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Sketch of the Talk

A new loss function for supervised structured
classification with arbitrary features.

e Fast & easy to train - no partition functions!
e Consistent estimator of the joint distribution
e [nformation-theoretic interpretation

e Some practical issues

e Speed & accuracy comparison



Log-Linear Models as Classifiers
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Training Log-Linear Models

Maximum Likelihood Estimation:
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Also, discriminative alternatives:
¢ conditional random fields (z-wise partition functions)
e maximum margin training (decoding during training)



Notational Variant

“some other”
distribution

- disibufion_

w ! f(z,y)
pw(z,y) = C]O(%Zy()vi’qo)

Still log-linear.  wg = 1; fo(z,y) = log qo(z, y)



Jeon and Lin (2006)

A new loss function for training:
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Jeon and Lin (2006)
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Attractive Properties of the M-Estimator

v’ Computationally efficient.

O (Z > (@i gs) # 0])

i=1 j=1

. v
fw) =LY e flonw) T (Z qo(z, y)f (. y))
1=1 T,y

Eg, [f]




Attractive Properties of the M-Estimator

v’ Convex.
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Statistical Consistency

¢ |f the data were drawn from some distribution
in the given family, parameterized by w*, then

Ve > 0, lim Pr <| (arg miné(w)) — W
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e True of MLE, Pseudolikelihood, and the M-
estimator.

— Conditional likelihood is consistent for the
conditional distribution.



Information-Theoretic Interpretation

® True model: p*
* Perturbation applied to p*, resulting in g,

e Goal: recover the true distribution by
correcting the perturbation.
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Information-Theoretic Interpretation

® True model: p*
e Perturbation applied to p*, resulting in g,

e Goal: recover the true distribution by
correcting the perturbation.
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So far ...

¢ Alternative objective function for log-linear models.
— Efficient to compute
— Convex and differentiable
— Easy to implement
— Consistent

¢ Interesting information-theoretic motivation.

Next ...
¢ Practical issues
e Experiments



q, Desiderata

e Fast to estimate
_ golay)e” @)
e Smooth pw(z,y) =

Z(w,q0)
e Straightforward calculation of E_[{]

Here: smoothed HMM.
— See paper for details on E_ [f] - linear system!

In general, can sample from q_ to estimate.



Optimization

Can use Quasi-Newton methods (L-BFGS, CG).

The gradient:
. —WT xX; ;
aazfj N _% ¢ f “yZ)fj(%,yz') + Eg /5]

1=1



Regularization

Problem: If we estimate E_|f,| = 0, then w, will
tend toward -.

WTW

Quadratic regularizer: mviné(w); ”

Can be interpreted as a 0-mean, c-variance,
diagonal Gaussian prior on w; maximum a
posteriori analog for the M-estimator.



Experiments

e Data: CoNLL-2000 shallow parsing dataset
e Task: NP-chunking (by B-I-O labeling)

» Baseline/q,: smoothed MLE trigram HMM,;
B-1-O label emits word and tag separately

e Quadratic regularization for log-linear models,
c selected on held-out.



B-1-O Example

NNS

NNS

RB

BN

JJR

IN

DT

NNS

f‘ '\ ( “'I‘

Profits

of

franchises

have

n’t

been

higher

since

mid-1970s




Experiments

(r;[ Em:es) precision | recall F,
HMM 0:00:02| 85.6| 88.7| 87.1
M-est. | 1:01:37| 889| 90.4| 89.6|
MEMM | 3:39:52| 90.9| 92.2| 915
PL 9:34:52| 91.9| 91.8| 91.8
CRF | 64:18:24| 94.0/ 93.7| 939 /:eatJiZZ

(Sha & Pereira ‘03)
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(Generative/Discriminative vs.
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18 Minutes Are Not Enough

e See the paper
- g, experiments
— negative result: attempt to “make it discriminative”

e \WWSJ section 22 dependency parsing
— generative baseline/q, (= Klein & Manning ‘03)
— 85.2% — 86.4%
— 2 million — 3 million features (= McDonald et al. ‘05)
— 4 hours training per value of ¢



Ongoing & Future Work

¢ Discriminative training works better but takes
longer.

— Cases where discriminative training may be too expensive
e high complexity inference (parsing)
e n is very large (MT?)

— |s there an efficient estimator like this for the conditional
distribution?
e Hidden variables increase complexity, too.
— Use M-estimator for M step in EM?

— Is there an efficient estimator like this that handles hidden
variables?



Conclusion

e M-estimation is
— fast to train (no partition functions)
— easy to implement
— statistically consistent
— feature-empowered (like CRFs)
— generative
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A new point on the spectrum of speed/
accuracy/expressiveness tradeoffs.



Thanks!



How important is the choice of g ?

e MAP-trained HMM
e Empirical marginal:

qp(words, tags, labels) = qg(labels | words, tags) - p(words, tags)
e | ocally uniform model

— Uniform transitions 4 out-arcs 4 out-arcs
— No temporal effects /3

/3
— 0% precision, recall 9 Q
“@ i
&



q, EXperiments

select ¢ to .

q, maximize: | Precision recall F,
baseline HMM (no M-est.) 85.6 88.7 87.1
HMM F, 88.9 90.4 89.6
empirical F, 84.4 89.4|  86.8
marginal

locally F, 72.9 57.6 64.3

uniform
transitions | precision 84.4 37.7 52.1




Negative Result:

Input-Only Features

Idea: Make M-estimator “more discriminative”
by including features of words/tags only.

e Think of the model in two parts:
Pw(words, tags, labels) = py,x (labels | words, tags) - Pwy (words, tags)

Improve fit
here ... ... by doing
more of the

— \lirtually no effect. )
explanatory

work” here.




