Computationally Efficient M-Estimation of Log-Linear Structure Models

Noah Smith, Doug Vail, and John Lafferty School of Computer Science Carnegie Mellon University {nasmith,dvail2,lafferty}@cs.cmu.edu

Sketch of the Talk

A new loss function for supervised structured classification with arbitrary features.

- Fast & easy to train no partition functions!
- Consistent estimator of the joint distribution
- Information-theoretic interpretation
- Some practical issues
- Speed & accuracy comparison

Log-Linear Models as Classifiers

Training Log-Linear Models

Maximum Likelihood Estimation:

$$\hat{\mathbf{w}} = \arg \max_{\mathbf{w}} \sum_{x,y} \tilde{p}(x,y) \log p_{\mathbf{w}}(x,y)$$
$$= \arg \max_{\mathbf{w}} \left(\sum_{x,y} \tilde{p}(x,y) \mathbf{w}^{\top} \mathbf{f}(x,y) \right) - \log Z(\mathbf{w})$$

Also, discriminative alternatives:

conditional random fields (*x*-wise partition functions)
 maximum margin training (decoding during training)

Notational Variant

Still log-linear. $w_0 = 1$; $f_0(x, y) = \log q_0(x, y)$

Jeon and Lin (2006)

A new loss function for training:

Jeon and Lin (2006)

A new loss function for training:

Attractive Properties of the M-Estimator

Computationally efficient.

Attractive Properties of the M-Estimator

✓ Convex.

Statistical Consistency

 If the data were drawn from some distribution in the given family, parameterized by w^{*}, then

$$\forall \epsilon > 0, \lim_{n \to \infty} \Pr\left(\left| \left(\arg\min_{\mathbf{w}} \ell(\mathbf{w}) \right) - \mathbf{w}^* \right| < \epsilon \right) = 1$$

- True of MLE, Pseudolikelihood, and the Mestimator.
 - Conditional likelihood is consistent for the conditional distribution.

Information-Theoretic Interpretation

- True model: p^{\star}
- Perturbation applied to p^* , resulting in q_0
- Goal: recover the true distribution by correcting the perturbation.

$$p^{\star} \stackrel{\text{perturb}}{\to} p^{\star}/e^{\mathbf{w}^{\top}\mathbf{f}}$$
$$q_0 \cdot e^{\mathbf{w}^{\top}\mathbf{f}} \stackrel{\text{recover}}{\leftarrow} q_0$$

Information-Theoretic Interpretation

- True model: p*
- Perturbation applied to p^* , resulting in q_0
- Goal: recover the true distribution by correcting the perturbation.

Minimizing KL Divergence

$$D(q_{0} || p^{\star} \cdot e^{-\mathbf{w}^{\top} \mathbf{f}})$$

$$= \sum_{x,y} q_{0}(x,y) \log \frac{q_{0}(x,y)}{p^{\star}(x,y)e^{-\mathbf{w}^{\top} \mathbf{f}(x,y)}} + p^{\star}(x,y)e^{-\mathbf{w}^{\top} \mathbf{f}(x,y)} - q_{0}(x,y)$$

$$= \sum_{x,y} p^{\star}(x,y)e^{-\mathbf{w}^{\top} \mathbf{f}(x,y)} + q_{0}(x,y)\mathbf{w}^{\top} \mathbf{f}(x,y) + \text{constant}(\mathbf{w})$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} e^{-\mathbf{w}^{\top} \mathbf{f}(x_{i},y_{i})} + \mathbf{w}^{\top} \mathbf{E}_{q_{0}}[\mathbf{f}] + \text{constant}(\mathbf{w})$$

$$= \ell(\mathbf{w}) + \text{constant}(\mathbf{w})$$

$$p^{\star} \stackrel{\text{perturb}}{\to} p^{\star}/e^{\mathbf{w}^{\top} \mathbf{f}}$$

$$q_{0} \cdot e^{\mathbf{w}^{\top} \mathbf{f}} \stackrel{\text{recover}}{\leftarrow} q_{0}$$

R

So far ...

- Alternative objective function for log-linear models.
 - Efficient to compute
 - Convex and differentiable
 - Easy to implement
 - Consistent
- Interesting information-theoretic motivation.

Next ...

- Practical issues
- Experiments

q_0 Desiderata

- Fast to estimate
- Smooth $p_{\mathbf{w}}(x,y) = \frac{q_0(x,y)e^{\mathbf{w}^{\top}\mathbf{f}(x,y)}}{Z(\mathbf{w},q_0)}$
- Straightforward calculation of $\mathbf{E}_{q_{o}}[\mathbf{f}]$

Here: smoothed HMM.

– See paper for details on $E_{q_0}[f]$ - linear system! In general, can sample from q_0 to estimate.

Optimization

Can use Quasi-Newton methods (L-BFGS, CG).

The gradient:

$$\frac{\partial \ell}{\partial w_j} = -\frac{1}{n} \sum_{i=1}^n e^{-\mathbf{w}^\top \mathbf{f}(x_i, y_i)} f_j(x_i, y_i) + \mathbf{E}_{q_0}[f_j]$$

Regularization

Problem: If we estimate $E_{q_0}[f_j] = 0$, then w_j will tend toward $-\infty$.

Quadratic regularizer:

$$\min_{\mathbf{w}} \ell(\mathbf{w}) + \frac{\mathbf{w}^{\top}\mathbf{w}}{2c}$$

Can be interpreted as a 0-mean, *c*-variance, diagonal Gaussian prior on w; maximum a posteriori analog for the M-estimator.

Experiments

- Data: CoNLL-2000 shallow parsing dataset
- Task: NP-chunking (by B-I-O labeling)
- Baseline/q_o: smoothed MLE trigram HMM; B-I-O label emits word and tag separately
- Quadratic regularization for log-linear models, c selected on held-out.

B-I-O Example

Experiments

	time (h:m:s)	precision	recall	F ₁	
HMM	0:00:02	85.6	88.7	87.1	
M-est.	1:01:37	88.9	90.4	89.6	
MEMM	3:39:52	90.9	92.2	91.5	
PL	9:34:52	91.9	91.8	91.8	
CRF	64:18:24	94.0	93.7	93.9	features

(Sha & Pereira '03)

18 Minutes Are Not Enough

See the paper

- q_{o} experiments
- negative result: attempt to "make it discriminative"
- WSJ section 22 dependency parsing
 - generative baseline/ $q_{
 m o}$ (pprox Klein & Manning '03)
 - <mark>- 85.2%</mark> → 86.4%
 - 2 million \rightarrow 3 million features (\approx McDonald et al. '05)
 - 4 hours training per value of c

Ongoing & Future Work

- Discriminative training works better but takes longer.
 - Cases where discriminative training may be too expensive
 - high complexity inference (parsing)
 - *n* is very large (MT?)
 - Is there an efficient estimator like this for the conditional distribution?
- Hidden variables increase complexity, too.
 - Use M-estimator for M step in EM?
 - Is there an efficient estimator like this that handles hidden variables?

Conclusion

- M-estimation is
 - fast to train (no partition functions)
 - easy to implement
 - statistically consistent
 - feature-empowered (like CRFs)
 - generative

A new point on the spectrum of speed/ accuracy/expressiveness tradeoffs.

Thanks! 3

How important is the choice of q_o ?

- MAP-trained HMM
- Empirical marginal:

 $q'_0(\text{words}, \text{tags}, \text{labels}) = q_0(\text{labels} \mid \text{words}, \text{tags}) \cdot \tilde{p}(\text{words}, \text{tags})$

- Locally uniform model
 - Uniform transitions
 - No temporal effects
 - 0% precision, recall

q_0 Experiments

$q_{ m o}$	select c to maximize:	precision	recall	F ₁
baseline HMM (no M-est.)		85.6	88.7	87.1
НММ	F ₁	88.9	90.4	89.6
empirical marginal	F ₁	84.4	89.4	86.8
locally uniform transitions	F ₁	72.9	57.6	64.3
	precision	84.4	37.7	52.1

Negative Result: Input-Only Features

Idea: Make M-estimator "more discriminative" by including features of words/tags only.

• Think of the model in two parts:

 $p_{\mathbf{w}}(\text{words}, \text{tags}, \text{labels}) = p_{\mathbf{w}_1^k}(\text{labels} \mid \text{words}, \text{tags}) \cdot p_{\mathbf{w}_{k+1}^m}(\text{words}, \text{tags})$

