Probability and Structure in Natural Language Processing

Noah Smith, Carnegie Mellon University

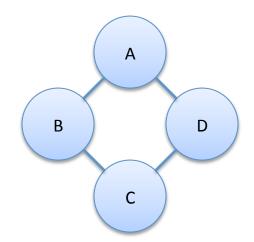
2012 International Summer School in Language and Speech Technologies

Slides Online!

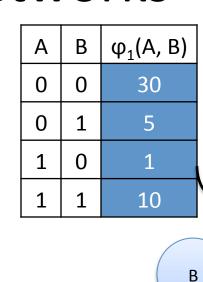
http://tinyurl.com/psnlp2012

• (I'll post the slides after each lecture.)

- Each random variable is a vertex.
- Undirected edges.
- Factors are associated with subsets of nodes that form cliques.
 - A factor maps assignments of its nodes to nonnegative values.



- In this example, associate a factor with each edge.
 - Could also have factors for single nodes!



D	φ ₄ (A, D)
0	100
1	1
0	1
1	100
	0

D

В	С	$\varphi_2(B, C)$
0	0	100
0	1	1
1	0	1
1	1	100

C	D	φ ₃ (C, D)
0	0	1
0	1	100
1	0	100
1	1	1

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$
$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	φ ₃ (C, D)
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

A	١	D	φ ₄ (A, D)
0		0	100
0		1	1
1		0	1
1	ı	1	100

P(0, 1, 1, 0)
= 5,000,000 / Z
= 0.69

D

Α

C

В

Probability distribution:

$$P(a,b,c,d) \propto \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)$$

$$P(a,b,c,d) = \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')}$$
$$Z = \sum_{a',b',c',d'} \phi_1(a',b')\phi_2(b',c')\phi_3(c',d')\phi_4(a',d')$$

= 7,201,840

Α	В	φ ₁ (A, B)	В	С	φ ₂ (B, C)	С	D	φ ₃ (C, D)
0	0	30	0	0	100	0	0	1
0	1	5	0	1	1	0	1	100
1	0	1	1	0	1	1	0	100
1	1	10	1	1	100	1	1	1

Α	D	φ ₄ (A, D)
0	0	100
0	1	1
1	0	1
1	1	100

P(1, 1, 0, 0) = 10 / Z
= 0.0000014

D

Α

C

В

Markov Networks (General Form)

- Let D_i denote the set of variables (subset of X) in the ith clique.
- Probability distribution is a Gibbs distribution:

$$P(X) = \frac{U(X)}{Z}$$
 $U(X) = \prod_{i=1}^{m} \phi_i(D_i)$
 $Z = \sum_{\boldsymbol{x} \in \operatorname{Val}(X)} U(\boldsymbol{x})$

Notes

- Z might be hard to calculate.
 - "Normalization constant"
 - "Partition function"
- Can get efficient calculation in some cases.
 - This is an **inference** problem; it's equivalent to marginalizing over everything.
- Ratios of probabilities are easy.

$$\frac{P(\boldsymbol{x})}{P(\boldsymbol{x'})} = \frac{U(\boldsymbol{x})/Z}{U(\boldsymbol{x'})/Z} = \frac{U(\boldsymbol{x})}{U(\boldsymbol{x'})}$$

Independence in Markov Networks

• Given a set of observed nodes **Z**, a path $X_1-X_2-X_3-...-X_k$ is **active** if no nodes on the path are observed.

Independence in Markov Networks

- Given a set of observed nodes **Z**, a path $X_1-X_2-X_3-...-X_k$ is **active** if no nodes on the path are observed.
- Two sets of nodes X and Y in \mathcal{H} are separated given Z if there is no active path between any $X_i \subseteq X$ and any $Y_i \subseteq Y$.
 - Denoted: $sep_{\mathcal{H}}(X, Y \mid Z)$

Independence in Markov Networks

- Given a set of observed nodes \mathbf{Z} , a path $X_1-X_2-X_3-...-X_k$ is **active** if no nodes on the path are observed.
- Two sets of nodes X and Y in \mathcal{H} are separated given Z if there is no active path between any $X_i \subseteq X$ and any $Y_i \subseteq Y$.
 - Denoted: $sep_{\mathcal{H}}(X, Y \mid Z)$
- Global Markov assumption: $sep_{\mathcal{H}}(X, Y \mid Z) \Rightarrow X \perp Y \mid Z$

Representation Theorems

Bayesian networks ...

The Bayesian network graph's independencies are a subset of those in P.

$$P(\boldsymbol{X}) = \prod_{i=1}^{n} P(X_i \mid \mathbf{Parents}(X_i))$$

- Independencies give you the Bayesian network.
- Bayesian network reveals independencies.

Representation Theorems

Bayesian networks ...

The Bayesian network graph's independencies are a subset of those in P.

$$P(oldsymbol{X}) = \prod_{i=1}^{n} P(X_i \mid \mathbf{Parents}(X_i))$$

Markov networks ...

Representation Theorems

Bayesian networks ...

The Bayesian network graph's independencies are a subset of those in P.

$$P(oldsymbol{X}) = \prod_{i=1}^{n} P(X_i \mid \mathbf{Parents}(X_i))$$

Markov networks ...

The Markov network graph's independencies are a subset of those in P.

$$P(\boldsymbol{X}) = \frac{1}{Z} \prod_{i=1}^{m} \phi_i(\boldsymbol{D}_i)$$

Hammersley-Clifford Theorem

- Other direction succeeds if P(x) > 0 for all x.
- Hammersley-Clifford Theorem

The Markov network graph's independencies are a subset of those in P and P is nonnegative.

$$P(\boldsymbol{X}) = \frac{1}{Z} \prod_{i=1}^{m} \phi_i(\boldsymbol{D}_i)$$

Completeness of Separation

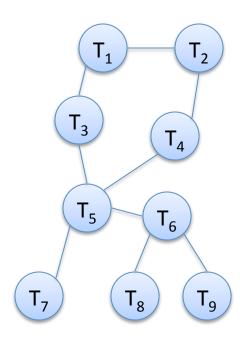
- For almost all P that factorize, I(H) = I(P).
 - "Almost all" is the same hedge as in the Bayesian network case. A measure-zero set of parameterizations might make stronger independence assumptions than P does.

Graphs and Independencies

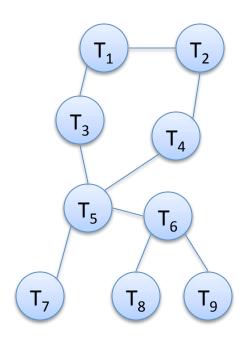
	Bayesian Networks	Markov Networks
local independencies	local Markov assumption	?
global independencies	d-separation	separation

- With Bayesian networks, we had the local Markov assumptions
- Is there anything similar in Markov networks?

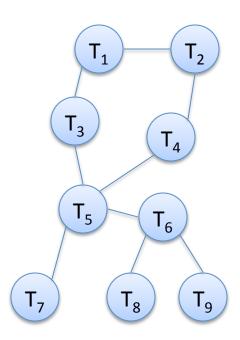
Separation defines global independencies.



 Pairwise Markov independence: pairs of nonadjacent variables are independent given everything else.



• Markov blanket: each variable is independent of the rest given its *neighbors*.



• Separation: $sep_{\mathcal{H}}(\mathbf{W}, \mathbf{Y} \mid \mathbf{Z}) \Rightarrow \mathbf{W} \perp \mathbf{Y} \mid \mathbf{Z}$

• Pairwise Markov:

$$A \perp B \mid X \setminus \{A, B\}$$

Markov blanket:

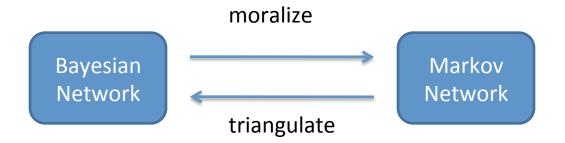
```
A \perp X \setminus Neighbors(A) \mid Neighbors(A)
```

Soundness

- For a positive distribution P, the three statements are equivalent:
 - P entails the global independencies of \mathcal{H} (strongest)
 - P entails the Markov blanket independencies of ${\mathcal H}$
 - P entails the pairwise independencies of \mathcal{H} (weakest)
- For nonpositive distributions, we can find cases that satisfy each property, but not the stronger one!
 - Examples in K&F 4.3.

Bayesian Networks and Markov Networks

	Bayesian Networks	Markov Networks	
local independencies	local Markov assumption	pairwise; Markov blanket	
global independencies	d-separation	separation	
relative advantages	 v-structures handled elegantly CPDs are conditional probabilities probability of full instantiation is easy (no partition function) 	 cycles allowed perfect maps for swinging couples 	



From Bayesian Networks to Markov Networks

- Each CPT can be thought of as a factor
- Requires us to connect all parents of each node together
 - Also called "moralization"

From Markov Networks to Bayesian Networks

- Conversion from MN to BN requires triangulation.
 - May lose some independence information.
 - May involve a lot of additional edges.

Summary

- BNs and MNs offer a way to encode a set of independence assumptions
- There is a way to transform from one to another, but it can be at the cost of losing independence assumptions
- This afternoon: inference

Lecture 2: Inference

Inference: An Ubiquitous Obstacle

- Decoding is inference.
- Subroutines for learning are inference.
- Learning is inference.

- Exact inference is #P-complete.
 - Even approximations within a given absolute or relative error are hard.

Probabilistic Inference Problems

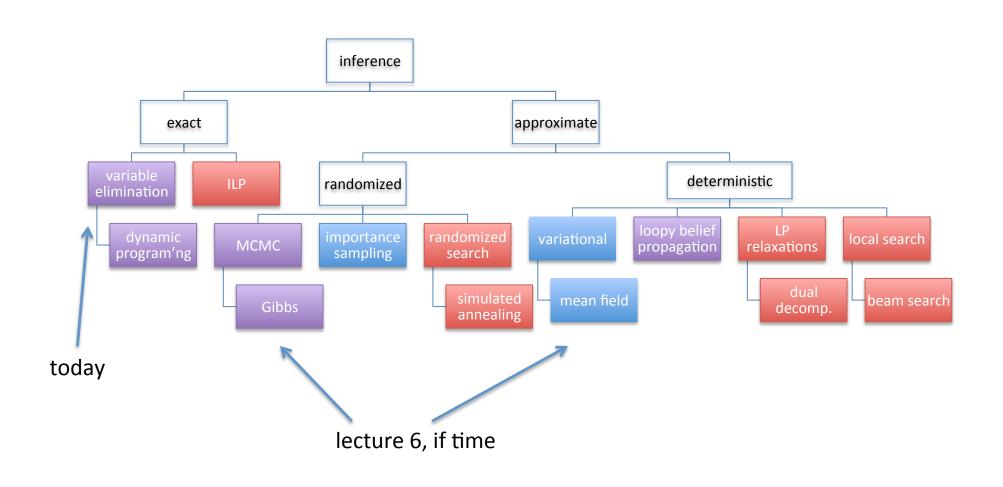
Given values for some random variables ($X \subset V$) ...

 Most Probable Explanation: what are the most probable values of the rest of the r.v.s V \ X?

(More generally ...)

- Maximum A Posteriori (MAP): what are the most probable values of some other r.v.s, Y ⊂ (V \ X)?
- Random sampling from the posterior over values of Y
- Full posterior over values of Y
- Marginal probabilities from the posterior over Y
- Minimum Bayes risk: What is the Y with the lowest expected cost?
- Cost-augmented decoding: What is the most dangerous Y?

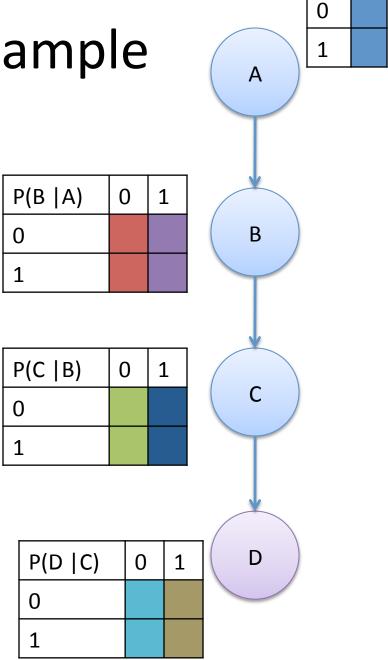
Approaches to Inference



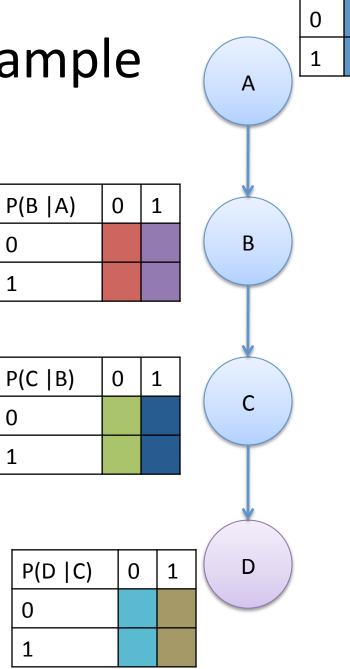
Exact Marginal for Y

- This will be a generalization of algorithms you already know: the forward and backward algorithms.
- The general name is variable elimination.
- After we see it for the marginal, we'll see how to use it for the MAP.

• Goal: P(D)

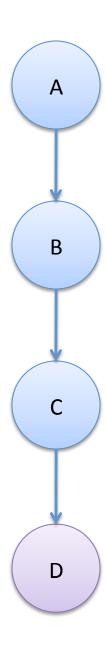


 Let's calculate P(B) from things we have.



 Let's calculate P(B) from things we have.

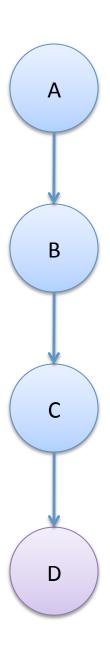
$$P(B) = \sum_{a \in Val(A)} P(A = a)P(B \mid A = a)$$



 Let's calculate P(B) from things we have.

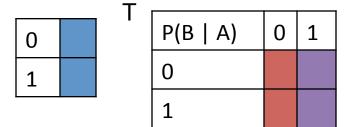
$$P(B) = \sum_{a \in Val(A)} P(A = a)P(B \mid A = a)$$

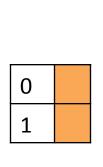
 Note that C and D do not matter.

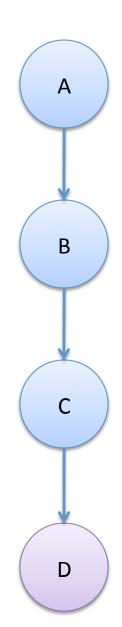


 Let's calculate P(B) from things we have.

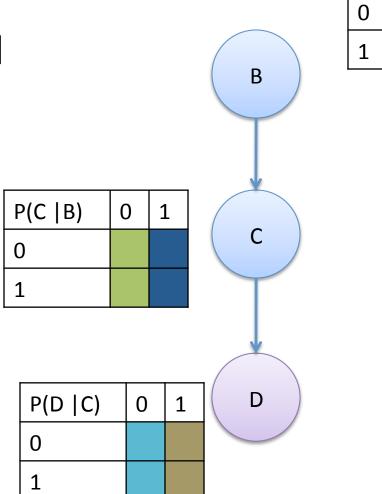
$$P(B) = \sum_{a \in Val(A)} P(A = a)P(B \mid A = a)$$







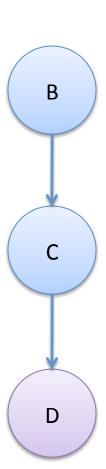
 We now have a Bayesian network for the marginal distribution P(B, C, D).



 We can repeat the same process to calculate P(C).

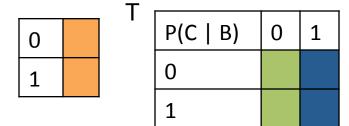
$$P(C) = \sum_{b \in Val(B)} P(B = b) P(C \mid B = b)$$

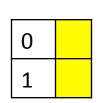
We already have P(B)!

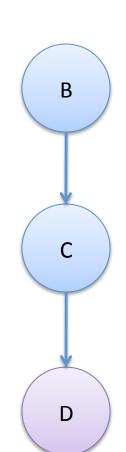


 We can repeat the same process to calculate P(C).

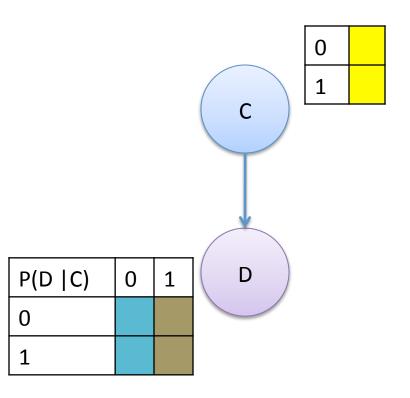
$$P(C) = \sum_{b \in Val(B)} P(B = b)P(C \mid B = b)$$







- We now have P(C, D).
- Marginalizing out A and B happened in two steps, and we are exploiting the Bayesian network structure.



Last step to get P(D):

$$P(D) = \sum_{c \in Val(C)} P(C = c)P(D \mid C = c)$$

	Т				1		
0	•	P(D C)	0	1			
		0			=	0	
						1	
		1					

D

- Notice that the same step happened for each random variable:
 - We created a new CPD over the variable and its "successor"
 - We summed out (marginalized) the variable.

$$P(D) = \sum_{a \in Val(A)} \sum_{b \in Val(B)} \sum_{c \in Val(C)} P(A = a) P(B = b \mid A = a) P(C = c \mid B = b) P(D \mid C = c)$$

$$= \sum_{c \in Val(C)} P(D \mid C = c) \sum_{b \in Val(B)} P(C = c \mid B = b) \sum_{a \in Val(A)} P(A = a) P(B = b \mid A = a)$$

That Was Variable Elimination

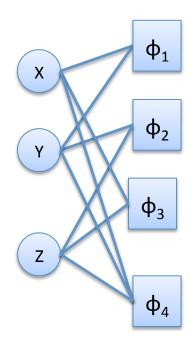
- We reused computation from previous steps and avoided doing the same work more than once.
 - Dynamic programming à la forward algorithm!
- We exploited the Bayesian network structure (each subexpression only depends on a small number of variables).
- Exponential blowup avoided!

What Remains

- Some machinery
- Variable elimination in general
- The maximization version (for MAP inference)
- A bit about approximate inference

Factor Graphs

- Variable nodes (circles)
- Factor nodes (squares)
 - Can be MN factors or BN conditional probability distributions!
- Edge between variable and factor if the factor depends on that variable.



• The graph is bipartite.

Products of Factors

 Given two factors with different scopes, we can calculate a new factor equal to their products.

$$\phi_{product}(\boldsymbol{x} \cup \boldsymbol{y}) = \phi_1(\boldsymbol{x}) \cdot \phi_2(\boldsymbol{y})$$

Products of Factors

 Given two factors with different scopes, we can calculate a new factor equal to their products.

Α	В	φ ₁ (A, B)
0	0	30
0	1	5
1	0	1
1	1	10

В	С	φ ₂ (B, C)
0	0	100
0	1	1
1	0	1
1	1	100

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\mathbf{X}) = \sum_{y \in Val(Y)} \phi(\mathbf{X}, y)$$

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

P(C A, B)	0, 0	0, 1	1, 0	1,1
0	0.5	0.4	0.2	0.1
1	0.5	0.6	0.8	0.9

"summing out" B

Α	C	ψ(A, C)
0	0	0.9
0	1	0.3
1	0	1.1
1	1	1.7

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

P(C A, B)	0, 0	0, 1	1, 0	1,1
0	0.5	0.4	0.2	0.1
1	0.5	0.6	0.8	0.9

"summing out" C

Α	В	ψ(A, B)
0	0	1
0	1	1
1	0	1
1	1	1

Given X and Y (Y ∉ X), we can turn a factor
 φ(X, Y) into a factor ψ(X) via marginalization:

$$\psi(\boldsymbol{X}) = \sum_{y \in Val(Y)} \phi(\boldsymbol{X}, y)$$

• We can refer to this new factor by $\sum_{v} \varphi$.

Marginalizing Everything?

- Take a Markov network's "product factor" by multiplying all of its factors.
- Sum out all the variables (one by one).

What do you get?

Factors Are Like Numbers

- Products are commutative: $\varphi_1 \cdot \varphi_2 = \varphi_2 \cdot \varphi_1$
- Products are associative:

$$(\varphi_1 \cdot \varphi_2) \cdot \varphi_3 = \varphi_1 \cdot (\varphi_2 \cdot \varphi_3)$$

- Sums are commutative: $\sum_{X} \sum_{Y} \varphi = \sum_{Y} \sum_{X} \varphi$
- Distributivity of multliplication over summation:

$$X \notin \text{Scope}(\phi_1) \Rightarrow \sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$$

Eliminating One Variable

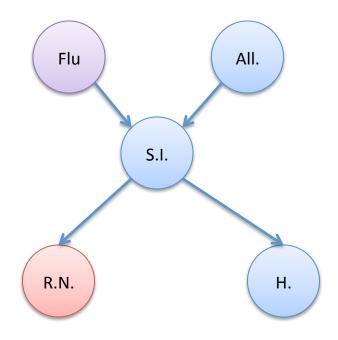
Input: Set of factors Φ , variable Z to eliminate

Output: new set of factors Ψ

- 1. Let $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let $\Psi = \{ \varphi \subseteq \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let ψ be $\sum_{Z} \prod_{\phi \in \Phi'} \varphi$
- 4. Return $\Psi \cup \{\psi\}$

Query:P(Flu | runny nose)

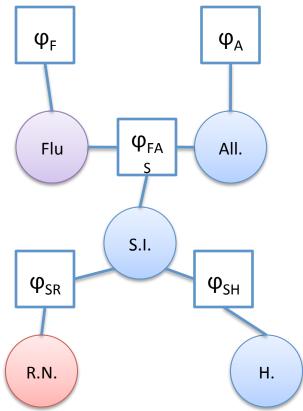
• Let's eliminate H.



Example $_{\varphi_{\scriptscriptstyle{F}}}$

Query:P(Flu | runny nose)

• Let's eliminate H.



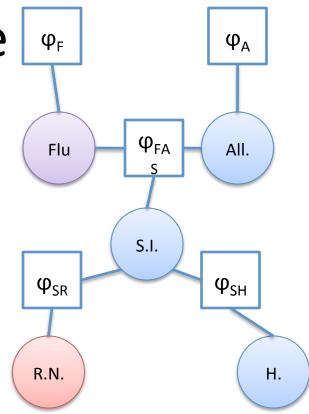
- Query:P(Flu | runny nose)
- Let's eliminate H.

1.
$$\Phi' = {\phi_{SH}}$$

2.
$$\Psi = {\phi_F, \phi_A, \phi_{FAS}, \phi_{SR}}$$

$$3.\psi = \sum_{H} \prod_{\phi \in \Phi'} \phi$$

4. Return $\Psi \cup \{\psi\}$



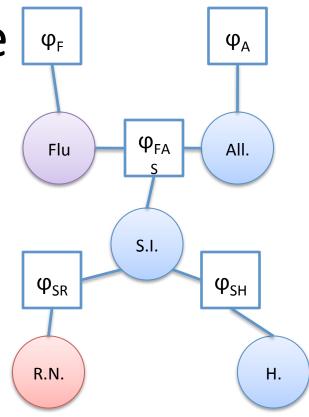
- Query:P(Flu | runny nose)
- Let's eliminate H.

1.
$$\Phi' = {\phi_{SH}}$$

2.
$$\Psi = {\phi_F, \phi_A, \phi_{FAS}, \phi_{SR}}$$

$$3.\psi = \sum_{H} \phi_{SH}$$

4. Return **Ψ** ∪ {ψ}



- Query:P(Flu | runny nose)
- Let's eliminate H.

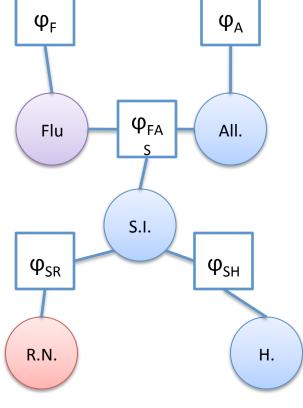
1.
$$\Phi' = {\phi_{SH}}$$

2.
$$\Psi = {\phi_F, \phi_A, \phi_{FAS}, \phi_{SR}}$$

$$3.\psi = \sum_{H} \varphi_{SH}$$

4. Return **Ψ** ∪ {ψ}

P(H S)	0	1
0	0.8	0.1
1	0.2	0.9



S	ψ(S)	
0	1.0	
1	1.0	

- Query:P(Flu | runny nose)
- Let's eliminate H.

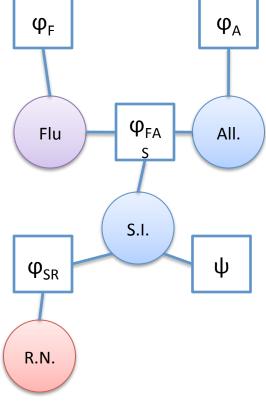
1.
$$\Phi' = {\phi_{SH}}$$

2.
$$\Psi = {\phi_F, \phi_A, \phi_{FAS}, \phi_{SR}}$$

$$3.\psi = \sum_{H} \varphi_{SH}$$

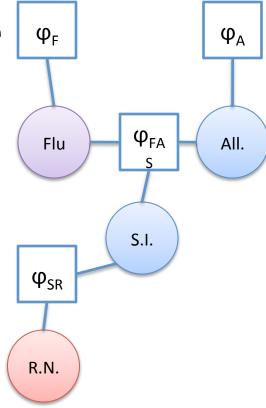
4. Return **Ψ** ∪ {ψ}

P(H S)	0	1
0	0.8	0.1
1	0.2	0.9



S	ψ(S)
0	1.0
1	1.0

- Query:P(Flu | runny nose)
- Let's eliminate H.
- We can actually ignore the new factor, equivalently just deleting H!
 - Why?
 - In some cases eliminating a variable is really easy!



S	ψ(S)
0	1.0
1	1.0

Variable Elimination

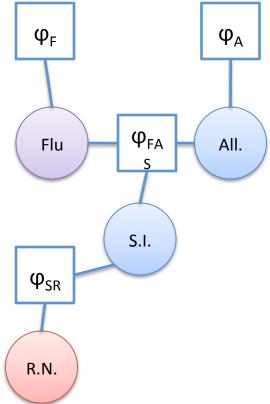
Input: Set of factors Φ , ordered list of variables Z to eliminate

Output: new factor ψ

- 1. For each $Z_i \subseteq \mathbf{Z}$ (in order):
 - Let $\mathbf{\Phi}$ = Eliminate-One($\mathbf{\Phi}$, Z_i)
- 2. Return $\prod_{\phi \in \Phi} \varphi$

Query:P(Flu | runny nose)

- H is already eliminated.
- Let's now eliminate S.



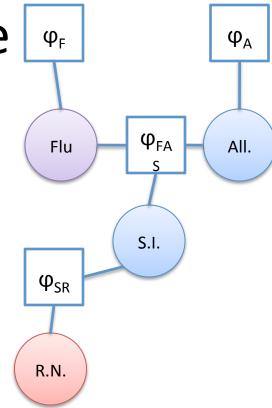
- Query:P(Flu | runny nose)
- Eliminating S.

1.
$$\Phi' = {\phi_{SR}, \phi_{FAS}}$$

2.
$$\Psi = {\phi_F, \phi_A}$$

$$3.\psi_{FAR} = \sum_{S} \prod_{\phi \in \Phi'} \phi$$

4. Return $\Psi \cup \{\psi_{FAR}\}$



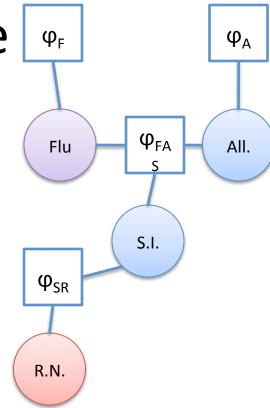
- Query:P(Flu | runny nose)
- Eliminating S.

1.
$$\Phi' = {\phi_{SR}, \phi_{FAS}}$$

2.
$$\Psi = {\phi_F, \phi_A}$$

$$3.\psi_{FAR} = \sum_{S} \varphi_{SR} \cdot \varphi_{FAS}$$

4. Return $\Psi \cup \{\psi_{FAR}\}$



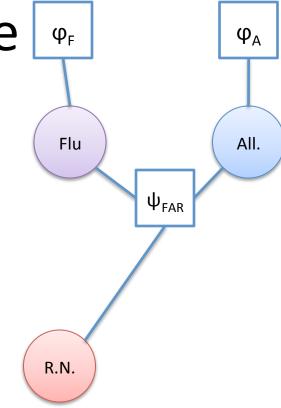
- Query:P(Flu | runny nose)
- Eliminating S.

1.
$$\Phi' = {\phi_{SR}, \phi_{FAS}}$$

2.
$$\Psi = {\phi_F, \phi_A}$$

$$3.\psi_{FAR} = \sum_{S} \phi_{SR} \cdot \phi_{FAS}$$

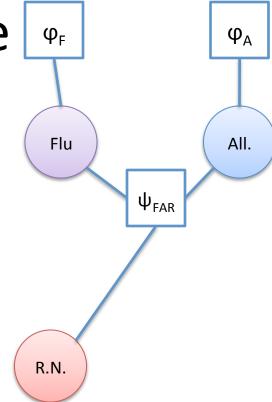
4. Return $\Psi \cup \{\psi_{FAR}\}$



Example (PF

Query:P(Flu | runny nose)

• Finally, eliminate A.



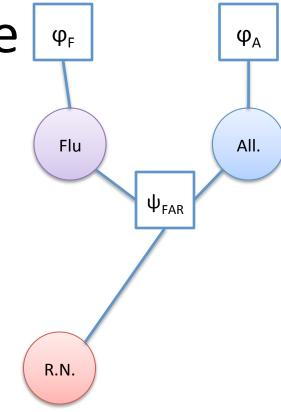
- Query:P(Flu | runny nose)
- Eliminating A.

1.
$$\Phi' = {\phi_A, \phi_{FAR}}$$

2.
$$\Psi = \{ \phi_F \}$$

$$3.\psi_{FR} = \sum_{A} \varphi_{A} \cdot \psi_{FAR}$$

4. Return $\Psi \cup \{\psi_{FR}\}$



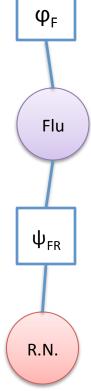
- Query:P(Flu | runny nose)
- Eliminating A.

1.
$$\Phi' = {\phi_A, \phi_{FAR}}$$

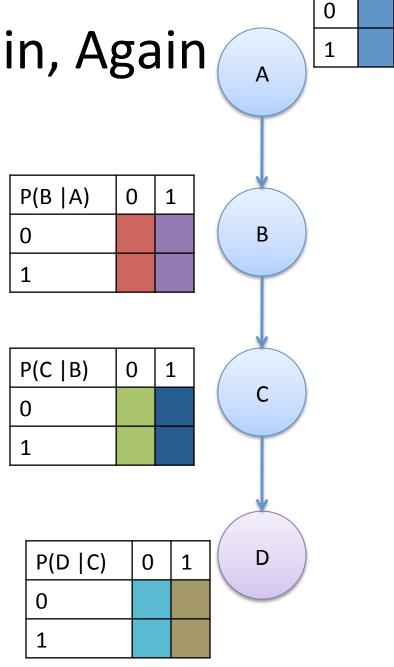
2.
$$\Psi = \{ \phi_F \}$$

$$3.\psi_{FR} = \sum_{A} \phi_{A} \cdot \psi_{FAR}$$

4. Return $\Psi \cup \{\psi_{FR}\}$



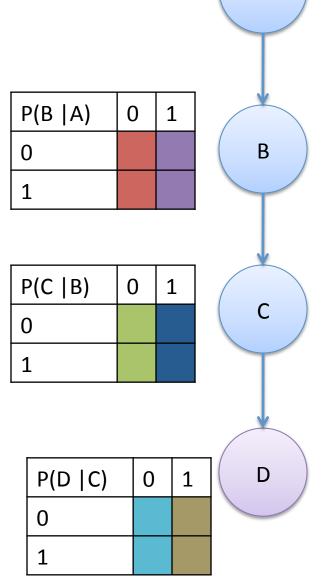
• Earlier, we eliminated A, then B, then C.



1

0

 Now let's start by eliminating C.



Markov Chain, Again

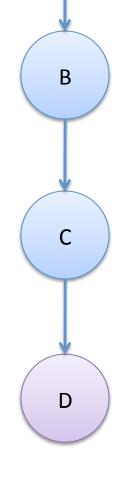
 Now let's start by eliminating C.

P(C B)	0	1
0		
1		

P(D | C) 0 1
0 1

=

С	D	φ' (B, C, D)
0	0	
0	1	
1	0	
1	1	
0	0	
0	1	
1	0	
1	1	
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0



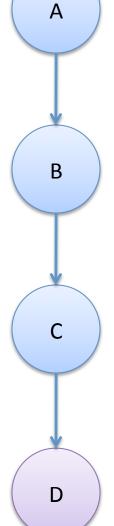
Markov Chain, Again

=

 Now let's start by eliminating C.

	В	С	D	φ' (B, C, D)
	0	0	0	
Σ_{C}	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	

_			
	В	D	ψ(B, D)
	0	0	
	0	1	
	1	0	
	1	1	



Markov Chain, Again

• Eliminating B will be similarly complex.

В	D	ψ(B, D)
0	0	
0	1	
1	0	
1	1	

Variable Elimination: Comments

- Can prune away all non-ancestors of the query variables.
- Ordering makes a difference!
- Works for Markov networks and Bayesian networks.
 - Factors need not be CPDs and, in general, new factors won't be.

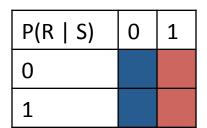
What about Evidence?

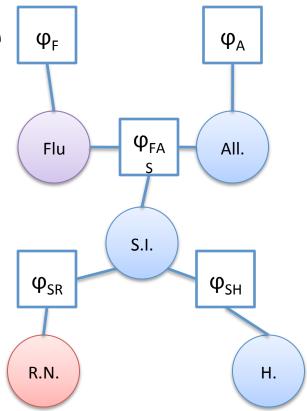
- So far, we've just considered the posterior/ marginal P(Y).
- Next: conditional distribution $P(Y \mid X = x)$.

• It's almost the same: the additional step is to reduce factors to respect the evidence.

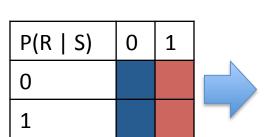
Example (PF

Query:P(Flu | runny nose)

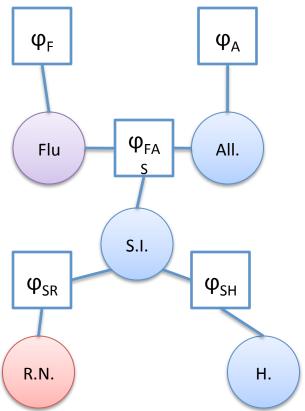




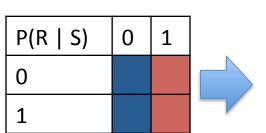
Query:P(Flu | runny nose)



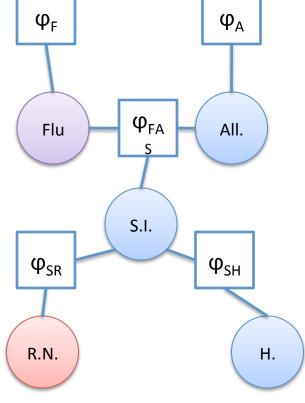
S	R	φ _{SR} (S, R)
0	0	
0	1	
1	0	
1	1	



Query:P(Flu | runny nose)

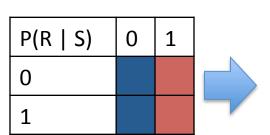


S	R	φ _{SR} (S, R)
0	0	
0	1	
1	0	
1	1	

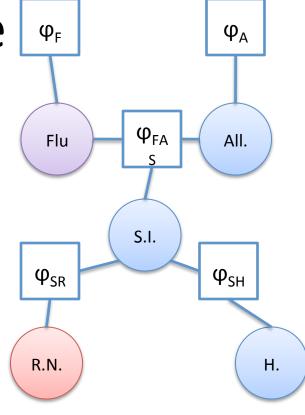


S	R	φ' _s (S)
0	1	
1	1	

Query:P(Flu | runny nose)

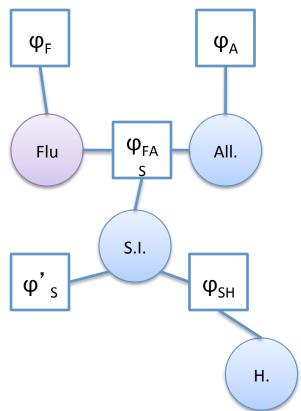


S	R	ϕ_{SR} (S, R)
0	0	
0	1	
1	0	
1	1	



S	R	φ' _S (S)
0	1	
1	1	

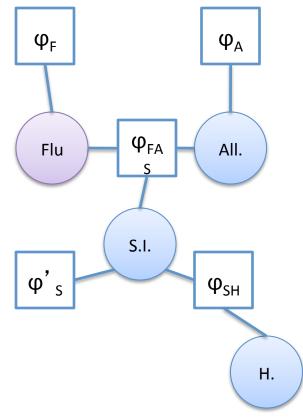
- Query:P(Flu | runny nose)
- Let's reduce to R = true (runny nose).



S	R	φ'ς (S)
0	1	
1	1	

Query:P(Flu | runny nose)

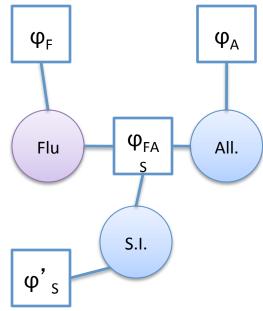
 Now run variable elimination all the way down to one factor (for F).



H can be pruned for the same reasons as before.

Query:P(Flu | runny nose)

 Now run variable elimination all the way down to one factor (for F).



Eliminate S.

Example PF PA

Flu

Query:P(Flu | runny nose)

Eliminate A.

All.

 ψ_{FA}

 Now run variable elimination all the way down to one factor (for F).

Example of

Flu

Query:P(Flu | runny nose)

Take final product.

 Now run variable elimination all the way down to one factor (for F).

Query:P(Flu | runny nose)

 $\phi_{\text{F}} \cdot \psi_{\text{F}}$

 Now run variable elimination all the way down to one factor.

Variable Elimination for Conditional Probabilities

Input: Graphical model on **V**, set of query variables **Y**, evidence **X** = **x**

Output: factor ϕ and scalar α

- 1. Φ = factors in the model
- 2. Reduce factors in Φ by X = x
- 3. Choose variable ordering on $Z = V \setminus Y \setminus X$
- 4. φ = Variable-Elimination(Φ , Z)
- $5. \alpha = \sum_{\mathbf{z} \in Val(\mathbf{Z})} \varphi(\mathbf{z})$
- 6. Return φ , α

Note

- For Bayesian networks, the final factor will be P(Y, X = x) and the sum $\alpha = P(X = x)$.
- This equates to a Gibbs distribution with partition function = α .

Variable Elimination

- In general, exponential requirements in induced width corresponding to the ordering you choose.
- It's NP-hard to find the best elimination ordering.
- If you can avoid "big" intermediate factors, you can make inference linear in the size of the original factors.

Additional Comments

- Runtime depends on the size of the intermediate factors.
- Hence, variable elimination ordering matters a lot.
 - But it's NP-hard to find the best one.
 - For MNs, chordal graphs permit inference in time linear in the size of the original factors.
 - For BNs, polytree structures do the same.

Getting Back to NLP

- Traditional structured NLP models were sometimes subconsciously chosen for these properties.
 - HMMs, PCFGs (with a little work)
 - But not: IBM model 3
- Need MAP inference for decoding!
- Need approximate inference for complex models!

From Marginals to MAP

- Replace factor marginalization steps with *maximization*.
 - Add bookkeeping to keep track of the maximizing values.
- Add a traceback at the end to recover the solution.
- This is analogous to the connection between the forward algorithm and the Viterbi algorithm.
 - Ordering challenge is the same.

Factor Maximization

• Given **X** and Y (Y \notin **X**), we can turn a factor φ (**X**, Y) into a factor ψ (**X**) via maximization:

$$\psi(\boldsymbol{X}) = \max_{Y} \phi(\boldsymbol{X}, Y)$$

• We can refer to this new factor by $\max_{v} \varphi$.

Factor Maximization

• Given **X** and Y (Y \notin **X**), we can turn a factor φ (**X**, Y) into a factor ψ (**X**) via maximization:

$$\psi(\boldsymbol{X}) = \max_{\boldsymbol{Y}} \phi(\boldsymbol{X}, \boldsymbol{Y})$$

Α	В	С	φ (A, B, C)
0	0	0	0.9
0	0	1	0.3
0	1	0	1.1
0	1	1	1.7
1	0	0	0.4
1	0	1	0.7
1	1	0	1.1
1	1	1	0.2

"maximizing out" B

Α	С	ψ(A, C)
0	0	1.1
0	1	1.7
1	0	1.1
1	1	0.7

B=1

B=1

B=1

B=0

Distributive Property

 A useful property we exploited in variable elimination:

$$X \notin \text{Scope}(\phi_1) \Rightarrow \sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$$

 Under the same conditions, factor multiplication distributes over max, too:

$$\max_{X}(\phi_1 \cdot \phi_2) = \phi_1 \cdot \max_{X} \phi_2$$