Probability and Structure in
Natural Language Processing

Noah Smith, Carnegie Mellon University

2012 International Summer School in
Language and Speech Technologies

Slides Onlinel

* http://tinyurl.com/psnip2012

* (I'll post the slides after each lecture.)

Markov Networks

e Each random variable is a
vertex.

* Undirected edges.
 Factors are associated
with subsets of nodes that

form cliques.

— A factor maps assignments
of its nodes to nonnegative
values.

Markov Networks

* |n this example,
associate a factor
with each edge.

— Could also have G G
factors for single

= | =[O0 |X>
L | Ol |O |0

= | =[Ol |X>

nodes!

= |- O |0 |®
R | O|l—Lr |O|0O

R =[O |0 [0
R O (= |O |0

Markov Networks

* Probability distribution:
P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

gbl (a7 b)¢2(ba C)¢3 (Ca d)¢4(a7 d)
Z ¢1 (alv b’)¢2(b/7 C/)¢3 (CI, d/)¢4(a/7 dl)

/ / / /
a’,b’,c’,d

Z = Z ¢1(a/7b/)¢2(b/7cl)¢3(clad/)¢4(a’/7d/)

P(a,b,c,d) =

QL@
=7,201,840

R |~ Ol |>

B|¢,AB)|| B C A|lD

0 0 0 00

1| 5 0 0 01 P(0, 1, 1, 0)

0 1 1 1 1|0 = 5,000,000/ Z
1 10 1 1 111 = 0.69

Markov Networks

* Probability distribution:

P(a,b,c,d) o< ¢1(a,b)p2(b, c)ps(c,d)ps(a, d)

b1 (a7 b)¢2(ba C)¢3 (Ca d)¢4(a7 d)

P(a,b,c,d) =
> dula Vo (b,)gs(c, d)pala’ d)
a’,b’,c’,d’ ‘
Z = Z ¢1(a/7b/)¢2(b/7cl)¢3(clad/)¢4(a’/7d/)
a’,b’,c’,d’
= 7,201,840 G.‘

A B C|D|@sC,D)|]| A ‘
0 0 0|0 0
0 0 0|1 0 P(1, 1,0, 0)
1 1 1]0 1 =10/Z
1 1 111 1 = 0.0000014

Markov Networks
(General Form)

* Let D, denote the set of variables (subset of X)
in the ith clique.

* Probability distribution is a Gibbs distribution:

P(X) = U(;)
U(X) — H@(Dz)

N

|
(]

-
G

xcVal(X)

Notes

* Z might be hard to calculate.
— “Normalization constant”
— “Partition function”

* Can get efficient calculation in some cases.

— This is an inference problem; it’s equivalent to
marginalizing over everything.

* Ratios of probabilities are easy.
P(x) _ U(x)/Z _ U(x)
P(x') U(x')/Z Uz’

Independence in Markov Networks

* Given a set of observed nodes Z, a path X;-X,-
X5-...-X, is active if no nodes on the path are
observed.

Independence in Markov Networks

* Given a set of observed nodes Z, a path X;-X,-
X5-...-X, is active if no nodes on the path are
observed.

« Two sets of nodes X and Y in H are separated
given Z if there is no active path between any
X. € XandanyY, €Y.

— Denoted: sep4(X,Y | Z)

Independence in Markov Networks

* Given a set of observed nodes Z, a path X;-X,-
X5-...-X, is active if no nodes on the path are
observed.

 Two sets of nodes X and Y in JH are separated
given Z if there is no active path between any
X. € XandanyY, €Y.
— Denoted: sep4(X,Y | Z)

* Global Markov assumption:
sep (X, Y|Z)=XL1LY]|Z

Representation Theorems

* Bayesian networks ...

n

The Bayesian network graph’s P(X) = HP(Xi | Parents(X;))
independencies are a subset of P

those in P.

— Independencies give you the Bayesian network.
— Bayesian network reveals independencies.

Representation Theorems

* Bayesian networks ...

n

The Bayesian network graph’s P(X) = HP(Xi | Parents(X;))
independencies are a subset of P

those in P.

e Markov networks ...

Representation Theorems

* Bayesian networks ...

The Bayesian network graph’s P(X) = HP(Xi | Parents(X;))
independencies are a subset of P
those in P.

e Markov networks ...

The Markov network P(X) — l (D,
graph’s independencies (X) Z };[1¢ (D:)
are a subset of those in P.

Hammersley-Clifford Theorem

e Other direction succeeds if P(x) > O for all x.
* Hammersley-Clifford Theorem

The Markov network
graph’s independencies
are a subset of those in P
and P is nonnegative.

Completeness of Separation

* For almost all P that factorize, I(H) = I(P).

— “Almost all” is the same hedge as in the Bayesian
network case. A measure-zero set of
parameterizations might make stronger
independence assumptions than P does.

Graphs and Independencies

Bayesian Markov
Networks Networks
local local Markov .
independencies assumption '
global . :
. . - ration ration
independencies d-separatio separatio

« With Bayesian networks, we had the local
Markov assumptions

 |s there anything similar in Markov networks?

Local Independence Assumptions in
Markov Networks

e Separation defines global independencies.

Local Independence Assumptions in

Markov Networks
* Pairwise Markov independence: pairs of non-

adjacent variables are independent given
everything else.

Local Independence Assumptions in
Markov Networks

 Markov blanket: each variable is
independent of the rest given its neighbors.

Local Independence Assumptions in
Markov Networks

* Separation:
sepy (W, Y|Z) =W LY|2Z

 Pairwise Markov:
A LB|X\{A, B}

* Markov blanket:
A L X\ Neighbors(A) | Neighbors(A)

Soundness

* For a positive distribution P, the three statements
are equivalent:
— P entails the global independencies of FH (strongest)
— P entails the Markov blanket independencies of HH
— P entails the pairwise independencies of JH (weakest)

* For nonpositive distributions, we can find cases
that satisfy each property, but not the stronger
onel

— Examples in K&F 4.3.

Bayesian Networks
and Markov Networks

Bayesian Networks Markov Networks
local : o
. . local Markov assumption pairwise; Markov blanket
independencies
lobal : .
8 d-separation separation

independencies

 v-structures handled elegantly | * cycles allowed

e CPDs are conditional perfect maps for swinging
probabilities couples

 probability of full instantiation
is easy (no partition function)

relative
advantages

moralize

Bayesian Markov

Network € Network
triangulate

From Bayesian Networks to Markov
Networks

* Each CPT can be thought of as a factor

* Requires us to connect all parents of each
node together

— Also called “moralization”

From Markov Networks to Bayesian
Networks

e Conversion from MN to BN requires
triangulation.

— May lose some independence information.

— May involve a lot of additional edges.

Summary

 BNs and MNs offer a way to encode a set of
independence assumptions

* There is a way to transform from one to
another, but it can be at the cost of losing
independence assumptions

 This afternoon: inference

Lecture 2: Inference

Inference: An Ubiquitous Obstacle

* Decoding is inference.
e Subroutines for learning are inference.
* Learning is inference.

e Exact inference is #P-complete.

— Even approximations within a given absolute or
relative error are hard.

Probabilistic Inference Problems

Given values for some random variables (X C V) ...

Most Probable Explanation: what are the most probable values of the rest
of the r.v.s V\ X?

(More generally ...)

Maximum A Posteriori (MAP): what are the most probable values of some
otherr.v.s,Y C (V\ X)?

Random sampling from the posterior over values of Y
Full posterior over values of Y
Marginal probabilities from the posterior over Y

Minimum Bayes risk: What is the Y with the lowest expected cost?
Cost-augmented decoding: What is the most dangerous Y?

Approaches to Inference

inference

approximate

variable
elimination

randomized deterministic
|
I

dynamic importance randomized variational |0rgp; baet'liloe: reIaxLaPtions local search
program’ng sampling search propag

simulated mean field

beam search

annealing

N

lecture 6, if time

Exact Marginal forY

e This will be a generalization of algorithms you
already know: the forward and backward
algorithms.

* The general name is variable elimination.

 After we see it for the marginal, we’ Il see how
to use it for the MAP.

Simple Inference Example ‘

P(BIA) |0 |1
o o
1

 Goal: P(D)

Simple Inference Example ‘

* Let s calculate P(B) from

things we have. E‘B'A’ H G
1

Simple Inference Example

* Let s calculate P(B) from
things we have.

P(B) = Y PA=a)P(B|A=a)
acVal(A)

Simple Inference Example

* Let s calculate P(B) from
things we have.

P(B) = > P(A=a)P(B|A=aq)

acVal(A)

e Note that Cand D do not
maftter.

Simple Inference Example

* Let s calculate P(B) from
things we have.

P(B) =) P(A=a)P(B|A=a)
acVal(A)

T

0 PB|A) |01

1 0 - °
) 1

Simple Inference Example

 We now have a Bayesian

network for the marginal
distribution P(B, C, D).

P(C|B) |0 |1

0

PD|C) |0 |1 @
0

Simple Inference Example

 We can repeat the same
process to calculate P(C).

P(C) =) P(B=b)P(C|B=b)
beVal(B)

 We already have P(B)!

Simple Inference Example

* We can repeat the same

process to calculate P(C). G

P(C) =) PB=bP(C|B=b)
beVal(B)
T °
0 P(C|B) |0 i
O =
1 1
1 Q

Simple Inference Example

 We now have P(C, D).

 Marginalizing out Aand B
happened in two steps,
and we are exploiting the
Bayesian network
structure.

PD|C) |0 |1 D

Simple Inference Example

e Last step to get P(D):

P(D) = Z P(C P(D|C =c)
ceVal(C)
! PD|C) |0 |1
0
1 0 - °

Simple Inference Example

Notice that the same step happened for each
random variable:

— We created a new CPD over the variable and its
“successor”

— We summed out (marginalized) the variable.

PD) = >) > P B=b|A=a)P(C=c|B=bP(D|C=c)

a€Val(A) beVal(B) ceVal(C)

=) PMD|C=c¢ Y P(C=c|B=b) » PA=aPB=b|A=a)

ceVal(C) beVal(B) a€Val(A)

That Was Variable Elimination

* We reused computation from previous steps

and avoided doing the same work more than
once.

— Dynamic programming a la forward algorithm!

 We exploited the Bayesian network structure
(each subexpression only depends on a small
number of variables).

* Exponential blowup avoided!

What Remains

Some machinery

Variable elimination in general

The maximization version (for MAP inference)
A bit about approximate inference

Factor Graphs

Variable nodes (circles)
Factor nodes (squares)

— Can be MN factors or BN conditional
probability distributions!

Edge between variable and factor if

the factor depends on that variable.

The graph is bipartite.

4¢1

o d)z

)
(\7 ¢
) |

) 3

¢,

Products of Factors

* Given two factors with different scopes, we
can calculate a new factor equal to their
products.

¢product(w U y) — ¢1 (CL‘) . ¢2 (y)

Products of Factors

* Given two factors with different scopes, we
can calculate a new factor equal to their

products.

= | =[Ol |X>

A

B

C

(p3(AI B;
C)

R =[O0 |

R | O|l—Lr |O|0O

R | R (==]O|0O0 |0 |0

R | [O|O0O|FR | |O|O

R | O, |O|FL, |O |, |O

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
¢(X, Y) into a factor Y(X) via marginalization:

O(X) =) X,y

yeVal(Y)

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
¢(X, Y) into a factor Y(X) via marginalization:

P(X) =) X,y

yeVal(Y)
P(C|AB) |00 |01 |10 |11 A1 C|Y(AC)
0 05 04 O | j> 0|0 0.9
1 05 06 O 0|1 0.3
110 1.1
“summing out” B 111 17

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
¢(X, Y) into a factor Y(X) via marginalization:

P(X) =) X,y

yeVal(Y)
P(C|AB) |00 |01 |10 |11 A | B | Y(A, B)
0 05 04 O | j> 00 1
1 05 06 O 0|1 1
110 1
“summing out” C 111 1

Factor Marginalization

* Given Xand Y (Y € X), we can turn a factor
¢(X, Y) into a factor Y(X) via marginalization:

O(X) =) X,y

yeVal(Y)

* We can refer to this new factor by >, ¢.

Marginalizing Everything?

* Take a Markov network’ s “product factor’ by
multiplying all of its factors.

 Sum out all the variables (one by one).

 What do you get?

Factors Are Like Numbers

* Products are commutative: @, ¢, =@, @,
* Products are associative:

(@17 @;) - @3= @, (9, @)
* Sums are commutative: >, >, @ =>,>,®

e Distributivity of multliplication over
summation:

X & Scope(¢p1) = qu P2) = ZCb

X

Eliminating One Variable

Input: Set of factors @, variable Z to eliminate
Output: new set of factors W

Let® ={p € ® | Z € Scope(w)}
LetW={p € ® | Z< Scope(p)}

Lety be; TTyeq @
.Return W U {}

B W N BB

Example

° Query: Flu ‘AII.
P(Flu | runny nose)

S.I.

e Let s eliminate H.

Example

* Query:
P(Flu | runny nose)

e Let s eliminate H.

P

Pa

-

Example | «

* Query:
P(Flu | runny nose)

e Let s eliminate H.

1. CD’ - {(pSH}
2. W ={@;, @ Prass Pspt
3L|) = ZH ﬂ(pE(D’ (p

4.Return W U {Y}

Flu |

Psr

Pa

@Pea AL
S

S.I.

Psh

Example | «

* Query:
P(Flu | runny nose)

e Let s eliminate H.

1. CD’ - {(pSH}
2. W ={@;, @ Prass Pspt
3.0 =2, Py

4.Return W U {Y}

Flu |

Psr

Pa

@Pea AL
S

S.I.

Psh

Example

* Query:
P(Flu | runny nose)

e Let’ s eliminate H.
1. q)’ - {(pSH}

2. W ={@;, @ Prass Pspt

P(H|S) |0 1
0 08 0.1 j>
1 02 09

3.0 =2, Py
4.Return W U {Y}

@

®r Pa
Pea
S
Psr

¢

L

B(S)

1.0

1.0

Example

* Query:
P(Flu | runny nose)

e Let’ s eliminate H.
1. q)’ - {(pSH}

2. W ={@;, @ Prass Pspt

P(H|S) |0 1
0 08 0.1 j>
1 02 09

3.0 =2, Py
4.Return W U {Y}

Pa

@

®r
Pea
S
Psr

B(S)

1.0

1.0

Example | «

* Query:
P(Flu | runny nose)

e Let seliminate H.

 We can actually ignore the
new factor, equivalently just
deleting H!
— Why?
— In some cases eliminating a
variable is really easy!

&

Psr

Pra

S.I.

Pa

AL

B(S)

1.0

1.0

Variable Elimination

Input: Set of factors @, ordered list of variables
Z to eliminate

Output: new factor ¢
1.For each Z. € Z (in order):
— Let @ = Eliminate-One(®, Z)

2.Return [Tyeqp @

Example | «

* Query: Flu)
P(Flu | runny nose)

Psr
 His already eliminated.

e Let’ s now eliminate S.

Pra
s

S.I.

AL

Example | «

* Query: oo | on
P(Flu | runny nose)

S.I.

Psr

* Eliminating S.
1. @ = {Psr, Prast
2. W ={@, @}

3. Wear = 25 ﬂ(pecp’ @
4.Return W U {U;,:}

Pa

AL

Example | «

* Query: oo | on
P(Flu | runny nose)

S.I.

Psr

* Eliminating S.
1. @ = {Psr, Prast
2. W ={@, @}

3.Wrar = 25 Psg * Pras
4.Return W U {U;,:}

Pa

AL

Example | « 2

° Query: Flu All.

P(Flu | runny nose) o

* Eliminating S.
1. @ = {Psr, Prast
2. W ={@, @}

3.Wrar = 25 Psg * Pras
4.Return W U {U;,:}

Example

* Query:
P(Flu | runny nose)

* Finally, eliminate A.

P

Pa

LIJFAR

Example | «

* Query: Flu
P(Flu | runny nose) /

* Eliminating A.
1. CD’ = {(PA; (PFAR}
2. W ={@}

3. W= 24P - Wear
4.Return W U {U..}

LIJFAR

All.

Example | «

* Query: Flu
P(Flu | runny nose) —

LI"FR
* Eliminating A.

; t:j’zz{:::}Ar Pearl

3. W= 24P - Wear
4.Return W U {U..}

Markov Chain, Again ‘

e Earlier, we eliminated

A, then B, then C. o Jols | ‘
1

Markov Chain, Again ‘

* Now let’ s start by

eliminating C. E‘B'A’ 2 G
1

Markov Chain, Again

* Now let’ s start by
eliminating C.

P(CIB) |0 |1 PD|C) |0 |1
0 . 0 =
= = ¢ (B,C, D)

R ||, |O|JlO|JOC|O |
= | =[Ol O|lRr|R|JO|JO|O
R | O, |O|FR,|O|Lr|O|CO

* Now let’ s start by

Markov Chain, Again G

eliminating C.

Y(B, D)

R | =0 |0 |

= | Ol |O |00

B|C|[D| ¢ (B,C,D)
0[0|0
0ol0|1
0[1]0
011
1{0]0
1/0]1
1{11]0
1111

Markov Chain, Again @

* Eliminating B will be
similarly complex.

Y(B, D)

R | |O |0 |

= | Ol |O |00

&

Variable Elimination: Comments

* Can prune away all non-ancestors of the query
variables.

* Ordering makes a difference!

 Works for Markov networks and Bayesian
networks.

— Factors need not be CPDs and, in general, new
factors won’ t be.

What about Evidence?

* So far, we’ ve just considered the posterior/
marginal P(Y).

 Next: conditional distribution P(Y | X = x).

* It' s almost the same: the additional step is to
reduce factors to respect the evidence.

* Query:
P(Flu | runny nose)

Example

e Let sreducetoR =
true (runny nose).

P(R|S)

0

1

o

P

Pa

-

* Query:
P(Flu | runny nose)

Example

e Let sreducetoR =
true (runny nose).

P(R|S)

0

1

o

»

(pSR (SI R)

R |, O[O W

R O | |O (X

P

Pa

Pra
s

Example | «

* Query: @ e

P(Flu | runny nose) f

Psr

e Let sreducetoR =
true (runny nose). @

P (S, R) S |R|@

PR|S) [0 |1

»

R |, |O |0 W
R O | |O | XD

* Query:
P(Flu | runny nose)

Example

e Let sreducetoR =

true (runny nose).

P(RIS) |O

1

»

(pSR (SI R)

R |, O[O W

R O | |O (X

®r

Pea
S

Pa

(S)

Example

* Query:
P(Flu | runny nose)

e Let sreducetoR =
true (runny nose).

®r

(S)

Pa

Example | « o

* Query: Flu f— Pra | Al
P(Flu | runny nose)

S.I.

O[T T T @y
* Now run variable ,
elimination all the H.
way down to one
factor (for F). H can be pruned

for the same reasons
as before.

Example | «

* Query: Flu |
P(Flu | runny nose)
(P’s
* Now run variable

elimination all the
way down to one
factor (for F).

Pra
s

S.I.

Eliminate S.

Pa

AL

Example | « 2

° QUEFYZ Flu = Qg [Al
P(Flu | runny nose)

Eliminate A.

* Now run variable
elimination all the
way down to one
factor (for F).

Example | «
* Query: Fu [
P(Flu | runny nose)

Take final product.

* Now run variable
elimination all the
way down to one
factor (for F).

Example

* Query:

P(Flu | runny nose) b

* Now run variable
elimination all the
way down to one
factor.

Variable Elimination for
Conditional Probabilities

Input: Graphical model onV, set of query variables
Y, evidence X = x

Output: factor ¢ and scalar a
1. @ = factors in the model

2.Reduce factors in @ by X = x

3.Choose variable orderingonZ =V \Y\X
4. = Variable-Elimination(®, Z)

5.0 = ZzEVaI(Z)(p(Z)

6. Return ¢, a

Note

* For Bayesian networks, the final factor will be
P(Y, X = x) and the sum a = P(X = x).

* This equates to a Gibbs distribution with
partition function = a.

Variable Elimination

* |In general, exponential requirements in induced
width corresponding to the ordering you choose.

e |t' s NP-hard to find the best elimination
ordering.

* If you can avoid “big” intermediate factors, you
can make inference linear in the size of the
original factors.

Additional Comments

* Runtime depends on the size of the
intermediate factors.

* Hence, variable elimination ordering matters a
lot.
— But it’ s NP-hard to find the best one.

— For MNs, chordal graphs permit inference in time
linear in the size of the original factors.

— For BNs, polytree structures do the same.

Getting Back to NLP

* Traditional structured NLP models were
sometimes subconsciously chosen for these
properties.

— HMMs, PCFGs (with a little work)
— But not: IBM model 3

* Need MAP inference for decoding!

* Need approximate inference for complex
models!

From Marginals to MAP

* Replace factor marginalization steps with
maximization.
— Add bookkeeping to keep track of the maximizing
values.
 Add a traceback at the end to recover the
solution.

* This is analogous to the connection between the
forward algorithm and the Viterbi algorithm.

— Ordering challenge is the same.

Factor Maximization

* Given Xand Y (Y € X), we can turn a factor
(X, Y) into a factor Y(X) via maximization:

w(X) — m&x¢(X, Y)

* We can refer to this new factor by max, ¢.

Factor Maximization

* Given Xand Y (Y € X), we can turn a factor
(X, Y) into a factor Y(X) via maximization:

H(X) = maxo(X,Y)

Y
A |B |c |e(ABC
0 0 0 0.9 AlC lJ)(A,C)
o |0 |1 0.3 o 1o 11
o |1 |o 1.1 ::>
o |1 |1 1.7 0]1 1.7
1 o |o 0.4 110 11
T lo |1 07| maximizing out” B 1|1 0.7
1 |1 |o 1.1
1 |1 |1 0.2

Distributive Property

* A useful property we exploited in variable
elimination:

X ¢ Scope(¢1) = qu $2) =1+ > b
X

 Under the same conditions, factor
multiplication distributes over max, too:

m)‘?x(% - ¢2) = ¢1 - Max P2

X

