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(Logical) Lecture 5:
Hidden Variables



Random Variables in Decoding
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Hidden Variables are Different

e We use the term “hidden variable” (or “latent
variable”) to refer to something we never see.

— Not even in training.
— Sometimes we believe they are real.

— Sometimes we believe they only approximate
reality.



Random Variables in Decoding
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Random Variables in
Supervised Learning
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Latent Variables and Inference

* Both learning and decoding can be still be
understood as inference problems.
 Usually “mixed”:
— some variables are getting maximized

— some variables are getting summed



Word Alignments

Since IBM model 1, word alignments have been the
prototypical hidden variable.

Ultimately, in translation, we do not care what they
are.

Current approach: learn the word alignments
unsupervised, then fix them to their most likely values.

— Then construct models for translation.
Alignment on its own: unsupervised problem.
MT on its own: supervised problem.

MT + alignment: supervised problem with latent
variables.



Alignments in Text-to-Text Problems

* Wang et al. (2007): “Jeopardy” model for
answer ranking in QA.

— Align questions to answers.

— Similar model for paraphrase detection (Das and
Smith, 2009)



Latent Annotations in Parsing

* Treebank categories (N, NN, NP, etc.) are too
coarse-grained.

— Lexicalization (Collins, Eisner)
— Johnson’ s (1998) parent annotation
— Klein and Manning (2003) parser
* Treat the true, fine-grained category as
hidden, and infer it from data.

— Matsuzaki, Petrov, Dreyer, many others.



Richer Formalisms

 Cohnetal. (2009): tree substitution grammar.
— Derived tree is observed (output variable).

— Derivation tree (segmentation into elementary
trees) is hidden.

e Zettlemoyer and Collins (2005 and later): infer
CCG syntax from first-order logical expressions
and sentences.

e Liang et al. (2011): infer semantic
representation from text and database.



Topic Models

* |Infer topics (or topic blends) in documents.
e Latent Dirichlet allocation (Blei et al., 2003) is
a great example.

— Sometimes augmented with an output variable
(Blei and McAuliffe, 2007) — “supervised” LDA.

— Many extensions!



Unsupervised NLP

Clustering (Brown, 1992, many more)
POS tagging (Merialdo, 1994, many more)
Parsing (Pereira and Schabes, Klein and Manning, ...)

Segmentation (word — Goldwater; discourse —
Eisenstein)

Morphology

Lexical semantics
Syntax-semantics correspondences
Sentiment analysis

Coreference resolution

Word, phrase, and tree alignment



Supervised or Unsupervised?

* Depends on the task, not the model.

— | say “unsupervised~ when the output variables
are hidden at training time.



Random Variables

in Unsupervised Learning
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Probabilistic View

* The usual starting point for hidden variables is
maximum likelihood.

— “Input” and “output” do not matter; only
observed/latent.



Random Variables
in Probabilistic Learning
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Empirical Risk View
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* Log-loss

— Equates to maximum marginal likelihood (or MAP if R(w)
is a negated log prior).

— Unlike loss functions in lecture 4, this is not convex!
— EM seeks to solve this problem (but it’ s not the only way).
— Regularization decisions are orthogonal.



Optimizing the Marginal Log-Loss

* EM as inference
* EM as optimization
* Direct optimization



Generic EM Algorithm

Input: w® and observationsv,, v,, ... v
Output: learned w

t=0

Repeat until wt) = wit-1):

— E step: Vi, VL, qz(t)(ﬁ) — Pwv (£ | v;)

— M step: wltth maXY Y q; " (£)log pw (v, £)

— ++t
Return wit




MAP Learning as a Graphical
Model

exp —R(w)
= p(w)
PwlL)

.
Pw(V | L)

 Combined inference (max over w, sum over L) is very
hard.

— If w were fixed, getting the posterior over L wouldn’ t be
so bad.

— If L were fixed, maximizing over w wouldn’ t be so bad.



MAP Learning as a Graphical
Model

exp —R(w) exp —R(w)
= p(w) = p(w)
Pw(L) P, (L)

Pw(V | L)

E step M step



Baum-Welch (EM for HMMs)
as an Example

e E step: forward-backward algorithm (on each
example).

— This is exact marginal inference by variable
elimination.

— The structure of the graphical model lets us do this by
dynamic programming.

— The marginals are probabilities of transition and
emission events at each position.

* M step: MLE based on soft event counts.

— Relative frequency estimation accomplishes MLE for
multinomials.



Baum-Welch as a Graphical Model
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Active Trail!
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No Active Trail in All-Visible Case
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Why Latent Variables
Make Learning Hard

* New intuition: parameters are now
interdependent that were not interdependent
in the fully-visible case.

* |t all goes back to active trails.



“Viterbi” Learning

exp —R(w)
= p(w)
Pw(L)

E—©

Pw(V | L)

* Approximate joint MAP inference over w and
L (most probable explanation inference).

e Loss function: l0ss(V; hyw) = —maxlogpw(v,£)

£



Conditional Models

 EM is usually closely associated with fully
generative approaches.

* You can do the same things with log-linear
models and with conditional models.

— Locally normalized models give flexibility without
requiring global inference (Eisner, 2002).

— Hidden variable CRFs (Quattoni et al., 2007) are
very powerful.



Learning Conditional
Hidden Variable Models

distribution over V,_ is not modeled @

standard conditional model (e.g., CRF)



Optimization for Hidden Variables

« We’ ve described hidden variable learning as
inference problemes.

* |t is more practical, of course, to think about
this as optimization.

 EM can be understood from an optimization
framework, as well.



EM and Likelihood

d(w) = Z log pr(’vz-, £)

 The connection between the goal above and
the EM procedure is not immediately clear.



Optimization View of EM

* A function of w and the collection of q..

* Claim: EM performs coordinate ascent on this
function.



Optimization View of EM
O (w)
Z ( Z qi(£)log q;(£) + Zqi(ﬁ) 10g pow (£ | v;) + log pw (v;) )

£ £ /

* The third term is our actual goal, @. It only
depends on w (not the q;).



Optimization View of EM

O(w)

Z ( Z qi(£)log q;(£) + Z q;(£)10g po (£ | v;) + log pw (v;) )
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 The latter two terms together are precisely what
we maximize on the M step, given the current q..

— This is a concave problem and we solve it exactly.



Optimization View of EM

O(w)

Z ( Z qi(£)log q;(£) + Z q;(£)10g po (£ | v;) + log pw (v;) )

0 £ £ /
Z q:(€) 1og pw (v, £)

14

* Concern: is the M step improving term 2 at
the expense of @ (term 3)?

— No.



O(w)

The M Step
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The M Step

* Each M step, once q; is fixed, maximizes a
bound on the log-likelihood .

— For fixed q,, this is a concave problem we can
solve in closed form in many cases.

* What about the E step?



Optimization View of EM
—D(¢i (") lpw (- | v4)) - P(w)
Z(Zqi(f)long +Zqz ) 10g po (£ | v;) 4 10g pw (v;) )

Z ¢i(£) log pw (vi, £)

e E step considers the first two termes.

* Sets each g, to be equal to the posterior under
the current model.



Coordinate Ascent
—D(¢i (") lpw (- | v4)) | |
> (Zqz-(f) log q; (£ +Zqz ) 10g pos (£ ’Uz')—l—logpw(vz')>
) £

> qi(€)log py (vs, £)

14

* E step fixes w and solves for the g..
* M step fixes all g, and solves for w.



Things People Forget About EM

 Multiple random starts (or non-random
starts), select using likelihood on development

data.
* Variants may help avoid local optima ...



Variants of EM

“Online” variants where we do an E step on
one or a mini-batch of examples are still
coordinate ascent (Neal and Hinton, 1998).

Deterministic annealing: flatten out the q,,
making the function closer to concave.

Stochastic variant: use randomized
approximate inference for E step.

“Generalized” EM: improve w but don’ t
bother optimizing completely.



Direct Optimization

* An alternative to EM: apply stochastic
gradient ascent or quasi-Newton methods
directly to .

* Typically done for MN-like models with
features, e.g., latent-variable CRFs.

— Gradient is a difference of feature expectations.

— Requires marginal inference.



Summary

e EM: many ways to understand it.

— The guarantee: each round will improve the
likelihood.

— That’ s about as much as we can say.

e Sometimes it works.
— Smart initializers

— Lots of bias inherent in the model structure/
assumptions



(Logical) Lecture 6:
Bayesian Approach



Outline

* Defining “Bayesian”
 Parametric Bayesian models

— Latent Dirichlet allocation (Blei et al., 2003)
— Bayesian HMM (Goldwater and Griffiths, 2007)

e A little bit about inference



In Statistics ...

Better to assign F. and B. to analyses, not people.

Frequentist analysis (most of science today): parameters
are fixed and unknown; we gain information by repeated
experiments

— Point estimates, standard errors, confidence intervals (“in P% of

experiments, the interval will cover the true 8”), hypothesis
tests with a fixed in advance, reason about p(data | H,)

Bayesian analysis: treat unknown parameters
probabilistically; update beliefs as evidence arrives
— Start with p(0) and infer p(6 | data), means and quantiles of the

posterior over O, intervals corresponding to “P% belief” that 8 is
in the interval



The Attraction of Bayesian Thinking

 Write down your model declaratively, worry later
about how to fit it from data.

* Prior encodes prior knowledge.

— We have lots of this when it comes to language, or at
least we think we do!

 Manage uncertainty about the model the same
way we manage uncertainty about the data.
* Bayesian methods are strongly associated with:

— unsupervised (and latent variable) learning
— generative models



Evolving Definitions

MLE (not Bayesian):

max pe (data)

Maximum a posteriori estimation:

max pe (data)pe(0)

Computing the posterior over the parameters

(fully Bayesian):

p(0 | a,data) =

Empirical Bayesian:

pe(data)pa (0)
/ Py (data)py (07)d6’

max / pe(data)pa (8)d0



MAP Learning as a Graphical
Model

Pl Pw(L)

.
Pw(V | L)

 Combined inference (max over w, sum over L) is very hard.
— If w were fixed, getting the posterior over L wouldn’ t be so bad.
— If L were fixed, maximizing over w wouldn’ t be so bad.

— “Standard EM” doesn’ t have p(w); it s very simple to add
and useful in practice.



Fully
Bayesian
Empirical Bayesian \@/




Multinomials

e Let s assume discrete distributions that
simply assign probabilities to finite sets of
events.

— n-gram models, HMMs, PCFGs, ...



Distributions over Multinomials

 You can think of a multinomial distribution over d
events as a point in the (d-1) simplex.

[11 01 O; O] —\

[0,0,0,1]

[0, 1,0,0] // \ 0,0, 1, 0]

 Torandomly pick a point in this space, we need a
continuous distribution over the simplex.




Dirichlet Distribution

A distribution over the d-
event probability simplex.

d

1
Parameters: p, the mean of 0| a, — peri—1
the Dirichlet, and a, the p(0]a.p) Blap) -2
concentration around that =
mean (large a means d
smaller variance). H ['(ap;)

=1

Beta function: Blap) = I'(«)

oo
Gamma function ['(a) = / telemaqt
(generalized factorial): 0



Dirichlet, d=3
(various parameter settings)

from answers.com




Dirichlet, d=3
(different “means” and “variances’)

* from Liang and Klein, 2007

Different means:

0 0 0
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Different variances:

Iy 1!" 1, 1 1

(W15

O,!I
0 SN L.__.A 0!
(o] 1 0 @y 1 0

0

O3




Sampling from a Dirichlet

* Forifrom 1 to do, sample v. from a gamma
distribution with shape ap, and scale 1.

e Renormalize the vector v to obtain 6.



MAP with a Dirichlet

Recall that we can use a prior to “smooth” an estimate.

For a multinomial © with Dirichlet prior ap > 1, this equates
to adding pseudocounts to the vector of observed counts.

HA- o Nz + ap; — 1
' N+aoa—d
— As counts become large, prior matters less.
— Closed form!
— Regularizer view: R(B) = — Z(api — 1) log 0,

1=1
Flat prior: a=d, all p, = 1/d (equates to MLE)

Sparse prior (encourages most 6. to go to zero), but now
it” s not closed form.



Mixture of Unigrams

* The generative story for a classical document-

clustering model would be something like this
(Nigam et al., 2000):

e Fori=1... M (number of documents):
* Draw a document length N; from some distribution.

* Draw a topic z, for the document from a multinomial over
topics, 0.

* Forj=1..N;
— Draw word wij; from the multinomial B..

* Nigam et al. learned this using EM.



Mixture of Unigrams

o

mixture
coefficients
w, O
words Ni
components of
documents M | | the mixture K
i ) . M = number of documents
Z.is sometimes called the topic of N. = number of words in document i
document i. K = number of mixture components

A topic z is defined by a unigram
distribution B,.



A Word Clustering Model

mixture
w, 5

coefficients
words N.

components of
documents M | | the mixture K

M = number of documents
N. = number of words in document i

Problem: all words are the same; ,
K = number of mixture components

document information is irrelevant.
(This is exactly a zero-order HMM.)



Probabilistic LS| (Hofmann, 1996)

This has very little
to do with latent

semantic indexing,
@ » Z. except thatit’ s a
probabilistic model

trying to perform a

similar task.
( @

components of
documents M | | the mixture K

M = number of documents
N. = number of words in document i

Word clustering; documents correspond .
K = number of mixture components

to distributions over topics.
Problem: can’ t describe new documents!



Latent Dirichlet Allocation
(Blei et al., 2003)

a, p > 0 » 7

@ D

words N.

components of
documents M | | the mixture K

Documents are mixtures of topics, buta M =numberof documents |

rior over those mixtures lets us reason . "umber of words in document |
P K = number of mixture components
about new documents, too.



LDA on ACL Papers (Gimpel, 2006)

“PQS “Infomation “Parsing” ‘MT” “Speggh “Probapilistic “Experiments” “Syntax”

tagging” Retrieval’ Recognition” Modeling”
pos document parsing translation speech model corpus verb
tags terms parser alignment recognition models results verbs
tagging query parse word spoken probability data noun
sequence term treebank english language training number case
tag documents accuracy source asr data table syntactic
information retrieval parses target error word frequency phrase
chunk information penn translations errors language test clause
label web trees machine speaker probabilities average structure
hmm text empty phrase utterances set found phrases
learning search section words results words values nouns
sequences queries WSj language turns distribution total english
labels system proceedings bilingual rate statistical cases subject
crf collections results parallel table parameters distribution lexical

Figure 9: Selected topics resulting from executing the Gibbs sampler for inference in the
LDA model for the collection of ACL papers from 1999 up to 2006. The top 13 words for
each topic are shown, in decreasing order of their probability. The topics have been given
titles by hand based on their most probable words.



Smoothed Latent Dirichlet Allocation
(Blei et al., 2003)

@@

components of
documents M | | the mixture K

M = number of documents
N. = number of words in document i
K = number of mixture components



Topic Models Beyond LDA

* Small industry in variations on topic models, usually adding
more evidence to be explained by the topics.

 Examples:

— Supervised LDA (Blei and McAuliffe, 2007) adds an observed
document category.

— Link LDA (Erosheva et al., 2004) adds citations to the document,
explained by more draws from 6,

— Author topic model (Rosen-Zvi et al., 2004) adds authors.

— Correlated topic model (Blei and Lafferty, 2006) lets different
topics correlate more flexibly through a different prior.

— Comment LDA (Yano et al., 2009) generates comments from a
different set of unigram models but the same topics.



Where is the Structure?

* Through the topics and 6,, words in a
document become interdependent.

— Kind of a joint document/word clustering.

* Not really discrete structure the way we’ ve
mostly discussed in this class, though.

* LDA is a “Bayesian zero-order HMM.”



Where is the Prediction?

* Topics are hard to evaluate; no gold standard.

* This is either an open problem or the nail in
the coffin, depending on your point of view.



Hidden Markov Models

Bayesian HMM
(Goldwater and
Griffiths, 2007)

=

Yy " Y
K e
Yi,j—l
it
N;
M K
) Unsupervised HMM
A Y (Merialdo, 1994)
Yi,j—l

G

M K

M = number of sequences
N. = number of words in sequence i
K = number of states



The Engineering Part

Typically approximate inference is required.
— Markov chain Monte Carlo (e.g., Gibbs sampling)
— Variational inference (e.g., mean-field)

Graphical model view is really helpful when designing
inference algorithms for your Bayesian model!

Learning: approximate inference + optimization of
hyperparameters (for LDA, usually o and B; p is often
assumed uniform).

— Stochastic or variational EM, depending on your choice of
approximate inference.

Full Bayesian: fix the prior and do inference on all your
data.

— Implications for train/test methodology?



Sketch of Gibbs Sampling

« MCMC: design (on paper) a graph where each
configuration from Val(V) is a node.
— Transitions in the graph designed to give a Markov

chain whose stationary distribution is the
posterior.

* Simulate a random walk in the graph.

 |f you walk long enough, your position is
distributed according to P(V).



Transitions in Gibbs Sampling

* A transition in the Markov chain equates to
changing a subset of the random variables.

* Gibbs: resample V." s value according to
P(V; [ V\{Vi}).

— Only need the local factors that affect V,: take

product, marginalize, and randomly choose new
value.

* Simply lock evidence variables X.

* Maximizing version gradually shifts sampler in
favor of most probable value for V..



Sketch of
Mean Field Variational Inference

* Inference with our distribution P is hard.
e Choose an “easier’ distribution family, 9.

Then find:

in D(O|| P
arg min (Q||P)

7

 Usually iterative methods are required to “fit

Qto P.
— These often resemble familiar learning algorithms

like EM!



Energy Functional

DQMW)[P(Y [ X ==)) = EqllogQ(Y)] —Eqllog P(Y | X = )]
= —H(Q(Y)) — (Eqllog P(X = z,Y)] —log P(X = z))

= —H(QY)) - (Z Eq[log ¢|;] —log P(X = ZE))
¢

log P(X =2) = DQ)|PY | X =2))+H(Q(Y)) + > _Egllog g.]
¢

-~

constant N .

~"

maximize this

» Expectations under simpler distribution family, 9.

— Every element of 9 is an approximate solution.
— We try to find the best one.



Variational Methods

* This is a simple example.
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* Forany A and any x:

—In(x) > —Ax+1In(\)+1 s
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Variational Methods

* This is a simple example.

—
~

2

* Forany A and any x:

—In(x) > —Ax+1In(\)+1 s

0.0 0.2 0.4 0.6 0.8 1.0

e Further, for any x, there is some A where the
bound is tight.

— A is called a variational parameter.



Tangent: Variational Methods

* This is a simple example. \
 Forany A and any x: RS

2

N

\

—In(x) > —Ax+1In(\)+1 s

0.0 0.2

0.4

I I
0.6 0.8 1.0

e Further, for any x, there is some A where the

bound is tight.
— A is called a variational parameter.



Tangent: Variational Methods

This is a simple example.

For any A and any x:

0 1 2 3 4

—In(x) > —Ax+1In(\)+1 e XXT

0.0 0.2 0.4 0.6 0.8 1.0

Further, for any x, there is some A where the
bound is tight.

— A is called a variational parameter.
For us, log P(X = x) is like -In(x), and Q. is like A.



Structured Variational Approach

 Maximize the energy functional over a family
9 that is well-defined.

— A graphical model!
— Probably not an I-map for P. (Bound isn’ t tight.)

* Simpler structures lead to easier inference.
— Mean field is the simplest:

QV) = H@(%)



Going Nonparametric

How many topics or states?
Nonparametric: let the data decide.

— Not necessarily Bayesian or even probabilistic!
— More data justify more parameters.

Most common nonparametric and Bayesian tools
in NLP are based on the Dirichlet process.

— DP is not the same as the Dirichlet distribution.
You can be Bayesian without being

nonparametric, and you can be nonparametric
without being Bayesian!



Remember

« “Bayesian’ describes your model, not you!

e Approximate inference is necessary in
Bayesian modeling, but useful elsewhere, too!



