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Quick Recap

* Yesterday:
— Bayesian networks and some formal properties
— Markov networks and some formal properties

— Exact marginal inference using variable
elimination
e Sum-product version

* Beginnings of the max-product version



Variable Elimination for
Conditional Probabilities

Input: Graphical model onV, set of query variables
Y, evidence X = x

Output: factor ¢ and scalar a
1. @ = factors in the model

2.Reduce factors in @ by X = x

3.Choose variable orderingonZ =V \Y\X
4. = Variable-Elimination(®, Z)

5.0 = ZzEVaI(Z)(p(Z)

6. Return ¢, a




From Marginals to MAP

* Replace factor marginalization steps with
maximization.
— Add bookkeeping to keep track of the maximizing
values.
 Add a traceback at the end to recover the
solution.

* This is analogous to the connection between the
forward algorithm and the Viterbi algorithm.

— Ordering challenge is the same.



Factor Maximization

* Given Xand Y (Y € X), we can turn a factor
(X, Y) into a factor Y(X) via maximization:

w(X) — m&x¢(X, Y)

* We can refer to this new factor by max, ¢.



Factor Maximization

* Given Xand Y (Y € X), we can turn a factor
(X, Y) into a factor Y(X) via maximization:

H(X) = maxo(X,Y)

Y
A |B |c |e(ABC
0 0 0 0.9 AlC lJ)(A,C)
o |0 |1 0.3 o 1o 11
o |1 |o 1.1 ::>
o |1 |1 1.7 0]1 1.7
1 o |o 0.4 110 11
T lo |1 07| maximizing out” B 1|1 0.7
1 |1 |o 1.1
1 |1 |1 0.2



Distributive Property

* A useful property we exploited in variable
elimination:

X ¢ Scope(¢1) = qu $2) =1+ > b
X

 Under the same conditions, factor
multiplication distributes over max, too:

m)‘?x(% - ¢2) = ¢1 - Max P2

X



Traceback

Input: Sequence of factors with associated
variables: (y, ..., U,)
Output: z°

* Each , is a factor with scope including Z and
variables eliminated after Z.

e Work backwards from i =k to 1:

— Let z, = arg max, W,(z, z,,,, Z;,5, -, Z;)

e Return z




About the Traceback

* No extra (asymptotic) expense.

— Linear traversal over the intermediate factors.

* The factor operations for both sum-product
VE and max-product VE can be generalized.

— Example: get the K most likely assignments



Eliminating One Variable
(Max-Product Version with Bookkeeping)

Input: Set of factors @, variable Z to eliminate
Output: new set of factors W

Let® ={p € ® | Z E Scope(p)}
LetW={p € ® | Z< Scope(p)}
.Let T be max; [Tyeq @

— Lety be TT,cq @ (bookkeeping)
4. Return W U {1}, Y




Variable Elimination
(Max-Product Version with Decoding)

Input: Set of factors @, ordered list of variables
Z to eliminate

Output: new factor
1.For each Z. € Z (in order):

— Let (@, Y,) = Eliminate-One(®, Z,)
2.Return T, @, Traceback({W,})




Variable Elimination Tips

* Any ordering will be correct.
 Most orderings will be too expensive.

* There are heuristics for choosing an ordering
(you are welcome to find them and test them
out).



(Rocket Science: True MAP)

Evidence: X =x
Query: Y
Other variables: Z=V\X\Y

* p— a a P Y X =&
J] rgyergafy) ( Y | )

— ma PY = =2z | X =
i, L P uze X ow
zeVal(Z)
First, marginalize out Z, then do MAP inference over Y

given X = X

This is not usually attempted in NLP, with some exceptions.



Parting Shots

* You will probably never implement the
general variable elimination algorithm.

* You will rarely use exact inference.

* There is value in understanding the problem
that approximation methods are trying to
solve, and what an exact (if intractable)
solution would look like!



Lecture 3:
Structures and Decoding



Two Meanings of “Structure”

* Yesterday: structure of a graph for modeling a
collection of random variables together.
* Today: linguistic structure.
— Sequence labelings (POS, 10B chunkings, ...)
— Parse trees (phrase-structure, dependency, ...)
— Alignments (word, phrase, tree, ...)
— Predicate-argument structures

— Text-to-text (translation, paraphrase, answers, ...)



A Useful Abstraction?

| think so.

Brings out commonalities:

— Modeling formalisms (e.g., linear models with
features)

— Learning algorithms (lectures 4-6)
— Generic inference algorithms

Permits sharing across a wider space of
problems.

Disadvantage: hides engineering details.



Familiar Example:
Hidden Markov Models



Hidden Markov Model

e XandY are both sequences of symbols
— X is a sequence from the vocabulary 2
— Y is a sequence from the state space A

X =x2Y=y) = (Hp(ﬂ% | yi)p(yi | yz’l)) p(stop | yn)
e Parameters: -

— Transitions p(y’ | v)

* including p(stop | y), ply | )
— Emissions p(x | v)



Hidden Markov Model

* The joint model’ s independence assumptions
are easy to capture with a Bayesian network.

X =zY=y) = (Hp(%; | yi)p(yi | yu)) p(stop | yn)

1=1

Y1Y2Y3... Y, ™ stop



Hidden Markov Model

* The joint model instantiates dynamic
Bayesian networks.

<Hp(37z | yi)p(yi | yzl)) p(stop | yn)

template that
gets copied as
many times as
needed



Hidden Markov Model

* Given X s value as evidence, the dynamic part
becomes unnecessary, since we know n.

X =zY=y) = (Hp(a%; | yi)p(yi | yu)) p(stop | yn)

1=1

| Yl ) \ Y2 ) \ Y3 ] \ Yn ]



Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

‘ Yl | | Y2 | ‘ Y3 | - | Yn |



Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

OQZDD e



Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

e Factor graph after reducing factors to respect
evidence:



Hidden Markov Model

 The usual inference problem is to find the
most probable value of Y given X = x.

* Clever ordering should be apparent!

i \ Yl & gl Y2 ™ il Y3 ™ i ee . il Yn I .



Hidden Markov Model

* When we eliminate Y,, we take a product of
three relevant factors.

* p(Y, | start)
* n(Y,) =reduced p(x, | Y,)
* p(Y, | Y,)



Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y,.

2 p(Y, | start)
Y
- - - ~
Yinl
Y1 - - -
Y,

n(Y,) = reduced p(x, | Y,)

YAl



Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y,.

* This is the Viterbi probability vector for Y,.




Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y,.

* This is the Viterbi probability vector for Y,.

* Eliminating Y, equates to solving the Viterbi
probabilities for Y,

g

p(Y | Y,)




Hidden Markov Model

* Product of all factors involving Y,, then
reduce.

* §,(Y,) = max ey, (Paly) X p(Y, | y))
* This factor holds Viterbi probabiliiesy for Y,



Hidden Markov Model

* When we eliminate Y,, we take a product of
the analogous two relevant factors.

* Then reduce.
© d5(Y3) = max,eyayy,) (Pay) X p(Ys | y))



Hidden Markov Model

At the end, we have one final factor with one
row, ¢

* This is the score of the best sequence.
* Use backtrace to recover values.



Why Think This Way?

* Easy to see how to generalize HMMs.
— More evidence
— More factors
— More hidden structure
— More dependencies

* Probabilistic interpretation of factors is not
central to finding the “best” Y ...

— Many factors are not conditional probability
tables.



Generalization Example 1

Iy

X, X3

X Xy Xs

* Each word also depends on previous state.



Generalization Example 2

PN PN PN N PN

e “Trigram” HMM



Generalization Example 3

X 4 X 4 X 4 X 4 X
X, X, X, X, X,

* Aggregate bigram model (Saul and Pereira,
1997)



General Decoding Problem

e Two structured random variables, X and Y.

— Sometimes described as collections of random
variables.

e “Decode” observed value X = x into some
value of Y.

e Usually, we seek to maximize some score.
— E.g., MAP inference from yesterday.



Linear Models

Define a feature vector function g that maps (x, y) pairs
into d-dimensional real space.

Score is linear in g(x, y).

score(x,y) = WTg(:c, Y)
* T
—  arg max w T,
J g max g(x,y)

Results:
— decoding seeks y to maximize the score.
— learning seeks w to ... do something we’ Il talk about later.

Extremely general!



Generic Noisy Channel as Linear Model

y = argmaxlog (p(y) -p(x|y))

= arg man logp(y) + logp(x | y)

=  argmaX Wy + Wy|y
Y

— argmaxw ' g(x,y)
Y

e Of course, the two probability terms are
typically composed of “smaller” factors; each
can be understood as an exponentiated

weight.



Max Ent Models as Linear Models

y = argmaxlogp(y | x)
Yy

expw ' g(x,y)

= argmaxlog
Y z(x)

(
= argmaxw ' g(x,y) — logz(x)
Y
)

= argmaxw' g(x,y
Y



HMMs as Linear Models

arg max log p(x, y)
Y

arg max (Z log p(x; | yi) +log p(yi | ym)) +log p(stop | yn)
1=1

n
arg m;}X ( § :wyilxi T wyz’1—>yz’> T Wy,, —stop
1=1

argmax y wy o freq(y | 239, @) + Y wy—y frealy = y'sy)
Y, Y.y’

argmax w ' g(x,y)
Y



Running Example

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

T =
y = B 0 0 0 0 B | B O O
y = O 0 0 0 0 B | B O O

11 12 13 14 15 16 17 15 19 20

Britons stranded by Eyjafjallajokull ’'s volcanic ash cloud
B 0 0 B 0 0 0 0 O O
B 0 0 B 0 0 0 0 O O

* |OB sequence labeling, here applied to NER
* Often solved with HMMs, CRFs, M3Ns ...



feature function g: A x Y - R

9(z,y)

9(z,y")

bias: count of ¢ s.t.
count of ¢ s.t.
count of 7 s.t.

Yi =
Yi =
Yi =

- O

lezical: count of ¢ s.t.
count of 7 s.t.
count of ¢ s.t.

z; = Britain and y; = B
z; = Britain and y; = |
z; = Britain and y; = O

douwncased: count of i s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.
count of i s.t.

le(z;) = britain and y; = B
le(z;) = britain and y; = |
le(z;) = britain and y; = O
le(z;) = sent and y; = O
le(z;) = warships and y; = O

shape: count of i s.t.
count of 7 s.t.
count of ¢ s.t.

shape(z;) = Aaaaaaa and y; = B
shape(z;) = Aaaaaaa and y; = |
shape(z;) = Aaaaaaa and y; = O

prefiz: count of 7 s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.
count of i s.t.

pre,(z;) = B and y; = B
pre,(z;) = B and y; = |
pre,(z;) = Band y; =0
pre,(z;) =sand y; =0
shape(pre,(z;)) = Aand y; =B
shape(pre,(z;)) = Aand y; = |
shape(pre,(z;)) = Aand y; =0

[shape(pre,(z1)) = A Ay = B]
[shape(pre,(z1)) = ANy, = O]

gazetteer:  count of i s.t.
count of 7 s.t.
count of i s.t.
count of 7 s.t.

z,; is in the gazetteer and y; = B
z; is in the gazetteer and y; = |
z; is in the gazetteer and y;, = O
z; = sent and y; = O

O O NIOHF O MF OCIN OONIOF W OO MO O i

bt et O b O RN O R N O OO OO




(What is Not A Linear Model?)

* Models with hidden variables

argmax p(y | ) = argmax Y p(y, z | =)
Y Yy ~

e Models based on non-linear kernels

argmaxw ' g(x,y) = arg maxZozz (xi,y,), (x,
Y



Decoding

* For HMMs, the decoding algorithm we usually
think of first is the Viterbi algorithm.

— This is just one example.

 We will view decoding in five different ways.
— Sequence models as a running example.
— These views are not just for HMMs.
— Sometimes they will lead us back to Viterbi!



Five Views of Decoding



1. Probabilistic Graphical Models

e View the linguistic structure as a collection of
random variables that are interdependent.

* Represent interdependencies as a directed or
undirected graphical model.

e Conditional probability tables (BNs) or factors
(MNs) encode the probability distribution.



Inference in Graphical Models

* General algorithm for exact MAP inference:
variable elimination.

— Iteratively solve for the best values of each

variable conditioned on values of “preceding”
neighbors.

— Then trace back.

The Viterbi algorithm is an instance of
max-product variable elimination!




MAP is Linear Decoding

o BayeSian network: Zlogp(xi | parents(X;))

+ Z log p(y; | parents(Y;))
J

e Markov network:
E log pc ({zi}iec,{Yj}iec)
C

* This only works if every variable isin X or Y.



Inference in Graphical Models

e Remember: more edges make inference more
expensive.

— Fewer edges means stronger independence.

* Really pleasant:

$4dd3



Inference in Graphical Models

e Remember: more edges make inference more
expensive.

— Fewer edges means stronger independence.

* Really unpleasant:

T e




2. Polytopes



“Parts”

* Assume that feature function g breaks down
into local parts.

#parts(x)

glxz,y) = Y f(lli(z,y))

1=1

* Each part has an alphabet of possible values.

— Decoding is choosing values for all parts, with
consistency constraints.

— (In the graphical models view, a part is a clique.)



Example

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

]
[

* One part per word, eachisin {B, I, O}
* No features look at multiple parts

— Fast inference
— Not very expressive



Example

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

B R D N —
B N D

i

* One part per bigram, eachis in {BB, Bl, BO,
IB, 11, 10, OB, OO}

* Features and constraints can look at pairs
— Slower inference
— A bit more expressive



Geometric View

1 2 3 4 5 6 T 5 9 10
Britain sent warships across the English Channel Monday to rescue

B R D N —
B N D

i

* Letz belif partitakesvaluemmandO
otherwise.

e zisavectorin{0, 1}V
— N = total number of localized part values
— Each z is a vertex of the unit cube



Score is Linearin z

#parts(x)
argmaxw ' g(x,y) = argmaxw' Z f(IL;(x,y))
Y v i=1
#parts(x)
— argmaxw' Z Z f(m)1{Il;(x,y) = 7}
Y 1=1 7€ Values(I1;)
not really 4t parts(x)
equal; need _ T ¢ |
to transform P Z_: Vlz: " (70) 2,z
back to gety =1 meValues(Il;)

= argmaxw Foz
ZEZ,

_ T
= argmax (w (w'Fy)z



Polyhedra
y

 Not all vertices of the N-dimensional unit cube
satisfy the constraints.

—E.g,can thavez, g=1andz,g=1
e Sometimes we can write down a small

(polynomial number) of linear constraints on
Z.

* Result: linear objective, linear constraints,
Integer constraints ...






Integer Linear Programming

* Very easy to add new constraints and non-local
features.

 Many decoding problems have been mapped to

ILP (sequence labeling, parsing, ...), but it’ s not
always trivial.

* NP-hard in general.

— But there are packages that often work well in
practice (e.g., CPLEX)

— Specialized algorithms in some cases
— LP relaxation for approximate solutions






Remark

* Graphical models assumed a probabilistic
Interpretation

— Though they are not always learned using a
probabilistic interpretation!

* The polytope view is agnostic about how you
interpret the weights.

— It only says that the decoding problem is an ILP.



