Probability and Structure in Natural Language Processing

Noah Smith, Carnegie Mellon University

2012 International Summer School in Language and Speech Technologies

Quick Recap

- Yesterday:
 - Bayesian networks and some formal properties
 - Markov networks and some formal properties
 - Exact marginal inference using variable elimination
 - Sum-product version
 - Beginnings of the max-product version

Variable Elimination for Conditional Probabilities

Input: Graphical model on **V**, set of query variables **Y**, evidence **X** = **x**

Output: factor ϕ and scalar α

- 1. Φ = factors in the model
- 2. Reduce factors in Φ by X = x
- 3. Choose variable ordering on $Z = V \setminus Y \setminus X$
- 4. φ = Variable-Elimination(Φ , **Z**)
- $5. \alpha = \sum_{\mathbf{z} \in Val(\mathbf{Z})} \varphi(\mathbf{z})$
- 6. Return φ , α

From Marginals to MAP

- Replace factor marginalization steps with *maximization*.
 - Add bookkeeping to keep track of the maximizing values.
- Add a traceback at the end to recover the solution.
- This is analogous to the connection between the forward algorithm and the Viterbi algorithm.
 - Ordering challenge is the same.

Factor Maximization

• Given **X** and Y (Y \notin **X**), we can turn a factor φ (**X**, Y) into a factor ψ (**X**) via maximization:

$$\psi(\boldsymbol{X}) = \max_{Y} \phi(\boldsymbol{X}, Y)$$

• We can refer to this new factor by $\max_{v} \varphi$.

Factor Maximization

• Given **X** and Y (Y \notin **X**), we can turn a factor φ (**X**, Y) into a factor ψ (**X**) via maximization:

$$\psi(\boldsymbol{X}) = \max_{\boldsymbol{Y}} \phi(\boldsymbol{X}, \boldsymbol{Y})$$

Α	В	С	φ (A, B, C)
0	0	0	0.9
0	0	1	0.3
0	1	0	1.1
0	1	1	1.7
1	0	0	0.4
1	0	1	0.7
1	1	0	1.1
1	1	1	0.2

"maximizing out" B

Α	С	ψ(A, C)
0	0	1.1
0	1	1.7
1	0	1.1
1	1	0.7

B=1

B=1

B=1

B=0

Distributive Property

 A useful property we exploited in variable elimination:

$$X \notin \text{Scope}(\phi_1) \Rightarrow \sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$$

 Under the same conditions, factor multiplication distributes over max, too:

$$\max_{X}(\phi_1 \cdot \phi_2) = \phi_1 \cdot \max_{X} \phi_2$$

Traceback

Input: Sequence of factors with associated variables: $(\psi_{Z_1}, ..., \psi_{Z_k})$

Output: z*

- Each ψ_Z is a factor with scope including Z and variables eliminated *after* Z.
- Work backwards from i = k to 1:
 - Let $z_i = arg max_z \psi_{z_i}(z, z_{i+1}, z_{i+2}, ..., z_k)$
- Return z

About the Traceback

- No extra (asymptotic) expense.
 - Linear traversal over the intermediate factors.
- The factor operations for both sum-product
 VE and max-product VE can be generalized.
 - Example: get the K most likely assignments

Eliminating One Variable (Max-Product Version with Bookkeeping)

Input: Set of factors Φ , variable Z to eliminate

Output: new set of factors Ψ

- 1. Let $\Phi' = \{ \varphi \in \Phi \mid Z \in Scope(\varphi) \}$
- 2. Let $\Psi = \{ \varphi \in \Phi \mid Z \notin Scope(\varphi) \}$
- 3. Let T be $\max_{Z} \prod_{\phi \in \Phi'} \varphi$
 - Let ψ be $\prod_{\phi \in \Phi}$ φ (bookkeeping)
- 4. Return $\Psi \cup \{\tau\}$, ψ

Variable Elimination (Max-Product Version with Decoding)

Input: Set of factors Φ, ordered list of variables Z to eliminate

Output: new factor

- 1. For each $Z_i \subseteq \mathbf{Z}$ (in order):
 - Let $(Φ, ψ_{Z_i})$ = Eliminate-One $(Φ, Z_i)$
- 2. Return $\prod_{\phi \in \Phi} \varphi$, Traceback($\{\psi_{Z_i}\}$)

Variable Elimination Tips

- Any ordering will be correct.
- Most orderings will be too expensive.
- There are heuristics for choosing an ordering (you are welcome to find them and test them out).

(Rocket Science: True MAP)

- Evidence: X = x
- Query: Y
- Other variables: **Z** = **V** \ **X** \ **Y**

$$egin{array}{lll} oldsymbol{y}^* &=& rg \max_{oldsymbol{y} \in \mathrm{Val}(oldsymbol{Y})} P(oldsymbol{Y} = oldsymbol{y} \mid oldsymbol{X} = oldsymbol{x}) \\ &=& rg \max_{oldsymbol{y} \in \mathrm{Val}(oldsymbol{Y})} \sum_{oldsymbol{z} \in \mathrm{Val}(oldsymbol{Z})} P(oldsymbol{Y} = oldsymbol{y}, oldsymbol{Z} = oldsymbol{z} \mid oldsymbol{X} = oldsymbol{x}) \end{array}$$

- First, marginalize out Z, then do MAP inference over Y given X = x
- This is not usually attempted in NLP, with some exceptions.

Parting Shots

- You will probably never implement the general variable elimination algorithm.
- You will rarely use exact inference.

 There is value in understanding the problem that approximation methods are trying to solve, and what an exact (if intractable) solution would look like!

Lecture 3: Structures and Decoding

Two Meanings of "Structure"

- Yesterday: structure of a graph for modeling a collection of random variables together.
- Today: linguistic structure.
 - Sequence labelings (POS, IOB chunkings, ...)
 - Parse trees (phrase-structure, dependency, ...)
 - Alignments (word, phrase, tree, ...)
 - Predicate-argument structures
 - Text-to-text (translation, paraphrase, answers, ...)

A Useful Abstraction?

- I think so.
- Brings out commonalities:
 - Modeling formalisms (e.g., linear models with features)
 - Learning algorithms (lectures 4-6)
 - Generic inference algorithms
- Permits sharing across a wider space of problems.
- Disadvantage: hides engineering details.

Familiar Example: Hidden Markov Models

- X and Y are both sequences of symbols
 - X is a sequence from the vocabulary Σ
 - \mathbf{Y} is a sequence from the state space Λ

$$p(\boldsymbol{X} = \boldsymbol{x}, \boldsymbol{Y} = \boldsymbol{y}) = \left(\prod_{i=1}^{n} p(x_i \mid y_i) p(y_i \mid y_{i-1})\right) p(stop \mid y_n)$$

- Parameters:
 - Transitions p(y' | y)
 - including p(stop | y), p(y | start)
 - Emissions p(x | y)

• The joint model's independence assumptions are easy to capture with a Bayesian network.

$$p(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y}) = \left(\prod_{i=1}^{n} p(x_i \mid y_i) p(y_i \mid y_{i-1})\right) p(stop \mid y_n)$$

 The joint model instantiates dynamic Bayesian networks.

$$p(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y}) = \left(\prod_{i=1}^{n} p(x_i \mid y_i) p(y_i \mid y_{i-1})\right) p(stop \mid y_n)$$

template that gets copied as many times as needed

• Given X's value as evidence, the dynamic part becomes unnecessary, since we know n.

$$p(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y}) = \left(\prod_{i=1}^{n} p(x_i \mid y_i) p(y_i \mid y_{i-1})\right) p(stop \mid y_n)$$

 The usual inference problem is to find the most probable value of Y given X = x.

 The usual inference problem is to find the most probable value of Y given X = x.

Factor graph:

 The usual inference problem is to find the most probable value of Y given X = x.

 Factor graph after reducing factors to respect evidence:

 The usual inference problem is to find the most probable value of Y given X = x.

Clever ordering should be apparent!

- When we eliminate Y₁, we take a product of three relevant factors.
 - p(Y₁ | start)
 - $\eta(Y_1) = \text{reduced } p(x_1 \mid Y_1)$
 - $p(Y_2 | Y_1)$

• When we eliminate Y_1 , we first take a product of two factors that only involve Y_1 .

- When we eliminate Y_1 , we first take a product of two factors that only involve Y_1 .
- This is the Viterbi probability vector for Y₁.

- When we eliminate Y_1 , we first take a product of two factors that only involve Y_1 .
- This is the Viterbi probability vector for Y₁.
- Eliminating Y₁ equates to solving the Viterbi probabilities for Y₂.

- Product of all factors involving Y₁, then reduce.
 - $\phi_2(Y_2) = \max_{y \in Val(Y_1)} (\phi_1(y) \times p(Y_2 \mid y))$
 - This factor holds Viterbi probabiliiesy for Y₂.

- When we eliminate Y₂, we take a product of the analogous two relevant factors.
- Then reduce.
 - $\phi_3(Y_3) = \max_{y \in Val(Y_2)} (\phi_2(y) \times p(Y_3 \mid y))$

- At the end, we have one final factor with one row, ϕ_{n+1} .
- This is the score of the best sequence.
- Use backtrace to recover values.

Why Think This Way?

- Easy to see how to generalize HMMs.
 - More evidence
 - More factors
 - More hidden structure
 - More dependencies
- Probabilistic interpretation of factors is not central to finding the "best" Y ...
 - Many factors are not conditional probability tables.

Generalization Example 1

Each word also depends on previous state.

Generalization Example 2

• "Trigram" HMM

Generalization Example 3

 Aggregate bigram model (Saul and Pereira, 1997)

General Decoding Problem

- Two structured random variables, X and Y.
 - Sometimes described as collections of random variables.
- "Decode" observed value X = x into some value of Y.

- Usually, we seek to maximize some score.
 - E.g., MAP inference from yesterday.

Linear Models

- Define a feature vector function **g** that maps (**x**, **y**) pairs into d-dimensional real space.
- Score is linear in g(x, y).

$$score(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

 $\boldsymbol{y}^{*} = \arg \max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$

- Results:
 - decoding seeks y to maximize the score.
 - learning seeks w to ... do something we'll talk about later.
- Extremely general!

Generic Noisy Channel as Linear Model

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} \log (p(\boldsymbol{y}) \cdot p(\boldsymbol{x} \mid \boldsymbol{y}))$$

$$= \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{y}) + \log p(\boldsymbol{x} \mid \boldsymbol{y})$$

$$= \arg \max_{\boldsymbol{y}} w_{\boldsymbol{y}} + w_{\boldsymbol{x}|\boldsymbol{y}}$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

 Of course, the two probability terms are typically composed of "smaller" factors; each can be understood as an exponentiated weight.

Max Ent Models as Linear Models

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{y} \mid \boldsymbol{x})$$

$$= \arg \max_{\boldsymbol{y}} \log \frac{\exp \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})}{z(\boldsymbol{x})}$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) - \log z(\boldsymbol{x})$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

HMMs as Linear Models

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{x}, \boldsymbol{y})
= \arg \max_{\boldsymbol{y}} \left(\sum_{i=1}^{n} \log p(x_i \mid y_i) + \log p(y_i \mid y_{i-1}) \right) + \log p(stop \mid y_n)
= \arg \max_{\boldsymbol{y}} \left(\sum_{i=1}^{n} w_{y_i \downarrow x_i} + w_{y_{i-1} \to y_i} \right) + w_{y_n \to stop}
= \arg \max_{\boldsymbol{y}} \sum_{y,x} w_{y \downarrow x} freq(y \downarrow x; \boldsymbol{y}, \boldsymbol{x}) + \sum_{y,y'} w_{y \to y'} freq(y \to y'; \boldsymbol{y})
= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

Running Example

- IOB sequence labeling, here applied to NER
- Often solved with HMMs, CRFs, M³Ns ...

feature function $g: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$		$g(oldsymbol{x},oldsymbol{y})$	$g(oldsymbol{x},oldsymbol{y}')$
bias:	count of i s.t. $y_i = B$	5	4
	count of i s.t. $y_i = 1$	1	1
	count of i s.t. $y_i = 0$	14	15
lexical:	count of i s.t. $x_i = Britain$ and $y_i = B$	1	0
	count of i s.t. $x_i = Britain$ and $y_i = I$	0	0
	count of i s.t. $x_i = Britain$ and $y_i = 0$	0	1
down cased:	count of i s.t. $lc(x_i) = britain$ and $y_i = B$	1	0
	count of i s.t. $lc(x_i) = britain$ and $y_i = 1$	0	0
	count of i s.t. $lc(x_i) = britain$ and $y_i = 0$	0	1
	count of i s.t. $lc(x_i) = sent$ and $y_i = 0$	1	1
	count of i s.t. $lc(x_i) = warships$ and $y_i = 0$	1	1
shape:	count of i s.t. $shape(x_i) = Aaaaaaa$ and $y_i = B$	3	2
	count of i s.t. $shape(x_i) = Aaaaaaa$ and $y_i = I$	1	1
	count of i s.t. $shape(x_i) = Aaaaaaa$ and $y_i = 0$	0	1
prefix:	count of i s.t. $pre_1(x_i) = B$ and $y_i = B$	2	1
	count of i s.t. $pre_1(x_i) = B$ and $y_i = I$	0	0
	count of i s.t. $pre_1(x_i) = B$ and $y_i = 0$	0	1
	count of i s.t. $pre_1(x_i) = s$ and $y_i = 0$	2	2
	count of i s.t. $shape(pre_1(x_i)) = A$ and $y_i = B$	5	4
	count of i s.t. $shape(pre_1(x_i)) = A$ and $y_i = I$	1	1
	count of i s.t. $shape(pre_1(x_i)) = A$ and $y_i = 0$	0	1
	$\llbracket shape(pre_1(x_1)) = A \wedge y_1 = B rbracket$	1	0
	$\llbracket shape(pre_1(x_1)) = A \wedge y_1 = O rbracket$	0	1
gazetteer:	count of i s.t. x_i is in the gazetteer and $y_i = B$	2	1
	count of i s.t. x_i is in the gazetteer and $y_i = 1$	0	0
	count of i s.t. x_i is in the gazetteer and $y_i = 0$	0	1
	count of i s.t. $x_i = sent$ and $y_i = 0$	1	1

(What is *Not* A Linear Model?)

Models with hidden variables

$$\arg \max_{\boldsymbol{y}} p(\boldsymbol{y} \mid \boldsymbol{x}) = \arg \max_{\boldsymbol{y}} \sum_{\boldsymbol{z}} p(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$$

Models based on non-linear kernels

$$rg \max_{m{y}} \mathbf{w}^{ op} \mathbf{g}(m{x}, m{y}) = rg \max_{m{y}} \sum_{i=1}^{N} lpha_i K\left(\langle m{x}_i, m{y}_i
angle, \langle m{x}, m{y}
angle
ight)$$

Decoding

- For HMMs, the decoding algorithm we usually think of first is the Viterbi algorithm.
 - This is just one example.
- We will view decoding in five different ways.
 - Sequence models as a running example.
 - These views are not just for HMMs.
 - Sometimes they will lead us back to Viterbi!

Five Views of Decoding

1. Probabilistic Graphical Models

- View the linguistic structure as a collection of random variables that are interdependent.
- Represent interdependencies as a directed or undirected graphical model.
- Conditional probability tables (BNs) or factors (MNs) encode the probability distribution.

Inference in Graphical Models

- General algorithm for exact MAP inference: variable elimination.
 - Iteratively solve for the best values of each variable conditioned on values of "preceding" neighbors.
 - Then trace back.

The Viterbi algorithm is an instance of max-product variable elimination!

MAP is Linear Decoding

Bayesian network:

$$\sum_{i} \log p(x_i \mid \text{parents}(X_i))$$
$$+ \sum_{j} \log p(y_j \mid \text{parents}(Y_j))$$

Markov network:

$$\sum_{C} \log \phi_C \left(\{x_i\}_{i \in C}, \{y_j\}_{j \in C} \right)$$

• This only works if every variable is in X or Y.

Inference in Graphical Models

- Remember: more edges make inference more expensive.
 - Fewer edges means stronger independence.
- Really pleasant:

Inference in Graphical Models

- Remember: more edges make inference more expensive.
 - Fewer edges means stronger independence.
- Really unpleasant:

2. Polytopes

"Parts"

 Assume that feature function g breaks down into local parts.

$$\mathbf{g}(oldsymbol{x},oldsymbol{y}) \;\; = \;\; \sum_{i=1}^{\#parts(oldsymbol{x})} \mathbf{f}(\Pi_i(oldsymbol{x},oldsymbol{y}))$$

- Each part has an alphabet of possible values.
 - Decoding is choosing values for all parts, with consistency constraints.
 - (In the graphical models view, a part is a clique.)

Example

- One part per word, each is in {B, I, O}
- No features look at multiple parts
 - Fast inference
 - Not very expressive

Example

- One part per bigram, each is in {BB, BI, BO, IB, II, IO, OB, OO}
- Features and constraints can look at pairs
 - Slower inference
 - A bit more expressive

Geometric View

- Let $z_{i,\pi}$ be 1 if part *i* takes value π and 0 otherwise.
- **z** is a vector in $\{0, 1\}^N$
 - -N = total number of localized part values
 - Each z is a vertex of the unit cube

Score is Linear in z

$$\begin{array}{lll} \arg\max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) & = & \arg\max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \mathbf{f}(\Pi_{i}(\boldsymbol{x}, \boldsymbol{y})) \\ & = & \arg\max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \sum_{\boldsymbol{\pi} \in \mathrm{Values}(\Pi_{i})} \mathbf{f}(\boldsymbol{\pi}) \mathbf{1} \{ \Pi_{i}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\pi} \} \\ & = & \arg\max_{\boldsymbol{z} \in \mathcal{Z}_{\boldsymbol{x}}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \sum_{\boldsymbol{\pi} \in \mathrm{Values}(\Pi_{i})} \mathbf{f}(\boldsymbol{\pi}) \mathbf{1} \{ \Pi_{i}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\pi} \} \\ & = & \arg\max_{\boldsymbol{z} \in \mathcal{Z}_{\boldsymbol{x}}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \sum_{\boldsymbol{\pi} \in \mathrm{Values}(\Pi_{i})} \mathbf{f}(\boldsymbol{\pi}) \mathbf{1} \{ \Pi_{i}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\pi} \} \\ & = & \arg\max_{\boldsymbol{z} \in \mathcal{Z}_{\boldsymbol{x}}} \mathbf{w}^{\top} \mathbf{F}_{\boldsymbol{x}} \mathbf{z} \\ & = & \arg\max_{\boldsymbol{z} \in \mathcal{Z}_{\boldsymbol{x}}} \left(\mathbf{w}^{\top} \mathbf{F}_{\boldsymbol{x}} \right) \mathbf{z} \end{array}$$

Polyhedra

- Not all vertices of the N-dimensional unit cube satisfy the constraints.
 - E.g., can't have $z_{1,BI} = 1$ and $z_{2,BI} = 1$
- Sometimes we can write down a small (polynomial number) of linear constraints on z.
- Result: linear objective, linear constraints, integer constraints ...

Integer Linear Programming

- Very easy to add new constraints and non-local features.
- Many decoding problems have been mapped to ILP (sequence labeling, parsing, ...), but it's not always trivial.
- NP-hard in general.
 - But there are packages that often work well in practice (e.g., CPLEX)
 - Specialized algorithms in some cases
 - LP relaxation for approximate solutions

Remark

- Graphical models assumed a probabilistic interpretation
 - Though they are not always learned using a probabilistic interpretation!
- The polytope view is agnostic about how you interpret the weights.
 - It only says that the decoding problem is an ILP.