Probability and Structure in Natural Language Processing

Noah Smith, Carnegie Mellon University

2012 International Summer School in Language and Speech Technologies

Introduction

Motivation

- Statistical methods in NLP arrived ~20 years ago and now dominate.
- Mercer was right: "There's no data like more data."
 - And there's more and more data.
- Lots of new applications and new statistical techniques.
- My goal is to synthesize ideas you may have seen before ...

Thesis

- Most of the main ideas are related and similar to each other.
 - Different approaches to decoding.
 - Different learning criteria.
 - Supervised and unsupervised learning.
- Umbrella: probabilistic reasoning about discrete linguistic structures.
- This is good news!

Introduction

- Noah professor at CMU since 2006
 - Language Technologies Institute
 - Machine Learning Department
 - Linguistic Structure Prediction (2011)
 - Courses: "Language and Statistics II," "Probabilistic Graphical Models," "Structured Prediction,"
 "Algorithms for Natural Language Processing" at CMU
- This course was codesigned with Shay Cohen, now at Columbia University.

Plan

1.	Graphical models	M 8:00-9:30

- 2. Probabilistic inference M 13:30-15:00
- 3. Decoding and structures T 8:00-9:30
- 4. Supervised learning T 14:30-16:00
- 5. Hidden variables W 8:00-9:30
- 6. The Bayesian approach W 13:30-15:00

Exhortations

- The content is formal, but the style doesn't need to be.
- Ask questions!
 - Help me find the right pace.
 - Lecture 6 can be dropped if we need to slow down.
- The course starts in machine learning and moves toward NLP.
 - Be patient.

Lecture 1: Graphical Models

Random Variables

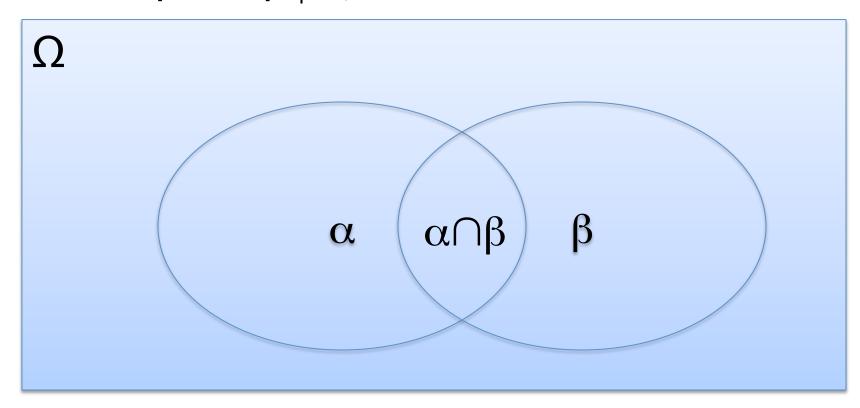
- Probability distributions usually defined by events
- Events are complicated!
 - We tend to group events by attributes
 - Person → Age, Grade, HairColor
- Random variables formalize attributes:
 - "Grade = A" is shorthand for event

$$\{\omega \in \Omega : f_{\text{Grade}}(\omega) = A\}$$

- Properties of random variable X:
 - Val(X) = possible values of X
 - For discrete (categorical): $\sum P(X = x) = 1$
 - For continuous: $\int P(X = x) dx = 1$
 - Nonnegativity: $\forall x \in Val(X), P(X = x) \geq 0$

Conditional Probabilities

• After learning that α is true, how do we feel about β ? $P(\beta \mid \alpha)$



Chain Rule

$$P(\alpha \cap \beta) = P(\alpha)P(\beta \mid \alpha)$$

$$P(\alpha_1 \cap \cdots \cap \alpha_k) = P(\alpha_1)P(\alpha_2 \mid \alpha_1) \cdots P(\alpha_k \mid \alpha_1 \cap \ldots \cap \alpha_{k-1})$$

Bayes Rule

likelihood

prior

$$P(\alpha \mid \beta) = \frac{P(\beta \mid \alpha)P(\alpha)}{P(\beta)}$$

posterior

normalization constant

$$P(\alpha \mid \beta \cap \gamma) = \frac{P(\beta \mid \alpha \cap \gamma)P(\alpha \mid \gamma)}{P(\beta \mid \gamma)}$$

γ is an "external event"

Independence

• α and β are **independent** if $P(\beta \mid \alpha) = P(\beta)$ $P \rightarrow (\alpha \perp \beta)$

• **Proposition:** α and β are **independent** if and only if $P(\alpha \cap \beta) = P(\alpha) P(\beta)$

Conditional Independence

- Independence is rarely true.
- α and β are **conditionally independent** given γ if $P(\beta \mid \alpha \cap \gamma) = P(\beta \mid \gamma)$ $P \rightarrow (\alpha \perp \beta \mid \gamma)$

Proposition:
$$P \rightarrow (\alpha \perp \beta \mid \gamma)$$
 if and only if $P(\alpha \cap \beta \mid \gamma) = P(\alpha \mid \gamma) P(\beta \mid \gamma)$

Joint Distribution and Marginalization

P(Grade, Intelligence) =

	Intelligence = very high	Intelligence = high	
Grade = A	0.70	0.10	
Grade = B	0.15	0.05	

 Compute the marginal over each individual random variable?

Marginalization: General Case

$$P(X_i = x) = \sum_{x_1 \in \text{Val}(X_1), x_2 \in \text{Val}(X_2), \dots, x_{i-1} \in \text{Val}(X_{i-1}), x_{i+1} \in \text{Val}(X_{i+1}), \dots, x_n \in \text{Val}(X_n)} P(X_1 = x_1, X_2 = x_2, \dots, X_i = x, \dots, X_n = x_n)$$

$$P(X_i = x) = \sum_{x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n} P(x_1, x_2, \dots, x_i, \dots, x_n)$$

How many terms?

Basic Concepts So Far

- Atomic outcomes: assignment of $x_1,...,x_n$ to $X_1,...,X_n$
- Conditional probability: P(X, Y) = P(X) P(Y|X)
- Bayes rule: P(X|Y) = P(Y|X) P(X) / P(Y)
- Chain rule: $P(X_1,...,X_n) = P(X_1) P(X_2 | X_1)$... $P(X_k | X_1,...,X_{k-1})$

Sets of Variables

- Sets of variables X, Y, Z
- X is independent of Y given Z if

$$-P \rightarrow (X=x \perp Y=y | Z=z),$$

 $\forall x \in Val(X), y \in Val(Y), z \in Val(Z)$

- Shorthand:
 - Conditional independence: $P \rightarrow (X \perp Y \mid Z)$
 - For P → (**X** \perp **Y** | \varnothing), write P → (**X** \perp **Y**)
- Proposition: P satisfies $(X \perp Y \mid Z)$ if and only if P(X,Y|Z) = P(X|Z) P(Y|Z)

Free Parameters

Consider assigning a value to P(X = x) for each x in Val(X). How many free parameters, if |Val(X)| = k?

• Now consider $P(X_1, X_2, ..., X_n)$. How many?

Can we do it with fewer parameters?

(Marginal) Independence

 Let's make a very strong independence assumption:

$$\forall Y \subseteq X, Z \subseteq X, Y \perp Z$$

• Joint distribution: $P(X) = \prod_{i=1}^{i} P(X_i)$

How many free parameters now?

Independence Spectrum

various Bayesian networks

full independence assumptions

$$\prod_{i=1}^{n} P(X_i)$$

n parameters

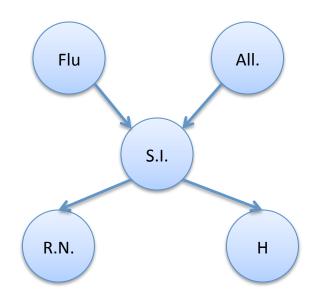
everything is dependent

$$P(X_1,\ldots,X_n)$$

 $2^n - 1$ parameters

Causal Structure

- The flu causes sinus inflammation
- Allergies also cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches

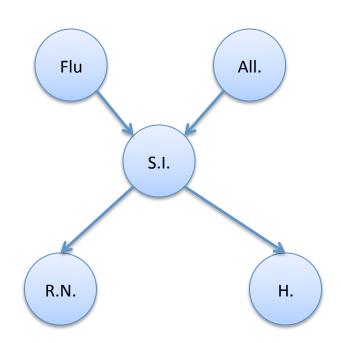


Querying the Model

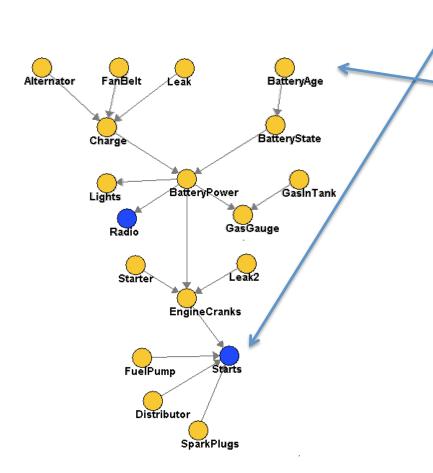
 Inference (e.g., do you have allergies?)

What's the best explanation?

 Active data collection (what is the next best r.v. to observe?)



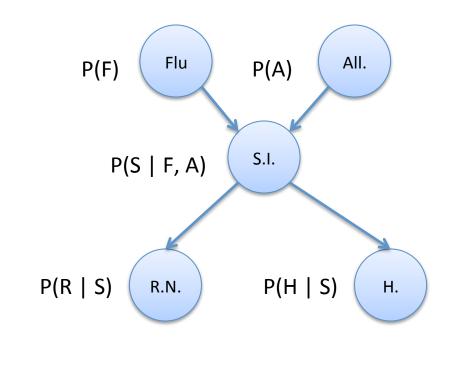
A Bigger Example: Your Car



- The car doesn't start.
- What do we conclude about the battery age?
- 18 random variables
- Marginalization will have 2¹⁸ terms!

Factored Joint Distribution

Want:
P(F, A, S, R, H)
= P(F)
P(A)
P(S | F, A)
P(R | S)
P(H | S)



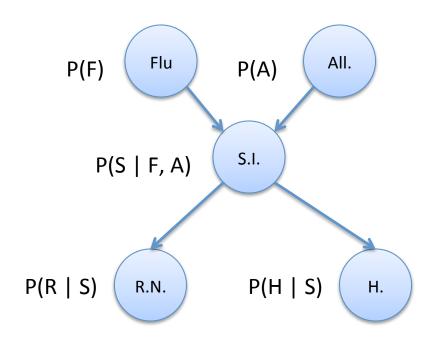
How many parameters?

The BN Independence Assumption

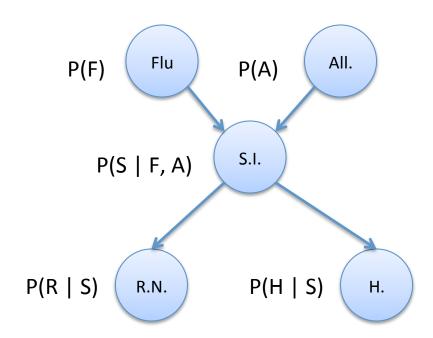
• Local Markov Assumption: A variable X is independent of its non-descendants given its parents (and *only* its parents).

 $X \perp NonDescendants(X) \mid Parents(X)$

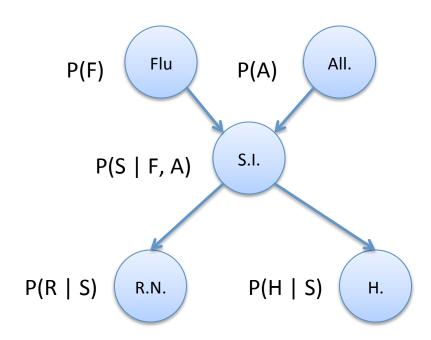
• F ⊥ A | ∅



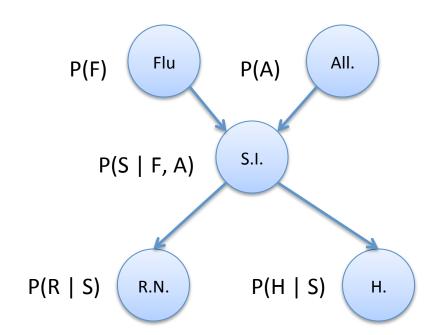
- F ⊥ A | ∅
- A ⊥ F | ∅



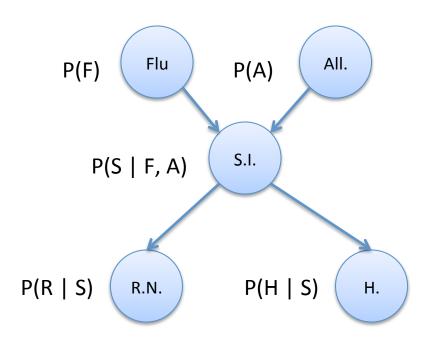
- F ⊥ A | ∅
- A ⊥ F | ∅
- S?



- F ⊥ A | ∅
- A ⊥ F | ∅
- S?
- R ⊥ {F, A, H} | S

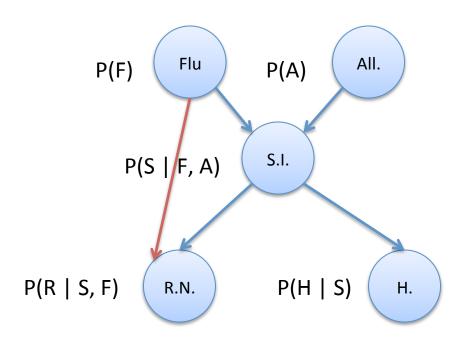


- F ⊥ A | ∅
- A ⊥ F | Ø
- S?
- R ⊥ {F, A, H} | S
- H ⊥ {F, A, R} | S

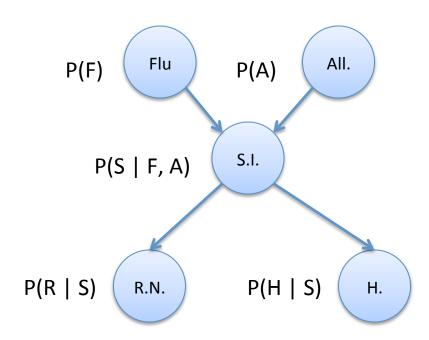


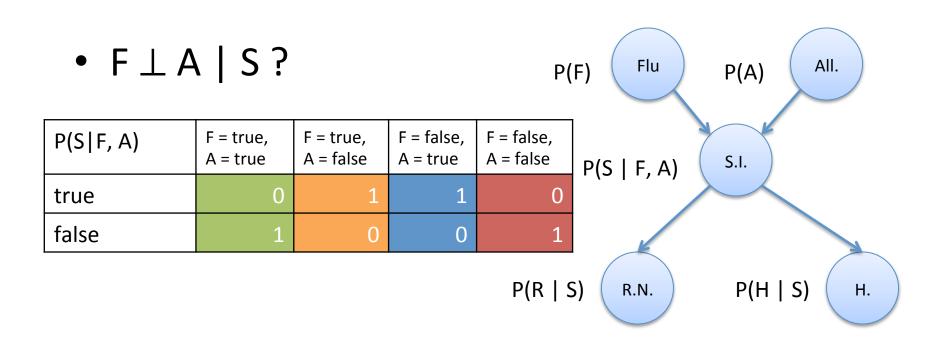
New Edge: What's Independent?

- F ⊥ A | ∅
- A ⊥ F | ∅
- S?
- R ⊥ {F, A, H} | S, F
- H ⊥ {F, A, R} | S



• F⊥A | S?





true 0.2 false 0.8

• F ⊥ A | S?

true	0.2	
false	0.8	P(F)

Flu P(A) All.

S.I.

P(S | F, A)

R.N.

P(R | S)

P(H | S)

Н.

true 0.2 false 0.8

S.I.

• F⊥A | S?

true	0.2	
false	0.8	P(F)

P(R | S)

Flu

P(A) All.

P(S F, A)	F = true, A = true	F = true, A = false	F = false, A = true	F = false, A = false
true	0	1	1	0
false	1	0	0	1

P(S | F, A)

R.N.

P(H | S) H.

- P(F = true) = 0.2
- P(F = true | S = true) = 0.5
- P(F = true | S = true, A = true) = 0

A Puzzle

true 0.2 false 0.8

• F⊥A|S?

true	0.2	
false	0.8	P(F)

Flu P(A) All.

S.I.

P(S F, A)	F = true, A = true		F = false, A = true	F = false, A = false
true	3	1	1	0
false	1 - ε	0	0	1

P(S | F, A)

• P(F = true) = 0.2

P(R | S) (R.N.

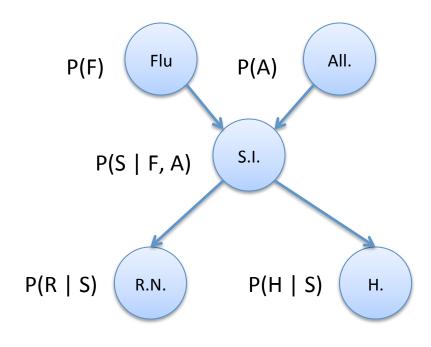
P(H | S) (H.

- P(F = true | S = true) = $(\epsilon + 4)/(\epsilon + 8)$
- P(F = true | S = true, A = true) = ε

A Puzzle

• F⊥A | S?

- In general, **no**.
 - This independence statement does not follow from the Local Markov assumption.
- ¬ (F ⊥ A | S)



Recipe for a Bayesian Network

- Set of random variables X
- Directed acyclic graph (each X_i is a vertex)
- Conditional probability tables, P(X | Parents(X))
- Joint distribution: $P(\boldsymbol{X}) = \prod^n P(X_i \mid \mathbf{Parents}(X_i))$
- Local Markov Assumption
 - A variable X is independent of its non-descendants given its parents (and *only* its parents).

 $X \perp NonDescendants(X) \mid Parents(X)$

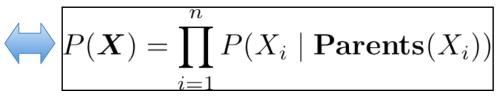
Questions

- 1. Given a BN, what distributions can be represented?
- 2. Given a distribution, what BNs can represent it?
- 3. In addition to the Local Markov Assumption, what other independence assumptions are encoded in a given BN?

Representation Theorem

The conditional independencies in our BN are a subset of the independencies in P.

$$I(G) \subseteq I(P)$$



Questions

- 1. Given a BN, what distributions can be represented?
- 2. Given a distribution, what BNs can represent it?
- 3. In addition to the Local Markov Assumption, what other independence assumptions are encoded in a given BN?

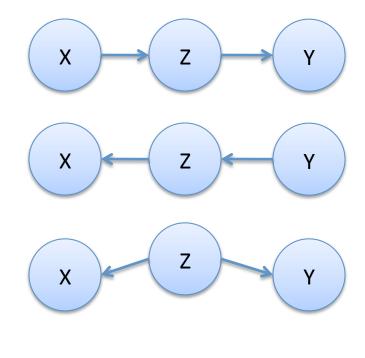
Independencies

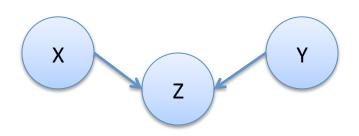
- Local Markov Assumption:
 X_i ⊥ NonDescendants(X_i) | Parents(X_i)
- Are there other independencies that we can derive?
 - Yes.
 - Let's consider some three-node Bayesian networks.

Three-Node BNs

- Indirect causal effect
- Indirect evidential effect
- Common cause $(X \perp Y \mid Z), \neg(X \perp Y)$

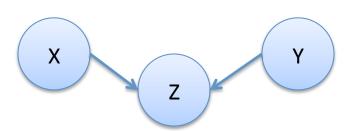
Common effect
 (V-structure)
 (X ⊥ Y), ¬(X ⊥ Y | Z)





V-Structures, or Colliders

- Let $Z = X \oplus Y$.
 - Yes, random variables can be deterministic functions!
- In this case, if I know Z, then X and Y are dependent, because they cannot be equal!
- $\neg(X \perp Y \mid Z)$



What We Want

 A general test for conditional independence in a Bayesian network!

 Surprisingly enough, we can characterize all independence assumptions in a Bayesian network based on the simple constructs of three-node BNs

Observations and Conditional Independence

 Note: when we observe a certain outcome of a variable, we condition on its value

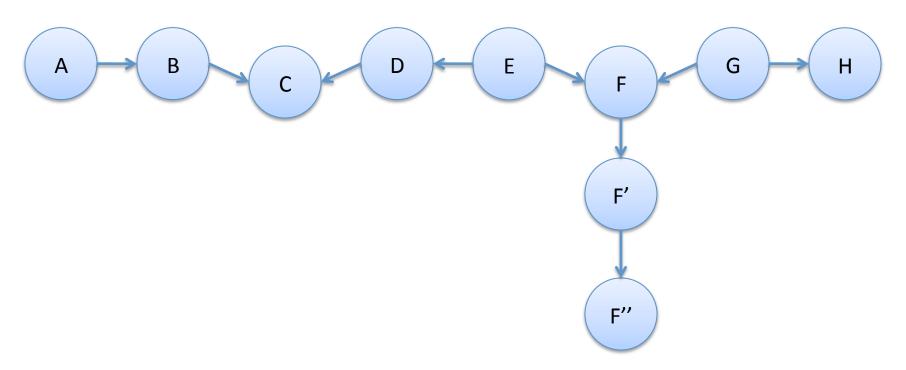
"X and Y are independent when we observe
 Z": X ⊥ Y | Z

Active Trails, Formalized

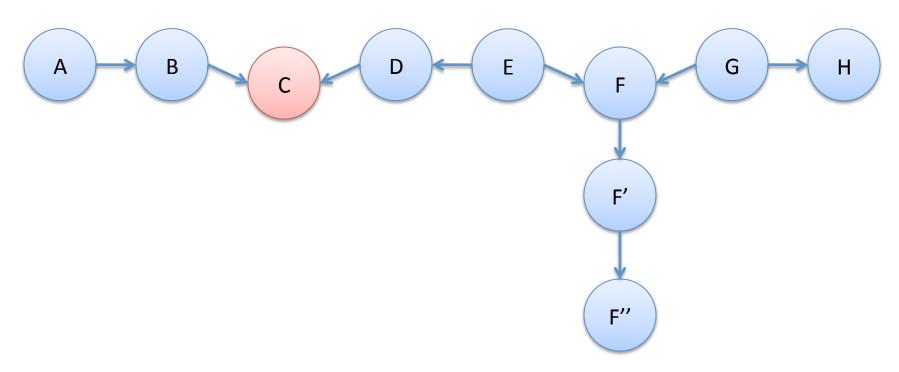
- Trail: undirected path that doesn't visit any nodes more than once
- A trail $X_1 \rightleftharpoons X_2 \rightleftarrows ... \rightleftarrows X_k$ is an **active trail** if, for each consecutive triplet in the trail:
 - $-X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$ and X_i is not observed.
 - $-X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$ and X_i is not observed.
 - $-X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$ and X_i is not observed.
 - $-X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$ and X_i (or one of its descendents) is observed.

D-Separation

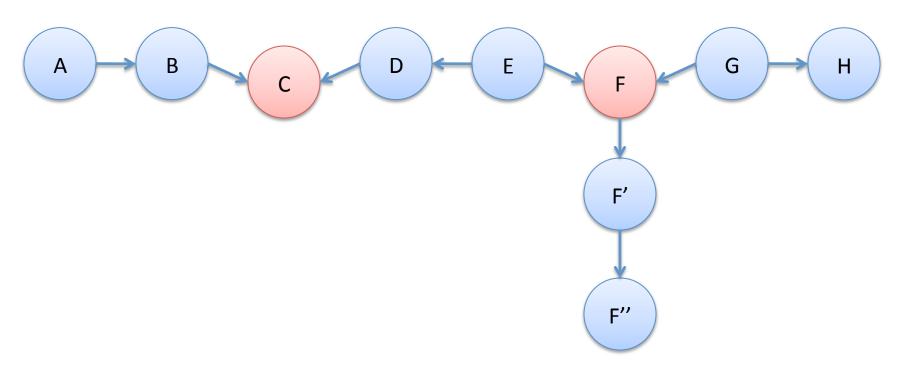
- Three sets of nodes: X, Y, and observed nodes
 Z
- X and Y are d-separated given Z if there is no active trail from any $X \in X$ to any $Y \in Y$ given Z.



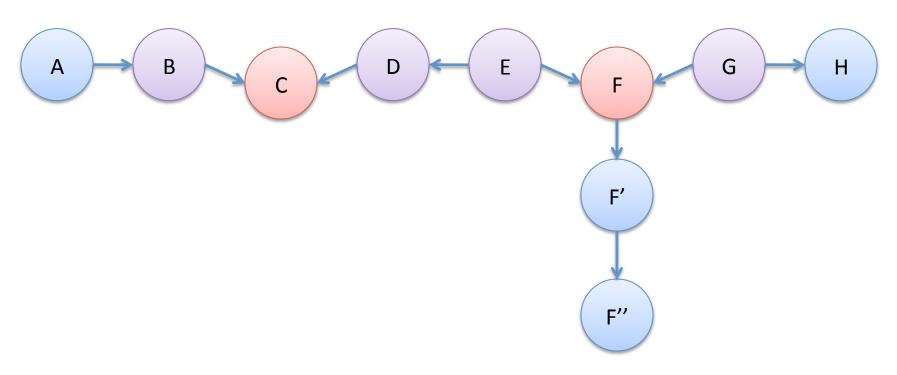
• If I observe nothing, then $A \perp H$.



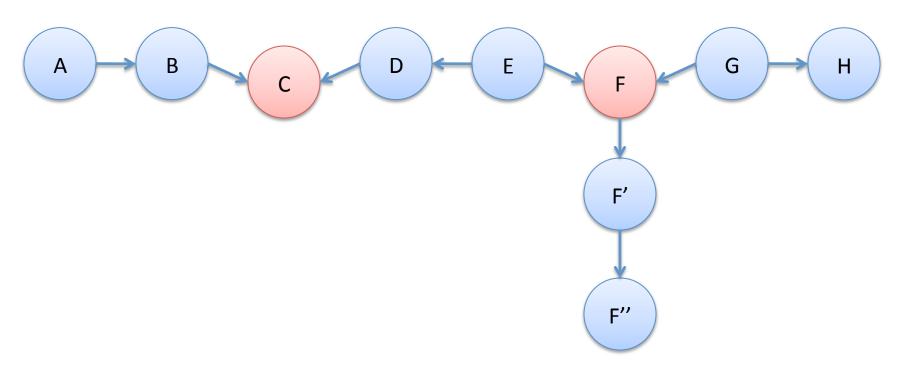
• If I observe C, then $A \perp H$.



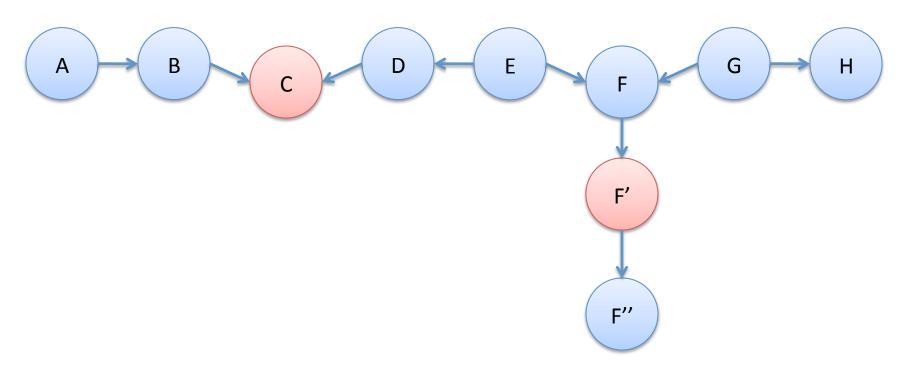
• If I observe C and F, then $\neg(A \perp H)$.



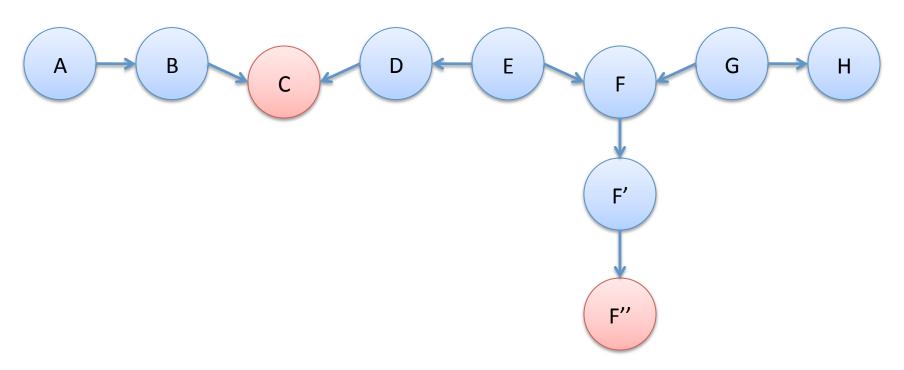
- If I observe C and F, then $\neg(A \perp H)$.
 - But if I observe B, D, E, and/or G, then A \perp H.



• If I observe C and F, then $\neg(A \perp H)$.



• If I observe C and F', then $\neg(A \perp H)$.



• If I observe C and F", then $\neg(A \perp H)$.

Intuition

- Two variables can be dependent if there is a trail between them.
 - "Flow of influence" along active trails
- D-separation gives us a way to think about how that "flow of influence" could be blocked.
 - No active trail \Rightarrow d-separation \Rightarrow no dependence

Where We Are

- D-separation and independence
 - D-separation is a sound procedure for finding independencies: $I(G) \subseteq I(P)$
 - We can find a distribution respecting any such independency.
 - Almost all independencies can be read from the graph without recourse to the conditional probability tables. I(G) ≈ I(P).
 - Sometimes independencies can happen as an accident based on the probabilities!

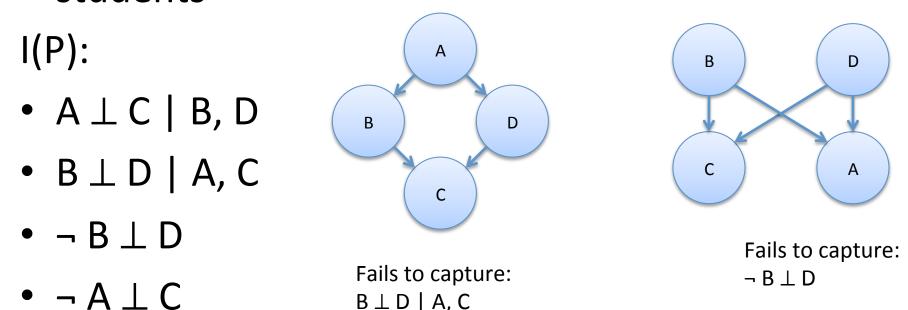
Perfect Maps (P-Maps)

A graph G is a P-map for a distribution P if I(G)
 = I(P).

Can we always construct one?

Motivating Example: No Bayesian Network is a P-Map

Swinging couples or misunderstanding students



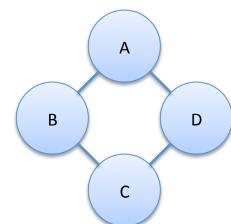
 Alice only talks to Bob and Debbie; Bob only talks to Charles and Alice; Charles only talks to Bob and Debbie; Debbie only talks to Alice and Charles

Motivating Example: This Markov Network is a P-Map!

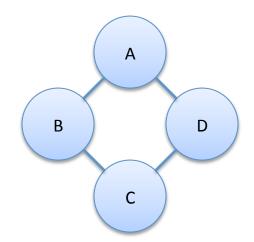
Swinging couples or misunderstanding students

I(P):

- A ⊥ C | B, D
- B ⊥ D | A, C
- ¬ B ⊥ D
- ¬ A ⊥ C



- Each random variable is a vertex.
- Undirected edges.
- Factors are associated with subsets of nodes that form cliques.
 - A factor maps assignments of its nodes to nonnegative values.



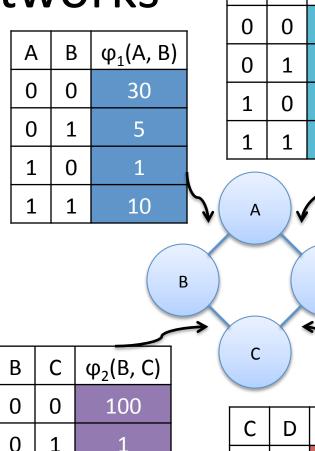
1

1

0

100

- In this example, associate a factor with each edge.
 - Could also have factors for single nodes!



 $\phi_4(A, D)$

100

100

D

0

0

1

 $\phi_3(C, D)$

100

100

D

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$
$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

	Α	D	φ ₄ (A, D)	
	0	0	100	
	0	1	1	

Α

C

D

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)		D	φ ₃ (C, D)
		$\Psi_1(\Lambda, D)$	<u> </u>		$\Psi_2(D,C)$			$\psi_3(C, D)$
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

		141 / /
0	0	100
0	1	1
1	0	1
1	1	100

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$

$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	φ ₃ (C, D)
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

Α	D	φ ₄ (A, D)
0	0	100
0	1	1
1	0	1
1	1	100

Α

C

D

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$

$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	φ ₃ (C, D)
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

Α	D	φ ₄ (A, D)
0	0	100
0	1	1
1	0	1
1	1	100

D)	С
	P(0, 1, 1, 0)
	= 5,000,000 / Z
	l – 0.60

Α

D

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$
$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	φ ₃ (C, D)
	0			0			0	43(0) 2)
0	U	30		U	100		U	T
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

Α	D	φ ₄ (A, D)
0	0	100
0	1	1
1	0	1
1	1	100

P(1, 1, 0, 0)
= 10 / Z
= 0.0000014

Α

C

D

Markov Networks (General Form)

- Let D_i denote the set of variables (subset of X) in the ith clique.
- Probability distribution is a Gibbs distribution:

$$P(X) = \frac{U(X)}{Z}$$
 $U(X) = \prod_{i=1}^{m} \phi_i(D_i)$
 $Z = \sum_{\boldsymbol{x} \in \operatorname{Val}(X)} U(\boldsymbol{x})$