Structured Databases of Named Entities from Bayesian Nonparametrics

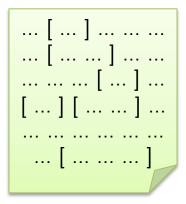
Dr.	Jacob		Eisenstein	Machine	Learning		Department	Carnegie	Mellon	University
Ms.	Tae		Yano		Language	Technologies	Institute	Carnegie	Mellon	University
Prof.	William	W.	Cohen	Machine	Learning		Department	Carnegie	Mellon	University
Prof.	Noah	Α.	Smith		Language	Technologies	Institute	Carnegie	Mellon	University
Prof.	Eric	P.	Xing	Computer		Science	Department	Carnegie	Mellon	University

In a Nutshell

- A joint model over
 - a collection of named entity mentions from text and
 - a structured database table (entities × name-fields)
 with data-defined dimensions
- Model aims to solve three problems:
 - 1. canonicalize the entities
 - 2. infer a schema for the names
 - match mentions to entities (i.e., coreference resolution)
- Preliminary experiments on political blog data, only task 1 in this paper.

An Imagined Information Extraction Scenario

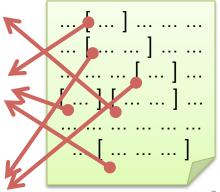
We want a database of all blogworthy U.S. political figures.



initial table

NER-tagged text: systematic variation in mentions

John	McCain	Sen.			Mr.	7
George	Bush	Pres.	W.		Mr.	
Hillary	Clinton	Sen.		Rodham	Mrs.	1
Barack	Obama	Sen.	Н.		Mr.	
Sarah	Palin	Gov.			Mrs.	
Joe	Biden	Sen.			Mr.	
Ron	Paul	Rep.			Mr.	



Caveat

 Sen. Tom Coburn, M.D. (Rep., Oklahoma), a.k.a. "Dr. No," does not approve of this research.

Prior Work

Research problem	Related papers	Diff		
Information extraction	Haghighi and Klein, 2010	Predefined schema (columns/fields).		
Name structure models	Charniak, 2001; Elsner et al., 2009	No resolution to entities.		
Record linkage	Felligi and Sunter, 1969; Cohen et al., 2000; Pasula et al., 2002; Bhattacharya and Getoor, 2007	Often on bibliographies (not raw text); predefined schema.		
Multi-document coreference resolution	Li et al., 2004; Haghighi and Klein, 2007; Poon and Domingos, 2008; Singh et al., 2011	No canonicalization of entity names.		
Morphological paradigm learning	Dreyer and Eisner, 2011	Fixed schema, linguistic analysis problem.		

Goal

We want a model that solves three problems:

- 1. canonicalize mentioned entities
- 2. infer a schema for their names
- 3. match mentions to entities (i.e., coreference resolution)

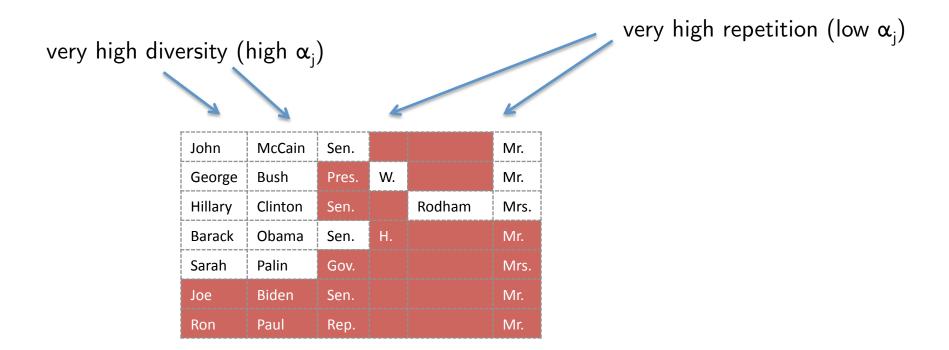
Generative Story: Types

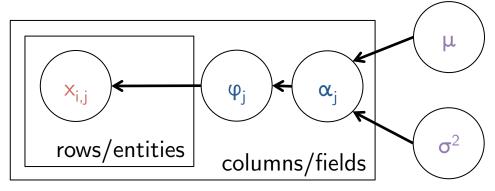
First, generate the table.

- Let μ and σ^2 be hyperparameters.
- For each column j:
 - Sample α_j from LogNormal(μ , σ^2)
 - Sample multinomial ϕ_j from DP(G_0 , α_j), where G_0 is uniform up to a fixed string length.
 - For each row i, draw cell value $x_{i,i}$ from ϕ_i



Field-wise Dirichlet Process Priors

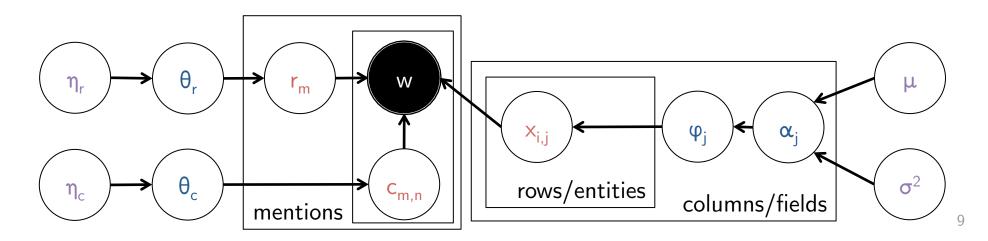




Generative Story: Tokens

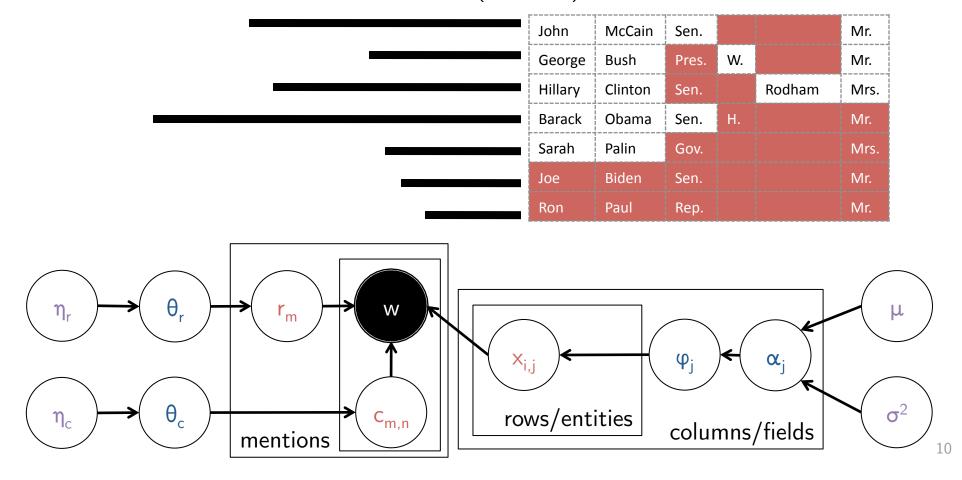
Next, generate the mention tokens.

- Draw the distribution over rows/entities to be mentioned, θ_r , from Stick (η_r) .
- Draw the distribution over columns/fields to be used in mentions, θ_c , from Stick(η_c).
- For each mention m, sample its row r_m from θ_r .
 - For each word in the mention, sample its column $c_{m,n}$ from θ_c .
 - Fill in the word to be $x_{r_m, c_{m,n}}$.



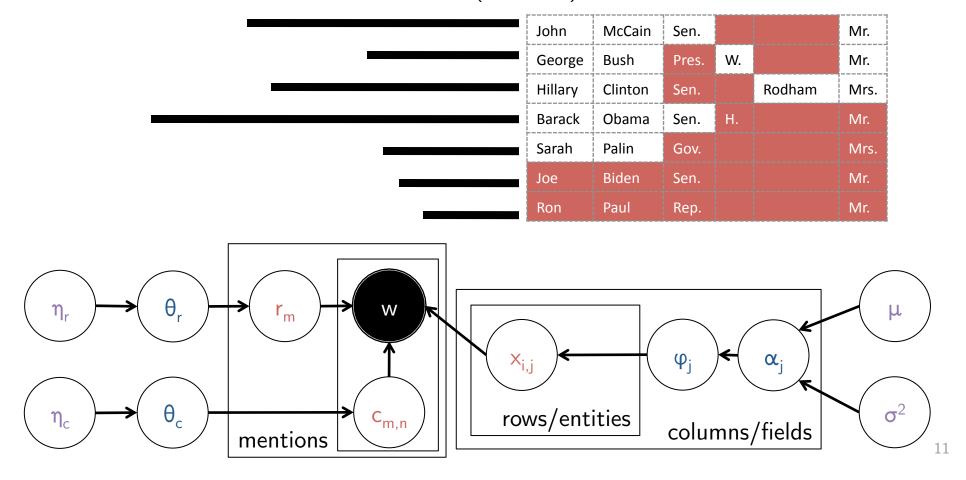
Entity-wise Dirichlet Process Priors

entities receive different amounts of attention (fictitious)

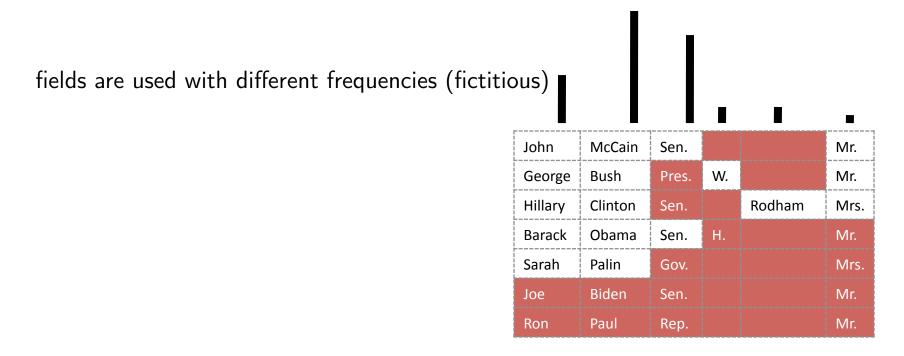


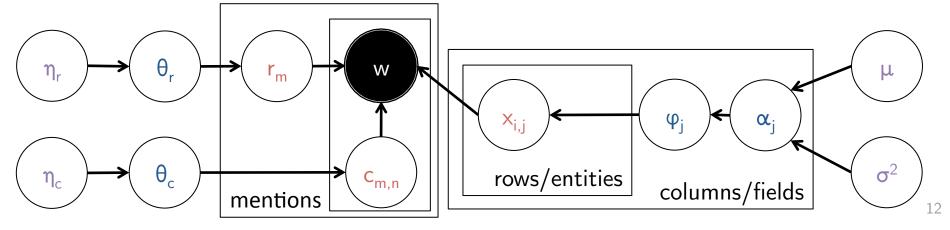
Entity-wise Dirichlet Process Priors

entities receive different amounts of attention (fictitious)



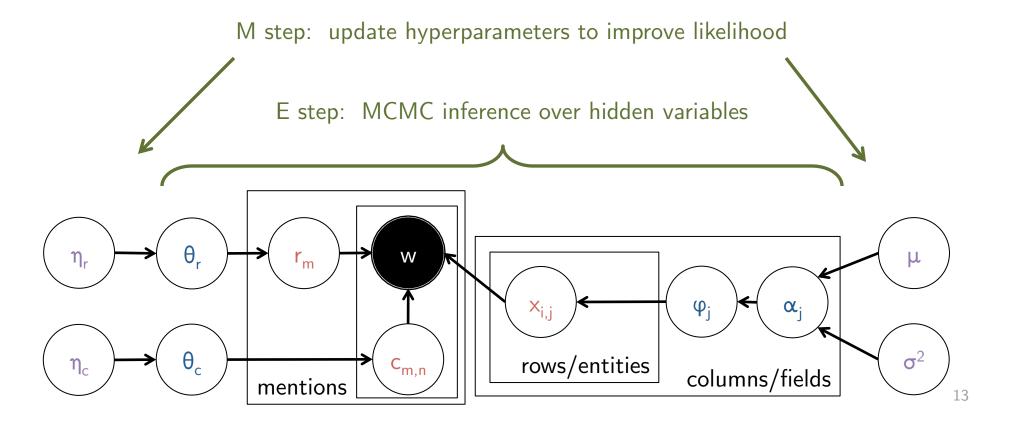
Field-wise Dirichlet Process Priors





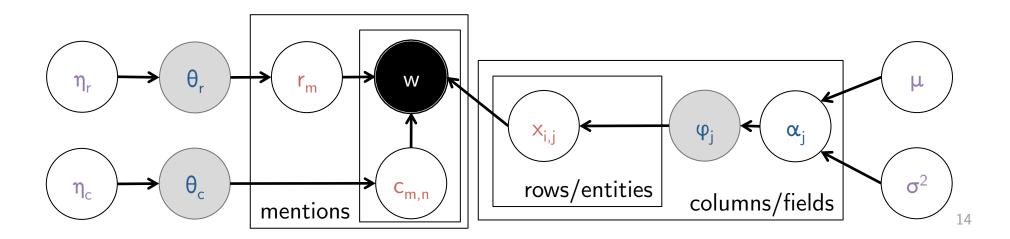
Inference

At a high level, we are doing Monte Carlo EM.



Gibbs Sampling

- Collapse out θ_r , θ_r , and ϕ_j (standard collapsed Gibbs sampler for Dirichlet process).
- Given rows, columns, and words, some of x is determined, and we marginalize the rest.
- I'll describe how we sample columns, rows, and concentrations α_i .

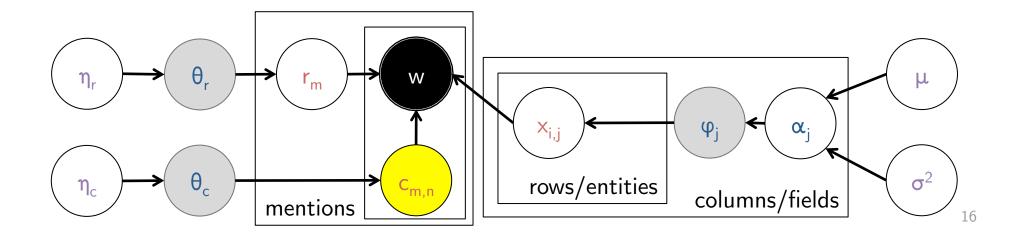


Sampling c_{m,n}

Hinges on $p(w \mid ...)$ factors:

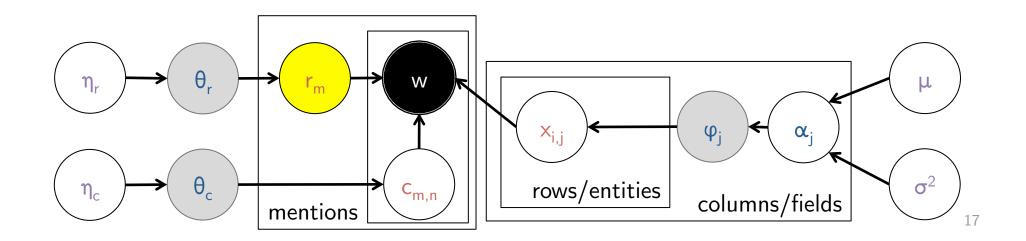
$$p(c_{m,n} \mid \ldots) \propto p(w_{m,n} \mid r_m, c_{m,n}, x_{\text{obs}}, \ldots)$$

$$\times \frac{1}{\mathsf{N}(c_{-(m,n)}) + \eta_c} \begin{cases} \mathsf{N}(c_{-(m,n)} = j) & \text{if } \mathsf{N}(c_{-(m,n)} = j) > 0 \\ \eta_c & \text{otherwise} \end{cases}$$



Sampling r_m

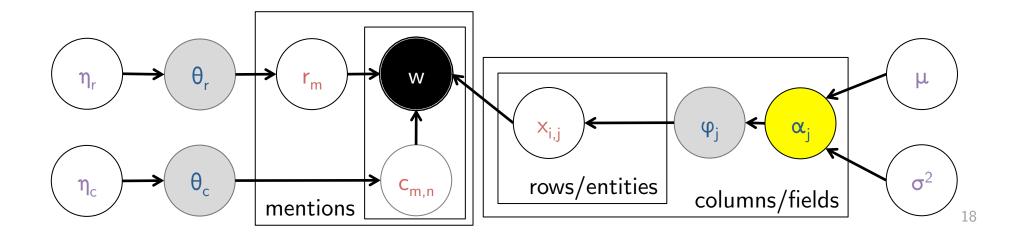
- Need to multiply together p(w | ...) quantities (see paper) for all words in the mention.
- We speed things up by marginalizing out c_{m,*}.
- This calculation exploits conditional independence of tokens given the row.



Sampling α_j

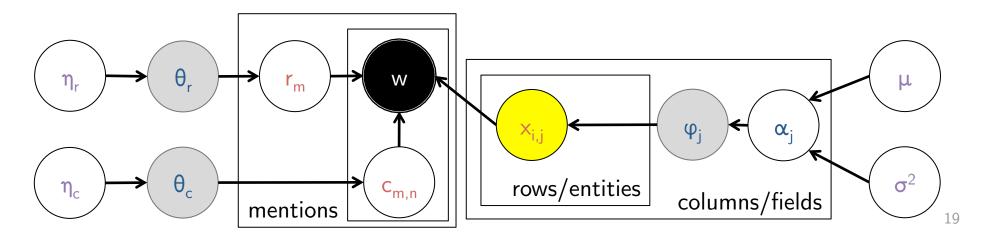
• Given number of specified entries in $x_{*,j}$ (n_j) and number of unique entries in $x_{*,j}$ (k_j):

$$p(\alpha_j \mid \ldots) \propto \frac{\exp(-(\log \alpha_j - \mu)^2)\alpha_j^{k_j}\Gamma(\alpha_j)}{2\sigma^2\Gamma(n_j + \alpha_j)}$$



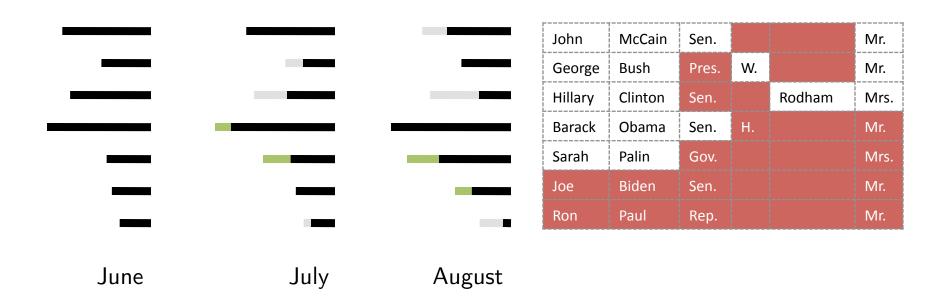
Column Swaps

- One additional move: in a single row, swap entries in two columns of x.
- The swap also implies changing some c variables.
- See the paper for details on this Metropolis-Hastings step.



Temporal Dynamics

entities receive different amounts of attention at different times



Recurrent Chinese Restaurant Process (Ahmed and Xing, 2008)

- Data are divided into discrete epochs.
- Row Dirichlet process includes pseudocounts from previous epoch.
- Entities come and go; reappearing after disappearance is vanishingly improbable.

In Chinese restaurant view:

$$p(r_m^{(t)} = i \mid r_{1,...,m-1}^{(t)}, r^{(t-1)}, \eta_r) \propto \begin{cases} N(r_{1,...,m-1}^{(t)} = i) + N(r^{(t-1)} = i) & \text{if positive otherwise} \end{cases}$$

This affects updates to η_r and sampling of r.

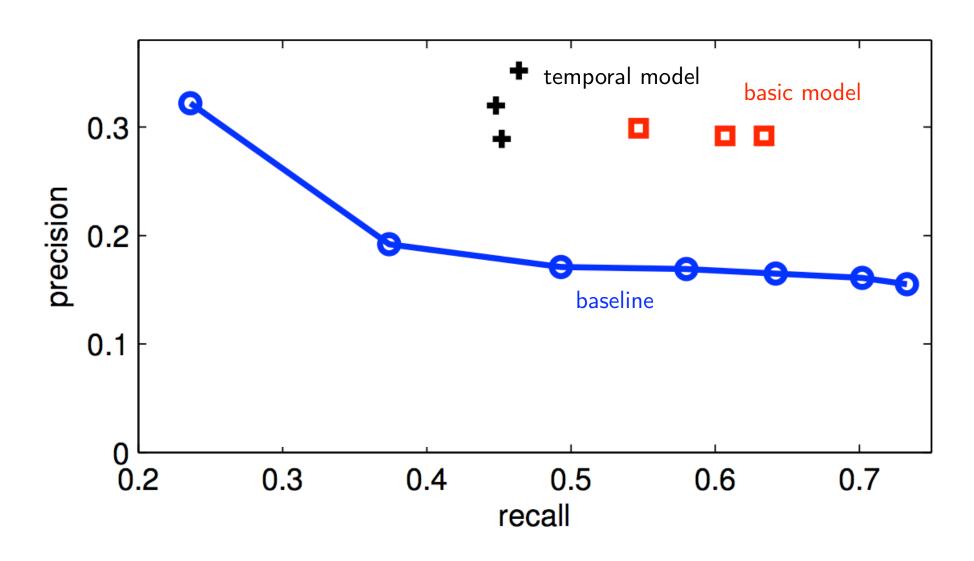
Data for Evaluation

- Data: blogs on U.S. politics from 2008 (Eisenstein and Xing, 2008)
 - Stanford NER ightarrow 25,000 mentions
 - Eliminate those with frequency less than 4 and more than 7 tokens
 - 19,247 mentions (45,466 tokens), 813 unique
- Annotation: 100 reference entities
 - Constructed by merging sets of most frequent mentions, discarding errors
 - Example: { Barack, Obama, Mr., Sen. }

Evaluation

- Bipartite matching between reference entities and rows of x.
- Measure precision and recall.
 - Precision is very harsh (only 100 entities in reference set, and finding anything else incurs a penalty!) – same problem is present in earlier work.
- Baseline: agglomerative clustering based on string edit distance (Elmacioglu et al., 2007); different stopping points define a P-R curve.
 - No database!

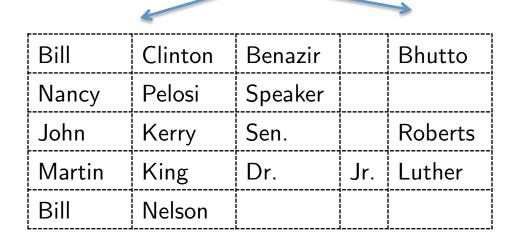
Results



Examples

© Bill Clinton is not Bill Nelson

Examples



- © Bill Clinton is not Bill Nelson
- © Bill Clinton is Benazir Bhutto
- John Kerry is John Roberts
 - Hard to create a new row once we're "stuck"
 - Common names are garbage collectors

Examples

		<u> </u>			
Bill	Clinton	Benazir		Bhutto	
Nancy	Pelosi	Speaker			
John	Kerry	Sen.		Roberts	
Martin	King	Dr.	Jr.	Luther	
Bill	Nelson				

- © Bill Clinton is not Bill Nelson
- Bill Clinton is Benazir Bhutto
- Sohn Kerry is John Roberts
- © Rare "Speaker" title for Pelosi; fields generally good

Future Extensions

- Structured model over name structure
- Optionality within a cell?
- Changes in the database over time
- Joint inference with named entity recognition
- "Topics" (some entities are likely to coocur)
- Lexical context of mentions to aid disambiguation
- Burstiness within a document
- Events (cf., Chambers and Jurafsky, 2011)
- Information used in coreference resolution: linguistic cues (Bengtson and Roth, 2008) and external knowledge (Haghighi and Klein, 2010)

Conclusions

- A joint model over
 - a collection of named entity mentions from text and
 - a structured database table (entities × name-fields)
 with data-defined dimensions
- Model aims to solve three problems:
 - 1. canonicalize the entities
 - 2. infer a schema for the names
 - 3. match mentions to entities (i.e., coreference resolution)

Thanks!