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Where We Left Off

1

* Graphical models ... inference ... “max
inference and decoding with linear models.

* Five views of decoding:

1. Probabilistic graphical models
2. Polytopes and integer linear programming
3. ?
4, ?
5. 7



3. Weighted Parsing



Grammars

e Grammars are often associated with natural
language parsing, but they are extremely
powerful for imposing constraints.

* We can add weights to them.

— HMMs are a kind of weighted regular grammar
(closely connected to WFSAS)

— PCFGs are a kind of weighted CFG
— Many, many more.

 Weighted parsing: find the maximum-weighted
derivation for a string x.



Decoding as Weighted Parsing

* Every valid yis a grammatical derivation
(parse) for x.

— HMM: sequence of “grammatical” states is one
allowed by the transition table.

 Augment parsing algorithms with weights and
find the best parse.

The Viterbi algorithm is an instance of
recognition by a weighted grammar!




BIO Tagging as a CFG
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* Weighted (or probabilistic) CKY is a dynamic
programming algorithm very similar in
structure to classical CKY.



4. Paths and Hyperpaths



Best Path

* General idea: take x and build a graph.
e Score of a path factors into the edges.

argmaxw ' g(x,y) = argmaxw' g f(e)1{e is crossed by y’s path}
Yy Y
ecEdges

* Decoding is finding the best path.

The Viterbi algorithm is an instance of
finding a best path!




“Lattice” View of Viterbi
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Minimum Cost Hyperpath

General idea: take x and build a hypergraph.

Score of a hyperpath factors into the
hyperedges.

Decoding is finding the best hyperpath.

This connection was elucidated by Klein and
Manning (2002).



Parsing as a Hypergraph

A

EEOEE

o0

freedom
23




Parsing as a Hypergraph

000

cf. “Dean for democracy’




Parsing as a Hypergraph

Jones freedom
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Forced to work on his thesis, sunshine streaming in
the window, Mike experienced a ...




Parsing as a Hypergraph
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Forced to work on his thesis, sunshine streaming in
the window, Mike began to ...
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Why Hypergraphs?

e Useful, compact encoding of the hypothesis
space.

— Build hypothesis space using local features, maybe
do some filtering.

— Pass it off to another module for more fine-
grained scoring with richer or more expensive
features.



5. Weighted Logic Programming



Logic Programming

e Start with a set of axioms and a set of inference
rules.

VA, C, ancestor(A,C) <« parent(A,C)
VA, C, ancestor(A,C) <« \/ ancestor( A, B) A parent(B, C)
B

* The goal is to prove a specific theorem, goal.

* Many approaches, but we assume a deductive
approach.

— Start with axioms, iteratively produce more theorems.
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Weighted Logic Programming

* Twist: axioms have weights.
* Want the proof of goal with the best score:
argmaxw g(x,y) = argmaxw.' Z f(a)freq(a;y)
Yy

Y
aEAxioms

e Note that axioms can be used more than once
in a proof (y).



Whence WLP?

* Shieber, Schabes, and Pereira (1995): many

parsing algorithms can be understood in the
same deductive logic framework.

e Goodman (1999): add weights, get many
useful NLP algorithmes.

e Eisner, Goldlust, and Smith (2004, 2005):
semiring-generic algorithms, Dyna.



Dynamic Programming

* Most views (exception is polytopes) can be
understood as DP algorithms.
— The low-level procedures we use are often DP.

— Even DP is too high-level to know the best way to
implement.

* DP does not imply polynomial time and space!

— Most common approximations when the desired state
space is too big: beam search, cube pruning, agendas
with early stopping, ...

— Other views suggest others.



Summary

* Decoding is the general problem of choosing a
complex structure.
— Linguistic analysis, machine translation, speech
recognition, ...
— Statistical models are usually involved (not
necessarily probabilistic).
* No perfect general view, but much can be
gained through a combination of views.



Lecture 4: Supervised Learning



Quick Recap

Graphical models
Inference

Decoding for models of structure

Finally, we get to learning.

— Today, assume a collection of N pairs (X, y);
supervised learning with complete data.



LOSS

Let h be a hypothesis (an instantiated, predictive
model).

loss(x, y; h) = a measure of how badly h performs
on input x if y is the correct output.

How to decide what “loss” should be?
1. computational expense

2. knowledge of actual costs of errors

3. formal foundations enabling theoretical



Risk

* There is some true distribution p* over input,
output pairs (X, Y).

* Under that distribution, what do we expect
h’ s loss to be?

Ep«(x.v) [loss(X,Y ; h)]

e We don’ t have p*, but we have the empirical
distribution, giving empirical risk:

Esx v)lloss(X,Y; h)] Zloss i, Y;;h



Empirical Risk Minimization

 Provides a criterion to decide on h:

N
min % ; loss(x;,y;: h)

* Background preferences over h can be
included in regularized empirical risk
minimization:

1 N
hmeiﬁ ~ Z loss(x;,y;; h) + R(h)

1=1



Parametric Assumptions

* Typically we do not move in “h-space,” but
rather in the space of continuously-
parameterized predictors.

N
1
min - Z loss(x;,y;; h) + R(h)

=1

N
1
v{,%i]éld N Z loss(xi,y;; hw) + R(w)
i=1



Three Kinds of Loss Functions

* Error
— Could be zero-one, or task-specific.

— Mean squared error makes sense for continuous
predictions and is used in regression.

* Log loss
— Probabilistic interpretation (“likelihood”)
* Hinge loss

— Geometric interpretation (“margin’)



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

e Maximum likelihood estimation:
R(w) is O for models in the family, +oo for

other models.

 Maximum a posteriori (MAP) estimation:
R(w) is —log p(w)

e Often called generative modeling.



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

Examples:

* N-gram language models

* Supervised HMM taggers

* Charniak, Collins, and Stanford parsers



Log Loss (First Version)

1

N
v{’réiléld N ; loss(x;, y;; hw) + R(W)

loss(x,y; hw) = —logpw(z,vy)

Computationally ...

Convex and differentiable.

Closed form for directed, multinomial-based models p,,.
— Count and normalize!

In other cases, requires posterior in,ference, which can be
expensive depending on the model s structure.

Linear decoding (for some parameterizations).



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

Error ...
* No notion of error.

* Learner wins by moving as much probability
mass as possible to training examples.



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

e Consistency: if the true model is in the right
family, enough data will lead you to it.



Log Loss (First Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —logpw(z,vy)

Different parameterizations ...
e Multinomials (BN-like): — ) freq(e; x, y) log pe
- \\/_/

We

* Global log-linear (MN-like): —w"g(z,y) +1log Y expw'g(z',9)

I nyt
T,y

* Locally normalized log-linear:

— > freq(e; z, y) (WTg(e)log > exprg(e’)>

e’'eC(e)



Reflections on Generative Models

Most early solutions are generative.

Most unsupervised approaches are generative.
Some people only believe in generative models.
Sometimes estimators are not as easy as they
seem (“deficiency”).

Start here if there’ s a sensible generative story.

— You can always use a “better” loss function with the
same linear model later on.



Zero-One Loss

N
1

l’l’éiléld N Z lOSS(CBi, Y, hw) =+ R(W)

w i=1

loss(x,Y;hw) = 1{hw(x)#*y}



Zero-One Loss

N
1

Héiléld N Z lOSS(CBi, Y, hw) + R(W)

w i=1

loss(x,y; hw) = H{hw(x)# Yy}

Computationally:
* Piecewise constant. ®

Error: ©
© none



Error as LosSS

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

lass(:r;, Y; hw) — GTTOT(hw("E); y)

Generalizes zero-one, same difficulties.

Example: Bleu-score maximization in machine
translation, with “MERT line search.



Comparison

| Generative (Log Loss)

Computation Convex optimization. Optimizing a
piecewise constant
function.

Error-awareness None ©

Guarantees Consistency. None.



Discriminative Learning

e Various loss functions between log loss and
error.
* Three commonly used in NLP:
— Conditional log loss (“max ent,” CRFs)
— Hinge loss (structural SVMs)
— Perceptron’s loss

« We' Il discuss each, compare, and unify.



