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Introduction



Motivation

Statistical methods in NLP arrived ~20 years ago
and now dominate.

Mercer was right: “There’ s no data like more
data.”

— And there’ s more and more data.

Lots of new applications and new statistical
techniques.

My goal is to synthesize ideas you may have seen
before ...



Thesis

e Most of the main ideas are related and similar to
each other.

— Different approaches to decoding.
— Different learning criteria.
— Supervised and unsupervised learning.

 Umbrella: probabilistic reasoning about discrete
linguistic structures.

* This is good news!



Introduction

* Noah — professor at CMU since 2006
— Language Technologies Institute
— Machine Learning Department
— Linguistic Structure Prediction (2011)

— Courses: “Language and Statistics Il,” “Probabilistic
Graphical Models,” “Structured Prediction,”
“Algorithms for Natural Language Processing” at CMU

* This course was codesignhed with Shay Cohen,
now at Columbia University.
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Graphical models
Probabilistic inference
Decoding and structures
Supervised learning
Hidden variables

The Bayesian approach

M 8:00-9:30
M 13:30-15:00
T 8:00-9:30

T 14:30-16:00
W 8:00-9:30
W 13:30-15:00



Exhortations

* The content is formal, but the style doesn’t
need to be.

* Ask questions!
— Help me find the right pace.

— Lecture 6 can be dropped if we need to slow
down.

* The course starts in machine learning and
moves toward NLP.

— Be patient.



Lecture 1: Graphical Models



Random Variables

Probability distributions usually defined by events

Events are complicated!
— We tend to group events by attributes
— Person - Age, Grade, HairColor

Random variables formalize attributes:
— “Grade = A” is shorthand for event
{w e Q: farage(w) = A}
Properties of random variable X:
— Val(X) = possible values of X
— For discrete (categorical): >  PX=2)=1
— For continuous:/P(X = z)dx =
— Nonnegativity: Vz e Val(X),P(X =xz) >0



Conditional Probabilities

e After learning that ais true, how do we feel
about §? P(B | o)

()



Chain Rule

Planp) = Pla)P(G | a)

PlainN---Nag) = Pla)Plas | a1) - Plag |ar N ... Nak_1)



Bayes Rule

likelihood Srior
P P
pa ) = TELOPE@)
posterior
Pla| ) = PG| any)P(a|)

P(B|)

y is an “external event”



Independence

* aand P are independent if P(|a) = P(P)
P— (o Lp)

* Proposition: o and P are independent if and
only if P(aMp) = P(a) P(P)



Conditional Independence

* Independence is rarely true.

* o and p are conditionally independent given vy if

PB[any)=P(p |y
P— (o LB]|y)

Proposition: P — (o L B | y) if and only if
P(anB | y) =P (o [ v) P(B | v)



Joint Distribution and Marginalization

 Compute the marginal
over each individual

P(Grade, Intelligence) = ,
random variable?

Intelligence | Intelligence
= very high |=high

Grade=A

Grade =B




Marginalization: General Case

How many terms?



Basic Concepts So Far

Atomic outcomes: assignment of x,,...,x,, to
Xy X

Conditional probability: P(X, Y) = P(X) P(Y|X)
Bayes rule: P(X|Y) = P(Y|X) P(X) / P(Y)

Chain rule: P(X,....X,) = P(X;) P(X,|X,)
oo POX [ X, X )



Sets of Variables

Sets of variables X, Y, Z

X is independent of Y given Z if
— P — (X=x L Y=y|Z=2),
Vv x€Val(X), yeVal(Y), zeVal(2Z)

Shorthand:
— Conditional independence: P — (X LY | Z2)
—ForP— (XLY | 9),writeP—(X_L1Y)

Proposition: P satisfies (X L Y | Z) if and only if
P(X,Y|Z) = P(X|Z) P(Y|Z)



Free Parameters

e Consider assigning a value to P(X = x) for each
x in Val(X). How many free parameters, if
'Val(X)| = k?

* Now consider P(X,, X,, ..., X,). How many?

 Can we do it with fewer parameters?



(Marginal) Independence

e Let’s make a very strong independence
assumption:

* How many free parameters now?



Independence Spectrum

full independence assumptions everything is dependent
n
1=1

n parameters 2" — 1 parameters



Causal Structure

The flu causes sinus Flu Al
inflammation

S.I.

Allergies also cause
sinus inflammation -

R.N.

Sinus inflammation
causes a runny nose

Sinus inflammation
causes headaches



Querying the Model

* |Inference (e.g., do Fl Al
you have allergies?) | |

S.I.

e What’'s the best
explanation?

R.N.

* Active data collection
(what is the next best
r.v. to observe?)



A Bigger Example: Your Car

The car doesn’t start.

What do we conclude
about the battery age?

18 random variables

Marginalization will
have 218 terms!



Factored Joint Distribution

* Want: p(F) | Flu p(A) | Al
P(F, A, S, R, H) N\
= P(F) P(S|FA) | Sh
P(A)
P(S F, A) PRIS) | RN. P(H | S)
P(R|S)
P(H|S)

* How many parameters?




The BN Independence Assumption

* Local Markov Assumption: A variable X is
independent of its non-descendants given its
parents (and only its parents).

X 1 NonDescendants(X) | Parents(X)



What's Independent?
e FLA | D PF) | Fu ) pay AN

P(S|FA) | >

PR|S) | RN. P(H|S)



What's Independent?

e F1LA | PF) | Fu ) pay AN
*AlLF|©

P(S|FA) | >

PR|S) | RN. P(H|S)



What's Independent?

e F1LA | p(F) | Flu p(A) | Al
*AlLF|9 :
¢ §? PSTFA) | >

PR|S) | RN. P(H|S)



What's Independent?

F J_ A %) P(F) Flu | P(A) | All.
ALF|@ :
S? PSTFA) | >

RL{F, A H}|S p

PR|S) | RN. P(H|S)



What's Independent?

F J_ A %) P(F) Flu | P(A) | All.
ALF|@ :
S? PSTFA) | >

RL{F, A H}|S i
H J_ {F, A, R} PR|S) | RN. P(H|S)




New Edge: What's Independent?

F J_ A & P(F) Flu | P(A) | All.
ALF|Y ,

S? P(S | F, A) S.I. |
RL{KA H}|S,F ) & 2

HL{F,AR}S



A Puzzle

'FJ.A'S—p P(F)




A Puzzle

c FLA|S?

F = false,
A = false

P(S | |:’ A) F =true, F =true,
A =true A = false

true

false




A Puzzle

true 0.2

*FLA]|S? false [L0H P(F)

p(5||:’ A) F = true, F = true, F =false, | F =false,
A =true A = false A =true | A=false P(S I F, A)

true

false




A Puzzle

true 0.2
*FLA|S? false [0kl P(F)
P(S|F, A) F = true, F = true, F =false, | F =false,
A =true A=false | A=true | A=false P(S I F, A)
true
false

 P(F=true)=0.2

P(RS)

e P(F=true | S=true)=0.5
e P(F=true | S=true, A=true)=0

true

false

P(A)

0.2

0.8




A PUZZle true 0.2

false 0.8

true 0.2

° F J‘ A | S ? false | 058 P(F)

F = false,
A = false

F = false,
A = true

P(S|F, A) F=true, | F=true,
A =true A = false

true

false

 P(F=true)=0.2
* P(F=true | S=true)=(g+4)/(c +8)
e P(F=true | S=true, A=true)==¢




A Puzzle
o F J_ A | S ? P(F) Flu’ P(A) ‘AII.

P(S|FA) | >
* |[n general, no. |

— This independence P
statement does not P(R]S) [ RN P(H | S)
follow from the Local
Markov assumption.

e« ~(FLA|S)



Recipe for a Bayesian Network

Set of random variables X
Directed acyclic graph (each X. is a vertex)
Conditional probability tables, P(X | Parents(X))

Joint distribution: n
P(X) = || P(X; | Parents(X;))

1=1
Local Markov Assumption

— A variable X is independent of its non-descendants
given its parents (and only its parents).

X 1 NonDescendants(X) | Parents(X)



Questions

1. Given a BN, what distributions can be
represented?

2. Given a distribution, what BNs can represent
it?

3. In addition to the Local Markov Assumption,
what other independence assumptions are
encoded in a given BN?



Representation Theorem

The conditional
independencies in our BN
are a subset of the
independencies in P.

I(G) C I(P)

n




Questions

1. Given a BN, what distributions can be
represented?

2. Given a distribution, what BNs can represent
it?

3. In addition to the Local Markov Assumption,
what other independence assumptions are
encoded in a given BN?



Independencies

* Local Markov Assumption:
X. L NonDescendants(X) | Parents(X)

* Are there other independencies that we can
derive?

— Yes.
— Let’s consider some three-node Bayesian

networks.



Three-Node BNs

Indirect causal effect
Indirect evidential effect

Common cause X |
(XLY|Z),-(XLY)

Common effect

(V-structure)
(XLY),-(XLY]|Z)



V-Structures, or Colliders

e LetZ=X®Y.
— Yes, random variables can be deterministic
functions!

* In this case, if | know Z, then X and Y are
dependent, because they cannot be equal!

e ~(XLY]|2)



What We Want

* A general test for conditional independence in
a Bayesian network!

* Surprisingly enough, we can characterize all
independence assumptions in a Bayesian
network based on the simple constructs of
three-node BNs



Observations and Conditional
Independence

 Note: when we observe a certain outcome of
a variable, we condition on its value

e “Xand Y are independent when we observe
7" X1Y|zZ



Active Trails, Formalized

* Trail: undirected path that doesn't visit any
nodes more than once

* Atrail X; < X, < ... £ X, is an active trail if, for
each consecutive triplet in the trail:
— Xi.y 2 X, > X1 and X; is not observed.
— Xi; € X, & Xi,; and X is not observed.
— X 1 &< X > X.,; and X: is not observed.

— Xi.; 2 X & X, and X; (or one of its descendents) is
observed.



D-Separation

* Three sets of nodes: X, Y, and observed nodes
Z

e Xand Y are d-separated given Z if there is no
active trail fromany Xe Xtoany Y €Y given Z.



Another Example
-~ O-@

9

&

* |f | observe nothing, then A 1L H.



Another Example
-~ O-@

9

&

e If | observe C, then A L H.



Another Example
-~ O-@

9

&

* |f | observe C and F, then =(A L H).



Another Example

0-90-¢-0-90-¢9-0
©
©

* |f | observe C and F, then =(A L H).
— But if | observe B, D, E, and/or G, then A L H.



Another Example
-~ O-@

9

&

* |f | observe C and F, then =(A L H).



Another Example
-~ O-@

9

&

* |f | observe Cand F’, then =(A L H).



Another Example
-~ O-@

9

&

e |f | observe Cand F”’, then -(A L H).



Intuition

 Two variables can be dependent if there is a
trail between them.

— “Flow of influence” along active trails

* D-separation gives us a way to think about
how that “flow of influence” could be blocked.

— No active trail = d-separation = no dependence



Where We Are

* D-separation and independence

— D-separation is a sound procedure for finding
independencies: I(G) € I(P)

— We can find a distribution respecting any such
independency.

— Almost all independencies can be read from the
graph without recourse to the conditional
probability tables. [(G) = I(P).

* Sometimes independencies can happen as an accident
based on the probabilities!



Markov Networks



Perfect Maps (P-Maps)

* A graph G is a P-map for a distribution P if I(G)
= |(P).

* Can we always construct one?



Motivating Example:
No Bayesian Network is a P-Map

* Swinging couples or misunderstanding
students

I(P): A ; '

e A1C B, D B \ / D v v

° B 1 ) A’ C ) i { C A

® - B - D Fails to capture:
Fails to capture: -BLD

e —A1C BLD|AC

e Alice only talks to Bob and Debbie; Bob only talks to Charles and Alice; Charles

only talks to Bob and Debbie; Debbie only talks to Alice and Charles



Motivating Example:
This Markov Network is a P-Map!

* Swinging couples or misunderstanding
students

I(P): A

* ALC|B,D ) (o
*BLD|AC hant
+ -BLD

* -AlC



Markov Networks

e Each random variable is a
vertex.

* Undirected edges.
 Factors are associated
with subsets of nodes that

form cliques.

— A factor maps assignments
of its nodes to nonnegative
values.



Markov Networks

* |n this example,
associate a factor
with each edge.

— Could also have G G
factors for single

= | =[O0 |X>
L | Ol |O |0

= | =[Ol |X>

nodes!

= |- O |0 |®
R | O|l—Lr |O|0O

R =[O |0 [0
R O (= |O |0




Markov Networks

* Probability distribution:

P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

P(a b c d) _ ¢1(a’7b)¢2(b7 C)¢3(C7 d)¢4(a7d)
o ST bu(d V)bV, )bs(c!, d)pald )
a’,b’,c’,d’
Z= Y ¢i(d V)V, )ps(c,d)palal, )
a’,b’,c’,d’

R |~ Ol |>

B|C C|D A|D
0O 0O 0O
01 01 01
110 110 1|0
11 11 1|1




Markov Networks

* Probability distribution:
P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

gbl (a7 b)¢2(ba C)¢3 (C7 d)¢4(a7 d)
P(a,b,c,d) =
( ) Z ¢1(a/7b/)¢2(b/7C/)¢3(Clvd/)¢4(a/7d,>

a’ b’ ¢ ,d’

Z = Z ¢1(a/7b/)¢2(b/7cl)¢3(clad/)¢4(a’/7d/)

QL &
=7,201,840

R |~ Ol |>

B|C C|D A|D
0O 0O 0O
01 01 01
110 110 1|0
11 11 1|1




Markov Networks

* Probability distribution:
P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

b1 (a7 b)¢2(ba C)¢3 (Ca d)¢4(a7 d)

P(a,b,c,d) =
Z ¢1(a/7b’)¢2(b/7C/)¢3(C/7d/)¢4(a/7d,>

a’,b’,c’,d’
Z = Z le(a’/ab/)¢2(blvc/)¢3(clvd/)¢4(a’/7d/)

a’,b’,c’,d’

=7,201,840
A|B|oAB)]|| B C A|D
01 5 0 0 01
1|0 1 1 1 1|0
1|1 10 1 1 1|1

P(0,1,1,0)
= 5,000,000 / Z
=0.69



Markov Networks

* Probability distribution:

P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

b1 (a7 b)¢2(ba C)¢3 (Ca d)¢4(a7 d)

P(a,b,c,d) =
Z ¢1 (a/7b’)¢2(b/7C/)¢3(C/7d/)¢4(a/7d,>
a’,b’,c’,d’ ‘
Z = Z le(a’/ab/)¢2(blvc/)¢3(clvd/)¢4(a’/7d/)
a,,b/,CI’d/ G a
=7,201,840

A B C | D | ¢4(C, D) A ‘
0 0 0|0 0
0 0 0|1 0 P(1,1,0,0)
1 1 1]0 1 =10/2
1 1 111 1 = 0.0000014



Markov Networks
(General Form)

* Let D, denote the set of variables (subset of X)
in the ith clique.

* Probability distribution is a Gibbs distribution:

P(X) = U(;)
U(X) — H@(Dz)

N

|
(]

-
G

xcVal(X)



