or lattice. Dynamic programming algorithms for grammati-
cal processing of sequences can be very straightforwardly adapted to lattices (Eisner et al.,
2004). Note that lattices are more general than sequences; a sequence can be represented
as a straight-line lattice with a single path (Figure 4.1). The lattice semiring dynamic pro-
gramming algorithm for Model A is given in Section A.2.

Formally, running an Inside algorithm on a lattice corresponds to computing the sum
of probabilities of all structures over all paths in the lattice. If there are multiple paths
through the lattice that correspond to the same sequence, that sequence will be counted
multiple times—so it is important to determinize the lattice to avoid this double counting.
Unfortunately determinization can explode the size of the lattice, so the tradeoff between
exactness and efficiency is up to the user.

Further, as an upper bound, if the sequence dynamic programming algorithm for a
weighted grammar requires O(|x|P ) for some polynomial degree P , then the lattice variant
run on a lattice with a arcs will require O(aP ). This does not always affect the highest-
degree terms (an example is CKY); the bound may be very loose. For computational ef-
ficiency, it may be wise to apply finite-state machine minimization to the lattice, as well.
(Minimization requires determinization, so this may not be a practical option.) For the lat-
tices discussed here, determinization and minimization were practical and fast using the
FSM toolkit (Mohri, Pereira, and Riley, 1998).

4.5.1 Lattice Neighborhoods

We motivated CE with an example neighborhood including all permutations of a sen-
tence x. Unfortunately, there is no efficient way to represent and sum over all reorder-
ings of x.12 We now describe and illustrate some simple neighborhoods designed also
for the purpose of uncovering natural language sentence structure. Unlike the permuta-
tion neighborhood, these neighborhoods are computationally efficient because they can be
represented as lattices using O(|x|) space. They are meant to capture simple insights about
natural language syntax, but they are admittedly rather crude. It is left to future work to
more carefully craft neighborhood functions for this problem (and others).

11It is left as an exercise in algebra to show that the two are equivalent up to a constant factor when N(x) =
Σ∗.

12Though not tractable for large |x|, the all-permutations neighborhood can be represented using a lattice of
O(2|x|) states and arcs.

74
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language

language
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thing

Figure 4.2: Lattice representation of the TRANS1 neighborhood for Natural language is a
delicate thing. This lattice (acyclic finite-state machine) can be produced by composing the
original sentence (Figure 4.1) with a simple transducer (Figure 4.3).

Single Transposition

We have noted how an intuitive view of syntax is that it should explain word order.
While a neighborhood consisting of all permutations of an observed sentence is unwieldly
and cannot be represented in a small lattice, we can consider a smaller set of permutations.

The single transposition neighborhood, TRANS1, consists of x plus the |x| − 1 se-
quences generated by transposing any two adjacent symbols in x:

NTRANS1(x) =
{
x1...x`−1x`+1x`x`+2...x|x| : 1 ≤ ` < |x|

}
∪ {x} (4.21)

This neighborhood guides the model to explain why words are locally ordered as ob-
served. Consider, for example, the sentence Natural language is a delicate thing. The TRANS1
neighborhood includes:

Language natural is a delicate thing. (poetic)
Natural is language a delicate thing. (poor)
Natural language a is delicate thing. (poor)
Natural language is delicate a thing. (poor)
Natural language is a thing delicate. (poetic)

These are not examples of fluent, dissertation-genre English. Applying contrastive esti-
mation with this neighborhood will lead the learner to discriminate the correct, observed
sentence from its transposed perturbations, perhaps making use of good syntactic descrip-
tions to do so.

Figure 4.2 shows the lattice representation of this neighborhood, for our example sen-
tence. Notice that it has O(|x|) arcs (roughly 4|x|), so a cubic-runtime dynamic program-
ming algorithm on the original sequence x stays cubic-runtime on the lattice. Figure 4.3
shows the finite-state transducer that can be used to generate the lattice by composition
with x’s lattice (Figure 4.1).

Dynasearch Neighborhood

The DYNASEARCH neighborhood is also based on transpositions. This neighborhood
was originally proposed in the context of generalized search by Potts and van de Velde
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: xx2 1x2x1 :

:x x2 3 :x x3 2

:x xm m−1
xm−1

:xm

? ?

...

Figure 4.3: A transducer for constructing the TRANS1 neighborhood. Each bigram
〈xi, xi+1〉 ∈ Σ2 has an arc pair 〈xi : xi+1, xi+1 : xi〉.

natural language a delicate thingis

a thing

a
language

natu
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language
delic

ate

delic
ate

is

is

Figure 4.4: Lattice representation of the DYNASEARCH neighborhood for Natural language
is a delicate thing. This lattice (acyclic finite-state machine) can be produced by composing
the original sentence (Figure 4.1) with a simple transducer (Figure 4.5).

(1995) and later used by Congram, Potts, and van de Velde (2002). It allows any pairs of
adjacent words to be transposed, but the transpositions cannot overlap (each word may
only be moved once). This is best understood by looking at an example lattice like Fig-
ure 4.4. This neighborhood lattice can be obtained by composing the sentence (Figure 4.1)
with the generating transducer in Figure 4.5. Interestingly, the number of sentences in
NDYNASEARCH(x) is equal to the |x|th Fibonacci number 〈1, 1, 2, 3, 5, ...〉, which grows as
exponentially, but the lattice representation requires only O(|x|) arcs.

Single Deletion

Another view of syntax is that it should explain the presence of each observed word.
The single deletion neighborhood, DEL1, includes all sequences in which a single word
has been deleted from x:

NDEL1(x) =
{
x1...x`−1x`+1...x|x| : 1 ≤ ` ≤ |x|

}
∪ {x} (4.22)

The number of sequences in this neighborhood is |x| + 1. An example of a DEL1 neigh-
borhood lattice is shown in Figure 4.6; it has roughly 3|x| arcs. The generating finite-state
transducer is shown in Figure 4.7. Notice that some single-word deletions do not damage
the well-formedness of the sentence (the original is Natural language is a delicate thing):

Language is a delicate thing.
Natural is a delicate thing. (poor)
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x2x1 :

:x x2 3

:x xm m−1

: xx2 1

:x x3 2

xm−1
:xm

?

...
Figure 4.5: A transducer for constructing the DYNASEARCH neighborhood. Each bigram
〈xi, xi+1〉 ∈ Σ2 has an arc pair 〈xi : xi+1, xi+1 : xi〉.

natural language is a delicate thing

language is a delicate thing

is a
delicate

thing

Figure 4.6: Lattice representation of the DEL1 neighborhood for Natural language is a del-
icate thing. This lattice (acyclic finite-state machine) can be produced by composing the
original sentence (Figure 4.1) with a simple transducer (Figure 4.7).

Natural language a delicate thing. (poor)
Natural language is delicate thing. (poor)
Natural language is a thing.
Natural language is a delicate. (poor)

?:ε

? ?

Figure 4.7: A transducer for constructing the DEL1 neighborhood. Each unigram x has an
arc x : ε.
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natural language is a delicate thing

language
is

is
a

a
a delicate thing

Figure 4.8: Lattice representation of the DEL1SUBSEQ neighborhood for Natural language
is a delicate thing. This lattice (acyclic finite-state machine) can be produced by composing
the original sentence (Figure 4.1) with a simple transducer (Figure 4.9).

?:ε

?:ε

?:ε

?

?

?

?

ε

ε

Figure 4.9: A transducer for constructing the DEL1SUBSEQ neighborhood. Each unigram
x has an arc x : ε.

Subsequence Deletion

A similar neighborhood to DEL1 is DEL1SUBSEQ, which allows the deletion of a single
consecutive subsequence (but not the entire string):

NDEL1SUBSEQ(x) =
{
x1...x`xk...x|x| : 0 ≤ ` < k ≤ |x|+ 1

}
\ {ε} (4.23)

This neighborhood contains O(|x|2) sequences and requires O(|x|2) arcs. Illustrations of
the neighborhood lattice and its generating transducer are in Figures 4.8 and 4.9, respec-
tively.

Same Length

We refer to the neighborhood of all |x|-length sequences of Σ, Σ|x| as the LENGTH

neighborhood. This can be represented by a lattice similar to Fig. 4.1, but where each arc
accepts any x ∈ Σ. The number of arcs, then, is O(|Σ||x|), which is potentially quite large.

The good news is that all sentences of the same length have the same neighborhood.
In a given training set ~xt, many sentences will be of the same length; the computation
of the “B” term (Equation 4.19, here corresponding to log Z̈~θ

(Σk)) can be done once per
training iteration and reused for all k-length sentences, for each k.
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Further, because the lattice for Σk−1 is a prefix of the lattice for Σk, computation can
be shared as follows. Begin by solving the dynamic program for k = 1 (the lattice contains
Σ). Then increase the lattice by adding another state (and arcs into it), so that the lattice
contains Σ2. The stored terms for the first round (k = 1) are needed for the second, and do
not need to be recomputed. This continues, with incremental addition of states and arcs,
until k = maxi |xt

i|.
While it might be prohibitive for computation with some models, LENGTH was rea-

sonably fast with Model A, partly because our datasets contained only sentences such
that |xt| ≤ 10. LENGTH was originally proposed as an approximation to log-linear MLE
(Smith and Eisner, 2005a), before Smith and Johnson (in review) demonstrated that (for
CFG-based models) stochastic MLE is equivalent to log-linear MLE. Because LENGTH par-
titions Σ∗, it is an instance of MCLE (see Section 4.4.3: redefine x to be the length of the
sequence, y to be the sequence, and t to be the dependency tree).

Approximating Σ∗ with Σ≤k

Haghighi and Klein (2006) recently proposed a CE neighborhood that is a closer ap-
proximation to log-linear MLE. Let k be an integer larger than the longest training se-
quence. Then let the set of all sequences up to k words long be denoted by

Σ≤k def=
k⋃

i=0

Σk (4.24)

We do not make use of this neighborhood here, since (as noted) for our model, log-linear
and stochastic MLE are equivalent.

Union and Composition of Neighborhood Functions

An attractive property of the finite-state lattice approach to neighborhoods is that
well-known finite-state operations can be applied (Hopcroft and Ullman, 1979). For in-
stance, unions of neighborhoods can be taken; the union of DEL1 and TRANS1 (which we
name DEL1ORTRANS1), we will find, is a very effective neighborhood that still has O(|x|)
arcs in a lattice.

Going farther, we can apply the neighborhood transducers in sequence. Composing
x with the TRANS1 transducer twice gives TRANS2 (up to two transpositions, which may
overlap, cf. DYNASEARCH). Composing x with DEL1 then TRANS1 allows up to one dele-
tion followed by up to one transposition. Obviously there are many options; we will also
experiment with DEL1ORTRANS2, which is the union of DEL1 and TRANS2.

Readers are also referred to Eisner and Tromble (2006), who describe ways to effi-
ciently search over an exponentially large subset of sequence permutations. Their tree-
based neighborhoods are a natural extension of our lattice-based neighborhoods and could
be efficiently used in the contrastive training of finite-state models (e.g., as in Smith and
Eisner, 2005a).
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Σ∗ (MLE/EM) 49 22.7 58.8 62 41.7 62.2 49 22.8 58.9
DEL1 17 18.3 33.3 16 39.7 53.5 16 38.3 56.3

TRANS1 107 39.6 61.0 104 39.8 61.7 107 28.9 61.7
DEL1ORTRANS1 103 35.8 62.2 103 48.6 64.9 104 57.6 69.0

LENGTH 104 34.9 61.9 104 45.5 64.9 104 37.6 61.2
DYNASEARCH 105 42.4 63.6 54 44.7 64.8 106 38.6 60.6

TRANS2 108 33.5 64.1 102 40.2 61.8 105 24.8 62.7
DEL1ORTRANS2 103 25.6 61.6 106 38.9 59.6 104 24.9 61.9

DEL1SUBSEQ 16 18.9 35.9 17 25.6 43.0 15 21.0 40.4

Table 4.1: Model A trained on English data using unregularized CE, with three different
initializers and various neighborhoods N. Boldface marks trials significantly better than
Σ∗/K&M (sign test, p < 0.05).

4.6 Experiments

We now describe experiments comparing the accuracy of models learned by CE train-
ing with those learned by MLE training. Recall that CE is a natural fit for log-linear models,
and that the log-linear variant of Model A is exactly as expressive as a class of probability
distributions p~θ

(Y | X) as the stochastic variant (Section 3.5.4. For these reasons, our con-
trastive estimates are always on log-linear Model A. The experimental setup is the same
as in Section 3.3.1, with English part-of-speech sequences used for training. In Section 8.3
we will see similar experiments on data in five additional languages. We first consider
unregularized CE with different neighborhoods using the three initializers.

To optimize the CE objective, we use a limited memory variable metric (LMVM)
method (also known as L-BFGS) due to Benson and Moré (2001). Unlike EM, this method
does not automatically compute the step-size on each iteration. Instead, a line search is
used, so more than one evaluation of the objective may be required to take a single step.
We report the number of evaluations required. Training is run until either 100 steps have
been taken or relative convergence within 10−5 is reached (whichever comes first).

To optimize the MLE objective, we used the EM algorithm (see Section 3.3.1, where
the relevant conditions were initially presented). This is because local optimization for the
constrained, stochastic grammar equates to local optimization of the unconstrained, log-
linear grammar (see Section 3.5.1). The search methods are different, then, which might
underlie some of the differences, though both methods (EM and LMVM) are local hill-
climbers.
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Results are presented in Table 4.1 for a variety of neighborhoods. Just like likeli-
hood, these objective functions are bumpy and sensitive to initialization (compare per-
formance across any row). However, certain neighborhoods lead to considerably more
accurate models. Looking at directed accuracy, we see that DEL1ORTRANS1, LENGTH,
and DYNASEARCH are able to surpass the performance of MLE if the right initializer is
chosen. Further, for any of the three initializers, each of these three objective functions
outperforms MLE with the same initializer.

4.6.1 Regularization

We experimented with different regularization settings for contrastive estimation. In
addition to the unregularized setting already mentioned, each objective was trained with a
0-mean diagonal Gaussian prior on parameters, with σ2 ∈ {10−2/3, 10−1/3, 1, 101/3, 102/3}
(see Section 3.5.5). Supervised model selection (the model with the best directed accuracy
on 531 sentences of annotated development data) and unsupervised model selection (the
model achieving the highest training objective function value on 531 sentences of unanno-
tated development data) were applied across values of σ2 and ~θ(0); then across N as well
(in the supervised case). Table 4.2 shows the results. Note that supervised model selection
tends to perform much better than unsupervised model selection, but CE can outperform
MAP under either setting. Note that with regularization and supervised selection, four
of our lattice neighborhoods outperform EM: DEL1ORTRANS1, LENGTH, DYNASEARCH,
and DEL1ORTRANS2.

Supervised model selection was also carried out across all of the models trained, and
the model selected was the DEL1ORTRANS1 model without regularization. The improve-
ment over MAP training by EM is 16 absolute points of directed accuracy. For this dataset,
problem, and initializer, unregularized DEL1ORTRANS1 seems to be a very good choice.
(We will explore other datasets in Chapter 8, and see Section 4.6.5 for more initializers.)
Regularization did not degrade DEL1ORTRANS1’s performance too strongly; as long as
σ2 ≥ 1, accuracy dropped by no more than 3 points.

4.6.2 Error Analysis

We consider the supervisedly selected CE model (N = DEL1ORTRANS1, Local ini-
tializer, no regularization) and compare its errors to those of MAP/EM. The CE model
achieved 57.6% directed accuracy (69.0% undirected) against EM’s 41.6% (62.2%). On
whole-sentence accuracy, CE achieved 13.6% against EM’s 7.7%. The average number of
(directed) attachments corrected per sentence by CE over EM was 0.95.

Table 4.3 shows errors by undirected link type. It is difficult to see a pattern of errors
here. Whereas in the analogous EM table (Table 3.3 on page 51) it was easy to spot high-re-
call/low-precision (over-hypothesized) and high-precision/low-recall (under-hypothesiz-
ed) link types, we see only only a few stark cases in this table. Most notably, preposition-
verb (IN/VBZ, IN/VBD) links are guessed too often by the CE model, and adverb-verb
(RB/VB) links too seldom. The latter problem was shared by EM.

The types of link errors are not as sharply distributed for CE as for EM. This is a
good sign, suggesting that the model has learned approximately the right distribution
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of link types in data. Indeed, when we compare the distributions over link types in the
hypothesized trees to the gold-standard trees, CE is closer, with 0.05 bits (measured in
mean KL divergence to the mean) as compared to EM’s 0.13 bits for undirected links, and
0.15 bits as compared to EM’s 0.28 bits for directed links.

Recall that MAP/EM made more errors on tag pairs of greater distance (Table 3.4,
page 52). Considering CE’s errors by string distance (Table 4.4), there is considerably less
of a distance effect—as distance increases, accuracy does not fall off as sharply as it did for
EM.

Table 4.5 gives the path analysis of the test dataset trees hypothesized by MAP/EM
and CE/DEL1ORTRANS1. The latter results in paths between children and their parents
that are on average shorter, and in the directed case more frequently finite.

In summary, the errors made by the CE model are fewer in number than EM’s er-
rors, and are more diverse and more evenly distributed. This is a good sign; it means
that improved models (with better features and perhaps more expressive power), or larger
datasets, should lead to models that can better exploit more diverse types of clues neces-
sary for better syntactic disambiguation.

4.6.3 Comparison by Objective Functions

Having trained and selected models in various ways, we compared the different re-
sulting models under the different objective functions. That is, each learned model was
used to compute the likelihood, and each of the contrastive conditional likelihoods of the
development dataset. The results are shown in Table 4.6. Larger neighborhoods corre-
spond to larger magnitudes in the log-likelihoods, because the denominator sums over
more sentences.

In general, training on neighborhood N was the best way to optimize the contrastive
likelihood on neighborhood N. Some exceptions do stand out, though. EM training
was better at optimizing contrast with the LENGTH neighborhood than LENGTH con-
trastive training. TRANS2 and DYNASEARCH were best at optimizing TRANS1. DEL1 and
DEL1SUBSEQ were roughly as good as each other on both contrastive functions, though
they learned different models (their rows in the table are not identical).

Importantly, EM training was always the best way to optimize likelihood. This means
that the other neighborhoods tested are not improving performance by beating EM at its
own game—rather, they are optimizing other functions that, in some cases, are better pre-
dictors of accuracy than likelihood is.

4.6.4 CE as a MLE Initializer

Each of the supervisedly and unsupervisedly selected models was used as an initial-
izer to MLE training on the training set with EM. The results are shown in Table 4.7. EM
training sometimes helped performance, most commonly in cases where CE did not per-
form well. In cases where CE was relatively successful, EM training had a small negative
effect on accuracy (e.g., DEL1ORTRANS1). Note that log-likelihood did not consistently
improve on the development dataset except where it was relatively poor after CE train-
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DT NN 156 83.3 57.0 228
NNP NNP 202 59.9 67.6 179

IN NN 132 81.8 84.4 128
NN VBD 91 87.9 66.7 120
JJ NN 112 78.6 74.6 118

NN VBZ 95 85.3 74.3 109
JJ NNS 63 96.8 75.3 81

IN NNS 72 80.6 78.4 74
NNS VBD 68 83.8 83.8 68
NN NN 61 83.6 77.3 66
NN NNS 49 83.7 67.2 61
IN VBD 87 62.1 91.5 59
RB VBD 32 75.0 42.9 56
NN NNP 45 68.9 55.4 56

NNS VBP 52 80.8 82.4 51
NNP VBD 46 76.1 72.9 48
CD CD 50 88.0 95.7 46
RB VBZ 27 66.7 40.9 44

NNP VBZ 36 94.4 77.3 44
CD NN 50 74.0 86.0 43
PRP VBD 39 89.7 85.4 41
CD IN 37 94.6 87.5 40
TO VBD 33 87.9 74.4 39
PRP VBZ 37 94.6 89.7 39
DT NNS 27 88.9 61.5 39
MD VB 40 95.0 100.0 38
TO VB 28 100.0 82.4 34
CD TO 37 45.9 51.5 33
CD NNS 32 87.5 84.8 33
IN NNP 37 75.7 87.5 32
IN VBZ 57 24.6 73.7 19
DT NNP 36 22.2 53.3 15
CD VBD 37 40.5 100.0 15
DT JJ 61 3.3 100.0 2

Table 4.3: This table shows the undirected precision and recall of the Local-initialized,
unregularized trial of CE with DEL1ORTRANS1 neighborhood, by the unordered tag-pair
type. Note that attachments in either direction and with the tags in either order are counted
together. Tag-pair types with a count ≥ 30 in the hypothesized annotation or the gold-
standard are listed. Compare with Table 3.3 on page 51.
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length: 1 2 3 4 5 6 7 8 9
hyp. count: 2242 429 233 108 81 39 20 5 1

1759 483 118 311 56 177 33 75 27 54 13 26 6 14 1 4 0 1

precision: 73.6 70.2 55.4 43.5 33.3 41.0 35.0 20.0 0.0
62.1 67.7 27.1 67.2 8.9 56.5 12.1 32.0 33.3 13.0 15.4 19.2 16.7 7.1 0.0 0.0 – 0.0

recall: 84.2 43.2 45.4 40.5 49.1 53.3 58.3 25.0 0.0
87.7 45.8 10.2 54.6 4.7 56.2 8.0 36.4 26.5 33.3 14.3 31.3 9.1 100.0 0.0 – 0.0 –

gold count: 1960 696 284 116 55 30 12 4 1
1246 714 313 383 106 178 50 66 34 21 14 16 11 1 3 1 1 0

Table 4.4: Precision and recall by string distance between parent and child, for the
CE/DEL1ORTRANS1 trial with σ2 = ∞, initialized with Local. The large-typeface num-
bers show the undirected attachment precision and recall of dependencies at different
lengths. Small-typeface numbers give the directed attachment precision and recall for left
children and right children, by length. Compare with Table 3.4 on page 52.

ATTACH-RIGHT MAP/EM CE/DEL1ORTRANS1
% of tag tokens % of tag tokens % of tag tokens
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1 55.3 36.0 64.9 47.3 66.9 57.1
2 20.0 9.6 25.2 21.1 21.3 15.3
3 9.8 5.0 7.1 5.8 7.7 5.3
4 5.3 3.6 2.0 1.3 2.7 1.8
5 3.1 2.5 0.7 0.5 1.2 0.8
6 2.8 2.4 0.0 0.0 0.2 0.1
7 1.8 1.8 0.0 0.0 0.1 0.1
8 1.1 1.1 0.0 0.0 0.0 0.0
9 0.6 0.6 0.0 0.0 0.0 0.0
∞ – 37.4 – 23.9 – 19.5

Table 4.5: Path analysis of the selected MAP/EM model and the selected CE/-
DEL1ORTRANS1 model. The macro-averaged undirected path length in hypothesized
trees between a word and its gold-standard parent is 1.31 for MAP/EM and 1.27 for
DEL1ORTRANS1; under a sign test the CE/DEL1ORTRANS1 path averages were signifi-
cantly shorter (p < 0.000001). Note that attachment accuracy is not identical to the first line
because here we count paths to the wall (just another node in the tree), whereas our usual
accuracy measures do not count attachments to the wall.
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Figure 4.10: Accuracy on test data (directed vs. undirected): 100 random models before
training, after EM training, and after CE/DEL1ORTRANS1 training.

ing. This supports the case that contrastive neighborhoods are not mere approximations
to likelihood: improvements on likelihood from good CE models do not improve accuracy.

4.6.5 Further Analysis (Random Initializers)

Figure 4.10 shows the spread of accuracy performance of 100 random models (the
same ones used in Chapter 3) before training, after EM training initialized from each, and
after CE/DEL1ORTRANS1 training initialized from each. CE training, like EM training,
gives highly variable results that depend heavily on the initializing model. The best of
the CE models and the best of the EM models—from these random initializers—perform
about the same on directed and undirected accuracy.

Figure 4.11 further illustrates that CE (with the DEL1ORTRANS1 neighborhood, at
least) suffers from local maxima, just like MLE. 100 random initializers all find different
local maxima with about the same function value and very different accuracies on test
data.

Figure 4.12 shows that CE training with DEL1ORTRANS1—in contrast to MLE train-
ing (Figure 3.8)—does not always improve accuracy on random initializers. However,
with any of our more carefully chosen initializers, it does improve accuracy (unlike EM).
So CE is at least as sensitive to initialization as EM, but it can leverage a good initializer
better than EM can. This is clearly illustrated in Figure 4.13, which plots the absolute im-
provement in accuracy (which is sometimes negative) by CE/DEL1ORTRANS1 training
versus MLE/EM training, for our initializers and for random models. For more compari-
son among methods on random initializers, see Sections 5.3.2, 6.1.4, 6.2.2, and 7.4.
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as much as EM. The line is y = x.

4.6.6 Semisupervised Training

In Section 3.4.2 we considered the use of the annotated development dataset to con-
struct an initializer (i.e., train supervised and initialize unsupervised training with the
learned model) and to construct a prior for MAP estimation—both as alternatives to our
unsupervised estimation/supervised selection strategy. We found that, with enough an-
notated data, either method was preferable to our strategy, though none of the methods
tested performed as well as simple supervised training on the development dataset (except
when only very small amounts of annotated data were used). (See Figure 3.10 on page 47,
Section 3.4.2). We argued in Section 3.4.2 that our method is nonetheless a reasonable way
to evaluate performance of unsupervised estimation methods.

Here we consider how CE fares when the annotated data are used to build an ini-
tializer.13 Figure 4.14 illustrates the results. With more than ten annotated examples, su-
pervised initialization followed by CE outperforms CE followed by supervised selection.
However, performance of the latter holds steady for the entire range of development set
sizes: the same performance is achieved with 5 annotated sentences as with 500. (At the
low end of the curve, this method outperforms supervised training on the 5 examples.) EM
training using a supervised initializer, however, outperforms CE for smaller annotated de-

13In principle, a prior could be constructed, as well, though this did not work as well as supervised ini-
tialization in Section 3.4.2. Further, the form of our prior for CE is different (a Gaussian) and it is not as
obvious how to construct it. Therefore our semisupervised experiments for CE are limited to those involving
supervised initialization.
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velopment datasets; they are about the same with more annotated data.
As in Section 3.4.2, these results cast some doubt on our unsupervised training/super-

vised selection methodology. We suggest that the advantages of CE over EM as an unsuper-
vised estimator motivate further exploration on improved semisupervised estimation meth-
ods that make use of contrast in the objective function. Such an exploration is beyond the
scope of this thesis.

4.7 Part-of-Speech Tagging Experiments

In this section we describe highly successful experimental results using CE for an-
other task, namely training a part-of-speech tagger from unannotated word sequences.
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These experiments were presented in Smith and Eisner (2005a); they are inspired by those
in Merialdo (1994).14 We train a trigram tagger using only unlabeled data, assuming com-
plete knowledge of the tagging dictionary.15 In these experiments, we varied the amount
of data available (12,000–96,000 words of Wall Street Journal text), the heaviness of smooth-
ing, and the estimation criterion. In all cases, training stopped when the relative change in
the criterion fell below 10−4 between steps (typically ≤ 100 steps). For this corpus and tag
set, on average, a tagger must decide between 2.3 tags for a given token.

The stochastic model trained by EM was identical to Merialdo’s: a second-order hid-
den Markov model. We smoothed using a symmetric Dirichlet prior with single parameter
λ for all distributions (λ-values from 0 to 10 were tested, as in the parsing experiments).
The model was initialized by making each log-probability zero (the uniform posterior).
The log-linear models trained by CE used the same feature set, though of course the fea-
ture weights are no longer log-probabilities and there are no sum-to-one constraints. In
addition to an unsmoothed trial, we applied diagonal Gaussian priors (quadratic penalty)
with σ2 ranging from 0.1 to 10. The models were initialized with all θ = 0. 5,000 words of
text were used for unsupervised model selection.16

The plot in Figure 4.15 shows the Viterbi accuracy of each criterion trained on the
96,000-word dataset as smoothing was varied; the table shows, for each (criterion, dataset)
pair the performance of the unsupervisedly selected λ or σ2 and the one chosen by an
oracle. LENGTH (78.9% with 96K words of training data), TRANS1 (74.7%), and DEL1-
ORTRANS1 (75.2%) are consistently the best, far out-stripping EM (60.9%). These gains
dwarf the performance of EM on over 1.1 million words (66.6% as reported by Smith and
Eisner (2004), ten times the 96K words tested here), even when the latter uses deterministic
annealing for improved search (70.0%). (We did not evaluate DA on the smaller datasets
explored here.) DEL1 and DEL1SUBSEQ, on the other hand, are poor, even worse than EM
on larger datasets.

The LENGTH neighborhood is relatively close to log-linear MLE. The inconsistencies
in the LENGTH curve (Figure 4.15) are notable and also appeared at the other training
set sizes. Believing this might be indicative of brittleness in Viterbi label selection, we
computed the expected accuracy of the LENGTH models; the same “dips” were present.
This could indicate that the learner was trapped in a local maximum.

4.7.1 Removing knowledge, adding features

The assumption that the tagging dictionary is completely known is difficult to justify.
While a POS lexicon might be available for a new language, certainly it will not give ex-
haustive information about all word types in a corpus. We experimented with removing
knowledge from the tagging dictionary, thereby increasing the difficulty of the task, to see
how well various objective functions could recover. One means to recovery is the addi-
tion of features to the model—this is easy with log-linear models but not with classical

14Merialdo was interested in combining labeled and unlabeled data; we focus on the unlabeled-only case.
15Without a tagging dictionary, tag names are interchangeable and cannot be directly evaluated on gold-

standard accuracy. We address the tagging dictionary assumption in Section 4.7.1.
16We did not carry out supervised model selection in these experiments; performance of supervised model

selection is expected to lie somewhere between unsupervised selection and the oracle.
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12K 24K 48K 96K
u-sel. oracle u-sel. oracle u-sel. oracle u-sel. oracle

+ CRF (supervised) 100.0 99.8 99.8 99.5
× HMM (supervised) 99.3 98.5 97.9 97.2
4 LENGTH 74.9 77.4 78.7 81.5 78.3 81.3 78.9 79.3
� DEL1ORTRANS1 70.8 70.8 78.6 78.6 78.3 79.1 75.2 78.8
� TRANS1 72.7 72.7 77.2 77.2 78.1 79.4 74.7 79.0
× EM 49.5 52.9 55.5 58.0 59.4 60.9 60.9 62.1
H DEL1 55.4 55.6 58.6 60.3 59.9 60.2 59.9 60.4
• DEL1SUBSEQ 53.0 53.3 55.0 56.7 55.3 55.4 57.3 58.7
– random expected 35.2 35.1 35.1 35.1

ambiguous words 6,244 12,923 25,879 51,521

Figure 4.15: Percent ambiguous words tagged correctly in the 96,000-word dataset, as the
smoothing parameter (λ in the case of EM, σ2 in the CE cases) varies. The model selected
from each criterion using unlabeled development data is circled in the plot. Dataset size is
varied in the table beneath the plot, which shows models selected using unlabeled devel-
opment data (“u-sel.”) and using an oracle (“oracle,” the highest point on a curve). Across
conditions, some neighborhood roughly splits the difference between supervised models
and EM.
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stochastic models.
We compared the performance of the best neighborhoods (LENGTH, DEL1ORTRANS1,

and TRANS1) from the first experiment, plus EM, using three diluted dictionaries and the
original one, on the 24,000-word dataset. A diluted dictionary adds (tag, word) entries so
that rare words are allowed with any tag, simulating zero prior knowledge about the word.
“Rare” might be defined in different ways; we used three definitions: words unseen in the
first 500 sentences (about half of the 24,000-word training corpus); singletons (words with
count ≤ 1); and words with count ≤ 2. To allow more trials, we projected the original 45
tags onto a coarser set of 17 (e.g., RB∗ →ADV; see Table B.2).

To take better advantage of the power of log-linear models—specifically, their ability
to incorporate novel features—we also ran trials augmenting the model with spelling fea-
tures, allowing exploitation of correlations between parts of the word and a possible tag.
Our spelling features included all observed 1-, 2-, and 3-character suffixes, initial capital-
ization, containing a hyphen, and containing a digit.

Figure 4.16 plots tagging accuracy (on ambiguous words) for each dictionary on the
24,000-word dataset. The x-axis is the smoothing parameter (λ for EM, σ2 for CE). Note
that the different plots are not comparable, because their y-axes are based on different sets
of ambiguous words.

So that models under different dilution conditions could be compared, we computed
accuracy on all words; these are shown in Table 4.8. The reader will notice that there is
often a large gap between unsupervised and oracle model selection; this draws attention
to a need for better unsupervised regularization and model selection techniques. The su-
pervised model selection used elsewhere in the thesis is one solution to this problem.

Without spelling features, all models perform worse as knowledge is removed. But
LENGTH suffers most substantially, relative to its initial performance. What is the reason
for this? LENGTH (like EM) requires the model to explain why a given sentence was seen
instead of some other sentence of the same length. One way to make this explanation is
to manipulate emission weights (i.e., for (tag, word) features): the learner can construct a
good class-based unigram model of the text (where classes are tags). This is good for the
LENGTH objective, but not for learning good POS tag sequences.

In contrast, DEL1ORTRANS1 and TRANS1 do not allow the learner to manipulate
emission weights for words not in the sentence. The sentence’s goodness must be ex-
plained in a way other than by the words it contains: namely through the POS tags. To
check this intuition, we built local normalized models p(word | tag) from the parame-
ters learned by TRANS1 and LENGTH. For each tag, these were compared by KL diver-
gence to the empirical lexical distributions (from labeled data). For the ten tags accounting
for 95.6% of the data, LENGTH more closely matched the empirical lexical distributions.
LENGTH is learning a correct distribution, but that distribution is not helpful for the task.

The improvement from adding spelling features is striking: DEL1ORTRANS1 and
transone recover nearly completely (modulo the model selection problem) from the di-
luted dictionaries. LENGTH sees far less recovery. Hence even our improved feature sets
cannot compensate for the choice of neighborhood. This highlights our argument that a
neighborhood is not an approximation to log-linear MLE; LENGTH tries very hard to ap-
proximate log-linear EM but requires a good dictionary to be on par with the other criteria.
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Good neighborhoods, rather, perform well in their own right.
In Section 7.2, we will compare these methods for learning POS tags by using the

hypothesized tags as input to various learners for Model A.

4.8 Model U

One advantage of working with log-linear models is that we no longer need a stochas-
tic process whose stochastic steps correspond to parameters in the model (~θ). Instead, we
just need feature functions on structures in W and inference and decoding algorithms (Sec-
tion 2.4). We suggest here a new model (called Model U) that is log-linear in form and does
not correspond to any stochastic process.

Let W be the set of all undirected, projective trees over sequences in Σ∗. Recall that
Model A defined distributions over directed, rooted projective trees. Model U puts those
structures into equivalence classes so that trees that are equivalent up to the direction of
the edges receive the same score. This is very similar to link grammar, a formalism that
describes undirected, labeled dependency graphs (Sleator and Temperley, 1993); a stochas-
tic variant has also been described (Lafferty et al., 1992). The major differences are that link
grammar is lexicalized, labels the edges in the graph, and allows cycles.

For a given sequence x ∈ Σ∗, let Yx be defined by a set of edges 〈i, j〉 such that 0 < i <
j ≤ |x|. The edges are constrained to form a projective tree (see Section 2.1.2). The features
in Model U correspond to all of the edges in a tree, so that

p̈~θ
(x,y) =

exp
∑

〈i,j〉∈y θedge(xi,xj)

Z̈~θ
(W)

=
exp

∑
〈x,x′〉∈Σ2 θedge(x,x′) · fedge(x,x′)(x,y)

Z̈~θ
(W)

(4.25)

That is, a feature fires for every edge in the tree, and the total score of a tree is a product of
weights, one per edge.

The motivation for Model U is that it does not fragment probability mass among dif-
ferently directed trees. This may make sense for the purposes of learning, since the poste-
rior will focus only on connections and not on which word is the parent and which is the
child. Model A might get overcommitted to a particular wrong link direction (at the gram-
mar level, not simply at the level of an individual parse tree) that is locally optimal, and
as a result never learn a pattern that would become apparent if the link were reversed (see
the discussion of determiners and nouns in Section 3.4.3). Also, Model U gets away with
far fewer parameters than Model A (only |Σ|2, fewer than half of Model A’s 2|Σ|2 + 9|Σ|).
It does not, however, model valency (stopping and continuing)—though the model and
dynamic programming algorithms could be modified to handle valency.

4.8.1 Dynamic Programming

The size of Yx under Model U is exactly 1/|x| times the size of Yx under Model A. To
see why, note that if we select a root in the undirected tree, the direction of all edges is
fully determined. There are |x| possible roots, so |x| directed trees are collapsed into one
undirected tree. The dynamic programming equations for this model are very similar to
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Figure 4.16: Percent ambiguous words tagged correctly (with coarse tags) on the 24,000-
word dataset, as the dictionary is diluted and with spelling features. Each plot corresponds
to a different level of dilution. Models selected using unlabeled development data are
circled. These plots (unlike Table 4.8) are not comparable to each other because each is
measured on a different set of ambiguous words.
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undirected accuracy (test set)
N Model U Model U + spelling

DEL1 52.7 50.6
TRANS1 51.8 54.3

DEL1ORTRANS1 49.6 51.4
DYNASEARCH 50.7 54.0

TRANS2 51.4 55.5
DEL1ORTRANS2 50.7 54.8
overall: TRANS2, σ2 = 10−1/3 55.5

Table 4.9: Performance of Model U. Supervised model selection, here on the undirected
attachment accuracy score, was applied across values of σ2 (the regularization hyperpa-
rameter), and also the neighborhood and feature set (in the last line).

those for Model A, except that the λs are different, and for the purposes of the algorithm
we simply fix the root of the tree to be x1. The equations are given in Section A.3.

Note that if we wanted to add stopping and continuing features to Model U, we could
do so, but we would need to further modify the dynamic programming algorithm.

4.8.2 Experiments

MLE with Model U—which is log-linear by design—suffers from all the computa-
tional difficulties we noted to motivate contrastive estimation; it is simply not a practical
option. We present experimental results with Model U using several neighborhoods in
contrastive estimation. All trials were initialized with a Zero model (better initializers
might be possible).

Because Model U scores only undirected trees, we report only undirected accuracy.
The first numerical column of Table 4.9 shows how Model U performs on undirected
accuracy. We do not measure directed accuracy, because Model U does not predict di-
rected trees. Model U performs rather badly, not even achieving the 62.1% achieved by the
ATTACH-RIGHT baseline on this task. We do not explore here why it is bad (a likely issue
is that it lacks valency features, cf. Model A; another is the initializer).

4.8.3 Adding Features

Adding features to a model is often an effective way to improve its performance. To
illustrate how easily this can be done in the log-linear setting, we consider here the addition
of spelling features to Model U. This moves in the direction of lexicalization (word features).
Indeed, the original paper about CE (Smith and Eisner, 2005a) motivated the approach
by citing a desire to incorporate spelling features into unsupervised tagging models as
described in Section 4.7.

We added local features to Model U that relate the part-of-speech tag of one word to
the prefix or suffix of a word it is linked to. These features take the form “tag x precedes
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and is linked to a word with suffix s” where s is 1–3 characters long. Similar “follows” fea-
tures and “prefix” features were also included. For the purposes of these features, upper-
case letters were collapsed to lower-case, and all digits were collapsed to a ‘0’. The model
for this dataset contained 103,352 features.17 All feature weights ~θ were initialized to zero.
Results are shown in Table 4.9.

Notice that in most cases, adding spelling features improves performance, if slight-
ly. In the overall-selected model, trained with CE/TRANS2 with the spelling features, the
following were the highest-weighted spelling features (the slash here implies a link and a
linear order, e.g., -%/TO means that a word ending in % preceded and was linked to a tag
token TO):

• -%/TO (1.48); i.e., a word with character suffix % is linked to and precedes a tag TO

• %-/TO (1.48)

• CD/-% (1.45)

• CD/%- (1.45)

• -i/VBP (1.38); -i words in English are usually proper nouns

• -a/JJ (1.36); -a words are usually the word a

• -to/VB (1.19)

• be-/VBN (1.14)

• -./CD (1.13); -. words are usually abbreviations, sometimes for months, like Oct.

• to-/VB (1.01)

• EX/-s (0.99)

• VBP/-t (0.99)

• ha-/VBN (0.95)

• he-/VBZ (0.95)

• fe-/CD (0.94); fell is the most common fe- word

• CD/mil- (0.92)

Incorporating valence features into Model U, or spelling features into Model A, is left to
future work. We emphasize again that doing either (indeed, even experimenting with
Model U at all) requires unsupervised estimation methods for log-linear models, an obsta-
cle removed by contrastive estimation.

17Only features that might have occurred in some structure in Yxt for some training data sentence xt were
counted; others would never change from 0 under our optimization algorithm and therefore were not explic-
itly represented.
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4.9 Related Work

We have already noted that many approximations to maximum likelihood can be de-
scribed as instances of contrastive estimation. One other very recent paper is worthy of
mention here, because its goals are similar to those of CE: Xu, Wilkinson, Southey, and
Schuurmans (2006).

Early in the chapter we noted the rise of discriminative methods in supervised ma-
chine learning. Maximum-margin Markov (M3) networks (Taskar, Guestrin, and Koller,
2003) are an example of a supervised discriminative learning method that uses kernel
methods to find a weighted model that maximizes the margin between correct hidden
structures and incorrect alternatives. Maximum-margin learning has been applied to su-
pervised estimation of weighted grammars as well (Taskar et al., 2004).

Xu et al. (2006) applied M3 networks to unsupervised learning of sequence models (y
is a sequence of labels for the sequence of observed symbols x). To do this, first consider
the supervised problem (assuming we knew the correct label sequences) as an optimiza-
tion problem where the objective’s dependence on the correct label sequences ~yt is made
explicit:18

f
(
~yt

)
= min

~θ

β

2
‖~θ‖2 +

|~xt|∑
i=1

max
y

max
(
0,∆(y,yt

i)− ~θ ·
(

~f(xt
i,y

t
i)− ~f(xt

i,y)
))

(4.26)

where ∆(y,yti) counts the labeling errors in y with respect to yt
i . The dual of this objective

function can be written as a quadratic program in variables that correspond to relabelings
of elements of the sequences xt

i and adjacent pairs of those elements. The key step taken
by Xu et al. is to treat the ~yt as another variable to optimize over. Through a change of
variable, Xu et al. eliminate all references t ~yt, instead referencing pairwise comparisons
between the labels of the all elements in the training data.

Two kinds of constraints are then added. The first is a balance constraint that prevents
the discovery of a trivial solution where all xi are labeled the same way. The second pro-
posed constraint enforces consistency between the singleton and pairwise variables in the
reformulated problem. The latter would make the problem non-convex, so Xu et al. relax
these constraints. They also relax the Boolean variables to the interval [0, 1]. The reader is
encouraged to see the paper for the details of these relaxations. The result is a semidefinite
program, which is convex. Solving the semidefinite program was found to be too com-
putationally intensive to be practical, so two different approximations are presented. Xu
et al. met with success on synthetic and small protein datasets. It is unclear whether the
technique generalizes to weighted grammars like Model A, but if so a comparison with CE
is certainly warranted.

Stepping back into the broader language learning setting (including humans, not just
machines), negative evidence has figured heavily in the cognitive and formal literature on
language learning (Marcus, 1993, see discussion in Section 1.3.2). Negative evidence there
usually refers to explicit feedback; the child makes a mistake and the parent responds with

18We keep the notation as close to that in the rest of the thesis as possible.
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a correction. Our approach to negative evidence, which we believe is entirely novel, de-
fines a function from inputs to sets of inputs. These are treated in a “soft” manner that
never makes a strong negative judgment about any particular example. This is very differ-
ent from the usual formal language learning setting (e.g., Gold, 1967), in which examples
are positive if they are in the language and negative if they are not.

4.10 Future Work

We suggest a few avenues for future directions of research on contrastive estimation.
One idea is to weight the implicit negative examples in the neighborhood N. This allows
us to tell the learner that some examples in the neighborhood are expected to be worse
than others. For example, the weighted neighborhood might express that swapping two
words is far more damaging than scrambling three or more words. This approach seems
intuitive and even has a probabilistic interpretation. If each x′ ∈ N(x) has a positive score
ζ(x′;x), then we can think of ζ as another feature weight in the log-linear model. The
weighted-neighborhood contrastive objective would be (compare with Equation 4.2):

argmax
~θ

|~xt|∏
i=1

p~θ
(xt

i)∑
x∈N(xt

i)

ζ(x;xt
i)p~θ

(x)
(4.27)

This special feature is not trained; rather, it is fixed by the definition of the weighted neigh-
borhood. We will consider the use of an untrained feature in Chapter 6, when we talk about
using predefined bias among hypotheses to improve estimation.

A possible confound in our comparison of MAP estimation with regularized CE is
the use of a Dirichlet prior for the former (a stochastic model with simplex-constrained
weights) and a Gaussian for the latter (whose parameters are unconstrained).19 We also
might define alternative priors in contrastive estimation. We experimented only with a
Gaussian here, but others are certainly possible (e.g., Goodman, 2004; Kazama and Tsujii,
2005). As in MLE learning, the appropriate use of annotated data should be more carefully
considered; here we used it only for model selection. See the discussion in Section 3.7.
Three additional ideas deserve more exposition: task-based neighborhoods, future direc-
tions on incorporating more linguistic knowledge, and other areas of applicability.

4.10.1 Task-Based Neighborhoods

Smith and Eisner (2005b) described some cases where contrastive estimation could be
applied to text processing problems like spelling and punctuation correction. We call these
task-based neighborhoods.

Manufacturing supervised data for correction tasks like these is easy: take clean text,
and mangle it. This is a classic strategy for training accent and capitalization restoration
(Yarowsky, 1994): just delete all of the accents or upper-case letters from clean text. For
tasks like spelling and punctuation correction, we don’t know the mangling process. The

19Though note that unregularized CE performed extremely well with the right neighborhood and initializer.
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errors are not simply an omission of some part of the data; they are whatever mistakes
humans (or speech recognition systems, or translation systems, etc.) make. Without a
corpus of errors, this cannot be modeled empirically.

We suggest it may be possible to get away with not knowing which mistakes a hu-
man would make; instead, try to distinguish each observed good sentence x from many
differently punctuated (presumably mispunctuated) versions. This is not as inefficient as
it might sound, because lattices allow efficient training. In CE terms, the set of all variants
of the sentence with errors introduced is the neighborhood N(x).

For spelling correction, this neighborhood might be (for some k):

{x′ ∈ Σ : ∀i ∈ {1, 2, ..., |x|},Levenshtein(xi, x
′
i) ≤ k} (4.28)

where Levenshtein is the edit distance between two words (Levenshtein, 1965). This
neighborhood, like the others, can be represented as a lattice—in this case it will have a
“sausage” shape. We might consider augmenting Σ to include non-words that are within
k edits of real words. A neighborhood for punctuation correction might include all alter-
nately-punctuated sentences, producible using a finite-state transducer.

Notice that the neighborhoods are orthogonal to the model. Model A, Model U, or any
other model of interest (for which the computation is not too expensive) could be trained
with these task-based neighborhoods.

The application of these models is not as simple as decoding was in parsing, when
Y was the hidden structure that we cared about. Decoding now involves taking a sen-
tence that might contain errors and selecting the sentence from its neighborhood (or pos-
sibly from Σ∗, not addressed here) that is most probable, according to our model. Note
that now the neighborhoods are centered on the observed, possibly incorrect sentences,
rather than on correct training examples. This approach is similar to certain noisy-channel
spelling correction approaches (Kernighan, Church, and Gale, 1990) in which, as for us,
only correctly-spelled text is observed in training. Like them, we have no “channel” model
of which errors are likely to occur—only a set of possible errors that implies a set of can-
didate corrections.20 The model we propose is a language model—one that incorporates
induced grammatical information—that might then be combined with an existing channel
model of errors. The other difference is that this approach would attempt to correct the en-
tire sequence at once, making globally optimal decisions, rather than trying to correct each
word individually. An obvious application is optical character recognition of full texts.

A subtlety is that the quantity we wish to maximize is a sum. Letting x be the noisy
observed input:

x̂ = argmax
x′∈N(x)

p~θ
(x′) = argmax

x′∈N(x)

∑
y∈Yx′

p~θ
(x,y) (4.29)

This is intractable in general; it is an instance of the consensus problem, which is NP-hard
(Casacuberta and de la Higuera, 2000; Lyngsø and Pedersen, 2002; Sima’an, 2002). Most
often, researchers avoid the issue by maximizing over y as well as x′.21

20The neighborhood could perhaps be weighted to incorporate a channel model, so that we consider not
only the probability of each candidate correction but also its similarity to the typed string.

21Three recent papers addressing instances of this problem in very different ways are Matsuzaki et al. (2005),
May and Knight (2006), and Finkel, Manning, and Ng (2006).
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Another kind of neighborhood can be defined for a specific system. Let the neigh-
borhood consist of mistakes made by the system, and retrain it (or a new component) to
contrast the correct output with the actual errors. In parsing, this is treated as a supervised
reranking problem (Collins, 2000; Charniak and Johnson, 2005); recently hidden variables
have been incorporated by Koo and Collins (2005). Examples of this have also been ap-
plied in acoustic modeling for speech recognition, where the neighborhood is a lattice
containing acoustically-confusable words (Valtchev, Odell, Woodland, and Young, 1997);
the hidden variables are the alignments between speech segments and phones. Another
example from speech recognition involves training a language model on lattices provided
by an acoustic model (Vergyri, 2000; Roark, Saraclar, Collins, and Johnson, 2004); here the
neighborhood is defined by the acoustic model’s hypotheses and may be weighted. A
more ambitious line of work would be to induce grammatical models for error correction
in models that, for reasons of speed or estimation, do not use syntax themselves (e.g., in
machine translation).

Neighborhood functions might also be iteratively modified to improve a system in
a manner similar to bootstrapping (Yarowsky, 1995) and transformation-based learning
(Brill, 1995).

4.10.2 More Linguistic Domain Knowledge

Arguably the most important argument for contrastive estimation is that it permits
more expressive models with new features that do not fit into stochastic grammars. We
moved in this direction by adding spelling features to Model U in Section 4.8.3. Lexical,
spelling, and (if available) morphological features may be useful in grammar induction,
depending on the language and the amount of training data. Novel uses of cross-lingual
information are an exciting area where log-linear models might be helpful (Yarowsky and
Ngai, 2001; Smith and Smith, 2004; Kuhn, 2004; Smith and Eisner, 2006b), availing the
learner of new information sources.

In the contrastive setting, linguistic phenomena like morphology can influence the
model’s features, the neighborhood, or both. A morphology-based neighborhood might
guide the learner toward tree structures that enforce long-distance inflectional agreement.
Other interesting neighborhoods might treat function and content words differently.

One may wonder about the relevance of word order-based neighborhoods like DEL1-
ORTRANS1 to languages that do not have strict word order. This is an open and important
question, and it will be partially addressed when CE is examined for languages like Bul-
garian that have free(r) word order than English. Just as good syntax models for languages
with this property may require re-thinking the models themselves (Chapter 6 of this thesis;
Hoffman, 1995), good neighborhoods for learning may also have to be developed.

4.10.3 Other Applications

This thesis is focused on natural language parsing, but contrastive estimation is a very
general model estimation technique. Models of discrete sequences—including weighted
grammars and hidden Markov models—and other discrete structures have many applica-
tions, including computational biology and image processing.
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To give one simple example, profile HMMs (Durbin et al., 1998) are sequence models
that are intended to model biological protein families (e.g., proteins with a similar structure
or function). They can be estimated using EM from a set of positive examples. However, a
molecular biologist might know (for example) that the presence of a particular amino acid
is absolutely essential for a protein to have a particular structure.22 A contrastive neigh-
borhood might be designed that deletes or replaces that amino acid, wherever it is found,
possibly in combination with other perturbations of the sequence. This would lead to a
model that better predicts the function of interest. Note that this is a way of incorporating
a global constraint into a locally factored model (an HMM).

Contrastive estimation is applicable to any problem where domain knowledge allows
us to implicate a set of negative examples (“on average”) for each positive observed ex-
ample. Examples of domain knowledge suggested for future exploration include common
spelling or grammar mistakes. CE is a very good fit for log-linear models for compu-
tational reasons, but there is no reason it cannot be applied in principle to any learning
problem with the implicit negative evidence property.

4.11 Summary

This chapter presented a novel generalization of many unsupervised parameter esti-
mation techniques: contrastive estimation. CE can be understood intuitively as a way of
capitalizing on implicit negative evidence, and the choice of implicit negative evidence can
allow the incorporation of domain knowledge. CE generalizes many earlier approaches,
including MLE. We have shown some computationally efficient examples of CE for learn-
ing natural language structure, and demonstrated that they significantly outperform MLE
when used to estimate Model A, with both supervised model selection and unsupervised
model selection to choose regularization parameters and the initializer. See Table 4.10. We
also showed that CE is substantially more successful than MLE/EM at learning to disam-
biguate part-of-speech tags in unannotated text.

We note that the parsing results in this chapter are not entirely conclusive: it is not
clear that CE with any given neighborhood is a better objective function than likelihood.
As illustrated in Figure 4.13, training using CE does not improve random models as much
as training by EM. It does outperform EM with more carefully chosen initializers, includ-
ing the “Zero” initializer. (Our experiments are fair in the sense that model selection for
MAP/EM and CE/DEL1ORTRANS1 was across approximately the same number of trials:
3 initializers × six (for CE) or seven (for EM) regularization settings.) Of course, all of
these results are presented with the caveat that they have focused on a single dependency
grammar induction task that is somewhat artificial in its definition (see Section 1.4), rather
than a serious application of language technology.

We showed how CE could be used to estimate a model of structures not representable
by a stochastic grammar (Model U), and improved performance by adding spelling fea-
tures. We have suggested future work in this area, most notably by designing neighbor-
hoods for specific tasks, or even specific systems.

22Example due to K. R. Thickman, personal communication.
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test accuracy
directed undirected

ATTACH-RIGHT 39.5 62.1
Model A MLE/EM (s-sel.) 41.7 62.1

MAP/EM (s-sel.) 41.6 62.2
CE/DEL1ORTRANS1 (s-sel.) 57.6 69.0

Model U CE/DEL1ORTRANS2 (s-sel.) – 50.7
+ spelling CE/TRANS2 (s-sel.) – 55.5

Table 4.10: Summary of baselines and key parsing results in this chapter. Note that Model
U does not predict directed attachment.
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Chapter 5

Annealing Techniques for Improved
Search

Life improves slowly and goes wrong fast, and only catastrophe is clearly visible.

—Edward Teller (1908–2003)

In the last two chapters, we presented the standard approach to unsupervised struc-
ture learning—MLE using the EM algorithm—and a new approach, contrastive estimation.
We explained and illustrated empirically that both methods correspond to the optimiza-
tion of a function that is “bumpy” (i.e., not globally concave). EM and the gradient-based
optimization method used for CE are hillclimbers that, given a starting point, search lo-
cally for a parameter estimate that scores better on the given objective function.

This chapter describes methods in which the objective function changes over time, to
improve the local search. We use the term annealing to refer to this practice (here and in
the next chapter), in deference to simulated annealing (Kirkpatrick, Gelatt, and Vecchi,
1983) and deterministic annealing (Rose, Gurewitz, and Fox, 1990), the two best-known
instances of these methods. We will show how deterministic annealing (DA) can be ap-
plied to MLE with the aim of avoiding shallow local maxima (Ueda and Nakano, 1998).1

The underlying idea is to solve a sequence of related, progressively more difficult opti-
mization problems, using each solution to initialize the next problem. DA, unlike EM, is
not sensitive to the initializing parameter estimate ~θ(0). We demonstrate experimentally
that DA is indeed more effective at optimizing likelihood, but models trained this way do
not improve accuracy.

We therefore generalize DA, presenting skewed deterministic annealing (SDA) as
an alternative that overcomes this problem. The experimental aim of the chapter is to
better understand the extent to which partial-data MLE (on Model A, at least) works badly
because of bad local search (as opposed to working badly because of the objective function,
addressed in the last chapter).

Techniques described in this chapter were originally presented in Smith and Eisner
(2004), though on different models.

1In principle it could also be applied to CE, though we have not done so here.
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5.1 Deterministic Annealing

A major difficulty of all of the unsupervised parameter estimation methods described
so far—partial-data MLE, its variants, and contrastive estimation—is that the objective
function is not globally concave. Global optimization of a “bumpy” function on Rn with
local optima is a notoriously difficult problem (Törn and Zilinskas, 1989; Horst and Parda-
los, 1995, inter alia). The algorithms for carrying out these approaches to parameter esti-
mation can be expected only to find local optima. Of the experimental results, positive and
negative, published on unsupervised learning, how much is due to fortuitous initialization
and the chance of climbing a good hill or a bad one? This chapter will shed some light on
the matter, showing that for maximum likelihood-based grammar induction, better search
can improve likelihood or accuracy—though neither implies the other, as we have seen.

Deterministic annealing (DA; Rose et al., 1990) is a technique for transforming incon-
venient functions into ones that are more straightforward to optimize. For example, it has
been used to approximate piecewise-constant functions with a sequence of continuous, dif-
ferentiable ones (Rao and Rose, 2001), and it has been used to transform bumpy functions
into concave ones (as we will see here). DA has another property, which we will discuss
in Section 5.4.1 but will not exploit experimentally, that makes it useful for selecting the
cardinality of discrete hidden variables. Readers are referred to Rose (1998) for a detailed
exposition of DA as a general technique; here we consider DA as a means to improve EM’s
search (Ueda and Nakano, 1998).

A helpful way to understand DA is to imagine that EM optimizes a wrinkled, bumpy
function in many parameters (~θ and the posterior over hidden structures q). Any hill-
climbing method, such as EM, runs the risk of getting stuck on a shallow local maximum,
depending on where it starts out (initialization). DA breaks this dependency by initially
transforming the bumpy function into a smooth, concave one—one that is easy to opti-
mize globally. Specifically, the global optimum is a model that predicts a uniform poste-
rior distribution over hidden structures. After solving the easy problem, DA transforms
the function into a slightly harder one and uses the solution from the last round to initialize
training. Since the two functions are very similar, a local maximum of the new one should
be nearby (and therefore quick to find), and further we hope that this local maximum is the
global one. This continues, iteratively, until the function matches the original one we in-
tended to maximize. There is no formal guarantee of finding the global maximum or even
a better local maximum than EM, but in practice DA often performs better at optimizing
likelihood.

5.1.1 Objective Function View of DA

A helpful way to think about DA is in terms of the sequence of intermediate objective
functions. To do this, we follow Csiszár and Tusnády (1984) and Neal and Hinton (1998)
in a particular view of the EM algorithm, namely as coordinate ascent in ~θ (the model
parameters) and q (the posterior over hidden structures). Rather than thinking of EM as a
method for finding ~θ alone, then, assume we are also looking for the posterior q. (It may
be helpful to refer back to Figure 3.3.)
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Recall that the E step defines the distribution q to be

q(y | xt)← p~θ
(y | xt) (5.1)

Equivalently, we could say that the E step solves an optimization problem, in which ~θ is
fixed (we only optimize over q). The problem is to find the closest distribution to p~θ

(Y | X)
by minimizing a Kullback-Leibler divergence (Kullback and Leibler, 1951, denoted here
D). Remember that p̃ is the empirical distribution over examples x; we write this as a
maximization problem:

max
q
−D

(
p̃(X) · q(Y | X)

∥∥∥∥ p̃(X) · p~θ
(Y | X)

)
(5.2)

≡ max
q
−Ep̃(X)·q(Y|X) [log p̃(X) + log q(Y | X)]

+Ep̃(X)·q(Y|X)

[
log p̃(X) + log p~θ

(Y | X)
]

(5.3)

The expectation of log p̃(X) cancels out, giving:

... ≡ max
q
−Ep̃(X)·q(Y|X) [log q(Y | X)] + Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

(5.4)

≡ max
q

Ep̃(X) [H (q(Y | X))] + Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

(5.5)

H is the Shannon entropy. D is trivially minimized when the two distributions are equiva-
lent, so Equation 5.1 is a closed form solution to this problem and no complex optimization
routine is needed.

The M step selects ~θ by solving the complete data maximum likelihood estimation
problem with the “empirical” distribution taken to be p̃(X) · q(Y | X), which is fixed:

max
~θ

Ep̃(X)·q(Y|X)

[
log p~θ

(X,Y)
]

(5.6)

≡ max
~θ

Ep̃(X)·q(Y|X)

[
log p~θ

(X) + log p~θ
(Y | X)

]
(5.7)

≡ max
~θ

Ep̃(X)·q(Y|X)

[
log p~θ

(X)
]
+ Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

(5.8)

≡ max
~θ

Ep̃(X)

[
log p~θ

(X)
]
+ Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

(5.9)

This follows from the definition of conditional probabilities (5.7), linearity of expectation
(5.8), and aggregating over values of Y (5.9). How easily the M step optimization problem
is solved depends on the form of the model. For stochastic grammars based on multino-
mial distributions, as we have seen, there is a closed form solution in terms of the suf-
ficient statistics (Section 3.3; here, frequency counts). For log-linear models, an auxiliary
optimization technique is required (Section 3.5). Note that Equations 5.5 and 5.9 share a
term. Now we combine them into a single objective function, fEM:

fEM(~θ, q) def= (5.10)
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improved on E step︷ ︸︸ ︷
Ep̃(X) [H (q(Y | X))] + Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

+ Ep̃(X)

[
log p~θ

(X)
]

︸ ︷︷ ︸
improved on M step

Both the E and M steps improve fEM. The E step fixes ~θ and optimizes with respect to q

(so the third term is a constant). The M step fixes q and optimizes with respect to ~θ (so the
first term is a constant). Alternating E steps and M steps gives a coordinate ascent method
in q and ~θ.

Beware confusing fEM with likelihood. Likelihood—the objective we really hope to
locally optimize by carrying out EM iterations—is captured in the third addend of Equa-
tion 5.10, which does not reference q or even the hidden variable Y. fEM is an implemen-
tational construct that helps us see how EM carries out that local optimization.

Now note that, in fEM, the first term, expected entropy of q, is concave in q.2 DA
capitalizes on this property for search purposes. The idea is to introduce an additional
parameter, β, which is manipulated during learning:

fDA(~θ, q, β) =
1
β
Ep̃(X) [H (q(Y | X))] + Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]
+ Ep̃(X)

[
log p~θ

(X)
]

(5.11)
First note that β does not affect the M step, only the E step. When β = 1, the objective is
exactly fEM. During DA, β is gradually increased from a small, near-zero positive value,
to 1. Initially, when β is close to 0, the first term dominates and the posterior q is forced
to stay near the maximum entropy distribution—uniformity.3 Gradually, over time, β is
raised to 1, when the objective becomes equivalent to the EM objective. As β increases, q
is “allowed” to be less and less agnostic about the values of the hidden variables. When
β = 0, the function is convex, and gradually increasing β morphs the function into a non-
convex objective, arriving at fEM when β = 1.

5.1.2 DA with Stochastic Grammars

As it happens the implementation of DA with the stochastic grammars discussed in
this thesis is very straightforward, with only two modifications to EM. The first is to nest
EM within an outer loop that gradually increases β from 0 to 1. The second is a change to
the E step, which is essentially:

Let q(y | xt) ∝
(
p~θ(i)(y | xt)

)β for each observed xt in ~xt and each possible
value y ∈ Yxt .

2This fact, that the entropy of a multinomial (such as q(Y | x)) is concave in the parameters of the multi-
nomial, is one of the first points typically made about Shannon entropy; (Cover and Thomas, 1991, chapter
2).

3Not to be confused with the maximum entropy approach to modeling (footnote 20 in Chapter 3 on
page 54), which involves a constrained maximum entropy problem. Without constraints, as here, maximum
entropy for discrete-variable distributions is achieved by a uniform distribution.
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DETERMINISTIC ANNEALING (stochastic grammars):

1. Initialize ~θ(0) and let β ← β0.

2. Do:

(a) (E step) For each rule r ∈ R (the rules of the grammar) let cr ← 0. For each
example xt in ~xt:

• Run the relevant Inside and Outside algorithms to compute p
β~θ(i)(x). This

is done by scaling ~θ(i) by β before solving the dynamic programming equa-
tions. For all r ∈ R, let cr ← cr + Ep

β~θ(i) (Y|xt)

[
fr(xt,Y)

]
.

~c now contains sufficient statistics for the parameters of the model.

(b) (M step; same as EM) Compute ~θ(i+1) by normalizing ~c. That is, if r is in the
partition Ri of the grammar rules, let θr ←

cr∑
r′∈Ri

cr′
. This is the maximum like-

lihood estimate given the sufficient statistics.

(c) If ~θ(i+1) ≈ ~θ(i) then proceed to step 3; otherwise let i← i + 1 and go to step 2a.

3. If β = 1 then stop; otherwise β ← min(1, γβ) and go to step 2.

Figure 5.1: DA for stochastic grammars.
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In both stochastic grammar EM and log-linear grammar EM, this can be done by re-
placing ~θ with β · ~θ before running the Inside and Outside algorithms. The effect is to raise
the relative probabilities of each analysis y to the power β, with the Outside algorithm
taking care of renormalization to ensure valid sufficient statistics. The M step does not
change. See Figure 5.1.

It is helpful to think of the model p
β~θ

as a log-linear grammar. Unless β = 1, the

weights β~θ do not obey the constraints in Equations 2.3 and do not define multinomial
distributions. If β > 0, which it is, by design), however, the parameters β~θ do define a
log-linear model. The model may diverge (Section 3.5.1), but that does not matter. A
valid posterior q(Y | X) is well-defined (Section 2.4), and the Inside-Outside algorithm will
produce the required quantities (sufficient statistics under q).

Smith and Eisner (2004) applied DA with some success to a part-of-speech tagging
task (from unannotated examples, with a known tagging dictionary, following experi-
ments described by Merialdo, 1994) and to the unsupervised estimation of Klein and Man-
ning’s (2001a; 2002a) constituent-context model for binary unlabeled constituent structure.
Smith and Eisner improved the part-of-speech tagging accuracy on ambiguous words in
test data from EM’s 66.6% to DA’s 70.2% and, on constituent parsing, improved the unla-
beled PARSEVAL F1 score (Black et al., 1991) by one point over EM (67% to 68%). These
improvements, while small, were statistically significant.

If β is increased past 1, toward +∞, the objective function approaches Viterbi EM.
Recall that Viterbi EM places all of q’s mass on the most probable analysis; see Section 3.3.4.
It is left as an algebraic exercise to see that this is the case (see Equation 3.16).

5.1.3 Annealing Schedule

Following the algorithm in Equation 5.1, we do not gradually change β during learn-
ing; it is a fixed value on any given EM iteration within DA. We must specify a schedule
for changing β over time. Here we start with a value β0 and fix a growth constant γ > 1.
Keeping β = β0, we train the model using EM iterations with the modified E step. Upon
convergence, we set β ← min(1, γβ). This continues until EM iterations converge at β = 1.
The smaller we make β0 and γ, the slower annealing will be: training will take longer, but
we can have more confidence (though never a guarantee) in finding a taller mountaintop
on the likelihood function.

5.1.4 A Note on DA

Readers familiar with DA as an alternative to stochastic gradient descent—that is, as
a method for optimizing discontinuous functions—may be puzzled that there is only one
additional parameter involved, β. For example, Rao and Rose (2001) and D. Smith and
Eisner (2006a) describe their methods in terms of two parameters, temperature and another
scale parameter. Their application of DA gradually lowers a “temperature” parameter, τ
(we use our notation, not theirs, for within-thesis clarity):

min
~θ,β

Ep
β~θ

(W) [•]− τ ·H
(
p

β~θ
(W)

)
(5.12)
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where • suppresses a more complex function of modeled structures w ∈ W. In their set-
ting, β is a free parameter to be optimized over.

The difference between the present work and those papers is that the EM objective,
when written in Neal and Hinton’s form, already includes the (expected) entropy over q
(the second term). The functions optimized in the other papers are not based on likelihood
and do not include entropy. Informally put, they add an entropy term to their objective
functions, scaled by τ . Eventually the entropy term vanishes (as τ → 0). That scalar
corresponds to (the inverse of) our β.

For us, τ
def= 1/β, and the scaling (by β, equivalently 1/τ ) of the parameters ~θ simply

falls out of the derivation. Also, we drive β to 1, since the entropy term is part of the
original function and we do not want it to vanish.

5.2 Experiments

We compare deterministic annealing EM with regular EM (as in Chapter 3). The same
three initializers were used, and we tested various annealing schedules. Results are pre-
sented in Table 5.1.

The first thing to notice is that the initializer has virtually no effect on the model
learned. This is exactly as we expect—early rounds of DA correspond to a concave func-
tion with one global maximum that is quickly discovered (assuming that β0 is close enough
to zero), so it shouldn’t matter where ~θ(0) is. Another way to think about it: when β ≈ 0
(the beginning of learning), the posterior distribution q is forced to have high entropy (like
the Zero initializer), and the original parameters are quickly forgotten. Next, notice that
DA usually does find a better local minimum of HC (equivalent to a local maximum of
likelihood) than EM, often much better. Unfortunately, this does not necessarily corre-
spond to better directed or undirected accuracy. So even though DA is a better optimizer
of likelihood than EM, the likelihood-accuracy disconnect remains. There is a visible trend
toward higher undirected accuracy when the objective function is changed more gradually
(slower annealing; γ closer to 1).

Further, it continues to be evident that there are many local optima, since each an-
nealing schedule found a different one. Which one is found depends very much on the
annealing schedule, and it is not necessarily the case that annealing more slowly (smaller
β0 and γ) finds a better local optimum (lower value of HC).

Finally, note that while the number of EM iterations required does increase with the
number of epochs,4 each epoch is on average much shorter than a full run of EM (which
takes 50–60 iterations). This is because each EM loop is initialized by the previous one,
which has already found a local optimum of a very similar function.

5.3 Skewed Deterministic Annealing

We have seen how deterministic annealing can outperform EM at optimizing likeli-
hood—through the avoidance of shallow local optima—and break dependence of perfor-

4The number of epochs is equal to d−logγ β0e. This ranges from 3 to 31 in the experiments in Table 5.1.
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.3)

?

objective function
EM (Section 3.3) no no no likelihood (also with Dirichlet prior)
LMVM (Section 4.6) no no yes any differentiable, unconstrained function

(used for contrastive estimation)
DA (Section 5.1) yes yes no likelihood (also with Dirichlet prior)
SDA (Section 5.3) no yes no likelihood (also with Dirichlet prior)

Table 5.2: Summary of optimization methods used in the thesis for unsupervised learning
of weighted grammars. Note that estimation criteria (objective functions) and optimization
algorithms are loosely coupled, but the choice of one does not fully imply the choice of the
other.

mance on the initializer. The former is desirable insofar as the likelihood function approx-
imates directed accuracy. However, we have seen that the models learned with DA are
not more accurate than those learned with EM. A good initializer, as we have seen, can be
very important for successful learning. Skewed deterministic annealing (SDA) is a gen-
eralization of DA that tries to avoid local optima without sacrificing the benefits of a good
initializer (Smith and Eisner, 2004). SDA is a “cautious” alternative to EM and a biased
alternative to DA.

To introduce SDA, we consider the following restatement of DA’s E step (given in
Figure 5.1):

Let q(y | xt) ∝ p~θ(i)(y | xt)β ·
(

1
|Yxt |

)1−β
for each observed xt in ~xt and each

possible value y ∈ Yxt .

The term
(

1
|Yxt |

)1−β
is of course a constant with respect to the parameters. We write the E

step this way to show that the posterior under DA can be described as an interpolation (in
the log domain and with coefficient β) between the model’s posterior p~θ(i) and the uniform
posterior (the distribution with the highest entropy).

SDA replaces the uniform posterior with an arbitrary one, which we will refer to as
ṕ(y | x):

Let q(y | xt) ∝ p~θ(i)(y | xt)β · ṕ(y | xt)1−β for each observed xt in ~xt and each
possible value y ∈ Yxt .

The SDA objective function is, then:
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fSDA(~θ, q, β, ṕ) =
1
β
Ep̃(X) [H (q(Y | X))] + Ep̃(X)·q(Y|X)

[
log p~θ

(Y | X)
]

+Ep̃(X)

[
log p~θ

(X)
]
+

1− β

β
Ep̃(X)·q(Y|X) [log ṕ(Y | X)] (5.13)

When β is close to zero, SDA behaves cautiously, not wanting the model’s posterior
over hidden structures to diverge too far from ṕ. As β increases toward one, the model is
allowed to move up a nearby likelihood hill, but only if the hill is steep enough to overcome
the SDA-imposed attraction toward the ṕ-friendly model.

In this work we do not represent ṕ directly, instead using ~θ(0). To carry out the SDA E
step, we replace ~θ with β~θ + (1− β)~θ(0), which has exactly the same effect as interpolating
between the posteriors. This is very similar to DA (Figure 5.1), which simply scaled ~θ by β.

To our knowledge, SDA is a novel generalization of DA. It is applicable to any problem
where DA is applicable, and is likely to be helpful in cases wherever a good initializer is
known.

5.3.1 Experiments

We compare skewed deterministic annealing EM with regular EM. The same three
initializers were used, and we tested various annealing schedules (the same ones tested
with DA). Results are presented in Table 5.3.

Unlike with DA, we see a strong dependence on the initializer, as expected. Note that
the Zero initializer is essentially the same under DA (Table 5.1) and SDA; this is because
the Zero initializer gives a uniform posterior over hidden structures. It is the model toward
which DA tends by default (the maximum entropy model).

With the K&M and Local initializers, SDA does not typically find a better local op-
timum than EM using the same initializer, but it does often find a more accurate model.
This adds to the body of damning evidence against likelihood (see Chapter 3): an alterna-
tive search strategy (SDA) performed worse at optimizing likelihood, but serendipitously
found a more accurate model. Notably, when γ is not too large, undirected accuracy typ-
ically improves over the best EM/MLE condition. Under these initializers, directed accu-
racy is rarely much worse under SDA than EM with the same initializer (often it is better).

Finally, SDA does not generally require more iterations than EM training to improve
performance over EM. As with DA, each epoch requires only a few iterations to converge,
since the previous epoch involved optimizing a similar function, and the local optimum of
the new function is unlikely to be far from the local optimum of the previous one.5

We conclude that SDA is a useful alternative to EM that carries out a more cautious
search of the likelihood surface. It does not, in general, find a better local optimum than
EM, but given a good initializer it can improve accuracy. We offer the following explana-
tion: likelihood is not a perfect approximation to accuracy, but in good regions of param-
eter space, improving likelihood often improves accuracy. Some initializers (like K&M,
for this dataset) get the learner into a “good region.” Different search algorithms that stay

5Indeed, SDA nearly always found a local optimum closer to the initial parameters ~θ(0) than EM did.
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Figure 5.2: Accuracy on test data (directed vs. undirected): 100 random models before
training, after EM training, and after SDA training with β = 0.01, γ = 1.5.

within that region (like EM and SDA, but not DA) will lead to different local optima given
the same initializer. Some of those local optima are more accurate than others.

5.3.2 Further Analysis (Random Initializers)

Figure 5.2 shows the spread of accuracy performance of 100 random models (the same
ones used in previous chapters) before training and after training initialized from each one,
with EM and with SDA (β = 0.01, γ = 1.5). We consider here only one annealing schedule.

Figure 5.3 further illustrates that SDA, like EM, may select any of similar likelihood--
valued local optima: 100 random initializers all find different local maxima with about the
same function value and very different accuracies on test data. In fact, when we compare
to Figure 3.7 on page 42, we see that SDA consistently finds local maxima that are worse
in likelihood than EM finds (the exception is the Zero initializer). SDA is certainly not
accomplishing anything like global optimization. This is consistent with the results in the
last section. Like EM (Figure 3.8 on page 43), SDA does consistently improve the accu-
racy of the initializer (see Figure 5.4), though the improvement is more often than not less
than improvement by EM for random models (see Figure 5.5). The result could turn out
differently for a different annealing schedule.

For more comparison among methods on random initializers, see Sections 4.6.5, 6.1.4,
6.2.2, and 7.4.
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5.3.3 Semisupervised Use of SDA

In Sections 3.4.2 and 4.6.6, we considered different uses of the annotated development
data, most notably as an initializer to unsupervised training. Supervised initialization, we
have seen, leads to higher accuracy than simply using the annotated data to choose among
unsupervised models, but it is not as accurate as those supervised initializers themselves
(except when very small amounts of annotated data are available).

SDA is a method designed to make the most of a good initializer. When we use the
supervised model (trained on annotated development data) to initialize SDA training, we
obtain considerable improvements; see Figure 5.6. Here we have used a fast growth rate
(γ = 2.5) and tried different initial β0 values. For up to 50 annotated examples, SDA with
supervised initialization is the best method, actually improving over supervised train-
ing alone. (Not shown in the figure, is supervised initialization and semisupervised SDA
where the supervised data affect the counts after each E step. This performed virtually the
same as mere supervised initialization and so is suppressed for clarity in the plot.) This
does not extend to larger annotated datasets, though; the matter warrants further inves-
tigation.6 Other values of γ and β0 (not shown) performed within about five points of
these settings, occasionally slightly better. Note that unsupervised training by MLE/SDA

6Prior work, including Merialdo (1994) and Elworthy (1994) has found that combining nontrivial amounts
of labeled data with unlabeled data in a maximum likelihood setting tends to learn worse models than MLE
training on the labeled data alone. Our results are consistent with those findings, but SDA appears to push
the “trivial” threshold higher than EM.
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with supervised selection of the annealing schedule and initializer is fairly stable as the
development dataset diminishes, and performance is consistently higher than MAP/EM.

We have seen repeatedly that supervised initialization outperforms supervised model
selection (see Section 3.4.2 for a defense of supervised model selection). The experimental
results in this section are promising, suggesting that annealing “away” the initializer is a
reasonable approach to combining labeled and unlabeled data. In future work we might
consider different annealing schedules that do not stop at β = 1, but rather sooner, so that
the annotated data influence the objective more strongly. Indeed, the development data
could also be used to decide when to stop increasing β.

5.4 Related Work

We discuss an important feature of DA not capitalized on in this thesis: phase transi-
tions in hidden variable cardinality. We then describe three general latent-variable mod-
eling techniques that are similar in spirit to DA: example reweighting, latent maximum
entropy, and the information bottleneck.

5.4.1 DA with Phase Transitions

An important application of deterministic annealing in natural language processing
was by Pereira, Tishby, and Lee (1993). Their aim was to use distributional clustering to
find words that were semantically related to each other. The central intuition was that
two nouns that tend to appear as objects of the same verbs (more precisely, in the same
proportions for those verbs) are likely to have related meanings. The distance between
these distributions over contexts was measured by KL divergence (Kullback and Leibler,
1951), and deterministic annealing was used in the construction of the clusters. This is a
classic application of DA to clustering, and it highlights nicely one of the properties of DA
that we have not touched upon here: phase transitions, or natural increases in hidden-
variable cardinality that arise during DA learning. These phase transitions were central to
the original exposition of DA as a vector quantization method (Rose et al., 1990).

Note that in this probabilistic framework, each noun belongs to each cluster with some
probability. Early in learning, when the entropy over cluster memberships for the nouns
is high, all of the nouns belong more or less equally to all of the clusters; the clusters are
effectively the same. Put another way, there is only one “effective cluster.” Because of this,
Pereira et al. need only define two clusters to start out.

Over time, as β is increased, the entropy constraint is, as an effect, relaxed. This allows
the two clusters to move apart from each other. When they move sufficiently far “apart”
(measured by the divergence between their distributions over nouns), they are said to
“split.” When this happens, each cluster c gets a new twin which is a perturbed version of
c. The process repeats, with the cluster splits happening naturally as β increases. The result
is a hierarchical, soft clustering, if we keep track of the clusters before they split and their
phylogenetic relationships. These phase transitions also serve the purpose of guiding the
annealing schedule; the goal of the annealing process is to manipulate the temperature so
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as to find the phase transitions, and it can be sped up or slowed down—even reversed—to
do so.

(Clustering in language learning has been very widely applied to words (Brill, 1991;
Finch and Chater, 1992a,b; Brown, Della Pietra, de Souza, Lai, and Mercer, 1992; Schütze,
1993). More recently, Buchholz (1998) clustered verbs, and Rooth, Riezler, Prescher, Car-
roll, and Beil (1999) clustered words to discover subcategorization frames. Klein and Man-
ning (2001b) and Clark (2001) have argued for the use of contextual distributions of pos-
sible constituents in inducing constituent grammars, treating grammar induction like a
sequence-clustering problem. Both Klein and Manning and Clark applied distributional
clustering, in some form, to discriminate sequences of part-of-speech tags that are con-
stituents from those that are not.)

5.4.2 Example Reweighting

Elidan, Ninio, Friedman, and Schuurmans (2002) described a set of methods for avoid-
ing local optima of bumpy objective functions by randomly perturbing the weights of ob-
served examples. Reweighting the training data changes the empirical distribution p̃ and
so changes the objective function, but only temporarily. Elidan et al. describe a random
reweighting strategy and also an adversarial one that “challenges” the current hypothesis
by updating the weights in the negative gradient direction. This technique is similar in
spirit to simulated annealing (Kirkpatrick et al., 1983). The perturbation of the training
example weights is, in fact, annealed over time so that ultimately the examples are equally
weighted.

5.4.3 Latent Maximum Entropy

Latent maximum entropy (LME; Wang, Rosenfeld, Zhao, and Schuurmans, 2002) is
a generalization of the maximum entropy principle to models with latent variables. The
maximum entropy principle (Jaynes, 1957) is, informally, the idea that, among models that
fit the data, the one chosen should be the one that maximizes the entropy of the model
distribution. A fascinating result is that, if “fitting the data” is taken to mean that, for a
set of functions fi : W → R≥0, the model expectations of those functions are equal to the
empirical expectations, then the solution to the maximum entropy problem is exactly the
maximum likelihood log-linear model (footnote 20 in Chapter 3, page 54). See Ratnaparkhi
(1997) for a presentation of this property. It is for this reason that log-linear models are
often called “maximum entropy” models.

The above result applies when dealing with fully observed data. Wang et al. (2002)
pointed out that the relationship between MLE and maximum entropy does not hold for
partially-observed data. They show that, for log-linear models, local maxima of the likeli-
hood function are feasible solutions to the latent maximum entropy problem, and suggest
finding many such estimates (using, for example, EM with multiple starting points) and
selecting the model with the highest entropy over W.7

7The entropy of the distribution of derivations defined by an SCFG can be computed by solving a system
of linear equations (Grenander, 1967; Soule, 1974). The number of equations and the number of variables are
equal to the number of nonterminals.
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5.4.4 Information Bottleneck

Information bottleneck (IB; Tishby, Pereira, and Bialek, 1999) is a technique that re-
lates statistical modeling to information theory. The relevant application of this idea to
EM, in particular, is the IB-EM algorithm (Elidan and Friedman, 2003, 2005). The idea is
very similar in spirit to DA. Recall that DA notes a tradeoff within the EM objective func-
tion (Equation 5.10) between maximizing the entropy of the posterior distribution q over
hidden structures and fitting the model to the data. IB-EM manipulates instead a tradeoff
between minimizing the information in the hidden variables about the identity of the train-
ing instances and maximizing the information in the hidden variables about the observed
data. Elidan and Friedman applied the method to Bayesian networks. Like DA in this
kind of setting, it has the ability to automatically select the cardinality of discrete hidden
variables through phase transitions (see Section 5.4.1).

Two additional important contributions to this area of parameter estimation were
made by Elidan and Friedman, and these are worthy of note for future work with the
methods developed in this thesis. The first is the use of continuation methods (Allgower
and Georg, 1990) to automatically select the change in the annealing parameter (for in-
stance, β in our DA and SDA notation). This is a generalization of the idea of interpolation
between “easy” and “difficult” problems. The second is the application of early stopping
for better generalization. That is, instead of driving β to the point where the training ob-
jective exactly matches likelihood (for us, β = 1), stop early and return the local optimum
of a different function.

5.5 Summary

We started out by describing deterministic annealing (DA) and how it is applied to
improve search during MLE training using EM. While DA often does better at maximizing
likelihood, it replaces dependence on the initial parameters (as in EM) with dependence on
the choice of annealing schedule (though annealing very slowly is an obvious choice). For
Model A, DA does not generally improve labeled accuracy, though it sometimes improves
unlabeled accuracy. We presented skewed DA (SDA), which brings back dependence on
the initializer but usually finds a slightly more accurate model than EM. It appears to be
more sensitive to the annealing hyperparameters than DA, and converges in 2–3 times as
many iterations as EM, at worst. While SDA found more accurate solutions than EM, it
did not do so by improving likelihood. Having given likelihood another chance under
some alternative optimization schemes (cf. EM), we conclude that optimizing likelihood is
not a particularly effective way to learn linguistically motivated grammars. This conclu-
sion is consistent with the last two chapters. We also found that SDA is a more effective
semisupervised method than EM or CE, though (like EM and CE) it is not as effective as
supervised training (ignoring the unannotated data) when enough annotated examples
are available.

The idea of annealing, however, is very general. In the next chapter we will apply it
in a different way that guides search by changing a structural bias in the model. Finally,
we point out that DA and SDA could be applied to alternative objective functions (like
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test accuracy
directed undirected

ATTACH-RIGHT 39.5 62.1
MLE/EM (s-sel.) 41.7 62.1
MAP/EM (s-sel.) 41.6 62.2
MLE/DA (s-sel.) 34.8 66.6

MLE/SDA (s-sel.) 46.7 64.3

Table 5.4: Summary of baselines and results in this chapter.

contrastive estimation, Chapter 4), which we have not done here.
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Chapter 6

Structural Annealing

Progress imposes not only new possibilities for the future but new restrictions.

—Norbert Weiner (1894–1964)

This chapter presents a novel approach to unsupervised parameter estimation called
structural annealing. The idea is a blend between changing the objective function for
improved accuracy (like contrastive estimation, Chapter 4) and annealing (changing the
function over time, as in Chapter 5).

First we discuss an example of structural bias that is helpful for language learning:
a preference for string-local attachments. We show how this can be injected into Model
A (giving a new model, which we call Model L) through a single structural feature: the
total length of dependencies in a tree. While this locality measure is a global feature of
the tree, it factors into local terms (the total length of dependency edges equals the sum
of edge lengths). Model L is shown to give substantial improvements over Model A on
English data without drastically changing the estimation algorithm, when the single added
parameter is chosen properly and fixed (left untrained).

Annealing this parameter results in a very strong locality preference early in learning
that is gradually relaxed. This approach is called structural annealing and gives the best
results on the task to date.

We then present another alternative model, Model S, which differs from Models A and
L in its hypothesis space, allowing partial parses. Structural annealing on the weight of a
single connectedness feature (counting the number of breaks in the tree) gives a similar
trend in performance: Model S beats Model A, more so with structural annealing.

The methods and preliminary experimental results presented in this chapter were
originally published in Smith and Eisner (2006).

6.1 Structural Bias: Locality

A widely noted fact about syntactic dependencies in natural language is that they tend
to be very string-local (see, among many others, Lin, 1996). For example, in our English
training corpus, 95% of dependency links cover four or fewer words. Figure 6.1 shows
the distribution over string distance between parents and children in the training corpora
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Figure 6.1: Distributions over parent-child string distances in training corpora in different
languages. These training corpora contain only sentences of ten or fewer words, without
punctuation.

used in the thesis (experiments on the other languages will be presented in Chapter 8).
Across languages, we see that at least half of the dependencies in these corpora are between
adjacent words. Put simply, most syntax is local, and we want to take advantage of this
tendency during parameter estimation.

Model A does not have any kind of string-locality feature. In supervised parsing, many
models have incorporated different kinds of features of the material between parent/child
pairs, which can help capture this trend where it is empirically observed. Collins (1997a)
considered three binary features of the intervening material between each parent and child
node: did it contain (a) any word tokens at all, (b) any verbs, (c) any commas or colons?
Note that (b) is effective because it measures the length of a dependency in terms of the
number of alternative attachment sites that the dependent skipped over, a notion that
could be generalized. Similarly, McDonald et al. (2005a) had a feature for the presence
of each of the intervening POS tags. Klein and Manning (2003a) conditioned child genera-
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tion probabilities on coarse distance classes, and Eisner and Smith (2005) generated string
distances directly in a deficient model estimated by maximum likelihood, achieving speed
and accuracy improvements.

In unsupervised learning, our goal is not to model the distance configurations as in the
work cited above, but rather to exploit the linguistic preference for local attachment when
estimating the model’s parameters. Incorporating a locality preference into the model
(through additional features) is one way to do this. A single feature that captures the intu-
ition is the total string distance between all words and their parents (known as “structural
complexity;” see Lin, 1996)

fdistance(x,y) def=
|x|∑
i=1

∑
j:j∈y(i)

|i− j| (6.1)

Our aim, however, is to posit the preference, not learn it (we already know about the
preference—why try to learn what we already know?). Therefore, we will add the above
feature to Model A and give it a weight, δ, that is chosen before learning and not trained.
The feature is used only during training; the end result is the same Model A, decoded as
in previous chapters, but trained to optimize a different objective function: likelihood of a
slightly different model.

6.1.1 Model L

We call that different model Model L. Model L is exactly like Model A, except for the
incorporation of fdistance with untrained weight δ:1

p̈L
~θ,δ

(x,y) def=
p̈A

~θ
(x,y) · eδ·fdistance(x,y)

Z̈~θ,δ
(W)

(6.2)

If δ < 0, Model L prefers local attachments; there is a locality bias. In the limit, as
δ → −∞, the model will tend toward an extremely strong preference for left- or right-
branching trees. If δ = 0, there is no bias and we have Model A. If δ > 0, we have a bias
against locality, preferring longer attachments. With finite δ, the biased model does not
eliminate any hypotheses from Yx, it only changes their relative probabilities. Hence the
language of the grammar underlying Model L (for a given Σ) is strongly equivalent to that
underlying Model A, though Model L may represent distributions over trees that Model
A cannot.

6.1.2 Training with Model L

Model L is a log-linear grammar, not a stochastic grammar. Therefore we would not
expect to be able to train Model L with EM (see Section 3.5). This turns out not to be a
difficulty because we do not directly train δ.

Recall that during EM training (Figure 3.3), each E step sets q to the conditional family
p~θ

(Y | X). For Model A this is done using an Inside-Outside algorithm (Section 2.4);

1This weight is in the log-domain, like ~θ.
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an almost-identical Inside-Outside algorithm can be used for Model L (Section A.4). The
M step carries out fully-observed MLE, using q to fill in the distribution over the hidden
variable. With δ fixed, and for a given q, this corresponds to the usual maximization of
likelihood with respect to ~θ, carried out by normalizing sufficient statistics.

EM with Model L is essentially the same in practice as EM with Model A, except that
the posterior q, computed on E steps, is now given by:

q~θ,δ
(y | x) ∝ p~θ

(y | x) · exp (δ · fdistance(x,y)) (6.3)

where ∝means “proportional to” (equal up to a positive constant factor). Notice that, just
as in DA (Chapter 5) and CE (Chapter 4), this isn’t necessarily a proper distribution that
sums up to one for each x (hence we use the∝ symbol). As we have repeatedly mentioned,
this does not pose a problem, since the E step for Model A (and other stochastic grammars)
does not represent q directly, only sufficient statistics under q for use in the next M step.
Correct computation of the sufficient statistics using the Inside-Outside algorithm does not
require the computation of a normalizing term.

The dynamic programming equations for Model L are given in Section A.4. The es-
sential change is to multiply in eδ|i−j| every time an attachment is made between xi and
xj .

6.1.3 Experiments

Table 6.1 shows performance of EM with a locality bias δ set at different values. For
this dataset, we see significant improvement over the baseline (δ = 0), on both directed and
undirected accuracy, when δ is set to a small negative number. Notably, the Zero initializer
can match the performance of the K&M initializer if a good value of δ is used (in this case,
−0.4).

Of course, adding a prior (smoothing) is expected to improve performance. We tested
the same smoothing conditions as in Section 3.4.1, and applied model selection. Super-
vised selection across all three initializers, 11 values of δ, and 7 values of λ (241 conditions)
chose Zero, δ = −0.6, λ = 10, and achieved 61.8% directed accuracy and 69.4% undirected
accuracy. Note that this is a more heavily smoothed model than EM’s selected model—the
bias and the prior cannot be chosen orthogonally. This is the best performance on the task
achieved so far. Unsupervised model selection (choosing by likelihood, under Model A, on
development data) across the same conditions chose the same model as in MAP/EM trials:
K&M initializer, δ = 0, λ = 10−2/3. It achieves 41.6% (62.2% undirected). Figure 6.2 plots
directed accuracy against δ, for a few different initialization and smoothing conditions.

6.1.4 Further Analysis (Random Initializers)

Figure 6.3 shows the spread of accuracy performance of 100 random models (the same
ones used in previous chapters) before training and after EM training initialized from each
one with Model A and with Model L (δ = −0.4). The outcomes are virtually indistinguish-
able.

Figure 6.4 further illustrates that the likelihood function for Model L suffers from lo-
cal maxima, just like Model A. 100 random initializers all find different local maxima with
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Figure 6.2: Test-set directed attachment accuracy of models at different values of δ. Each
curve corresponds to a different value of λ and ~θ(0). Notice that the highest point on most
curves is not at δ = 0.
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Figure 6.3: Accuracy on test data (directed vs. undirected): 100 random models before
training, after EM training of Model A, and after EM training of Model L with δ = −0.4.

about the same function value and very different accuracies on test data. However, as illus-
trated in Figure 6.5, EM/Model L training always results in a more accurate model than
the initializing ~θ. This was not true in the case of EM/Model A (for the Local and Zero
initializers; see Figure 3.8), and it was not true for CE/Model A (for some random initial-
izers; see Figure 4.12). Figure 6.6 compares the amount of test-set accuracy improvement
under Model L with the same measure under Model A (both with EM training). Neither
consistently improves random models more than the other.

For more comparison among methods on random initializers, see Sections 4.6.5, 5.3.2,
6.2.2, and 7.4.

6.2 Annealing δ

We now turn to the central idea of this chapter: structural annealing. Instead of fixing
δ, structural annealing starts with δ � 0 and gradually increases it. The goal is to force
the learner to predict the most local patterns first, then gradually allow it to focus on more
distant relationships. The algorithm is given in Figure 6.7 in a somewhat general form
(without specifying exactly what the structural features are). This highlights that the idea
can be applied in many ways: if there are features that quantify simple structures versus
more complex ones, we can use them in structural annealing.

As in DA, there is an annealing schedule, here given by starting and ending values
for δ (δ0 and δf , respectively), and a value by which it is changed (arithmetically) after
each epoch (∆δ). This is yet another hyperparameter problem; here we explore different
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Figure 6.4: Accuracy on test data vs. log-likelihood on training data: 100 random models
(and our three initializers) before and after EM training with Model L (δ = −0.4). Small
labels correspond to our initializers before training, large labels to after training. Compare
with Figure 3.7 on page 42. The log-likelihood is off by a constant additive term because we
have not renormalized; this means the absolute x-axis values are not directly comparable
to Figure 3.7.
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STRUCTURAL ANNEALING (stochastic grammars):

1. Initialize ~θ(0) and let ~σ ← ~σ0.

2. Do:

(a) (E step) For each rule r ∈ R (the rules of the grammar) let cr ← 0. For each
example xt in ~xt:

• Run the relevant Inside and Outside algorithms to compute p~θ(i),~σ
(x). For

all r ∈ R, let cr ← cr + Ep~θ(i),~σ
(Y|xt)

[
fr(xt,Y)

]
.

~c now contains sufficient statistics for the parameters of the model.

(b) (M step; same as EM) Compute ~θ(i+1) by normalizing ~c. That is, if r is in the
partition Ri of the grammar rules, let θr ←

cr∑
r′∈Ri

cr′
. This is the maximum like-

lihood estimate for ~θ on the complete data distribution p̃ · q, given the sufficient
statistics.

(c) If ~θ(i+1) ≈ ~θ(i) then proceed to step 3; otherwise let i← i + 1 and go to step 2a.

3. Stop if, for all annealed parameters σi,

σi ≥ σf i where ∆σi > 0
σi ≤ σf i where ∆σi < 0

Otherwise ~σ ← ~σ + ∆~σ and go to step 2.

Figure 6.7: Structural annealing for stochastic grammars. Here ~σ is a set of structural
parameters (e.g., δ in Section 6.2 or β in Section 6.3) that are not trained, but rather manip-
ulated over time.
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annealing schedules for δ, illustrate the range of performance, and apply model selection
across these settings.

6.2.1 Experiments

We tested a range of initial values for δ, δ0 from -1 to -0.2, and two different growth
factors ∆δ (0.1 and 0.05). The stopping δ (δf ) and the smoothing level λ were selected
using supervised model selection. Table 6.2 shows the performance of these trials, with
the different initializers. Notice that the choice of δ0 is very important, and that “playing it
safe” by starting with δ0 � 0 does not necessarily yield the best performance, and that the
choice of ∆δ seems to have little effect on accuracy, at least for the two values tested.

As for δf , comparing Tables 6.2 and 6.3 shows that simply stopping at δ = 0 performs
nearly as well as selecting the stopping value with development data. However, continu-
ing training slightly past δ = 0 seems to be advantageous. This might be surprising, since
positive δ is a poor choice (Table 6.1). This suggests that annealing δ can trap the learner at
a model that prefers local attachments too much and is therefore less accurate. Continuing
annealing past 0, then, pulls the learner away from this tendency.

Comparing, for example, the trees produced in the δ0 = −0.6, ∆δ = 0.1, λ = 10, Zero
initializer condition, the (slight) improvement in performance between stopping at δ = 0
and δ = 0.1 involved 143 corrected attachments, 89 of which were reattachments to a more
distant parent. Of the 91 reattachments that increased error (i.e., parsing with the model
trained to δ = 0 gave the correct attachment, but after training to δ = 0.1, the attachment
was made differently), 70 were reattachments to a more distant parent. The later (δ → 0.1)
model is more inclined to make longer attachments when applied to parsing, and more
often than not this improves error (though the balance is slight).

Figure 6.8 shows performance at different potential stopping points for some condi-
tions. Generally speaking, the better the initial setting, the better the annealed model will
be; there is usually a slight increase in performance after δ passes 0. Notice that training
too long (annealing too far) has catastrophic results, as continued training past the “peak”
leads to a sharp decline in performance.

Further error analysis on the selected annealed-δ condition (λ = 10, ~θ(0) = Zero,
δ0 = −0.6, ∆δ = 0.1, δf = 0.1) is shown in Tables 6.4, 6.5, and 6.6. The first of these
shows undirected accuracy broken down by the most frequent unordered tag-pair types.
The most notable problem has to do with NNP-NNP links, the conventional dependency
structure of which is difficult to learn without lexicalization (they correspond to sequences
of proper nouns, usually, in which lexical features would be necessary to learn patterns).
Similarly to CE (Table 4.3, page 84), adjectives are too frequently linked to determiners
(instead of nouns; DT/JJ vs. DT/NN, for example). Considering the distribution over link
types hypothesized by this model, the undirected distribution is comparable to CE’s (0.05
bits of mean KL divergence to the mean with the true distribution) and the directed distri-
bution is even better (0.10 bits, compared to CE’s 0.15 and EM’s 0.28).

Table 6.5 shows that, even more than CE (Table 4.4, page 85), structural annealing
improves both precision and recall on longer attachments. This is contingent on stopping
at the right time; the table shows the same statistics after earlier epochs (the first one,
δ = −0.6, and also after δ = −0.3). Notice how recall on longer attachments improves over
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Figure 6.8: Test-set directed attachment accuracy of models at different potential stopping
values of δf . Here we show the Zero-initialized, λ = 10, ∆δ = 0.1 trials (above) and the
K&M-initialized, λ = 10, ∆δ = 0.1 trials (below). Each curve corresponds to a different
starting value δ0; time proceeds from left to right. The x-axis does not track time linearly;
it plots accuracy after each δ-epoch (earlier epochs typically take longer than later ones).
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time. Table 6.6 shows that structural annealing’s hypothesized trees tend to shorten the
path between a given node and its true parent, as compared to EM and CE.

6.2.2 Further Analysis (Random Initializers)

Figure 6.9 shows the spread of accuracy performance of 100 random models (the same
ones used in previous chapters) before training and after training initialized from each
one, with EM/Model A and with SA/Model L (δ0 = −0.6,∆δ = 0.1, δf = 0). We consider
here only one annealing schedule, noting that δ0 = −0.6 tended to work fairly well across
trials, stopping δf near 0 tended to be reasonable (if not optimal), and ∆δ seems to have
little effect on accuracy.

Figure 6.10 further illustrates that SA, like EM, may select any of similar likelihood--
valued local optima: 100 random initializers all find different local maxima with about
the same function value and very different accuracies on test data. However, as we saw
for EM/Model L, and illustrated for SA/Model L in Figure 6.11, SA/Model L training
always results in a more accurate model than the initializer ~θ(0). This was not true in the
case of EM/Model A (for the Local and Zero initializers; see Figure 3.8), and it was not
true for CE/Model A (for some random initializers; see Figure 4.12). It did, however, hold
for SDA/Model A (see Figure 3.8), which behaved similarly to SA/Model L. Figure 6.12
compares the amount of test-set accuracy improvement under Model L with the same
measure under Model A (both with EM training). Neither consistently improves random
models more than the other, though with selection across more annealing schedules and
smoothing values the result could be different.

For more comparison among methods on random initializers, see Sections 4.6.5, 5.3.2,
6.1.4, and 7.4.

6.2.3 Semisupervised Training

In Section 3.4.2 we considered the use of the annotated development dataset to con-
struct an initializer (i.e., train supervised and initialize unsupervised training with the
learned model) and to construct a prior for MAP estimation—both as alternatives to our
unsupervised estimation/supervised selection strategy. We found that, with enough an-
notated data, either method was preferable to our strategy, though none of the methods
tested performed as well as simple supervised training on the development dataset (except
when only very small amounts of annotated data were used). (See Figure 3.10 on page 47,
Section 3.4.2). We argued in Section 3.4.2 that our method is nonetheless a reasonable way
to evaluate performance of unsupervised estimation methods.

Here we consider how SA fares when the annotated data are used to build an ini-
tializer. Figure 6.13 illustrates the results, comparing the earlier methods with SA, for
different values of δ0 (δf was fixed at 0, ∆δ at 0.1, and λ at 10). The differences between
supervised initialization and supervised selection, for SA, are relatively small. The former
outperforms the latter by a few accuracy points when larger amounts of annotated data are
available, but the difference is less stark than for CE or EM. It is also interesting that super-
vised initialization with semisupervised training performs slightly worse than supervised
initialization and unsupervised training.
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DT NN 236 82.6 85.5 228
NNP NNP 209 60.3 70.4 179

IN NN 129 88.4 89.1 128
NN VBD 120 87.5 87.5 120
JJ NN 53 69.8 31.4 118

NN VBZ 117 84.6 90.8 109
JJ NNS 65 95.4 76.5 81

IN NNS 76 81.6 83.8 74
NNS VBD 79 86.1 100.0 68
NN NN 67 86.6 87.9 66
NN NNS 47 85.1 65.6 61
IN VBD 76 67.1 86.4 59
RB VBD 59 78.0 82.1 56
NN NNP 19 57.9 19.6 56

NNS VBP 51 88.2 88.2 51
NNP VBD 52 88.5 95.8 48
CD CD 51 86.3 95.7 46
RB VBZ 59 72.9 97.7 44

NNP VBZ 43 90.7 88.6 44
CD NN 37 67.6 58.1 43
PRP VBD 35 91.4 78.0 41
CD IN 38 63.2 60.0 40
TO VBD 43 90.7 100.0 39
PRP VBZ 36 97.2 89.7 39
DT NNS 38 92.1 89.7 39
MD VB 38 97.4 97.4 38
TO VB 32 100.0 94.1 34
CD TO 38 44.7 51.5 33
CD NNS 28 67.9 57.6 33
IN NNP 36 72.2 81.3 32
DT NNP 39 23.1 60.0 15
DT JJ 66 3.0 100.0 2

Table 6.4: Undirected precision and recall of Model L, trained with structural annealing on
δ, by the unordered tag-pair type. Note that attachments in either direction and with the
tags in either order are counted together. Tag-pair types with a count ≥ 30 in the hypoth-
esized annotation or the gold-standard are listed. Compare with Table 3.3 on page 51, for
EM.
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δ = −0.6
length: 1 2 3 4 5 6 7 8 9

hyp. 2506 371 160 65 31 16 5 2 2
count: 1249 1257 175 196 53 107 30 35 19 12 9 7 3 2 0 2 1 1

precision: 70.0 74.9 63.8 64.6 29.0 37.5 0.0 50.0 50.0
73.9 49.6 65.1 70.9 39.6 69.2 46.7 71.4 26.3 25.0 22.2 57.1 0.0 0.0 – 50.0 100.0 0.0

recall: 89.4 39.9 35.9 36.2 16.4 20.0 0.0 25.0 100.0
74.1 87.4 36.4 36.3 19.8 41.6 28.0 37.9 14.7 14.3 14.3 25.0 0.0 – 0.0 100.0 100.0 –

δ = −0.3
hyp. 2497 376 152 70 35 18 6 2 2

count: 1170 1327 189 187 52 100 34 36 22 13 12 6 3 3 0 2 1 1

precision: 70.0 77.9 65.1 60.0 37.1 33.3 0.0 50.0 50.0
76.6 48.0 66.7 75.4 44.2 70.0 44.1 63.9 31.8 30.8 25.0 50.0 0.0 0.0 – 50.0 100.0 0.0

recall: 89.2 42.1 34.9 36.2 23.6 20.0 0.0 25.0 100.0
71.9 89.2 40.3 36.8 21.7 39.3 30.0 34.8 20.6 19.0 21.4 18.8 0.0 – 0.0 100.0 100.0 –

δ = 0.1
hyp. 2158 509 233 128 67 39 17 6 1

count: 1154 1004 211 298 66 167 41 87 28 39 9 30 8 9 1 5 1 0

precision: 75.9 73.7 68.2 60.2 46.3 46.2 52.9 16.7 100.0
80.2 56.0 68.7 68.1 62.1 65.3 53.7 52.9 60.7 28.2 55.6 40.0 62.5 11.1 0.0 20.0 100.0 –

recall: 83.6 53.9 56.0 66.4 56.4 60.0 75.0 25.0 100.0
74.2 78.7 46.3 53.0 38.7 61.2 44.0 69.7 50.0 52.4 35.7 75.0 45.5 100.0 0.0 100.0 100.0 –

gold 1960 696 284 116 55 30 12 4 1
count: 1246 714 313 383 106 178 50 66 34 21 14 16 11 1 3 1 1 0

Table 6.5: Precision and recall by string distance between parent and child, for the
supervisedly-selected trial of Model L trained by structural annealing on δ. We show tables
corresponding to models after training to different values of δ. Notice that recall for longer
dependencies generally increases as δ moves from −0.6 to −0.3 to 0.1. The large-typeface
numbers show the undirected attachment precision and recall of dependencies at different
lengths. Small-typeface numbers give the directed attachment precision and recall for left
children and right children, by length. Compare with Table 3.4 on page 52, for EM.
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ATTACH-RIGHT MAP/EM CE/DEL1ORTRANS1 MAP/SA
% of tag tokens % of tag tokens % of tag tokens % of tag tokens
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1 55.3 36.0 64.9 47.3 66.9 57.1 74.2 68.7
2 20.0 9.6 25.2 21.1 21.3 15.3 18.9 14.6
3 9.8 5.0 7.1 5.8 7.7 5.3 4.9 3.1
4 5.3 3.6 2.0 1.3 2.7 1.8 1.4 0.8
5 3.1 2.5 0.7 0.5 1.2 0.8 0.5 0.2
6 2.8 2.4 0.0 0.0 0.2 0.1 0.1 0.1
7 1.8 1.8 0.0 0.0 0.1 0.1 0.1 0.1
8 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0
9 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0
∞ – 37.4 – 23.9 – 19.5 – 12.6

Table 6.6: Path analysis of the selected MAP/EM model, the selected CE/DEL1ORTRANS1
model, and the selected structural annealing model (annealing on δ). The macro-averaged
undirected path length in hypothesized trees between a word and its gold-standard parent
is 1.31 for MAP/EM, 1.27 for DEL1ORTRANS1, and 1.19 for SA; under a sign test the SA
path averages were significantly shorter than both of the other conditions (p < 0.000001).
Note that attachment accuracy is not identical to the first line because here we count paths
to the wall (just another node in the tree), whereas our usual accuracy measures do not
count attachments to the wall.
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Figure 6.9: Accuracy on test data (directed vs. undirected): 100 random models be-
fore training, after EM training of Model A, and after SA training of Model L with
δ0 = −0.6,∆δ = 0.1, δf = 0.
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Figure 6.10: Accuracy on test data vs. log-likelihood on training data: 100 random models
(and our three initializers) before and after SA training with Model L (δ0 = −0.6,∆δ =
0.1, δf = 0). Small labels correspond to our initializers before training, large labels to after
training. Compare with Figure 3.7 on page 42.
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Figure 6.11: Directed accuracy on test data: 100 models after SA/Model L training vs. be-
fore training. The text labels correspond to the more carefully designed initializers. The
line is y = x. Compare with Figure 3.8 on page 43.

As in Sections 3.4.2 and 4.6.6, these results cast some doubt on our unsupervised train-
ing/supervised selection methodology. We suggest that the advantages of SA (and CE)
over EM as an unsupervised estimator motivate further exploration on improved semisuper-
vised estimation methods that make use of contrast in the objective function. Noting that
none of the semisupervised methods explored here (and few explored elsewhere in the
literature) outperform mere supervised training on the available annotated data, we leave
the question of effective semisupervised parameter estimation to future work.

6.3 Segmentation Bias and Model S

A related way to focus on local structure early in learning is to broaden the hypothesis
space Yx to include partial parse structures. Recall that the standard approach assumes
x corresponds to the vertices in a single (here, projective) dependency tree that is hid-
den. The set Yx consists of all such trees. Instead, we will entertain every hypothesis in
which x is a sequence of yields from separate, independently-generated trees. For example,
〈x1, x2, x3〉 is the yield of one tree, 〈x4, x5〉 is the yield of a second tree, and

〈
x6, ..., x|x|

〉
is

the yield of a third. One extreme hypothesis is that x is |x| single-node trees. At the other
end of the spectrum are the original hypotheses—single trees on the entirety of x. Each
has a nonzero probability.

Segmented analyses are intermediate representations that may be helpful for a learner
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Figure 6.12: Absolute improvement (or reduction) of directed accuracy on test data via
SA/Model L vs. EM/Model A. No regularization was applied and the annealing schedule
was fixed at δ0 = −0.6,∆δ = 0.1, δf = 0. SA/Model L makes better use of good initializers
Zero and Local and model selection than EM/Model A, but neither model consistently
gives more improvement. Note that SA performs best with smoothing, and none of these
models were smoothed. The line is y = x.
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to use to formulate notions of probable local structure, without committing to full trees.2

Here we only allow unobserved breaks, never positing a hard segmentation of the training
sentences. Over time, we increase the bias against broken structures, forcing the learner to
commit most of its probability mass to full trees.

To carry out this idea, we need to modify our model so that it can generate segmented
structures. Like Model L, the new model, called Model S, is very similar to Model A. It
includes the same set of parameters ~θ, and the inference equations for dynamic program-
ming are very similar (see Appendix A). When Model S generates a sequence of trees,
each tree is generated according to Model A, starting out by sampling the root node from
λroot(·). Notice that Yx for Model S, which contains all partial and complete dependency
parses of x, is different from Yx for Models A and L (which contains only complete parses).

Model S has one additional parameter, β, which we will explain presently. Similar to
δ in Model L, β is not trained and is not present at decoding time; it is used only to aid in
estimation. Like Model L, Model S can be thought of as a variant of Model A that is used
to train ~θ.

6.3.1 Modeling Segmentation

In Model S, the total probability of a sequence x, marginalizing over its hidden struc-
tures, sums up not only over trees, but over segmentations of x. For completeness, we
must include a probability model over the number of trees generated, which could be any-
where from 1 to |x|. The model over the number T of trees given a sentence of length n
will take the following log-linear form:

pβ(T = t | n) = etβ

/
n∑

i=1

eiβ (6.4)

where β ∈ R is the sole parameter. When β = 0, every value of T is equally likely. For
β � 0, the model prefers larger structures with few breaks. At the limit (β → −∞),
we achieve Model A, which must explain x using a single tree. We start, however, at
β � 0, where the model prefers smaller trees with more breaks. Gradually, we decrease
β, preferring each word in x to be its own tree. Indeed, Model S is just Model A with one
additional “brokenness” feature:

fbrokenness(x,y) def= (# of connected components in y)− 1 (6.5)

The weight of this feature is β. β is chosen extrinsically (and time-dependently), rather
than empirically—just as was done with δ in Model L in Section 6.1.

To be perfectly rigorous, Model S is problematic to describe as a stochastic process.
Suppose we have a sequence x and |x| = 10. Under this model, the number of trees
(segments) is dependent upon the value of |x|—we cannot have 11 trees, for example. But
|x| depends on the number of trees, as well, since it is really just a random variable that is a
deterministic function of the stochastic tree-generation process (how many times did any

2Partial parsing has also been treated as a task in its own right: see Hindle (1990), inter alia.
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child feature/production rule fire?). To describe Model S as a stochastic process requires
a cyclic dependency between T and |x|. All this means is that the model is deficient.3

One way to get rid of the deficiency is to replace Equation 6.4 with an exponential
decay model that includes a stopping probability. This is almost exactly the same as Equa-
tion 6.4 (let eβ be the probability of generating another tree and 1 − eβ be the probability
of stopping), but does not allow us to favor more segmentation (β > 0). We have chosen
the deficient model because we want more flexibility than exponential decay gives us—we
sometimes want more segmentation to be more probable. Model S does give us exactly what
we need for EM training: a proper posterior distribution q over segmented trees.

6.3.2 Vine Parsing

At first glance broadening the hypothesis space to entertain all 2|x|−1 possible segmen-
tations may seem expensive. In fact, for Model S the dynamic programming computation
is almost the same as summing or maximizing over connected dependency trees, as in
Model A. For the latter, we use a dynamic programming algorithm that computes bottom-
up a score for every parse tree by computing scores of partial structures.

Now note that any sequence of partial trees over x can be constructed by combining
the same partial structures into trees. The only difference is that we are willing to con-
sider unassembled sequences of these partial trees as hypotheses, in addition to the fully
connected trees.

One way to accomplish this employs the special wall node, x0 = $. In Model A,
y(0) = {xr}, the single root of the sentence said to be the child of $. In the segmentation
setting, we allow y(0) to have multiple children, instead of just one. Here, these children
are independent of each other (e.g., generated by a unigram Markov model). Formally, to
the production rules of Model A (Equation 2.2), we add, ∀x ∈ Σ:

eβ · λroot(x) S → N [x] S (6.6)

In supervised dependency parsing, Eisner and Smith (2005) showed that imposing a
hard constraint on the whole structure—specifically that each non-$ dependency arc cross
fewer than k words—can give guaranteed O(|x|k2) runtime with little to no loss in accu-
racy (for simple models). If we had required a single tree with one root attached to $, this
constraint could lead to highly contrived parse trees, or none at all, for some sentences—
both are avoided by the allowance of segmentation into a sequence of trees (each attached
to $). The construction of the “vine” (sequence of $’s children) takes only O(n) time once
the chart has been assembled. Model S is essentially a weighted vine grammar (exactly
equivalent to “Model B” in Eisner and Smith (2005)), with a unigram distribution over
$’s children. We do not impose any hard constraints on dependency length. The Dyna
equations for Model S are given in Section A.5.

3To say that a stochastic model is deficient, in simple terms, means that the stochastic process could gener-
ate outputs that are not well-formed. In other words, probability mass is “leaked” onto outcomes that are not
valid structures. Log-linear models are one way to get around this, provided there are efficient summation
algorithms for inference, which is not an option here, as noted in Section 3.5. It is unknown whether deficiency
is anything to worry about on empirical or formal grounds, but it is a sign of sloppiness.
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– 10 – 23.8 58.9 10−2/3 – 41.6 62.2 10 – 24.4 59.4
– 102/3 0 30.1 54.7 1 0.2 55.6 67.0 102/3 0 29.3 54.2

-0.5 10 -0.6 28.2 55.2 10−1/3 -0.6 44.1 64.1 10 -0.5 29.1 55.6
0.0 10 -0.9 29.7 54.2 101/3 -3.0 55.4 67.1 10 -0.9 29.8 54.3
0.5 101/3 -0.4 44.5 63.2 10−2/3 0.0 58.4 68.8 101/3 -0.5 34.8 58.0

unsupervised model selection: ~θ(0) = K&M, λ = 10−2/3 β0 = 0, βf = −3 42.1 63.0
supervised model selection: ~θ(0) = K&M, λ = 10−2/3, β0 = 0.5, βf = 0 58.4 68.8

Table 6.7: Model S trained with structural annealing on β, with different initializers and
bias schedules 〈β0〉. Supervised model selection was applied to select λ and βf (the final
value of β during annealing). The first two lines correspond, respectively, to Model A
trained using EM with supervised selection of λ, and to Model S trained using EM (with-
out annealing) with supervised selection of λ and β. Boldface marks trials that achieved
significantly better accuracy (sign test, p < 0.05) than the segmentation-biased trial in the
same column (line 2).

6.3.3 Experiments

We first trained Model S with different fixed values of β in [−1, 1] at increments of 0.2.
As before, we tested MLE training and MAP training with the same set of six λ values,
and the same three initializers. This leads to 231 conditions. Supervised model selection
gives the K&M, λ = 1, β = 0.2 setting, achieving 55.6% labeled accuracy and 67.0% unla-
beled accuracy. Both are significantly better than the supervised-selected Model A MAP
condition (K&M, λ = 10−2/3). Unsupervised model selection gives the K&M, λ = 10−2/3,
β = −1 setting, achieving 42.0% labeled accuracy and 63.4% unlabeled accuracy; only the
latter is significantly better than Model A trained with MAP.

We also experimented with structural annealing on β. We tested values of β0 in
{−1/2, 0, 1/2}, and used ∆β = −0.1. Training continued until β = −3. Model selection
over λ and βf was applied; see Table 6.7 for results. If β0 is sufficiently high, performance
improvements are possible over training with fixed β. These results are not as impressive
as those obtained with annealing on δ (Section 6.2), for this dataset, but the trend is similar
and the experiment demonstrates that other kinds of structural annealing can be useful.
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6.4 Related Work

Annealing β resembles the popular bootstrapping technique (Yarowsky, 1995), which
starts out aiming for high precision, and gradually improves coverage over time. The
idea is to first use a few labeled examples (or a few highly predictive features) to build a
supervised classifier. The classifier is used to annotate a pool of unlabeled examples, and
to select the ones it is most confident about. These are added to the annotated dataset, and
a new classifier is learned. The annotation, selection, and dataset augmentation steps are
repeated.

When the bias is strong (β � 0), we seek a model that maintains high dependency pre-
cision on (non-$) attachments by attaching most tags to $. Over time, as this is iteratively
weakened (β → −∞), we hope to improve coverage (dependency recall). Bootstrapping
was applied to syntax learning by Steedman, Osborne, Sarkar, Clark, Hwa, Hockenmaier,
Ruhlen, Baker, and Crim (2003). Our approach differs in being able to remain partly agnos-
tic about each tag’s true parent (e.g., by giving 50% probability to attaching to $), whereas
Steedman et al. make a hard decision to retrain on a whole sentence fully or leave it out
fully.

In earlier work, Brill and Marcus (1992) adopted a strategy for discovering phrase
structure that emphasizes local relationships between part-of-speech tags, similar in spirit
to our annealing of δ. Learning from part-of-speech tagged corpora (like us), their idea
was to score context-free production rules of the form x→ x′ x′′ by the distributional sim-
ilarity of sequence x (a single tag) and the sequence x′ x′′ (measured by KL divergence).
The rules were then pruned, giving a weighted CFG. The strategy, while greedy and dif-
ficult to justify as a parameter estimation method, is notable for its focus on local tag-tag
relationships.

Another related piece of work is the parameter estimation used for the IBM Candide
translation models (Brown et al., 1993). The IBM models consist of a set of progressively
more complex models that define probability distributions p(f | e) over French sentences
given English sentences using different stochastic processes. The first model predicts only
a bag of words; later fertility (how many French words each English word generates) and
distortion (the re-ordering of the French words contra the English) are modeled. With the
exception of the simplest, these models cannot be efficiently estimated, even with EM.
Many approximations were made. The relevant point here is that Brown et al. first es-
timated the simplest model, then used it to initialize training with the next, and so on.
Al-Onaizan, Cuřin, Jahr, Knight, Lafferty, Melamed, Smith, Och, Purdy, and Yarowsky
(1999) described a particular training regimen (how many iterations per model) that is still
widely used with those models. Structural annealing is a softer alternative to that ap-
proach, though applying it directly to the Candide models would be very computationally
intensive and might interact badly with the approximations required for inference with
those models.

150



PRP$     NN    VBZ CD IN      NN      IN    DT     JJ            NN
Their   problem is   one of inefficiency  of  an industrial economy.

errors (undirected)

PRP$     NN    VBZ CD IN      NN      IN    DT     JJ            NN
Their   problem is   one of inefficiency  of  an industrial economy.

EM: 6 (4)

PRP$     NN    VBZ CD IN      NN      IN    DT     JJ            NN
Their   problem is   one of inefficiency  of  an industrial economy.

CE: 3 (3)

PRP$     NN    VBZ CD IN      NN      IN    DT     JJ            NN
Their   problem is   one of inefficiency  of  an industrial economy.

SA: 2 (2)

PRP$     NN    VBZ CD IN      NN      IN    DT     JJ            NN
Their   problem is   one of inefficiency  of  an industrial economy.

supervised: 1 (1)

Figure 6.14: An example sentence from our test set, drawn from the Penn Treebank, with
four dependency parses: the gold standard, supervisedly selected EM, CE, and SA models,
and a supervised model. This example was chosen because performance on it was typical
for each parser (close to the parser’s average). The numbers shown are the attachment
errors and the undirected attachment errors. Errors with respect to the gold standard are
shown as dashed lines. See Figures 1.1 (page 10) and 9.1 (page 9.1) for more examples.
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6.5 Future Work

We presented two features upon which structural annealing for Model A is straight-
forward. These are a sum-of-dependency-lengths feature and a “brokenness” feature. Oth-
ers are imaginable, for this task and others. We mentioned machine translation above; we
can imagine annealing locality bias in word alignment problems, or a bias toward uncon-
nectedness (many words linked to the NULL word).

We also suggest a related idea: dynamic, soft feature selection. In structural annealing
we gradually change feature weights to change learning bias over time. We might instead
manipulate a prior over feature weights. This would allow any of the following strategies,
in the log-linear setting:4

• Initially, the weight of a feature (or set of features) is kept close to zero. Gradually
the prior is relaxed (e.g., σ2 in a Gaussian prior is pushed toward +∞), allowing
these features to influence learning. In grammar induction, we might start with an
unlexicalized model like Model A, and gradually anneal in lexical features. This
would allow the model to learn a coarse structure first, then refine it with distinct
lexicalized patterns that violate (or reinforce) the unlexicalized patterns.

• Features used early in learning could be phased out by doing the opposite: pushing
feature weights toward zero by making the prior incrementally stronger with mode
zero. For example, the constituent-context model of Klein and Manning (2001a)
works very well for learning unlabeled, binary-branching constituent structure. Un-
fortunately, its feature set is huge and cannot generalize well to large datasets or
long sentences, since it includes two features for every substring of part-of-speech
tags seen in training. These features are useful for learning, but a weighted grammar
is a preferred output of a grammar induction system. Klein and Manning (2004) ex-
perimented with combining the constituent-context model with a dependency gram-
mar (the Model A used here); perhaps further stages of learning could phase out the
constituent-context features and force the weighted grammar to do all of the explain-
ing.

• Noting that the diagonal, single-σ2 Gaussian priors used here are a special case
of Gaussian priors that allow arbitrary covariances, features could be tied together
(forced to have the same weight) using a large covariance parameter in the prior.5

We could start out with features that are tied and gradually allow their weights to
move apart. Initially, all verbs are the same, but over time, relevant feature covari-
ances are moved toward zero, and the verbs are allowed (for instance) to select for
different arguments. We could also do the reverse, assigning negative covariances to
push feature weights apart (though it is harder to imagine why one would do this).

This approach could be carried out with a prescribed pattern (and different patterns
compared experimentally), or perhaps empirical methods could be developed to drive the
change in the prior over time.

4These ideas were proposed in more detail in Smith (2004).
5This idea is due to David Smith, personal communication.
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Other kinds of structural annealing might be attempted. In Section 4.8 we described
Model U, which scores undirected dependency trees, similar to link grammar (Sleator and
Temperley, 1993), but without cycles. One could imagine starting with link grammar and
annealing on a cyclicity feature. Over time the penalty toward acyclicity increases, until the
model favors trees. Directionality could also be annealed in. This would help the model
avoid settling too soon on a particular link direction (e.g., the determiner-noun problem
discussed in Section 3.4.3).

Finally, as we mentioned in Section 3.7, our experimental results suffer from the limi-
tation that we have trained and tested predominantly on short sentences. (This is consis-
tent with recent work by others (Klein and Manning, 2002a).) Because longer sentences
are likely to contain constructions not in our corpus, we cannot assume the induced gram-
mar will perform well at parsing less restricted data (but see Section 7.1). In an annealing
framework, we might start out by training a model on shorter sentences, and gradually
encourage the model to pay attention to longer ones; the annealed parameter(s) would
control p̃, starting with a distribution favoring short (or otherwise “easy”) sentences, grad-
ually moving toward the actual empirical distribution in the corpus. Of course, as we
pointed out earlier (Section 3.7), the Inside-Outside algorithm for these models has cubic
runtime and may be prohibitive on very long sentences without fast approximations. An
incremental variant that randomly samples from p̃ (while p̃ changes over time) might be
appropriate; this is similar to example reweighting (Elidan et al., 2002, discussed in Sec-
tion 5.4.2) but exploits an intuitive notion of easy and hard examples. In Section 7.1 we
consider models trained on smaller numbers of longer sentences, keeping the number of
tags in the training set roughly stable.

6.6 Summary

This chapter presented two ways to augment Model A with simple structural features
meant to aid in learning. We showed that a good choice of the weight for either feature
can improve learning by biasing the learner toward certain kinds of structures. We then
showed how gradually changing this feature weight during learning—structural anneal-
ing on it—produces even greater improvements. (We note again that the task on which
improvements were demonstrated, the grammar induction task evaluated against gold-
standard dependency annotations, is a relatively artificial task that may not directly bear
on applications; see Section 1.4.) The biases explored here include a locality bias that makes
the model favor trees with shorter dependencies, and a segmentation bias that makes the
model favor “broken” or unconnected trees.
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test accuracy
directed undirected

ATTACH-RIGHT 39.5 62.1
Model A MLE/EM (s-sel.) 41.7 62.1

MAP/EM (s-sel.) 41.6 62.2
CE/DEL1ORTRANS1 (s-sel.) 57.6 69.0 (Chapter 4)

Model L MAP/fixed δ EM (s-sel.) 61.8 69.4
MAP/SA (s-sel.) 66.7 73.1

Model S MAP/fixed β EM (s-sel.) 55.6 67.0
MAP/SA (s-sel.) 58.4 68.8

Table 6.8: Summary of baselines and results in this chapter.
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Chapter 7

Variations and Comparisons

The hardest thing is to go to sleep at night, when there are so many urgent things
needing to be done. A huge gap exists between what we know is possible with today’s
machines and what we have so far been able to finish.

—Donald Knuth (1938–)

This chapter compares the EM baseline (Chapter 3) with contrastive estimation (Chap-
ter 4), skewed deterministic annealing (Chapter 5), and structural annealing (Chapter 6) in
a few additional ways. We consider training and testing on datasets that include longer
sentences (Section 7.1). We test the robustness of the various learners to the quality of the
input by training on induced (rather than gold-standard) part-of-speech tags (Section 7.2).
We measure the quality of the learned parsers on the PARSEVAL scores by transforming
the dependency trees into unlabeled constituent trees (Section 7.3). We plot the directed
accuracy of the different training methods pairwise, for our standard initializers and the
100 random ones encountered throughout the thesis (Section 7.4). Finally, we combine
contrastive estimation with structural bias and annealing (Section 7.5).

7.1 Sentence Length Effects

In this section we consider the performance of EM, CE, and SA on datasets that in-
clude longer sentences. First we discuss the performance of the selected models trained as
previously described (on sentences of ten words or fewer), when applied to longer test sen-
tences. We then show how performance is affected when we train on datasets that include
longer sentences.

Table 7.1 shows the performance of the supervisedly-selected EM, CE, and SA mod-
els, trained on sentences of ten or fewer words, perform on datasets containing longer
sentences. The first row shows performance on the original test set. The following three
rows show performance on datasets of sentences with more than ten words (disjoint from
the original training, development, and test datasets), with length cutoffs of 20, 40, and
∞. As we would expect, performance falls off as longer sentences are included, because
longer sentences are more ambiguous and harder to parse, and also because the models
were not trained on long sentences. Nonetheless, the same trend holds: SA outperforms
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supervised selection
dataset size (sentences) MAP/EM CE/DEL1ORTRANS1 MAP/SA
test, |x| ≤ 10 530 41.6 57.6 66.7
10 < |x| ≤ 20 18,101 37.6 45.6 57.3
10 < |x| ≤ 40 39,963 35.1 42.1 53.3
10 < |x| 41,786 34.7 41.8 52.8
entire WSJ 49,208 35.1 42.4 53.4

Table 7.1: Performance of selected models on unseen test datasets of longer sentences.
All sentences of ten or fewer words are filtered out, to avoid overlap with training or
development data, except in the last line, which includes all sentences in the Treebank.
Note that punctuation was stripped in every case.

CE (by a greater margin than on the original test set), and CE outperforms EM (with a
decreased margin).

We also considered training models using longer sentences. Throughout the thesis we
have used a training dataset taken from the set of sentences in the Treebank of ten or fewer
words, after the removal of punctuation. We trained models using EM and SA (under
the same smoothing and annealing conditions as before), with different length cutoffs (20,
40, and 100). Supervised model selection was applied using development data, and test
data was used to evaluate performance. The development and test data were taken using
the same cutoffs. In each case, the training dataset size was kept roughly the same in the
number of words, though the number of sentences diminished as larger cutoffs were used.

Results are shown in Table 7.2, which also shows the performance of the parser on
the entire WSJ dataset (which includes the training and development data). Consistently,
models learned using SA outperform those learned by EM. On the full dataset, the best
performance is achieved by SA trained only on short (|x| ≤ 10) sentences. Though a
performance hit is observed when longer sentences are used, performance is steady from
20 to 40 to 100 as a maximum length. Interestingly, EM gets better when a corpus of more
diverse sentences is used. It appears, then, that the ten-tag maximum is not the optimal
choice for designing a grammar induction corpus, and that different learning methods are
more or less robust to corpus filtering. We leave further exploration to future work.

7.2 Training Parsers from Induced Tags

Recall that Model A ignores words completely, modeling only sequences of POS tags
and the syntactic dependencies among them. In this section we consider the performance
of Model A when the tags have been learned rather than hand-annotated.

Using the same training set of 5,301 sentences, we applied the part-of-speech induc-
tion methods of Section 4.7. Specifically, nine models were trained: three tagging dictio-
naries (the full-knowledge dictionary, the count ≥ 2 dictionary, and the count ≥ 3 dictio-
nary; see Section 4.7.1 for a more full description), each under (a.) MLE/EM training of
the base trigram HMM, (b.) CE/DEL1ORTRANS1 training with the same HMM, and (c.)
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supervised selection
test set entire WSJ

maximum length MAP/EM MAP/SA MAP/EM MAP/SA
10 41.6 66.7 35.1 53.4
20 46.6 48.4 41.6 41.7
40 42.6 45.9 40.4 42.4

100 33.7 45.2 33.6 41.7

Table 7.2: Performance of models trained on datasets including longer sentences. In the
“test set” columns, the models are evaluated on different test sets (with the same maximum
length as the training set), so those scores are not directly comparable across rows. The
scores in the “entire WSJ” columns include the training and development data, but are
comparable.

tagging dictionary
model estimation all train & dev. count ≥ 2 count ≥ 3
trigram HMM MLE/EM 88.4 76.6 70.1
trigram HMM CE/DEL1ORTRANS1 92.5 82.2 77.4
trigram HMM
+ spelling CE/DEL1ORTRANS1 92.0 86.4 84.2

Table 7.3: Tagging accuracy (all words) of tagging models trained from the sentences in
the parsing experiment training dataset, evaluated on the training data. No smoothing or
regularization, and therefore no model selection, was applied.

CE/DEL1ORTRANS1 training with the HMM augmented with spelling features. The POS
tagging accuracy of these models is shown in Table 7.3; notice that the accuracy tends to be
higher than in experiments in the last section, since we are dealing with a simpler dataset.
Nonetheless, similar trends are visible (CE outperforms EM, adding spelling features gives
further improvement).

Using the nine POS tagging models trained this way, we trained Model A (our de-
pendency syntax model) using EM and using contrastive estimation. As in earlier ex-
periments, we used three initializers (Zero, K&M, and Local) and a variety of smooth-
ing/regularization settings (the same as before). The results are reported in Table 7.4.

First consider supervised model selection. None of the learned models are quite as
good as those learned from gold-standard POS tags using CE. However, the directed de-
pendency accuracy of EM-trained Model A actually improves over gold-standard tags, con-
sistently, when the POS tags are learned using CE. When the POS tags are learned using
EM, there is slight, predictable degradation. Also striking is that the best-performing EM
models are learned using tags selected using CE and a diluted dictionary. Models learned
using CE are consistently worse with learned tags than with gold-standard tags, but un-
der some conditions the performance is close. The trends are less clear, but note that only
when EM training and the most diluted dictionary (count ≥ 3) was used did CE training
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result in a parsing model that underperformed the 41.6% directed accuracy achieved by
the MAP/EM baseline. MAP/SA consistently outperforms MAP/EM and usually outper-
forms CE/DEL1ORTRANS1. For the most part, using CE to induce POS tags results in a
more accurate parser than using EM to induce the tags.

Turning to unsupervised model selection, improvements are visible for EM as under
supervised model selection, if less pronounced. CE training with induced tags is more
volatile however, with unsupervised model selection sometimes choosing models per-
forming in the 20s. Note that when CE is used to train a standard HMM (no spelling
features), and then used again for Model A on the HMM’s most probable analyses, a five-
point improvement is possible over CE on gold-standard tags. Recall that MAP/SA tends
to find the best likelihood (the selection criterion) when no annealing is done at all; unsu-
pervised selection of a MAP/SA model led to the same choice as among MAP/EM-trained
models. We see here that unsupervised selection (based on likelihood of development
data) does not lead to consistent results with MAP/SA.

It may come as a surprise that the use of induced tags could actually improve the ac-
curacy of an unsupervisedly-learned parser over the use of gold-standard tags. There are
two possible explanations. The first is that, while the tagging model has learned incorrect
tags, it has nonetheless learned useful category assignments for the words in the train-
ing set, and those “pseudo-tags” provide enough information to learn parsing models,
in some cases providing better clues about the correct syntactic structure than the correct
tags themselves would provide. The second explanation, for which we have tried to con-
trol in our experimental design (with model selection over several initializers and several
smoothing/regularization settings), but which cannot be ruled out, is the role of chance
in accuracy of the local optimum of the likelihood or contrastive objective function being
searched.

7.3 Evaluation with PARSEVAL

The PARSEVAL scores (Black et al., 1991) have become the community standard for
evaluating parser output against a gold standard (e.g., a treebank). The scores compare a
hypothesized phrase-structure tree with a gold-standard parse tree. More precisely, they
compare the sets of constituents (either labeled or unlabeled) posited in the hypothesized
and gold-standard trees. Bracketing precision and recall are typically computed, as well a
sentence statistics such as the fraction of perfect matches, the average number of crossing
brackets per sentence, and the fraction of sentences ≤ c crossing brackets, for different
values of c (usually 0 and 2).

We evaluated the English models learned using the various methods presented in
this thesis under the PARSEVAL scores. To obtain constituents from the hypothesized
dependency attachments, we take the maximal span of every word to be an unlabeled
constituent. For the gold standard, we can use the original Penn Treebank trees for the test
dataset sentences. Note that if we apply head rules to the gold standard (to get dependency
structures), then convert back to phrase-structure trees (by taking maximal spans of all
heads to be constituents), we arrive at an upper bound on performance—69.9% recall and
100.0% precision—the reason recall is less than 100% is that dependency structures tend to
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be “flatter” than standard Treebank trees. We also use these flatter “maximal spans” trees
as a gold standard for comparing performance of different methods.

Table 7.5 shows PARSEVAL scores for unsupervisedly selected models (that is, selec-
tion based on the training objective score on unannotated development data). First, note
that these are not state-of-the-art phrase-structure induction results on this dataset.1 In-
deed, we would not expect particularly good performance on these scores, given that our
dependency models do not directly predict constituent structure. While many methods
rival the scores obtained by EM, none are notably better. (The anomalous cases of very
low crossing bracket rates and low recall for DEL1 and DEL1SUBSEQ are due to extremely
flat hypotheses where nearly every tag is the child of a single root.)

Of course, with annotated development data, supervised model selection can be ap-
plied. Table 7.6 shows performance where the model selected from among those trained
is the one with the highest PARSEVAL F1-measure. Some improvement is observed over
unsupervised model selection (Table 7.5), but none of the alternative estimation methods
in the thesis offer striking advantages over EM on this evaluation measure. They tend to
achieve higher recall and lower precision than EM, meaning that the trees are less flat than
EM’s trees.

The fact that many of the alternative methods do not perform notably worse than EM
is important. Worse PARSEVAL performance would have cast doubt on the claim that
our new estimation methods were learning more linguistically apt structures. Of course,
our model is not designed to uncover constituent structure. The estimation methods are
general and could be applied to a model that is designed to capture constituents (see, e.g.,
Klein and Manning (2004)).

We leave that exploration for future work, with two notes. Klein and Manning’s
constituent-context model (Klein and Manning, 2002a), which, under EM, is akin to clus-
tering of sequences to find good bracketings, is a poor fit for contrastive estimation. The
reason is that the parameters in the model correspond to subsequences of the observed
training data. To model neighborhood sequences, as in CE, many more parameters will
be needed, since neighborhood sequences tend to include subsequences that are never
observed. Indeed, the CE objective can always be maximized by simply driving up the
weight of the feature corresponding to the whole observed sequence for each training sen-
tence. To work with CE, this model must be reparameterized, perhaps using a factored
sequence model.

Second, our structural locality bias (used in Model L) is not appropriate for models
without heads. For an unheaded phrase-structure model, different notions of structural
bias need to be developed. One possibility is the segmentation bias used in Model S;
another is a parameter that penalizes balanced trees.

To sum up this section, we have evaluated our unsupervisedly-selected models using
PARSEVAL, a standard measure of constituent-based parser performance, and carried out
supervised model selection using PARSEVAL. The results do not show a clear superiority
of any method over EM, though CE (with some neighborhoods) and SA do rival EM.

1Klein and Manning (2004) report 88.0% unlabeled recall and 69.3% unlabeled precision on the full WSJ10
dataset, from which our training, test, and development data are drawn, using a product model that includes
the dependency model we use here (Model A) and a model of constituent structure, trained using EM. Using
only Model A, they report 59.2% recall and 46.6% precision, which is comparable in F1-measure to our result.
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7.4 Cross-Method Comparison with Random Initializers

Using 100 random initializers, we compared the improvement each of our novel es-
timation methods made (over the initializer) to the improvement made by EM in Sec-
tions 4.6.5, 5.3.2, 6.1.4, and 6.2.2.

For completeness, we show here the directed accuracy performance of each of those
four methods (MLE/EM/Model A, CE/DEL1ORTRANS1/Model A, MLE/SDA/Model A,
and MLE/SA/Model L) compared to each of the others, on the 100 initializers as well as
Zero, K&M, and Local. (MLE/Model L is also shown in comparison to MLE/SA/Model
L.) Figure 7.1 plots each pair of these. Unlike the earlier plots, the absolute directed ac-
curacy (not the improvement) is shown for each pair. The only notable trends are that
CE/DEL1ORTRANS1 tends to be worse than all the other methods, and Model L with EM
and SA tend to be more closely coupled than any other pair.

7.5 Combining Structural Annealing and Contrastive Estimation

Recall that contrastive estimation (Chapter 4) is a way of redefining the objective func-
tion used for learning. A contrastive objective function takes into account, for each training
example xt, a set of implicitly negative instances N(xt) ⊆ Σ∗.

Structural annealing, presented in Chapter 6, is a method that gradually changes the
objective function over time, to guide the learner to a more accurate model. Our appli-
cations of structural annealing have involved the addition of a single feature to Model A
(giving Models L and S), and manipulating that feature’s weight extrinsic to the training
of the other parameters. So far we have used only maximum likelihood to estimate those
parameters.

The two techniques—contrastive estimation and structural annealing—are orthogo-
nal. In this section, we experiment with a combination of the two, finding that Model
L and CE together outperform MAP estimation (on Model L) and Model A (with CE).
Annealing the structural bias δ improves this result further, essentially matching (but not
surpassing) the performance of structurally annealed EM training.

7.5.1 CE and Model L

Experimental results for Model L (Section 6.1) trained with CE/DEL1ORTRANS1 are
presented in Table 7.7. The table shows how performance of unregularized CE varies with
a fixed value of δ, for the three initializers. Notice that, for any of the initializers, substantial
improvement over Model A is available by setting δ to an appropriate negative value.

Supervised model selection was applied, and is shown to outperform Model A trained
with CE (the δ = 0 case). Selecting (supervisedly) across regularized CE/DEL1ORTRANS1
trials gives a performance boost over MAP/EM training on the same model. Figure 7.2
shows, for several initializer/regularization settings, how performance of CE varies with
δ.

Next we apply structural annealing to Model L during contrastive estimation training
with the DEL1ORTRANS1 neighborhood function. Selecting across ~θ(0), σ2, β0, and βf :

163



↓
EM 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

CE/D1T1’s directed accuracy (test)

M
L

E
/E

M
’s directed accuracy (test)

K
&

M

Z
ero

L
ocal

random
 m

odelsx

←
↓

C
E

 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

MLE/SDA’s directed accuracy (test)

M
L

E
/E

M
’s directed accuracy (test)

K
&

M

Z
ero

L
ocal

random
 m

odelsx
 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

MLE/SDA’s directed accuracy (test)

C
E

/D
1T

1’s directed accuracy (test)

K
&

M

Z
ero

L
ocal

random
 m

odelsx

←
↓

SD
A

↓
EM

/M
odelL

 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

MLE/SA/Model L’s directed accuracy (test)

M
L

E
/E

M
/M

odel A
’s directed accuracy (test)

K
&

M
Z

ero
L

ocal

random
 m

odelsx
 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

MLE/SA/Model L’s directed accuracy (test)

C
E

/D
1T

1/M
odel A

’s directed accuracy (test)

K
&

M
Z

ero
L

ocal

random
 m

odelsx
 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

MLE/SA/Model L’s directed accuracy (test)

M
L

E
/SD

A
/M

odel A
’s directed accuracy (test)

K
&

M
Z

ero
L

ocal

random
 m

odelsx
 0

 20

 40

 60

 80

 100

 0
 20

 40
 60

 80
 100

MLE/SA/Model L’s directed accuracy (test)

M
L

E
/E

M
/M

odel L
’s directed accuracy (test)

K
&

MZ
ero

L
ocal

random
 m

odelsx

←
SA

Figure
7.1:

C
ross-m

ethod
com

parison
of

directed
accuracy

on
the

test
dataset.

The
m

ethods
com

pared
are

unsm
oothed

M
LE/EM

,
unregularized

C
E/

D
E

L1O
RT

R
A

N
S1,

unsm
oothed

M
LE/SD

A
(β

=
0
.01,γ

=
1
.5),

unsm
oothed

M
LE/M

odel
L

(δ
=
−

0
.4),and

unsm
oothed

SA
/M

odelL
(δ

0
=
−

0.6,∆
δ

=
0.1

,δ
f

=
0).

164



Z
er

o
K

&
M

Lo
ca

l
te

st
te

st
te

st
ac

cu
ra

cy
ac

cu
ra

cy
ac

cu
ra

cy

δ
evaluations

f

directed

undirected

evaluations

f

directed

undirected

evaluations

f

directed

undirected

M
A

P/
EM

,s
-s

el
.:

~ θ(
0
)
=

Z
er

o,
δ

=
−

0.
6,

λ
=

10
44

-9
.4

0
61

.8
69

.4
∗

-1
.0

10
5

-3
.6

2
59

.5
69

.2
10

5
-3

.8
0

47
.6

60
.5

56
-3

.6
5

44
.1

63
.5

-0
.8

10
4

-3
.5

6
60

.2
69

.2
10

5
-3

.7
0

46
.5

60
.0

10
3

-3
.5

6
44

.7
64

.1
-0

.6
10

4
-3

.5
0

56
.0

66
.3

10
6

-3
.5

7
61

.1
69

.1
10

4
-3

.6
2

61
.7

69
.8

-0
.4

10
4

-3
.4

5
57

.0
68

.4
10

6
-3

.5
4

59
.0

68
.0

10
1

-3
.5

3
58

.4
67

.4
-0

.2
10

8
-3

.4
7

45
.8

65
.6

10
5

-3
.5

0
60

.5
70

.5
10

6
-3

.4
8

59
.7

69
.6

(≡
M

od
el

A
)0

.0
10

3
-3

.7
9

35
.8

62
.2

10
3

-3
.9

0
48

.6
64

.9
10

4
-3

.8
3

57
.6

69
.0
∗∗

0.
2

10
6

-3
.6

4
23

.9
54

.1
10

6
-3

.5
2

51
.1

66
.3

10
4

-3
.5

5
27

.9
56

.1
un

su
pe

rv
is

ed
m

od
el

se
le

ct
io

n:
~ θ(

0
)
=

Lo
ca

l,
δ

=
−

0.
2

10
6

-3
.4

8
59

.7
69

.6
su

pe
rv

is
ed

m
od

el
se

le
ct

io
n:

~ θ(
0
)
=

Lo
ca

l,
δ

=
−

0.
6

10
4

-3
.6

2
61

.7
69

.8
w

it
h

re
gu

la
ri

za
ti

on
:

un
su

pe
rv

is
ed

m
od

el
se

le
ct

io
n:

~ θ(
0
)
=

Z
er

o,
δ

=
−

0.
8,

σ
2

=
1

94
-3

.7
0

57
.9

68
.2

su
pe

rv
is

ed
m

od
el

se
le

ct
io

n:
~ θ(

0
)
=

K
&

M
,δ

=
−

0.
4,

σ
2

=
10

−
1
/
3

10
8

-3
.8

0
63

.5
71

.5

Ta
bl

e
7.

7:
M

od
el

L
tr

ai
ne

d
us

in
g

C
E/

D
E

L
1O

R
T

R
A

N
S1

w
it

h
di

ff
er

en
t

in
it

ia
liz

er
s

an
d

bi
as

es
δ.

N
ot

e
th

at
δ

=
0

is
es

se
nt

ia
lly

eq
ui

va
le

nt
to

M
od

el
A

.N
o

re
gu

la
ri

za
ti

on
w

as
do

ne
he

re
,e

xc
ep

tf
or

th
e

la
st

tw
o

lin
es

(s
ee

te
xt

).
f

is
th

e
ob

je
ct

iv
e

va
lu

e
(l

og
of

th
e

co
nt

ra
st

iv
e

lik
el

ih
oo

d)
on

th
e

tr
ai

ni
ng

da
ta

,u
nd

er
M

od
el

A
(i

.e
.,

ca
lc

ul
at

ed
w

it
h

δ
=

0)
.M

od
el

L
tr

ai
ne

d
w

it
h

re
gu

la
ri

ze
d

C
E

im
pr

ov
es

ov
er

M
od

el
L

tr
ai

ne
d

by
M

A
P/

EM
(m

ar
ke

d
∗)

an
d

ov
er

M
od

el
A

tr
ai

ne
d

w
it

h
C

E/
D

E
L

1O
R

T
R

A
N

S1
(m

ar
ke

d
∗∗

).

165



 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

-1 -0.8 -0.6 -0.4 -0.2  0  0.2

te
st

-s
et

 a
cc

ur
ac

y

locality bias

+inf, Zero
1.0, Zero

+inf, K&M
1.0, K&M

+inf, Local
1.0, Local

Figure 7.2: Test-set directed attachment accuracy of Model L trained by CE/DEL1OR-
TRANS1, at different, fixed values of δ. Each curve corresponds to a different value of σ2

and ~θ(0). Notice that the highest point on most curves is not at δ = 0.

• Unsupervised selection (~θ(0) = Zero, σ2 = 1, β0 = −0.2, βf = 0): 41.0% directed,
63.8% undirected.

• Supervised selection (~θ(0) = K&M, σ2 = 10−2/3, β0 = −0.2 → 0): 65.5% directed,
72.3% undirected. These results are not signficantly different (under a sign test) from
those obtained using structural annealing with EM (instead of CE; 66.7% and 73.1%).

7.5.2 CE and Model S

Our experiments found that combining Model S with CE/DEL1ORTRANS1 training
performed very badly, hypothesizing extremely local parse trees. Typically over 90% of de-
pendencies were of length 1 and pointed in the same direction (compared with around 60%
in the gold standard data). To understand why, consider that the CE goal is to maximize
the score of a sentence and all its segmentations while minimizing the scores of neighbor-
hood sentences and their segmentations. An n-gram model can accomplish this, since the
same n-grams are present in all segmentations of x, and (some) different n-grams appear
in N(x) (for LENGTH and DEL1ORTRANS1). A bigram-like model that favors monotone
branching, then, is not a bad choice for a CE learner on Model S.

Why doesn’t CE on Model A resort to n-gram-like models? Inspection of models
trained that way with transposition-based neighborhoods TRANS1 and DEL1ORTRANS1
did have high rates of length-1 dependencies, while the poorly-performing DEL1 models
found low length-1 rates. This suggests that a bias toward locality (“n-gram-ness”) is built
into the former neighborhoods, and may partly explain why CE works when it does. We
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achieved a similar locality bias indirectly in the likelihood framework when we broadened
the hypothesis space (moving from Model A to Model S), but doing so under CE over-
focuses the model on local structures.

7.6 Summary

In this chapter we evaluated our learning methods in a few additional ways, includ-
ing variations on the training data and the evaluation criteria. We found the general
trend to be similar when training on datasets with longer sentences or imperfect tags
as to earlier experiments: SA is superior to CE, and both are superior to EM. We found
that the constituent trees implied by the learned dependency parses are less clearly dif-
ferentiated in quality under the standard PARSEVAL measures. We compared five meth-
ods’ directed accuracy on 100 random initializers and found only one trend of note, that
CE/DEL1ORTRANS1 usually performs worse than the other methods, given a random
initializer.

We then combined structural bias and structural annealing, with contrastive estima-
tion, showing the same pattern of improvements seen when these were combined with
MLE. Annealed contrastive estimation performs approximately as well as annealed MLE
for Model L. The best unannealed results (requiring only a single round of numerical opti-
mization) were achieved by CE with a structural locality bias.
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Chapter 8

Multilingual Evaluation

If it had been possible to build the Tower of Babel without ascending it, the work would
have been permitted.

—Franz Kafka (1883–1924)

I speak two languages: Body and English.

—Mae West (1892–1980)

This chapter applies techniques from Chapters 4, 5, and 6 to data in five additional
languages: German, Bulgarian, Mandarin, Turkish, and Portuguese.1 Many of these exper-
iments were described in Smith and Eisner (2006). Because this chapter is focused on the
breadth of applicability of the estimation methods, we will suppress many details about
selected models for readability.

8.1 Datasets

Following the usual conventions (Klein and Manning, 2002a), our experiments use
treebank POS sequences of length ≤ 10, stripped of words and punctuation.

Our training datasets are as follows. The part-of-speech tagsets are given in Ap-
pendix B.

• 8,227 German sentences from the TIGER Treebank (Brants, Dipper, Hansen, Lezius,
and Smith, 2002) (51 tag types, unigram tag distribution in training data has 4.01 bits
of entropy),

• 5,301 English sentences from the WSJ Penn Treebank (Marcus et al., 1993) (35 tag
types, 4.12 bits),

1One reviewer of the thesis questioned the absence of Czech in these experiments. Like English and Ger-
man, Czech might be counted as a “high-resource” language for which the state-of-the-art in parsing is already
quite good (McDonald et al., 2005b). We opted instead to choose Bulgarian as a representative of the Slavic
group, since there is more potential benefit to the development of Bulgarian NLP tools.
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• 4,929 Bulgarian sentences from the BulTreeBank (Simov, Popova, and Osenova, 2002;
Simov and Osenova, 2003; Simov, Osenova, Simov, and Kouylekov, 2004a) (48 tag
types, 4.15 bits),

• 2,775 Mandarin sentences from the Penn Chinese Treebank (Xue, Xia, Chiou, and
Palmer, 2004) (33 tag types, 3.18 bits),

• 2,576 Turkish sentences from the METU-Sabancı Treebank (Atalay, Oflazer, and Say,
2003; Oflazer, Say, Hakkani-Tür, and Tür, 2003) (27 tag types, 3.06 bits), and

• 1,676 Portuguese sentences from the Bosque portion of the Floresta Sintá(c)tica Tree-
bank (Afonso, Bick, Haber, and Santos, 2002) (19 tag types, 3.39 bits).

The Bulgarian, Turkish, and Portuguese datasets come from the CoNLL-X shared task
Buchholz and Marsi (2006); we thank the organizers.

Recall from Section 2.5 that precision and recall measures can be defined when com-
paring a hypothesized dependency tree y to a gold standard tree y∗. These measures are
equivalent (and equal to the accuracy measures used so far) if both trees are fully con-
nected, with n − 1 dependency links between the n words. In some of the gold standard
corpora used in this chapter, some trees are not fully connected and have multiple roots.
For this reason, we report the F1-accuracy (harmonic mean between precision and recall).
The test set consists of around 500 sentences (in each language), as does the development
set used for model selection. All reported results are on the unseen test data; the de-
velopment data was used for model selection. As in previous chapters, supervised and
unsupervised model selection were applied.

8.2 Baselines and EM (Chapter 3)

Table 8.1 shows the performance of the ATTACH-LEFT and ATTACH-RIGHT baselines,
MLE/EM, and MAP/EM. The MLE models are selected from among the three initializers
used before (Zero, K&M, Local); the MAP models are selected from initializers × seven
values of λ: {0, 10−2/3, 10−1/3, 1, 101/3, 102/3, 10}. First note the high performance of the
untrained baselines for Turkish; nothing outperforms ATTACH-RIGHT. Portuguese undi-
rected accuracy is also best with the baselines, and (as noted earlier) no English model
trained this way significantly outperforms ATTACH-RIGHT. The second important thing
to notice is that supervised model selection tends to perform very close to the oracle model.
Further, unsupervised model selection usually performs much worse (note, especially,
German). The usefulness of even a small quantity of annotated data for model selection is
evident across languages.

For five languages, the best performance among these trials is by MAP/EM with su-
pervised model selection. In three cases, unsupervised model selection still outperformed
the baseline.
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8.3 Contrastive Estimation (Chapter 4)

Regularized contrastive estimation (CE; Chapter 4) was applied to all six datasets, us-
ing five neighborhoods and with σ2 ∈ {10−2/3, 10−1/3, 1, 101/3, 102/3, 10,+∞}. Results are
shown in Table 8.2 (oracle model selection), Table 8.3 (supervised selection), and Table 8.4
(unsupervised selection).

The oracle results (Table 8.2) show that CE can, in principle, achieve better results
than EM on four languages (the exceptions are Bulgarian and Mandarin). This holds up
well under supervised model selection (Table 8.3). Note that on German, directed accu-
racy significantly improved, but not undirected accuracy (if we apply supervised selec-
tion on undirected accuracy, CE achieves 72.6% against MAP/EM’s 71.9%, which is not
quite significantly better under a sign test). On Turkish, CE shows large improvements
over MAP/EM, but still not over the ATTACH-RIGHT baseline. Large, significant improve-
ments were obtained for Portuguese (with DEL1ORTRANS1) but CE did not match EM on
Mandarin or Bulgarian.

Turning to unsupervised model selection, although performance generally decreases,
CE offers more consistent improvement across languages over MAP/EM (also with unsu-
pervised selection), provided that a good neighborhood is used. Bulgarian remains hope-
less, but on every other language some neighborhood outperforms MAP/EM, in most
cases significantly.

8.4 Skewed Deterministic Annealing (Chapter 5)

We applied skewed deterministic annealing (SDA; Section 5.3) to the six datasets. An-
nealing schedules with β0 ∈ {0.1, 0.01, 0.001} and γ ∈ [1.25, 2.5] were tested. Model selec-
tion across initializers ~θ(0) was applied; no smoothing was applied. Table 8.5 presents the
results.

As a general trend, we see that SDA sometimes improves over MLE/EM and (with
the exception of German unlabeled F1-accuracy) sometimes improves over MAP/EM. The
gains are generally not overwhelming, however, and in cases where EM did not beat an
untrained baseline, neither did SDA.

8.5 Structural Annealing (Chapter 6)

Experimental results of Model L, trained with values of δ ∈ [−1, 0.2], are shown in
Table 8.6. With supervised model selection, across languages we see that a nonzero δ
improves directed accuracy relative to Model A (δ = 0). German improves most with a
positive δ. Here we finally see Turkish results that catch up to the ATTACH-RIGHT baseline,
with δ = −0.2. Unsupervised model selection is less successful with this method, because
local optima on the Model L likelihood surface tend not to score well on the unsupervised
selection criterion (Model A likelihood of development data).

Table 8.7 shows results with structural annealing on δ, for different starting δ0. ∆δ was
fixed at 0.1 for these experiments, and supervised model selection was applied for the stop-
ping δf , smoothing λ, and the initializer. Consistent improvements are seen for languages
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other than Turkish and Portuguese, where annealing was approximately as accurate as the
unannealed Model L.

Unsupervised model selection was applied, as well; see Table 8.8. Although three lan-
guages show improvement over MAP/EM (with unsupervised selection), and four lan-
guages show improvement for some value of δ0 (fixed and not selected), these results are
less impressive. The explanation is, as with fixed δ: the likelihood of development data (or
training data) under Model A is not expected to be high for models trained using Model L
with δ 6= 0.

Table 8.9 shows some additional error statistics: the macro-averaged path length for
the (supervisedly) selected models in each language, and the mean KL divergence to the
mean between the hypothesized link type distribution and the gold-standard distribution.
Smaller numbers are better in both cases; these scores are shown to bolster the case that
our methods are an improvement over EM.

8.6 On Supervised Model Selection

Many experiments throughout the thesis have made use of annotated development
datasets of about 500 sentences for model selection. Here we see how performance would
be affected if this set were reduced in size. Figure 8.1 shows that, with only a few excep-
tions, supervised model selection within a training setting (MAP/EM, CE, SDA, or SA) or
across settings would perform very similarly even if the development set were substantially
reduced in size. These plots also show curves for supervised learning on the development
dataset, which is consistently a better use of annotated examples (when 500 are available,
as we have assumed) than supervised selection.

8.7 Summary

In this chapter we applied contrastive estimation, skewed deterministic annealing,
and structural annealing to five additional languages. Structural annealing (or at least
the use of a structural bias that is chosen appropriately) is the “safest” method—the one
least likely to hurt performance. Figures 8.2 and 8.3 compare all methods across languages
(under supervised and unsupervised selection, respectively), and Table 8.10 describes the
best baseline performance and the best performance achieved in this thesis (and how each
was obtained). We summarize by addressing each new language in turn.

German Using structural annealing we improved performance on German by 17 points.
Our methods all behaved in similar patterns on German as on English, with each
technique demonstrating improvements over EM. German displays less of a locality
tendency than English (57% of true dependencies in the training corpus are length-
1, compared to 63% for English). Note that the locality bias trials (both fixed and
annealed δ) performed best with relatively high values of the locality bias δ—yet
introducing the bias was clearly helpful.

Bulgarian Performance on Bulgarian was improved by 12 points using structural an-
nealing. Contrastive estimation with the neighborhoods we tested did not improve
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German 1.58 0.175 1.52 0.175 1.23 0.107 1.23 0.101 1.15 0.091
English 1.50 0.107 1.50 0.107 1.31 0.128 1.27 0.055 1.19 0.051

Bulgarian 1.46 0.120 1.53 0.120 1.34 0.110 1.42 0.117 1.20 0.089
Mandarin 1.62 0.112 1.43 0.112 1.28 0.096 1.44 0.120 1.24 0.049

Turkish 1.46 0.057 1.20 0.057 1.25 0.078 1.21 0.061 1.18 0.063
Portuguese 1.30 0.118 1.39 0.118 1.26 0.112 1.10 0.047 1.18 0.118

Table 8.9: Error statistics for supervisedly selected models for different languages. The
statistics are the average undirected path length between a word and its true parent,
through the hypothesized tree, macro-averaged by test data sentences; and the KL di-
vergence between the empirical link type distribution and that hypothesized by the model
on the test data. In this table, smaller numbers are always better. Boldface marks the best
scores in each row.

existing baseline new result
German 54.4 EM/Model A 71.8 SA/Model L

(K&M, λ = 10) (Zero, λ = 1, δ = −0.6→ 0.5)
English 41.6 EM/Model A 66.7 SA/Model L

(K&M, λ = 10−2/3) (Zero, λ = 10, δ = −0.6→ 0.1)
Bulgarian 45.6 EM/Model A 58.3 SA/Model L

(K&M, λ = 10−1/3) (K&M, λ = 10, δ = −0.4→ 0.2)
Mandarin 50.0 EM/Model A 58.0 SA/Model L

(K&M, λ = 101/3) (K&M, λ = 102/3, δ = −1→ 0.1)
Turkish 61.8 ATTACH-RIGHT 62.4 EM/Model L

(Zero, λ = 1, δ = −0.2)
Portuguese 42.5 EM/Model A 71.8 CE/DEL1ORTRANS1/Model A

(Zero, λ = 0) (Local, σ2 = 10−1/3)

Table 8.10: Summary of improvements on directed attachment accuracy of grammar in-
duction in six languages. The left column shows the best baseline methods that existed
prior to this thesis, the right column shows the top performance achieved with the new
techniques. Supervised model selection was applied to choose the trials presented in both
columns.
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Figure 8.1: The effect of smaller development sets on supervised model selection. These
plots show how test set directed accuracy changes as the amount of annotated devel-
opment data used for model selection is diminished. The rightmost point corresponds
to results shown earlier. Selection “overall” always coincides with CE (Portuguese) or
SA (other languages). Supervised curves correspond to the use of the development data
(alone) for supervised training; they illustrate that our supervised model selection method
is not the best way to use the annotated examples in most cases.
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CE results refer to the DEL1ORTRANS1 neighborhood.
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Figure 8.3: Summary of results achieved by baselines, novel methods, and supervised up-
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CE results refer to the DEL1ORTRANS1 neighborhood.
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performance over EM. (They also did not lag terribly behind.) Bulgarian has rela-
tively free word order, so the neighborhoods that perform well for more fixed-order
languages (like English), especially the ones involving transpositions like DEL1OR-
TRANS1 and DYNASEARCH, are not likely to provide the right kind of implicit nega-
tive evidence.

Mandarin We improved performance on Mandarin by eight points using structural an-
nealing. Notably, contrastive estimation with the tested neighborhoods did not im-
prove over EM for Mandarin (though DYNASEARCH was not terribly far behind).
This corpus contains many noun compounds, the dependency structure of which is
nearly impossible to learn without lexical features (which Models A and L do not
have). Indeed, our selected model achieves only 37% undirected recall on NN/NN
links. Future work on Mandarin will require lexicalization—a challenge because
spelling and morphological features are not available in Mandarin. Better-informed
neighborhoods for contrastive estimation, perhaps combined with structural anneal-
ing, might also be useful.

Turkish Our smallest gains were on Turkish at less than one percentage point, but sig-
nificant under a sign test (p < 0.05). The best baseline system is ATTACH-RIGHT,
and it was only surpassed by structural annealing. That this baseline performs so
well is somewhat surprising, given that Turkish is free word order language with
a complex morphology that makes it relatively difficult to parse (see results in the
recent dependency parsing shared task for Turkish, Buchholz and Marsi, 2006); su-
pervised statistical parsing has only very recently been applied to Turkish (Eryiğit and
Oflazer, 2006). The (relatively) good performance of ATTACH-RIGHT is probably due
in part to the distribution of sentence lengths (the mean in this corpus, after selecting
sentences of length at most ten, is 5.3). Further experimentation with Turkish should
take into account a larger corpus containing longer sentences with more varied con-
structions.

Portuguese This corpus was the smallest tested (fewer than 2,000 sentences). Contrastive
estimation was found to increase performance by 30 points over EM, using the DEL1-
ORTRANS1 neighborhood. Other methods gave the same pattern of gains observed
for English, though annealing the structural bias δ did not improve over performance
with a fixed δ for annealing schedules that we tested. A small dataset like this one
might require slower annealing, which would prevent over-committing to particu-
lar hypotheses when stepping between different δ values. A model with a reduced
hypothesis space (like Model U in Section 4.8), perhaps for the first stage of learning
only, might also be appropriate for small datasets.

To conclude, we have not succeeded in building a “universal” language learner, but
we did not expect to. Model A simply does not capture many of the features that would be
required for successful learning in these diverse languages: morphology, lexical patterns
(see Section 2.3.3), and flexibility of word order, for example. The techniques have, how-
ever, improved over state-of-the-art baselines for all six languages and (more importantly)
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opened up the possibility of better model development in future work, by allowing more
diverse features in unsupervised estimation.

185



Chapter 9

Conclusion

When you give for an academic audience a lecture that is crystal clear from A to Ω,
your audience feels cheated and leaves the lecture hall commenting to each other: “That
was rather trivial, wasn’t it?” The sore truth is that complexity sells better.

—Edsger Dijkstra (1930–2002)

We have presented three novel techniques to improve upon Expectation-Maximiz-
ation (Chapter 3; Dempster et al., 1977) for learning useful hidden structure in natural
language data:

• Contrastive estimation (Chapter 4; Smith and Eisner, 2005a,b), which mathemat-
ically formulates implicit negative evidence into the objective function and solves
computational problems faced by unsupervised learning of log-linear models over
infinite discrete spaces.

• Skewed deterministic annealing (Chapter 5; Smith and Eisner, 2004), which is simi-
lar to deterministic annealing (Rose, 1998) in using “cautious” search that starts with
an easy concave problem, gradually morphing into the original likelihood problem,
but does not ignore a good initializer.

• Structural annealing (Chapter 6; Smith and Eisner, 2006), which gradually manipu-
lates a single structural feature added to the model to bias the learner initially toward
simple structures, decreasing the bias over time.

While we focused on a grammar induction task, these methods have been described in
generality and are expected to be useful in many applications. We have described how con-
trastive estimation provides a way to carry out task-focused structure learning that makes
use of additional domain knowledge not available to maximum likelihood estimation,
and how the two annealing techniques can guide a learner from easy to harder problems,
where, again, “ease” is defined using information about the domain (here, the tendency
for syntactic relations to be string-local).

We have shown that contrastive estimation performs is far more effective than EM at
learning to disambiguate part-of-speech tags from unannotated text. We have shown that
CE, skewed deterministic annealing, and structural annealing significantly outperform EM
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on dependency parsing accuracy when used to train a state-of-the-art model designed for
unsupervised learning (the dependency model with valency features of Klein and Man-
ning, 2004, which is our Model A). Further, we have shown significant improvements on
grammar induction for five additional, diverse languages (German, Bulgarian, Mandarin,
Turkish, and Portuguese). Our best results were obtained using a small amount of anno-
tated data for model selection (the EM baseline was given the same treatment), though in
many scenarios unsupervised model selection with the new methods also improved over
MLE-trained models.

The grammar induction task as defined here and in prior work, we have pointed out
(Section 1.4), is somewhat artificial: the datasets are relatively small, the data are assumed
to be clean and correctly tagged (in most of our experiments), only short sequences are
used in training and testing (in most experiments, at most ten words), and the parsers
are evaluated against a gold standard rather than in a real application. It is left to future
work to explore how these methods (including EM) can be scaled up to larger datasets and
more interesting probabilistic models, and evaluated in the context of larger systems. Such
“Olympic sport” tasks continue to play an important role in the field, however, allowing
direct comparison of core techniques on standard datasets. In response to this criticism of
the task, we argue that our methods have substantially improved the quality of parsing
models learned from unannotated data. Throughout the thesis we have presented error
analysis and alternative means of evaluation.

Many aspects of learning linguistic structure using unannotated data have been ex-
plored here. We briefly note some of the most interesting experimental results. While
very expensive in practice, we showed in Section 3.3.2 that multiple random initializers to
EM can be used, with supervised model selection, to achieve far higher accuracy than the
standard “clever” initializers. We also saw in Sections 3.4.2, 4.6.6, 5.3.3, 6.2.3, and 8.6 that
significantly reducing the amount of annotated data used for model selection has very little
effect on the accuracy of any of the unsupervised training methods we applied. However,
when more than trivial amounts of annotated data are available, our combination of unsu-
pervised training with supervised selection (of initializers, regularization, and annealing
parameters) is notably less effective than supervised training alone. One promising result
does stand out: in Section 5.3.3 we saw that skewed deterministic annealing is the best
among the various semisupervised methods, outperforming MLE on the annotated data
alone with up to 50 annotated examples. We showed in Section 7.2 that different the dif-
ferences among unsupervised learning algorithms can carry through to later stages in a
cascade of learners; we first learned to disambiguate part-of-speech tags, then used the
hypothesized tags to induce syntactic dependencies.

In addition to using standard and obvious initialization in training our models, we
carried out experiments using random initializers. These served to highlight the severity of
the local maximum problem—even for learning methods that explicitly seek to avoid local
maxima, like skewed deterministic annealing—each of one hundred differently-initialized
models consistently led to a different, locally optimal parameter estimate, for each training
method. These results also showed the role of chance in learning; methods that perform
better than EM with well-reasoned initializers do not consistently perform better than EM
with random initializers—CE/DEL1ORTRANS1 is the most notable such example, as seen
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CC  PDT DT     NN         RB    VBZ       JJ    NNS
But such   a contribution also presents great risks.

errors (undirected)

CC  PDT DT     NN         RB    VBZ       JJ    NNS
But such   a contribution also presents great risks.

EM: 4 (3)

CC  PDT DT     NN         RB    VBZ       JJ    NNS
But such   a contribution also presents great risks.

CE: 3 (2)

CC  PDT DT     NN         RB    VBZ       JJ    NNS
But such   a contribution also presents great risks.

SA: 1 (1)

CC  PDT DT     NN         RB    VBZ       JJ    NNS
But such   a contribution also presents great risks.

supervised: 0 (0)

Figure 9.1: An example sentence from our test set, drawn from the Penn Treebank, with
four dependency parses: the gold standard, the baseline method (EM, supervisedly se-
lected), two of our methods (contrastive estimation and structural annealing, supervisedly
selected), and a supervised model. This example was chosen because performance on it
was typical for each parser (close to the parser’s average). The numbers shown are the
attachment errors and the undirected attachment errors. Errors with respect to the gold
standard are shown as dashed lines. See Figures 1.1 (page 10) and 6.14 (page 6.14) for
more examples.
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in Section 4.6.5 and Section 7.4. While this casts some doubt on a general claim that the new
methods are preferred, we note that unsupervised learning nearly always, in practice, uses
reasonable initializers, and our methods do tend to make better use of those initializers.

Consistently throughout the thesis, our results illustrated that, for good performance,
regularization and initialization must be chosen carefully and together, and a good choice
will depend heavily on the training algorithm. These hyperparameters can have a very
large effect on the quality of the learned model.

Ultimately, when a small amount of labeled data are present, the best experimental re-
sults achieved in this thesis were obtained using structural annealing to train an improved
model (Model L), equivalent to the original model but for the addition of a single local-
ity feature. (See Table 8.10 (page 180) and Figures 8.2 (page 182) and 8.3 (page 183) for a
summary of the improvements by language and a graphical comparison of all methods
on all six languages tested.) Our results, then, give another example of improved ma-
chine learning by an improved choice of features. This is not surprising or revolutionary,
though annealing the feature’s importance is a novel approach that had a large effect on
performance.

When we move to purely unsupervised model learning (with even unsupervised model
selection), contrastive estimation was shown to be the best method for English. This was
also true for German (the other language tested with more than 5,000 training sentences).
Contrastive estimation, then, has not been completely surpassed in all scenarios and re-
mains an interesting area for future research.

A key contribution of the thesis is that now, new features can be added to models used
for unsupervised learning, whereas before, there was no clean, principled way to train the
weights of nontraditional features (e.g., in the case of tagging and parsing grammars, those
that do not correspond to grammar rules) from unannotated data.1 Indeed, contrastive
estimation and structural annealing are two entirely novel options for adding new features
to a model over discrete structures. The former modifies the estimation criterion, avoiding
numerical and computational difficulties posed by the classical MLE approach. CE also
allows the incorporation of implicit negative evidence in an entirely novel way, as we
have noted. Some neighborhoods exist that are essentially approximations for MLE, so
while implicit negative evidence can improve performance, it is not required for using CE.
Further, as we have seen, even without additional features CE can outperform MLE and
MAP on many problems.

Structural annealing treats one additional feature’s weight as a bias that is outside
the learned parameters—depending on the feature’s role in the model, it can be changed
over time (annealed) to guide the learner from simple or easy structures to more complex
ones. Both CE and SA were shown to be highly successful in comparison to the standard
Expectation-Maximization approach to unsupervised learning.

1These methods are not just for grammars, of course, and our exposition has been sufficiently general that
it should be clear how to apply them to other kinds of models over other kinds of discrete data.
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Appendix A

Dynamic Programming Equations

We give semiring dynamic programming equations for Model A (a specialized variant
of the SHAG recognition algorithm in Eisner and Satta (1999)), Model A on lattices, Model
U (seen in Chapter 4), Model L, and Model S (both seen in Chapter 6). These are presented
as Dyna programs (Eisner et al., 2004), though we abstract over the semiring and use ⊕
and ⊗. Each program computes the value of goal, which has a different interpretation
depending on the semiring. In the 〈max,×〉 semiring, it is the score of the most probable
parse. In the 〈+,×〉 semiring, it is the total score of all parses, Z̈~λ

({x} × Yx) (also written
Z̈~λ

(x)). In practice these algorithms are implemented in the logarithmic domain, replacing
+ with LOGADD and × with +. While slightly more expensive, this prevents underflow
and, in the case of log-linear models, overflow.

Our procedural implementations of these declarative programs use the algorithms
described in detail in Eisner et al. (2005).

A.1 Model A

Let x be the sentence, and let n be the length of the sentence.

rconstit(I − 1, I, false) = 1 whenever I < n. (A.1)
lconstit(I − 1, I, false) = 1 whenever I < n. (A.2)

rconstit(I, K, true) ⊕ = rtrpzd(I, J, B)⊗ rconstit′(J − 1,K). (A.3)
lconstit(I, K, true) ⊕ = lconstit′(I, J)⊗ ltrpzd(J − 1,K,B). (A.4)

rconstit′(I, J) ⊕ = rconstit(I, J, B)⊗ λstop(xI+1,right,B). (A.5)
lconstit′(I, J) ⊕ = lconstit(I, J,B)⊗ λstop(xJ−1,left,B). (A.6)

rtrpzd(I, K,B) ⊕ = rconstit(I, J, B)⊗ lconstit′(J,K)
⊗λchild(xI+1,right,xK) ⊗ λcontinue(xI+1,right,B). (A.7)

ltrpzd(I, K,B) ⊕ = rconstit′(I, J)⊗ lconstit(J,K, B)
⊗λchild(xK ,left,xI+1) ⊗ λcontinue(xK ,left,B). (A.8)

goal ⊕ = lconstit′(0, I)⊗ rconstit′(I − 1, n)⊗ λroot(xI). (A.9)
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A.2 Model A on Lattices

The equations for Model A, run on lattices, are very similar to those for sequences
(above). The equations change very little, except that now the variables I , J , and K re-
fer to states in the lattice rather than positions between symbols in the sequence. Define
arc(X, I, J) to be true if and only if there is an arc in the lattice between states I and J .
Let state 0 be the start state, and let finalstate(I) be true iff state I is a final state. Some
additional bookkeeping is done within the terms; note that terms can be nested (a nested
term is not evaluated to its value).

rconstit(arc(X, I, J), J, false) = 1 whenever arc(X, I, J). (A.10)
lconstit(arc(X, I, J), I, false) = 1 whenever arc(X, I, J). (A.11)

rconstit(arc(X, I, J),M, true) ⊕ = rtrpzd(arc(X, I, J), arc(X ′,K, L), B)
⊗rconstit′(arc(X ′,K, L),M). (A.12)

lconstit(arc(X, L, M), I, true) ⊕ = lconstit′(arc(X ′, J,K), I)
⊗ltrpzd(arc(X, L, M), arc(X ′, J,K), B).

(A.13)
rconstit′(arc(X, I, J),K) ⊕ = rconstit(arc(X, I, J),K,B)⊗ λstop(X,right,B).

(A.14)
lconstit′(arc(X, J, K), I) ⊕ = lconstit(arc(X, J, K), I, B)⊗ λstop(X,left,B).

(A.15)
rtrpzd(arc(X, I, J), arc(X ′, L,M), B) ⊕ = rconstit(arc(X, I, J),K,B)

⊗lconstit′(arc(X ′, L,M),K)
⊗λchild(X,right,X′) ⊗ λcontinue(X,right,B).(A.16)

ltrpzd(arc(X, L, M), arc(X ′, I, J), B) ⊕ = rconstit′(arc(X ′, I, J),K)
⊗lconstit(arc(X, I, J),K,B)
⊗λchild(X,left,X′) ⊗ λcontinue(X,left,B). (A.17)

goal ⊕ = lconstit′(arc(X, I, J), 0)
⊗rconstit′(arc(X, I, J), n)
⊗λroot(X). (A.18)

A.3 Model U

rconstit(I, I + 1, false) = 1 whenever I ≤ n. (A.19)
lconstit(I, I + 1, false) = 1 whenever I ≤ n. (A.20)

rconstit(I, K, true) ⊕ = rtrpzd(I, J, B)⊗ rconstit′(J − 1,K). (A.21)
lconstit(I, K, true) ⊕ = lconstit′(I, J)⊗ ltrpzd(J − 1,K,B). (A.22)
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rconstit′(I, J) ⊕ = rconstit(I, J, B). (A.23)
lconstit′(I, J) ⊕ = lconstit(I, J,B). (A.24)

rtrpzd(I, K,B) ⊕ = rconstit(I, J, B)⊗ lconstit′(J,K)
⊗λ〈xI+1,xK〉. (A.25)

ltrpzd(I, K,B) ⊕ = rconstit′(I, J)⊗ lconstit(J,K, B)
⊗λ〈xI+1,xK〉. (A.26)

goal ⊕ = lconstit′(0, 1)⊗ rconstit′(0, n). (A.27)

A.4 Model L

Start with the equations for Model A, replacing Equations A.7 and A.8 with:

rtrpzd(I,K,B) ⊕ = rconstit(I, J, B)⊗ lconstit′(J,K) (A.28)
⊗λchild(xI+1,right,xK) ⊗ λcontinue(xI+1,right,B) (A.29)

⊗eδ·(K−I+1). (A.30)
ltrpzd(I,K,B) ⊕ = rconstit′(I, J)⊗ lconstit(J,K, B) (A.31)

⊗λchild(xK ,left,xI+1) ⊗ λcontinue(xK ,left,B) (A.32)

⊗eδ·(K−I+1). (A.33)
(A.34)

A.5 Model S

Remove the goal equation from Model A (Equation A.9), and add instead the follow-
ing:

vine(0) = 1. (A.35)
openvine(X, J + 1) ⊕ = vine(I)⊗ lconstit′(I, I + 1). (A.36)

openvine(X, J) ⊕ = openvine(X ′, I)⊗ ltrpzd(I − 1, J, B)
⊗λstop(xJ ,left,B). (A.37)

vine′(X, J) ⊕ = eβ ⊗ openvine(X, J)⊗ λroot(X). (A.38)
vine′(X, J) ⊕ = vine′(X ′, I)⊗ rtrpzd(I − 1, J, B)

⊗λstop(xI ,right,B). (A.39)
vine(I) ⊕ = vine′(X, I)⊗ rconstit′(I − 1, I). (A.40)

goal ⊕ = vine(n). (A.41)

These equations were presented in Eisner and Smith (2005); see Figure 2b in that paper for
a more graphical representation.
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Appendix B

Part-of-Speech Tagsets

We briefly describe the tagsets for each of the datasets used in the thesis.

B.1 Penn Treebank

The Penn Treebank is available from the Linguistic Data Consortium; see http://
www.ldc.upenn.edu, catalog number LDC99T42. The tagset is shown in Table B.1. For
more details, readers are directed to Santorini (1990). The coarse tags used in some POS
tagging experiments in Chapter 4 are given in Table B.2.

B.2 TIGER Treebank

The TIGER Treebank is free for scientific use; details are available at http://www.
ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/. The tagset is shown in
Table B.3. For more details, see Smith (2003).

B.3 BulTreeBank

The BulTreeBank is described in detail at http://www.bultreebank.org. The ver-
sion of the data used in this thesis was as distributed by the organizers of the CoNLL-X
shared task Buchholz and Marsi (2006). The tagset used here is shown in Table B.4. For
more details, see Simov, Osenova, and Slavcheva (2004b).

B.4 Penn Chinese Treebank

The Chinese Treebank is available from the Linguistic Data Consortium (http://
www.ldc.upenn.edu), catalog number LDC2005T01U01 for the latest version as of this
writing. The tagset is shown in Table B.5; see Xia (2000) for more details.
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CC coordinating conjunction
CD cardinal number
DT determiner
EX existential there
FW foreign word
IN preposition or subordinating conjunction
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
LS list item marker
MD modal
NN noun, singular or mass
NNS noun, plural
NNP proper noun, singular
NNPS proper noun, plural
PDT predeterminer
POS possessive ending
PRP personal pronoun
PRP$ possessive pronoun
RB adverb
RBR adverb, comparative
RBS adverb, superlative
RP particle
SYM symbol
TO to
UH interjection
VB verb, base form
VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle
VBP verb, non-third person singular present
VBZ verb, third person singular present
WDT wh-determiner
WP wh-pronoun
WP$ possessive wh-pronoun
WRB wh-adverb

Table B.1: The Penn Treebank tagset. WP$ does not appear in sentences of ten words or
fewer, and so is not included in models trained on that portion of the Treebank.
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coarse tag Treebank tags
ADJ $ # CD JJ JJR JJS PRP$ RB RBR RBS
CONJ CC
DET DT PDT
ENDPUNC .
INPUNC , : LS SYM UH
LPUNC “ -LRB
N EX FW NN NNP NNPS NNS PRP
POS POS
PREP IN
PRT RP
RPUNC ” -RRB-
TO TO
V MD VBD VBP VB VBZ VBG
VBN VBN
W WDT WP$ WP WRB

Table B.2: Mapping of Penn Treebank tags onto our coarse tagset, used in part-of-speech
tagging experiments with spelling features.

B.5 METU-Sabancı Treebank

The METU-Sabancı Turkish Treebank is available at http://www.ii.metu.edu.
tr/∼corpus/treebank.html; it is free for research purposes. The data and tagset used
here is as formatted for the CoNLL-X shared task Buchholz and Marsi (2006). To quote the
documentation provided with that version of the data:

See the Appendix of [Oflazer, Say, Hakkani-Tür, and Tür (2003)] for a full list
(“Minor Parts of Speech”). In most cases, the “Minor Part of Speech” fully de-
termines the “Major Part of Speech.” In those cases, POSTAG simply contains
the “Minor Part of Speech.” However, the “Minor Parts of Speech” PastPart
and FutPart occur with nouns as well as adjectives. We have therefore prefixed
them (and Inf and PresPart for consistency as well) with N and A respectively.
If no “Minor Part of Speech” is given in the treebank, POSTAG is identical to
[the “Major Part of Speech”].

For more details, see Oflazer et al. (2003). Because that paper does not give descriptions of
the tags, we merely list those present in the dataset (note that the intended meanings are
fairly clear); see Table B.6.

B.6 Floresta Sintá(c)tica Treebank

The data used in these experiments is freely available at http://nextens.uvt.
nl/∼conll/free data.html. The tagset is shown in Table B.7. For more details, see
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ADJA adjective, attributive
ADJD adjective, adverbial or

predicative
ADV adverb
APPR preposition; circumposi-

tion left
APPRART preposition with article
APPO postposition
APZR circumposition right
ART definite or indefinite arti-

cle
CARD cardinal number
FM foreign language material
ITJ interjection
KOUI subordinate conjunction

with zu and infinitive
KOUS subordinate conjunction

with sentence
KON coordinate conjunction
KOKOM comparative conjunction
NN common noun
NE proper noun
PDS substituting demonstra-

tive pronoun
PDAT attributive demonstrative

pronoun
PIS substituting indefinite

pronoun
PIAT attributive indefinite pro-

noun without determiner
PIDAT attributive indefinite pro-

noun with determiner
PPER non-reflexive personal

pronoun
PPOSS substituting possessive

pronoun

PPOSAT attributive possessive pro-
noun

PRELS substituting relative pro-
noun

PRELAT attributive relative pro-
noun

PRF reflexive personal pro-
noun

PWS substituting interrogative
pronoun

PWAT attributive interrogative
pronoun

PWAV adverbial interrogative or
relative pronoun

PAV pronominal adverb
PTKZU zu before infinitive
PTKNEG negative particle
PTKVZ separable verbal particle
PTKANT answer particle
PTKA particle with adjective or

adverb
SGML SGML markup
SPELL letter sequence
TRUNC word remnant
VVFIN finite verb, full
VVIMP imperative, full
VVINF infinitive, full
VVIZU infinitive with zu, full
VVPP perfect participle, full
VAFIN finite verb, auxiliary
VAIMP imperative, auxiliary
VAINF infinitive, auxiliary
VAPP perfect participle, auxil-

iary
VMFIN finite verb, modal
VMINF infinitive, modal
VMPP perfect participle, modal
XY non-word containing non-

letter

Table B.3: The TIGER Treebank tagset. Not all of these tags are present in the subset use
for experiments (i.e., sentences with fewer than ten words).
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N noun
Nc common noun
Np proper noun
A adjective
Af adjective, feminine
Am adjective, masculine
An adjective, neuter
H hybrid (family name or

adjective)
Hf hybrid, feminine
Hm hybrid, masculine
Hn hybrid, neuter
Pp personal pronoun
Pd demonstrative pronoun
Pr relative pronoun
Pc collective pronoun
Pi interrogative pronoun
Pf indefinite pronoun
Pn negative pronoun
Ps possessive pronoun
Mc cardinal numeral
Mo ordinal numeral
Md adverbial numeral
My fuzzy numeral about peo-

ple
Vii auxiliary verb (bivam), im-

perfective
Vni impersonal verb, imper-

fective
Vnp impersonal verb, perfec-

tive

Vpi personal verb, imperfec-
tive

Vpp personal verb, perfective
Vxi auxiliary verb (sum), im-

perfective
Vyp auxiliary verb (buda), per-

fective
Dm adverb of manner
Dt adverb of time
Dl adverb of location
Dq adverb of quantity or de-

gree
Dd adverb of modal nature
Cc coordinative conjunction
Cs subordinative conjunction
Cr repetitive coordinative

conjunction
Cp single and repetitive coor-

dinative conjunction
Ta affirmative particle
Tn negative particle
Ti interrogative particle
Tx auxiliary particle
Tm modal particle
Tv verbal particle
Te emphasis particle
Tg gradable particle
R preposition
I interjection

Table B.4: The BulTreeBank tagset. Because the tags are factored into fields, we list only
those present in the data; for a complete description see Simov et al. (2004b).
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AD adverb
AS aspect marker
BA bǎ in ba-construction
CC coordinating conjunction
CD cardinal number
CS subordinating conjunction
DEC de in a relative clause
DEG associative de
DER dé in V-de const. and V-de-R
DEV de before VP
DT determiner
ETC for words děng, děng děng
FW foreign words
IJ interjection
JJ other noun-modier
LB bèi in long bei-const
LC localizer
M measure word
MSP other particle
NN common noun
NR proper noun
NT temporal noun
OD ordinal number
ON onomatopoeia
P preposition excl. bèi and bǎ
PN pronoun
PU punctuation
SB bèi in short bei-const
SP sentence-nal particle
VA predicative adjective
VC shı̀
VE yǒu as the main verb
VV other verb

Table B.5: The Penn Chinese Treebank tagset. Not all of these tags are present in the subset
use for experiments (i.e., sentences with fewer than ten words).
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AFutPart
APastPart
APresPart
Adj
Adv
Card
Conj
DemonsP
Det
Distrib
Dup
Interj
NFutPart
NInf
NPastPart
Noun
Ord
PersP
Postp
Pron
Prop
Ques
QuesP
Real
ReflexP
Verb
Zero

Table B.6: The METU-Sabancı Treebank tagset. Not all of these tags are present in the
subset use for experiments (i.e., sentences with fewer than ten words). The tags are listed
but not described in Oflazer et al. (2003); we repeat the list.
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n noun
prop proper noun
adj adjective
v-fin finite verb
v-inf infinitive
v-pcp participle
v-ger gerund
art article
pron-pers personal pronoun
pron-det determiner pronoun (adjective-like)
pron-indp independent pronoun (noun-like)
adv adverb
num numeral
prp preposition
in interjection
conj-s subordinating conjunction
conj-c coordinating conjunction

Table B.7: The Floresta Sintá(c)tica Treebank tagset. Not all of these tags are present in the
subset use for experiments (i.e., sentences with fewer than ten words).

http://visl.sdu.dk/visl/pt/symbolset-floresta.html.
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