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Where We Left Off

1

* Graphical models ... inference ... “max
inference and decoding with linear models
(five views).

e Supervised learning:

— Log loss
— Error as loss



Comparison

| Generative (Log Loss)

Computation Convex optimization. Optimizing a
piecewise constant
function.

Error-awareness None ©

Guarantees Consistency. None.



Discriminative Learning

e Various loss functions between log loss and
error.
* Three commonly used in NLP:
— Conditional log loss (“max ent,” CRFs)
— Hinge loss (structural SVMs)
— Perceptron’s loss

« We' Il discuss each, compare, and unify.



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

* Can be understood as a generative model over
Y, but does not model X.

— “Conditional” model



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

Examples:
* Logistic regression (for classification)

 MEMMs
* CRFs



Log Loss (Second Version)

1

N
v{’réiléld N ; loss(x;, y;; hw) + R(W)

loss(x,y;hw) = —logpw(y | x)

Computationally ...
e Convex and differentiable.

* Requires posterior inference, which can be
expensive depending on the model’ s structure.

* Linear decoding (for some parameterizations).



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

Error ...
* No notion of error.

* Learner wins by moving as much probability
mass as possible to training examples’ correct
outputs.



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;,y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

e Consistency: if the true conditional model is
in the right family, enough data will lead you
to it.



Log Loss (Second Version)

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y;hw) = —logpw(y | x)

Different parameterizations ...

e Global log-linear (CRF):
© (CRF) —w'g(x,y) +log ) expw'g(x',y)
y/

* Locally normalized log-linear (MEMM):

— > freq(e; z,y) (WTg(e)—log > eXpWTg(e’>)
e e’'cC(e)



Comparing the Two Log Losses

| logpy(ny) -10g pyy | X)

Parameterization Usually Almost always log-
multinomials (BN- linear (MN-like).
like).

Under the usual parameterization ...

Computation Count and Convex
normalize. optimization.

Error-awareness None. Aware of the Y-

prediction task,
(approximates zero-
one).

Guarantees Consistency of joint. Consistency of cond.



Hinge Loss

N

1

v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —WTg(w, y) + mé}XWTg(-’ﬁ, y’) + error(y', Y)
J

* Penalizes the model for letting competitors
get close (in terms of score) to the correct
answery.

— Can penalize them in proportion to their error.



Hinge Loss

N
1
min — Z loss(xi,y;; hw) + R(W)
=1

wERd Nz
loss(@,y; hw) = —w'g(x,y)+maxw' g(x,y')+ error(y’,y)
,y/
Examples ...

 Perceptron (including Collins’ structured version)
— Classic version ignores error term

e SVM and some structured variants:
— Max-margin Markov networks (Taskar et al.)

— MIRA (1-best, k-best)



Hinge Loss

N

1

v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —w g(x,y)+ mé}XWTg(wa y') + error(y’, y)
y

Computationally ...

* Convex, not everywhere differentiable.
— Many specialized techniques now available.

* Requires MAP or “cost-augmented” MAP
inference.

* Linear decoding.



Hinge Loss

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,Y; hw) = —w'g(z,y)+ mé}XWTg(wa y') + error(y’, y)
Y

Error ...
e Builtin.

* Most convenient when error function factors
similarly to features g.



Hinge Loss

N
1
v{’réiléld N Z loss(x;, y;; hw) + R(W)
i=1

loss(x,y; hw) = —WTg(w, y) + mé}XWTg(-’ﬁ, y’) + error(y', Y)
J

e Generalization bounds.

— Not clear how seriously to take these in NLP; may
not be tight enough to be meaningful.

e Often you will find convergence guarantees
for optimization techniques.



They Are All Related

% log » exp [8(w' (g(x,y') — g(=,y)) +verror(y’, y))]

5 v

Conditional log loss 1 0
Perceptron’ s hinge loss oo 0
Structural SVM’ s hinge loss oo >0

Softmax-margin (Gimpel and Smith, 2010) 1 1



CRFs, Max Margin, or Perceptron?

For supervised problems, we do not expect
large differences.
Perceptron is easiest to implement.

— With cost-augmented inference, it should get
better and begins to approach MIRA and M3Ns.

CRFs are best for probability fetishists.

— Probably most appropriate if you are extending
with latent variables; the jury is out.

Not yet “plug and play..”



R(w)

* Regularization term — avoid overfitting

— Usually means “avoid large magnitudes in w’

* (Log) Prior — respect background beliefs about
the predictor h,,



R(w)

Usual starting point: squared L, norm

— Computationally convenient (it’ s strongly convex,
it is its own Fenchel conjugate, ...)

— Probabilistic view: Gaussian prior on weights
(Chen and Rosenfeld, 2000)

— Geometric view: Euclidean distance
(original regularization method in SVMs)

— Only one hyperparameter

R(w) = N|w|3 =X} w]
j



R(w)

* Another option: L;-norm

— Computationally less convenient (not everywhere
differentiable)

— Probabilistic view: Laplacian prior on weights
(originally proposed as “lasso’ in regression)

— Sparsity inducing (“free” feature selection)

R(w) = N[wli =) |uwj
j



R(w)

Lots of attention to this in machine learning.

“Structured sparsity”

— Want groups of features to go to zero, or group-
internal sparsity, or ...

Interpolation between L, and L, — “elastic

7

net

— Sparsity but maybe better behaved

This is not yet “plug and play.”

— Optimization algorithm is heavily affected.



MAP Learning is Inference

 Seeking “most probable explanation” of the
data, in terms of w.

— Explain the data: p(x,y | w)
— Not too surprising: p(w)
* If we think of “W” as another random
variable, MAP learning is MAP inference.
— Looks very different from decoding!

— But at a high level of abstraction, it is the same.



MAP Learning as a Graphical
Model

exp —R(w)
= p(w)
Pw(Y)

St

Pw(X[Y)

* This is a view of learning a “noisy channel”
model.



MAP Learning as a Graphical
Model

Pw(Y | X)

W

X

exp —R(w)
= p(w)

* This is a view of learning in a CRF.



MAP Estimation for CRFs

max,, p(w | x, y), which is MAP inference

iterate to obtain gradient:

sufficient statistics from p(y | x, w), obtained by
posterior inference



How To Think About Optimization

* Depending on your choice of loss and R,
different approaches become available.
— Learning algorithms can interact with inference/
decoding algorithms, too.

* In NLP today, it is probably more important to
focus on the features, error function, and
prior knowledge.

— Decide what you want, and then use the best
available optimization technique.



Key Techniques

e Quasi-Newton — batch method for differentiable
loss functions

— LBFGS, OWLQN when using L, regularization

e Stochastic subgradient ascent — online

— Generalizes perceptron, MIRA, stochastic gradient
ascent

— Sometimes sensitive to step size

— Can often use “mini-batches” to speed up
convergence

e For error minimization: randomization



Pitfalls

* Engineering online learning procedures is
tempting and may help you get better
performance.

— Without at least some analysis in terms of loss, error,
and regularization, it s unlikely to be useful outside
your problem/dataset.

e When randomization is involved, look at variance
across runs (Clark et al., 2011)

* Always tune hyperparameters (e.g.,
regularization strength) on development data!



Major Topics in Current Work

* Coping with approximate inference

* Exploiting incomplete data
— Semisupervised learning
— Creating features from raw text

— Latent variable models (discussed tomorrow)

* Feature management
— Structured sparsity (R)



