

Linguistic Structured Sparsity in Text Categorization

Dani Yogatama and Noah A. Smith
Language Technologies Institute
Carnegie Mellon University
{dyogatama,nasmith}@cs.cmu.edu

Summary

- Words of a feather (should) flock together
- Idea: use linguistic structure to define feathers (flocks) instead of features

- Math: sparse group lasso regularization
- Results: text classification (sentiment, forecasting, topic)

Text Classification

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good, if a bit
obviously tongue - in - cheek .
```

Bag of Words

```
acting
1
   at
1
   back
   basics
  big
   bit
   brutality
   but
1
   cheek
1
   crudest
   dagerous
   the
```

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good, if a bit
obviously tongue - in - cheek .
```

Bag of Words

acting 1 1 at back 1 basics 1 big 1 bit brutality 1 1 but cheek 1 crudest 1 dagerous 6

the

Linear Classifier

	•					
1	acting					
1	at					
1	back					
1	basics					
1	big					
1	bit					
1	brutality •					
1	but					
1	cheek					
1	crudest					
1	dagerous					
	•					
6	the					
	•					

w_{acting}
w_{at}
w_{back}
w_{basics}
w_{big}
w_{bit}
$w_{brutality}$
w_{but}
w_{cheek}
$w_{crudest}$
$w_{dagerous}$
•
w_{the}
•

```
sign\left(\mathbf{f}(document)\cdot\mathbf{w}\right)
```


Sentences

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good, if a bit
obviously tongue - in - cheek .
```

- Sentences
- Phrases

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good, if a bit
obviously tongue - in - cheek .
```

- Sentences
- Phrases
- Fine-grained syntactic classes

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good , if a bit
obviously tongue - in - cheek .
```

- Sentences
- Phrases
- Fine-grained syntactic classes
- Thematic topics

(and many more!)

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good, if a bit
obviously tongue - in - cheek .
```

Learning the Weights w

```
"fit the data" (e.g., log-likelihood of y_n given d_n, hinge loss, ...) \hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w}) + \underline{R}(\mathbf{w}) "generalize" (e.g., \lambda \|\mathbf{w}\|_2^2; \lambda \|\mathbf{w}\|_1)
```

Group Lasso (Yuan & Lin '06)

$$R(\mathbf{w}) = \sum_{g} \lambda_g \|\mathbf{w}_g\|_2$$

Group Lasso (Yuan & Lin '06)

$$R(\mathbf{w}) = \sum_{g} \lambda_g \|\mathbf{w}_g\|_2$$

In NLP:

- chunking and parsing (Martins et al., 2011)
- language modeling (Nelakanti et al., 2013)

group sparsity

Learning the Weights w

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w}) + R(\mathbf{w})$$

Learning the Weights w

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w}) + R(\mathbf{w})$$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w})$$

$$\text{s.t. } R(\mathbf{w}) \leq \tau$$
"Ivanov" regularization

Lasso vs. Group Lasso

$$R(\mathbf{w}) = |w_1| + |w_2| + |w_3|$$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w})$$

s.t. $R(\mathbf{w}) \leq \tau$

Martins et al., EACL 2014 tutorial on structured sparsity in NLP

Lasso vs. Group Lasso

$$R(\mathbf{w}) = |w_1| + |w_2| + |w_3|$$

$$R(\mathbf{w}) = ||\langle w_1, w_2 \rangle||_2 + |w_3|$$

Martins et al., EACL 2014 tutorial on structured sparsity in NLP

Whence Groups?

Back to NLP ...

Sentence Regularizer

$$R(\mathbf{w}) = \sum_{n=1}^{N} \sum_{s=1}^{S_n} \lambda_{n,s} \|\mathbf{w}_{n,s}\|_2$$

- Every sentence s in every document n gets a group.
- If $\mathbf{w}_{n,s}$ can be driven to zero, that means the sentence is irrelevant to the task.
- Many overlapping groups!

Group for Sentence 1

```
acting
1
   at
1
  back
   basics
  big
   bit
   brutality
1
1
   but
   cheek
1
   crudest
   dagerous
   the
```

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good, if a bit
obviously tongue - in - cheek .
```

Group for Sentence 5

```
acting
1
   at
1
   back
   basics
  big
   bit
   brutality
1
1
   but
   cheek
1
   crudest
   dagerous
   the
```

```
this film is one big joke : you have all
the basics elements
of romance (love at first sight, great
passion, etc.) and gangster flicks
( brutality , dagerous machinations , the
mysterious don , etc. ) ,
but it is all done with the crudest
humor .
it 's the kind of thing you either like
viserally and immediately "get" or you
don 't .
that is a matter of taste and
expectations .
i enjoyed it and it took me back to the
mid80s, when nicolson and turner were in
their primes .
the acting is very good, if a bit
obviously tongue - in - cheek .
```

More Linguistic Structure Regularizers

Parse tree regularizer

words/features

the

are

2 3 8 actors fantastic

groups

More Linguistic Structure Regularizers

Parse tree regularizer

Each of 5,000 hierarchical Brown clusters

More Linguistic Structure Regularizers

Parse tree regularizer

_	1	2	3	4	5	6	7	8	9
	✓					1			✓
		1				1			1
			1				1	1	✓
				1			1	1	1
					1			✓	1

groups

- Each of 5,000 hierarchical Brown clusters
- Top ten words in each of 1,000 LDA topics

Sparse Group Lasso

$$\min_{\mathbf{w}} R(\mathbf{w}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w})$$

$$\min_{\mathbf{w}} R(\mathbf{w}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w})$$

$$\min_{\mathbf{w}, \mathbf{v}} R(\mathbf{v}) + \lambda ||\mathbf{w}||_1 + \sum_{n=1}^N L(\mathbf{f}(d_n), y_n; \mathbf{w})$$
 separate w from "copies" \mathbf{v} , constraint forces agreement s.t. $\mathbf{v} = \mathbf{M}\mathbf{w}$

$$\min_{\mathbf{w}} R(\mathbf{w}) + \lambda ||\mathbf{w}||_1 + \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w})$$

$$\min_{\mathbf{w}, \mathbf{v}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^N L(\mathbf{f}(d_n), y_n; \mathbf{w})$$
 separate w from "copies" \mathbf{v} , constraint forces agreement s.t. $\mathbf{v} = \mathbf{M}\mathbf{w}$

$$\min_{\mathbf{w}, \mathbf{v}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^N L(\mathbf{f}(d_n), y_n; \mathbf{w})$$
 separate w from "copies" \mathbf{v} , constraint forces agreement s.t. $\mathbf{v} = \mathbf{M}\mathbf{w}$

$$\min_{\mathbf{w}, \mathbf{v}} \max_{\mathbf{u}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w}) + \mathbf{u} \cdot (\mathbf{v} - \mathbf{M}\mathbf{w}) + \frac{\rho}{2} \|\mathbf{v} - \mathbf{M}\mathbf{w}\|_2^2$$

"augmented Lagrangian"

$$\min_{\mathbf{w}, \mathbf{v}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^N L(\mathbf{f}(d_n), y_n; \mathbf{w})$$
 separate w from "copies" \mathbf{v} , constraint forces agreement s.t. $\mathbf{v} = \mathbf{M}\mathbf{w}$

$$\min_{\mathbf{w}, \mathbf{v}} \max_{\mathbf{u}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w}) + \mathbf{u} \cdot (\mathbf{v} - \mathbf{M}\mathbf{w}) + \frac{\rho}{2} \|\mathbf{v} - \mathbf{M}\mathbf{w}\|_2^2$$

ADMM: Alternating

Directions

Method of

Multipliers

alternating, blockwise updates of w and v

a "faster" version of dual ascent for solving the augmented Lagrangian (Hestenes '69; Powell '69)

(Glowinski & Marroco '75; Gabay & Mercier '76)

"Blockwise" Updates

w update ≈ loss minimization with elastic net regularization (Zou & Hastie '05)

$$\min_{\mathbf{w}, \mathbf{v}} \max_{\mathbf{u}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^N L(\mathbf{f}(d_n), y_n; \mathbf{w}) + \mathbf{u} \cdot (\mathbf{v} - \mathbf{M}\mathbf{w}) + \frac{\rho}{2} \|\mathbf{v} - \mathbf{M}\mathbf{w}\|_2^2$$
constant

"Blockwise" Updates

$$\min_{\mathbf{w}, \mathbf{v}} \max_{\mathbf{u}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w}) + \mathbf{u} \cdot (\mathbf{v} - \mathbf{M}\mathbf{w}) + \frac{\rho}{2} \|\mathbf{v} - \mathbf{M}\mathbf{w}\|_2^2$$

v updates: proximal operator for each group:

$$\mathbf{z}_{n,s} = \mathbf{M}_{d,s} \mathbf{w} - \frac{\mathbf{u}_{d,s}}{\rho}$$

$$\mathbf{v}_{n,s} = \begin{cases} \mathbf{0} & \text{if } ||\mathbf{z}_{n,s}||_2 \le \tau \\ \frac{||\mathbf{z}_{n,s}||_2 - \tau}{||\mathbf{z}_{n,s}||_2} \mathbf{z}_{n,s} & \text{otherwise} \end{cases}$$

"Blockwise" Updates

$$\min_{\mathbf{w}, \mathbf{v}} \max_{\mathbf{u}} R(\mathbf{v}) + \lambda \|\mathbf{w}\|_1 + \sum_{n=1}^{N} L(\mathbf{f}(d_n), y_n; \mathbf{w}) + \underline{\mathbf{u} \cdot (\mathbf{v} - \mathbf{M}\mathbf{w})} + \frac{\rho}{2} \|\mathbf{v} - \mathbf{M}\mathbf{w}\|_2^2$$
simple dual update \mathbf{u}

Implications

- Group sparsity and strong sparsity
- Model class is still a (fast) bag of words ...
 but somehow "informed" by structure
- Learning is more expensive ... but still convex
- A new kind of interpretability ...

$$\frac{p(y=1 \mid d)}{p(y=1 \mid d \setminus s)}$$

this film is one big joke : you have all the basics elements of romance (love at first sight, great passion, etc.) and gangster flicks 1.52 (brutality , dagerous machinations , the mysterious don , etc.) , but it is all done with the crudest humor . it 's the kind of thing you either like 1.01 viserally and immediately "get "or you don 't . that is a matter of taste and 1.01 expectations . i enjoyed it and it took me back to the 1.02 mid80s, when nicolson and turner were in their primes . the acting is very good, if a bit 1.00 obviously tongue - in - cheek .

Classification Experiments

- L: Bag of words logistic regression
- Baselines: m.f.c., lasso, ridge, elastic
- Eight datasets

Sentiment

Forecasting

20 Newsgroups Binary Tasks

Brown as features or regularizer?

LDA as features or regularizer?

Summary

- Words of a feather (should) flock together
- Idea: use linguistic structure to define feathers (flocks) instead of features

- Math: sparse group lasso regularization
- Results: text classification (topics, sentiment, forecasting)

Acknowledgments: Google, IARPA, Pittsburgh Supercomputing Center