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Abstract
We propose a new method for learning word rep-
resentations using hierarchical regularization in
sparse coding inspired by the linguistic study of
word meanings. We show an efficient learning
algorithm based on stochastic proximal meth-
ods that is significantly faster than previous ap-
proaches, making it possible to perform hierar-
chical sparse coding on a corpus of billions of
word tokens. Experiments on various benchmark
tasks—word similarity ranking, syntactic and se-
mantic analogies, sentence completion, and senti-
ment analysis—demonstrate that the method out-
performs or is competitive with state-of-the-art
methods.

1. Introduction
When applying machine learning to text, the classic categor-
ical representation of words as indices of a vocabulary fails
to capture syntactic and semantic similarities that are easily
discoverable in data (e.g., pretty, beautiful, and lovely have
similar meanings, opposite to unattractive, ugly, and repul-
sive). In contrast, recent approaches to word representation
learning apply neural networks to obtain low-dimensional,
continuous embeddings of words (Bengio et al., 2003; Mnih
& Teh, 2012; Collobert et al., 2011; Huang et al., 2012;
Mikolov et al., 2010; 2013a; Pennington et al., 2014).

In this work, we propose an alternative approach based
on decomposition of a high-dimensional matrix capturing
surface statistics of association between a word and its “con-
texts” with sparse coding. As in past work, contexts are
words that occur nearby in running text (Turney & Pantel,
2010). Learning is performed by minimizing a reconstruc-
tion loss function to find the best factorization of the input
matrix.
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The key novelty in our method is to govern the relationships
among dimensions of the learned word vectors, introducing
a hierarchical organization imposed through a structured
penalty known as the group lasso (Yuan & Lin, 2006). The
idea of regulating the order in which variables enter a model
was first proposed by Zhao et al. (2009), and it has since
been shown useful for other applications (Jenatton et al.,
2011). Our approach is motivated by coarse-to-fine organi-
zation of words’ meanings often found in the field of lexical
semantics (see §2.2 for a detailed description), which mir-
rors evidence for distributed nature of hierarchical concepts
in the brain (Raposo et al., 2012). Related ideas have also
been explored in syntax (Petrov & Klein, 2008). It also has
a foundation in cognitive science, where hierarchical struc-
tures have been proposed as representations of semantic
cognition (Collins & Quillian, 1969). We propose a stochas-
tic proximal algorithm for hierarchical sparse coding that is
suitable for problems where the input matrix is very large
and sparse. Our algorithm enables application of hierar-
chical sparse coding to learn word representations from a
corpus of billions of word tokens and 400,000 word types.

On standard evaluation tasks—word similarity ranking,
analogies, sentence completion, and sentiment analysis—
we find that our method outperforms or is competitive
with the best published representations. Our word repre-
sentations are available at: http://www.ark.cs.cmu.
edu/dyogatam/wordvecs/.

2. Model
2.1. Background and Notation

The observable representation of word v is taken to be a
vector xv ∈ RC of cooccurrence statistics with C differ-
ent contexts. Most commonly, each context is a possible
neighboring word within a fixed window.1 Following many

1Others include: global context (Huang et al., 2012), multilin-
gual context (Faruqui & Dyer, 2014), geographic context (Bamman
et al., 2014), brain activation (Fyshe et al., 2014), and second-order
context (Schutze, 1998).

http://www.ark.cs.cmu.edu/dyogatam/wordvecs/
http://www.ark.cs.cmu.edu/dyogatam/wordvecs/
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Figure 1. An example of a regularization
forest that governs the order in which
variables enter the model. In this ex-
ample, 1 needs to be selected (nonzero)
for 2, 3, . . . , 13 to be selected. How-
ever, 1, 2, . . . , 13 have nothing to do
with the variables in the second tree:
14, 15, . . . , 26. See text for details.

others, we let xv,c be the pointwise mutual information
(PMI) between the occurrence of context word c within a
five-word window of an occurrence of word v (Turney &
Pantel, 2010; Murphy et al., 2012; Faruqui & Dyer, 2014;
Levy & Goldberg, 2014).

In sparse coding, the goal is to represent each input vector
x ∈ RC as a sparse linear combination of basis vectors.
Given a stacked input matrix X ∈ RC×V , where V is the
number of words, we seek to minimize:

arg min
D∈D,A

‖X−DA‖2F + λΩ(A), (1)

where D ∈ RC×M is the dictionary of basis vectors, D is
the set of matrices whose columns have small (e.g., less than
or equal to one) `2 norm, A ∈ RM×V is the code matrix
(each column of A represents a word), λ is a regulariza-
tion hyperparameter, and Ω is the regularizer. Here, we use
the squared loss for the reconstruction error, but other loss
functions could also be used (Lee et al., 2009). Note that
it is not necessary, although typical, for M to be less than
C (when M > C, it is often called an overcomplete repre-
sentation). The most common regularizer is the `1 penalty,
which results in sparse codes. While structured regularizers
are associated with sparsity as well (e.g., the group lasso
encourages group sparsity), our motivation is to use Ω to
encourage a coarse-to-fine organization of latent dimensions
of the learned representations of words.

2.2. Structured Regularization for Word
Representations

For Ω(A), we design a forest-structured regularizer that
encourages the model to use some dimensions in the code
space before using other dimensions. Consider the trees in
Figure 1. In this example, there are 13 variables in each tree,
and 26 variables in total (i.e., M = 26), each corresponding
to a latent dimension for one particular word. These trees
describe the order in which variables “enter the model” (i.e.,
take nonzero values). In general, a node may take a nonzero
value only if its ancestors also do. For example, nodes 3 and
4 may only be nonzero if nodes 1 and 2 are also nonzero.
Our regularizer for column v of A, denoted by av (in this

example, av ∈ R26), for the trees in Figure 1 is:2

Ω(av) =
26∑
i=1

‖[av,i, av,Descendants(i)]‖2

where Descendants(i) returns the (possibly empty) set of
descendants of node i, and [.] returns the subvector of av by
considering only av,i and av,Descendants(i).3 Jenatton et al.
(2011) proposed a related penalty with only one tree for
learning image and document representations.

In the following, we discuss why organizing the code space
this way is helpful in learning better word representations.
Recall that the goal is to have a good dictionary D and code
matrix A. We apply the structured penalty to each column
of A. When we use the same structured penalty for these
columns, we encode an additional shared constraint that the
dimensions of av that correspond to top level nodes should
focus on “general” contexts that are present in most words.
In our case, this corresponds to contexts with extreme PMI
values for many words, since they are the ones that incur
the largest losses. As we go down the trees, more word-
specific contexts can then be captured. As a result, we
have better organization across words when learning their
representations, which also translates to a more structured
dictionary D. Contrast this with the case when we use
unstructured regularizers that penalize each dimension of
A independently (e.g., lasso). In this case, each dimension
of av has more flexibility to pay attention to any contexts
(the only constraint that we encode is that the cardinality
of the model should be small). We hypothesize that this
is less appropriate for learning word representations, since
the model has excessive freedom when learning A on noisy
PMI values, which translates to poor D.

The intuitive motivation for our regularizer comes from the
field of lexical semantics, which often seeks to capture the
relationships between words’ meanings in hierarchically-

2Ω(A) is computed by adding components of Ω(av) for all
columns of A.

3Note that if ‖[av,i,av,Descendants(i)]‖2 is below a regulariza-
tion threshold (av,i is a zero node), ‖[av,Descendants(i)]‖2 is also
below the threshold (all its descendants are zero nodes as well).
Conversely, if ‖[av,i,av,Descendants(i)]‖2 is above the threshold
(av,i is a nonzero node), ‖[av,Parent(i), av,i,av,Descendants(i)]‖2
is also above the threshold (av,Parent(i) is also a nonzero node).
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organized lexicons. The best-known example is WordNet
(Miller, 1995). Words with the same (or close) meanings are
grouped together (e.g., professor and prof are synonyms),
and fine-grained meaning groups (“synsets”) are nested un-
der coarse-grained ones (e.g., professor is a hyponym of
academic). Our hierarchical sparse coding approach is still
several steps away from inducing such a lexicon, but it seeks
to employ the dimensions of a distributed word represen-
tation scheme in a similar coarse-to-fine way. In cognitive
science, such hierarchical organization of semantic repre-
sentations was first proposed by Collins & Quillian (1969).

2.3. Learning

Learning is accomplished by minimizing the function in
Eq. 1, with the group lasso regularization function described
in §2.2. The function is not convex with respect to D and
A, but it is convex with respect to each when the other is
fixed. Alternating minimization routines have been shown
to work reasonably well in practice for such problems (Lee
et al., 2007), but they are too expensive here due to:

• The size of X ∈ RC×V (C and V are each on the order
of 105).

• The many overlapping groups in the structured regular-
izer Ω(A).

One possible solution is based on the online dictionary learn-
ing method of Mairal et al. (2010). For T iterations, we:

• Sample a mini-batch of words and (in parallel) solve
for each one’s a using proximal methods or alternat-
ing directions method of multipliers, shown to work
well for overlapping group lasso problems (Jenatton
et al., 2011; Qin & Goldfarb, 2012; Yogatama & Smith,
2014).

• Update D using the block coordinate descent algorithm
of Mairal et al. (2010).

Finally, we parallelize solving for all columns of A, which
are separable once D is fixed. In our experiments, we use
this algorithm for a medium-sized corpus.

The main difficulty of learning word representations with
hierarchical sparse coding is, again, that the size of the
input matrix can be very large. When we use neighboring
words as the contexts, the numbers of rows and columns
are the size of the vocabulary. For a medium-sized corpus
with hundreds of millions of word tokens, we typically have
one or two hundred thousand unique words, so the above
algorithm is still applicable. For a large corpus with billions
of word tokens, this number can easily double or triple,
making learning very expensive. We propose an alternative
learning algorithm for such cases.

Algorithm 1 Fast algorithm for learning word representa-
tions with the forest regularizer.
Input: matrix X, regularization constant λ and τ , learning

rate sequences η0, . . . , ηT , number of iterations T
Initialize D0 and A0 randomly
for t = 1, . . . , T {can be parallelized, see text for details}
do

Sample xc,v with probability proportional to its (abso-
lute) value
dc = dc + 2ηt(av(xc,v − dc · av)− τdc)
av = av + 2ηt(dc(xc,v − dc · av))
for m = 1, . . . ,M do

proxΩm,λ
(av),

where Ωm = ‖〈av,m, av,Descendants(m)〉‖2
end for

end for

We rewrite Eq. 1 as:

arg min
D,A

∑
c,v

(xc,v − dc · av)2 + λΩ(A) + τ
∑
m

‖dm‖22

where (abusing notation) dc denotes the c-th row vector of
D and dm denotes the m-th column vector of D (recall
that D ∈ RC×M ). At each iteration, we sample an entry
xc,v and perform gradient updates to the corresponding row
dc and column av. Instead of considering all elements of
the input matrix, our algorithm allows approximating the
solution by using only some (e.g., nonzero) entries of the
input matrix X if necessary.

We directly penalize columns of D by their squared `2 norm
as an alternative to constraining columns of D to have unit
`2 norm. The advantage of this transformation is that we
have eliminated a projection step for columns of D. In-
stead, we can include the gradient of the penalty term in the
stochastic gradient update. We apply the proximal opera-
tor associated with Ω(av) as a composition of elementary
proximal operators with no group overlaps, similar to Jenat-
ton et al. (2011). This can be done by recursively visiting
each node of a tree and applying the proximal operator for
the group lasso penalty associated with that node (i.e., the
group lasso penalty where the node is the topmost node and
the group consists of the node and all of its descendants).
The proximal operator associated with node m, denoted
by proxΩm,λ

, is simply the block-thresholding operator for
node m and all its descendants.

Since each entry xc,v only depends on dc and av, we can
sample multiple entries and perform the updates in parallel
as long as they do not share c and v. In our case, where C
and V are on the order of hundreds of thousands and we
only have tens or hundreds of processors, finding elements
that do not violate this constraint is easy. For example,
there are typically a huge number of nonzero entries (on
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the order of billions). Using a sampling procedure that
favors entries with higher (absolute) PMI values can lead
to reasonably good word representations faster, so we can
sample an entry with probability proportional to its absolute
value.4 Algorithm 1 summarizes our method.

2.4. Convergence Analysis

We analyze the convergence of Algorithm 1 for the basic
setting where we uniformly sample elements of the input
matrix X. Similar to Mairal et al. (2010), we can rewrite our
optimization problem as: arg minA

∑T
t=1 Lt(A)+λΩ(A),

where Lt(A) = ‖X − DtA‖2F + τ
∑
m ‖dtm‖22, and

Dt = Dt−1 + 2ηt((X − Dt−1At−1)At−1> − τDt−1).
Note that Lt(A) is a nonconvex (with respect to A) contin-
uously differentiable function, which is the loss at timestep
t after performing the dictionary update step. For ease of ex-
position, in the followings, we assume A is a vector formed
by stacking together columns of the matrix A.

Let us denote L(A) = 1
T

∑T
t=1 Lt(A). We show con-

vergence of Algorithm 1 to a stationary point under the
assumption that we have an unbiased estimate of the gra-
dient with respect to A: E[5Lt(A)] = 5L(A). This can
also be stated as E[‖εt‖2] = 0, where ‖εt‖2 = ‖5L(A)−
5Lt(A)‖2.

Our convergence proof uses the following definition of a
stationary point and relies on a lemma from Sra (2012).

Definition 1. A point A∗ is a stationary point if and only
if: A∗ = proxΩ,λ(A∗ − η5 L(A∗)).

Lemma 2. (Sra, 2012) Let F be a function with a (locally)
Lipschitz continuous gradient with constant L > 0.

F (At)− F (At+1) ≥ (2)
2− Lηt

2ηt
‖At+1 −At‖22 − ‖εt‖2‖At+1 −At‖2.

Theorem 3. Let the assumption of an unbiased estimate
of the gradient be satisfied and the learning rate satisfies
0 < ηt <

2
L . Algorithm 1 converges to a stationary point in

expectation.

Proof. We first show that L(At) − L(At+1) is bounded
below in expectation. Since L has a Lipschitz continuous
gradient, Lemma 2 already bounds L(At)− L(At+1). Let
us denote the Lipschitz constant of L by L. Given our
assumption about the error of the stochastic gradient (van-

4In practice, we can use an even faster approximation of this
sampling procedure by uniformly sampling a nonzero entry and
multiplying its gradient by a scaling constant proportional to its
absolute PMI value.

ishing error), we have:

E[L(At)− L(At+1)] ≥ 2− Lηt
2ηt

E[‖At+1 −At‖22]

=
2− Lηt

2ηt
E[‖proxΩ,λ(At − ηt 5 Lt(At))−At‖22]

Since our learning rate satisfies 0 < ηt <
2
L , it is easy to

show that the above is never negative. In order to show
convergence, we then bound this quantity:
T∑
t=1

2− Lηt
2ηt

E[‖proxΩ,λ(At − ηt 5 Lt(At))−At‖22]

≤
T∑
t=1

E[L(At)− L(At+1)] = E[L(A1)− L(AT+1)]

≤ E[L(A1)− L(A∗)]

The right hand side (third line) is a positive constant
and the left hand side (first line) is never negative, so
E[‖proxΩ,λ(At−ηt5Lt(At))−At‖22]→ 0, which means
that At converges to a stationary point in expectation based
on the definition of a stationary point in Definition 1.

3. Experiments
We present a controlled comparison of the forest regularizer
against several strong baseline word representations learned
on a fixed dataset, across several tasks. In §3.4 we compare
to publicly available word vectors trained on different data.

3.1. Setup and Baselines

We use the WMT-2011 English news corpus as our training
data.5 The corpus contains about 15 million sentences and
370 million words. The size of our vocabulary is 180,834.6

In our experiments, we use forests similar to those in Fig-
ure 1 to organize the latent word space. Note that the ex-
ample has 26 nodes (2 trees). We choose to evaluate per-
formance with M = 52 (4 trees) and M = 520 (40 trees).7

We denote the sparse coding method with regular `1 penalty
by SC, and our method with structured regularization (§2.2)
by FOREST. We set λ = 0.1. In this first set of experiments
with a medium-sized corpus, we use the online learning
algorithm of Mairal et al. (2010).

We compare with the following baseline methods:

• Turney & Pantel (2010): principal component analysis
(PCA) by truncated singular value decomposition on

5http://www.statmt.org/wmt11/
6 We replace words with frequency less than 10 with #rare#

and numbers with #number#.
7In preliminary experiments we explored binary tree structures

and found they did not work as well. We leave a more extensive
exploration of tree structures to future work.

http://www.statmt.org/wmt11/


Learning Word Representations with Hierarchical Sparse Coding

X>. Note that this is also the same as minimizing
the squared reconstruction loss in Eq. 1 without any
penalty on A.

• Mikolov et al. (2010): a recursive neural network
(RNN) language model. We obtain an implementa-
tion from http://rnnlm.org/.

• Mnih & Teh (2012): a log bilinear model that predicts a
word given its context, trained using noise-contrastive
estimation (NCE, Gutmann & Hyvarinen, 2010). We
use our own implementation for this model.

• Mikolov et al. (2013a): a log bilinear model that pre-
dicts a word given its context (continuous bag of words,
CBOW), trained using negative sampling (Mikolov
et al., 2013b). We obtain an implementation from
https://code.google.com/p/word2vec/.

• Mikolov et al. (2013a): a log bilinear model that pre-
dicts context words given a target word (skip gram,
SG), trained using negative sampling (Mikolov et al.,
2013b). We obtain an implementation from https:
//code.google.com/p/word2vec/.

• Pennington et al. (2014): a log bilinear model that
is trained using AdaGrad (Duchi et al., 2011) to
minimize a weighted square error on global (log)
cooccurrence counts (global vectors, GV). We obtain
an implementation from http://nlp.stanford.
edu/projects/glove/.

Our focus here is on comparisons of model architectures.
For a fair comparison, we train all competing methods on the
same corpus using a context window of five words (left and
right). For the baseline methods, we use default settings in
the provided implementations (or papers, when implemen-
tations are not available and we reimplement the methods).
We also trained the two baseline methods introduced by
Mikolov et al. (2013a) with hierarchical softmax using a
binary Huffman tree instead of negative sampling; consis-
tent with Mikolov et al. (2013b), we found that negative
sampling performs better and relegate hierarchical softmax
results to supplementary materials.

3.2. Evaluation

We evaluate on the following benchmark tasks.

Word similarity. The first task evaluates how well the
representations capture word similarity. For example beauti-
ful and lovely should be closer in distance than beautiful and
science. We evaluate on a suite of word similarity datasets,
subsets of which have been considered in past work: Word-
Sim 353 (Finkelstein et al., 2002), rare words (Luong et al.,
2013), and many others; see supplementary materials for

details. Following standard practice, for each competing
model, we compute cosine distances between word pairs in
word similarity datasets, then rank and report Spearman’s
rank correlation coefficient (Spearman, 1904) between the
model’s rankings and human rankings.

Syntactic and semantic analogies. The second evalua-
tion dataset is two analogy tasks proposed by Mikolov et al.
(2013a). These questions evaluate syntactic and semantic
relations between words. There are 10,675 syntactic ques-
tions (e.g., walking : walked :: swimming : swam) and
8,869 semantic questions (e.g., Athens : Greece :: Oslo ::
Norway). In each question, one word is missing, and the
task is to correctly predict the missing word. We use the
vector offset method (Mikolov et al., 2013a) that computes
the vector b = aAthens − aGreece + aOslo. We only consider
a question to be answered correctly if the returned vector
(b) has the highest cosine similarity to the correct answer
(in this example, aNorway).

Sentence completion. The third evaluation task is the Mi-
crosoft Research sentence completion challenge (Zweig &
Burges, 2011). In this task, the goal it to choose from a
set of five candidate words which one best completes a
sentence. For example: Was she his {client, musings, dis-
comfiture, choice, opportunity}, his friend, or his mistress?
(client is the correct answer). We choose the candidate with
the highest average similarity to every other word in the
sentence.8

Sentiment analysis. The last evaluation task is sentence-
level sentiment analysis. We use the movie reviews dataset
from Socher et al. (2013). The dataset consists of 6,920
sentences for training, 872 sentences for development, and
1,821 sentences for testing. We train `2-regularized logistic
regression to predict binary sentiment, tuning the regular-
ization strength on development data. We represent each
example (sentence) as anM -dimensional vector constructed
by taking the average of word representations of words ap-
pearing in that sentence.

The analogy, sentence completion, and sentiment analysis
tasks are evaluated on prediction accuracy.

3.3. Results

Table 1 shows results on all evaluation tasks for M = 52
and M = 520. Runtime will be discussed in §3.5. In the
similarity ranking and sentiment analysis tasks, our method
performed the best in both low and high dimensional em-

8We note that unlike matrix decomposition based approaches,
some of the neural network based models can directly compute the
scores of context words given a possible answer (Mikolov et al.,
2013a). We choose to use average similarities for a fair comparison
of the representations.

http://rnnlm.org/
https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
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Table 1. Summary of results. We report Spearman’s correlation coefficient for the word similarity task and accuracies (%) for other tasks.
Higher values are better (higher correlation coefficient or higher accuracy). The last two methods (columns) are new to this paper, and our
proposed method is in the last column.

M Task PCA RNN NCE CBOW SG GV SC FOREST

52

Word similarity 0.39 0.26 0.48 0.43 0.49 0.43 0.49 0.52
Syntactic analogies 18.88 10.77 24.83 23.80 26.69 27.40 11.84 24.38
Semantic analogies 8.39 2.84 25.29 8.45 19.49 26.23 4.50 9.86
Sentence completion 27.69 21.31 30.18 25.60 26.89 25.10 25.10 28.88
Sentiment analysis 74.46 64.85 70.84 68.48 71.99 72.60 75.51 75.83

520

Word similarity 0.50 0.31 0.59 0.53 0.58 0.51 0.58 0.66
Syntactic analogies 40.67 22.39 33.49 52.20 54.64 44.96 22.02 48.00
Semantic analogies 28.82 5.37 62.76 12.58 39.15 55.22 15.46 41.33
Sentence completion 30.58 23.11 33.07 26.69 26.00 33.76 28.59 35.86
Sentiment analysis 81.70 72.97 78.60 77.38 79.46 79.40 78.20 81.90

Table 2. Results on the syntactic and semantic analogies tasks
with a bigger corpus (M = 260).

Task CBOW SG GV FOREST

Syntactic 61.37 63.61 65.56 65.63
Semantic 23.13 54.41 74.35 52.88

beddings. In the sentence completion challenge, our method
performed best in the high-dimensional case and second-
best in the low-dimensional case. Importantly, FOREST
outperforms PCA and unstructured sparse coding (SC) on
every task. We take this collection of results as support for
the idea that coarse-to-fine organization of latent dimensions
of word representations captures the relationships between
words’ meanings better than unstructured organization.

Analogies Our results on the syntactic and semantic analo-
gies tasks for all models are below state-of-the-art perfor-
mance from previous work. We hypothesize that this is
because performing well on these tasks requires training on
a bigger corpus (in general, the bigger the training corpus
is, the better the models will be for all tasks). We com-
bine our WMT-2011 corpus with other news corpora and
Wikipedia to obtain a corpus of 6.8 billion words. The size
of the vocabulary of this corpus is 401,150. We retrain four
models that are scalable to a corpus of this size: CBOW,
SG, GV, and FOREST.9 We select M = 260 to balance the
trade-off between training time and performance (M = 52
does not perform as well, and M = 520 is computationally
expensive). For FOREST, we use the fast learning algorithm
in §2.3, since the online learning algorithm of Mairal et al.
(2010) does not scale to a problem of this size. We report
accuracies on the syntactic and semantic analogies tasks in
Table 2. All models benefit significantly from a bigger cor-
pus, and the performance levels are now comparable with
previous work. On the syntactic analogies task, FOREST is
competitive with GV and both models outperformed SG and

9Our NCE implementation is not optimized and therefore not
scalable.

CBOW. On the semantic analogies task, GV outperformed
SG, FOREST, and CBOW.

3.4. Other Comparisons

In Table 3, we compare with five other baseline methods for
which we do not train on our training data but pre-trained
50-dimensional word representations are available:

• Collobert et al. (2011): a neural network language
model trained on Wikipedia data for 2 months (CW).10

• Huang et al. (2012): a neural network model that uses
additional global document context (RNN-DC).11

• Mnih & Hinton (2008): a log bilinear model that pre-
dicts a word given its context, trained using hierarchical
softmax (HLBL).12

• Murphy et al. (2012): a word representation trained us-
ing non-negative sparse embedding (NNSE) on depen-
dency relations and document cooccurrence counts.13

These vectors were learned using sparse coding, but
using different contexts (dependency and document
cooccurrences), a different training method, and with
a nonnegativity constraint. Importantly, there is no
hierarchy in the code space, as in FOREST.14

• Lebret & Collobert (2014): a word representation
trained using Hellinger PCA (HPCA).15

These methods were all trained on different corpora, so they
have different vocabularies that do not always include all

10http://ronan.collobert.com/senna/
11http://goo.gl/Wujc5G
12http://metaoptimize.com/projects/

wordreprs/ (Turian et al., 2010)
13http://www.cs.cmu.edu/˜bmurphy/NNSE/.
14We found that NNSE trained using our contexts performed

very poorly; see supplementary materials.
15http://lebret.ch/words/

http://ronan.collobert.com/senna/
http://goo.gl/Wujc5G
http://metaoptimize.com/projects/wordreprs/
http://metaoptimize.com/projects/wordreprs/
http://www.cs.cmu.edu/~bmurphy/NNSE/
http://lebret.ch/words/
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Table 3. Comparison to previously published word representations. The five right-most columns correspond to the tasks described above;
parenthesized values are the number of in-vocabulary items that could be evaluated.

Models M V W. Sim. Syntactic Semantic Sentence Sentiment
CW

50

130,000 (6,225) 0.51 (10,427) 12.34 (8,656) 9.33 (976) 24.59 69.36
RNN-DC 100,232 (6,137) 0.32 (10,349) 10.94 (7,853) 2.60 (964) 19.81 67.76
HLBL 246,122 (6,178) 0.11 (10,477) 8.98 (8,446) 1.74 (990) 19.90 62.33
NNSE 34,107 (3,878) 0.23 (5,114) 1.47 (1,461) 2.46 (833) 0.04 64.80
HPCA 178,080 (6,405) 0.29 (10,553) 10.42 (8,869) 3.36 (993) 20.14 67.49
FOREST 52 180,834 (6,525) 0.52 (10,675) 24.38 (8,733) 9.86 (1,004) 28.88 75.83

Table 4. Training time comparisons for skip gram (SG), glove
(GV), and FOREST. For the medium corpus (370 million words),
we learn FOREST with Mairal et al. (2010). This algorithm consists
of two major steps: online learning of D and parallel learning of
A with fixed D (see §2.3). “∗” indicates that we only use 640
cores for the second step, since the first step only takes less than 2
hours even for M = 520. We can also see from this table that it
becomes too expensive to use this algorithm for a bigger corpus.
For the bigger corpus (6.8 billion words), we use Algorithm 1.

Models Corpus M Cores Time
SG 370M 52 16 1.5 hours
GV 370M 52 16 0.4 hours
FOREST 370M 52 640∗ 2.5 hours
SG 370M 520 16 5 hours
GV 370M 520 16 2.5 hours
FOREST 370M 520 640∗ 20 hours
SG 6.8B 260 16 6.5 hours
GV 6.8B 260 16 4 hours
FOREST 6.8B 260 16 4 hours

of the words found in the tasks. We estimate performance
on the items for which prediction is possible, and show the
count for each method in Table 3. This comparison should
be interpreted cautiously since many experimental variables
are conflated; nonetheless, FOREST performs strongly.

3.5. Discussion

In terms of running time, FOREST is reasonably fast to
learn. See Table 4 for comparisons with other state-of-the-
art methods.

Our method produces sparse word representations with ex-
act zeros. We observe that the sparse coding method without
a structured regularizer produces sparser representations,
but it performs worse on our evaluation tasks, indicating
that it zeroes out meaningful dimensions. For FOREST with
M = 52 and M = 520, the average numbers of nonzero
entries are 91% and 85% respectively. While our word rep-
resentations are not extremely sparse, this makes intuitive
sense since we try to represent about 180,000 contexts in
only 52 (520) dimensions. We also did not tune λ. As we
increase M , we get sparser representations.

We visualize our M = 52 word representations (FOREST)
related to animals (10 words) and countries (10 words). We
show the coefficient patterns for these words in Figure 2. We
can see that in both cases, there are dimensions where the
coefficient signs (positive or negative) agree for all 10 words
(they are mostly on the right and left sides of the plots). Note
that the dimensions where all the coefficients agree are not
the same in animals and countries. The larger magnitude
of the vectors for more abstract concepts (animal, animals,
country, countries) is reminiscent of neural imaging studies
that have found evidence of more global activation patterns
for processing superordinate terms (Raposo et al., 2012).
In Figure 3, we show tree visualizations of coefficients of
word representations for animal, horse, and elephant. We
show one tree for M = 52 (there are four trees in total,
but other trees exhibit similar patterns). Coefficients that
differ in sign mostly correspond to leaf nodes, validating
our motivation that top level nodes should focus more on
“general” contexts (for which they should be roughly similar
for animal, horse, and elephant) and leaf nodes focus on
word-specific contexts. One of the leaf nodes for animal
is driven to zero, suggesting that more abstract concepts
require fewer dimensions to explain.

For FOREST and SG with M = 520, we project the learned
word representations into two dimensions using the t-SNE
tool (van der Maaten & Hinton, 2008).16 We show projec-
tions of words related to the concept good vs. bad in Fig-
ure 4.17 See supplementary materials for man vs. woman,
as well as 2-dimensional projections of NCE.

4. Conclusion
We introduced a new method for learning word representa-
tions based on hierarchical sparse coding. The regularizer
encourages hierarchical organization of the latent dimen-
sions of vector-space word embeddings. We showed that
our method outperforms state-of-the-art methods on word
similarity ranking, sentence completion, syntactic analogies,
and sentiment analysis tasks.

16
http://homepage.tudelft.nl/19j49/t-SNE.html

17Since t-SNE is a non-convex method, we run it 10 times and
choose the plots with the lowest t-SNE error.

http://homepage.tudelft.nl/19j49/t-SNE.html
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Figure 2. Heatmaps of word representations for 10 animals (top) and 10 countries (bottom) for M = 52 from FOREST. Red indicates
negative values, blue indicates positive values (darker colors correspond to more extreme values); white denotes exact zero. The x-axis
shows the original dimension index, we show the dimensions from the most negative (left) to the most positive (right), within each block,
for readability.

(a) animal (b) horse (c) elephant

Figure 3. Tree visualizations of word representations for animal (left), horse (center), elephant (right) for M = 52. We use the same
color coding scheme as in Figure 2. Here, we only show one tree (out of four), but other trees exhibit similar patterns.

Figure 4. Two dimensional projections of the FOREST (left) and SG (right) word representations using the t-SNE tool (van der Maaten &
Hinton, 2008). Words associated with “good” are colored in blue, words associated with “bad” are colored in red. We can see that in both
cases most “good” and “bad” words are clustered together (in fact, they are linearly separated in the 2D space), except for poor in the SG
case. See supplementary materials for more examples.
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