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ABSTRACT

As the computer industry progresses in accelerating applications with ac-

celerators like GPUs (Graphic Processing Units), the OS-kernel-level I/O

software stack for storage data access and network communication has in-

creasingly become the bottleneck of the end-to-end application execution. To

alleviate this new bottleneck, high-performance systems are evolving towards

user-space I/O services, where user-level libraries directly communicate with

storage and I/O devices for data transfers, bypassing the operating system.

Such systems pre-allocate and pin user memory, map for Direct Memory

Access (DMA), and return the DMA physical address. The userspace ap-

plication can use the returned DMA address to request the storage devices

to directly read from and write to the pinned memory. However, there are

currently no measures that prevent a malicious application from specifying

a DMA address for memory belonging to another process. In this thesis,

we propose TRUDI, a system design that enables a trusted user-level pro-

cess to maintain DMA addresses and initiate I/O requests on behalf of an

application process without exposing DMA addresses to the application pro-

cess, thereby preventing unauthorized access to the physical memory of other

processes. We provide the basic primitive of registering and sharing mem-

ory buffers between an untrusted application and a trusted process. These

buffers can also be mapped for DMA with an I/O device by the trusted pro-

cess, which maintains the needed DMA addresses in metadata. This allows

the application to identify memory with a virtual address that the trusted

entity can verify and translate. With this shared-memory primitive, we can

build an isolated and high-throughput communication channel between the

untrusted application and trusted process. We exemplify this by implement-

ing a shared queue that allows CPU or GPU applications to communicate to

the trusted process at high-throughput.
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CHAPTER 1

INTRODUCTION

As the computing industry accelerates applications with accelerators like

Graphic Processing Units (GPUs), the execution time due to the OS-kernel

I/O software stacks has accounted for an increasing portion of the end-to-end

application execution time. To avoid the costly kernel-level software stack

overhead, such as user-space and kernel boundary crossings, multiple data

copies, and software overheads in the OS kernel, modern systems are moving

towards user-space I/O libraries and services [1, 2, 3]. This enables the appli-

cation itself to communicate with I/O devices, for example to read data from

storage, without the operating system. These systems pre-allocate memory

and use APIs provided by the operating systems, e.g. get user pages [4], to

pin user memory, Direct Memory Access (DMA) map it, and get the DMA

address for the memory. The user-space application can then use the returned

DMA address to program the device to read and write to the application’s

pinned memory.

However, allowing an application to program other devices with DMA

addresses can be very dangerous. When preparing a command for the device,

a malicious user can specify whatever DMA address they want, as nothing is

forcing them to use the specific DMA address for the memory they pinned.

As an example, if the user is programming a storage controller to read data,

if the user specifies an incorrect address, the storage controller can overwrite

memory not belonging to that user, possibly even operating system memory

or memory exposed by other devices in the system. Using write commands,

they can use a storage controller to read data that does not belong to them,

breaking the memory isolation provided by the operating system.

We propose TRUDI, a system design that allows a trusted user-space pro-

cess to initiate I/O requests on behalf of a user-space application process, for

its performance benefits, but that 1) does not expose DMA addresses to the

user-space application, and 2) does not allow the application to communicate
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devices using said DMA addresses. We need a mechanism to provide a virtual

address for pinned memory to the application. Thus, our system enables the

userspace application to register and share memory buffers with a trusted

agent. The application only uses the virtual address to make user-initiated

I/O requests through the trusted entity which translates the virtual address

to the correct DMA address. If the address specified by the application is

illegal, then the trusted entity can return an error as a response to the appli-

cation’s request. In our system, this trusted entity will be a trusted process

running in the system. Furthermore, our system extends to accelerators like

GPUs, enabling un-trusted GPU code to make requests to a trusted entity

that also runs on the GPU, using the same buffer registration and identifica-

tion scheme. This ability enables acceleration of services performed by the

trusted process.
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CHAPTER 2

BACKGROUND

This chapter describes the operating system and DMA features based on

which the system described in this thesis is designed, and how they necessi-

tate the new system design. We also discuss the relevant related work of this

research.

2.1 Paging

Paging is an efficient memory management technique in which the operating

system (OS) divides memory into pages of constant size that can be retrieved

from secondary storage when needed. This creates the illusion of infinite

memory capacity, or virtual memory. The paging process utilizes page tables

in order to translate virtual addresses to physical addresses.

As the user processes work on different parts of the virtual memory data,

the paging mechanism needs to bring in the new parts that are actively in

use. Since the physical memory is of limited size, some of the previously

used virtual memory data needs to be purged from the physical memory to

make room. In a modern computing system, there are usually many user

processes running. The paging activities for some of the processes are often

conducted concurrently with the application compute and I/O activities of

other processes. It is important that the paging activities do not accidentally

corrupt the result of the I/O activities that are running concurrently.

2.2 DMA and Pinned Memory

Direct Memory Access (DMA) is a mechanism provided by devices such

as storage controllers and Graphic Processing Units (GPUs) to move data

in and out of the physical memory in the system. This mechanism frees
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the operating system running on the CPU from the task of moving data in

the system. As a result, the data movement activities can be overlapped

with other computation or system management tasks running on the CPU,

increasing the productivity of the system.

However, when another device moves data to or from a page in the phys-

ical memory, the operating system may accidentally reallocate the physical

memory page to another virtual page and corrupt the data being transferred.

Therefore, the pages being accessed by DMA devices must be pinned in phys-

ical memory during the access. In a virtual memory system, once a virtual

memory page is pinned in the physical memory, it will remain in its currently

mapped physical memory page indefinitely until it is unpinned.

The OS provides user application processes with the ability to pin pages

in memory and map them for DMA for a device. The DMA mapping of a

virtual memory page returns a DMA (physical) address that can be used by

DMA devices to access the pinned pages in memory. Historically, memory

pinning, DMA mapping, and programming the DMA between the device and

memory are all handled by the OS on behalf of applications.

For example, when reading data from storage, the user-space application

will make a system call with one of the arguments being the virtual address

of a user-level buffer. The OS will identify a pre-allocated and DMA-mapped

pinned memory region for the DMA. It will use the DMA address for that

region to program the storage controller when asking for requested data. The

storage controller will write the requested data in the pinned buffer and the

OS will copy the data from the pinned buffer to the buffer provided by the

user application. Finally, the user application can access the data in its buffer

using virtual addresses.

With the emergence of accelerators and new storage devices, the overhead

incurred by the OS when accessing storage data has become a major bottle-

neck for many accelerated applications. Due to the difficulties in accelerating

and debugging OS code, computing systems are increasingly moving the stor-

age access services from the OS level to the user level [2, 5]. For example,

in the recent BaM system, the library that programs the storage devices for

DMA is provided to the user-level application as a header-only library.

However, allowing untrusted user-level applications to manage DMA ad-

dresses, which are physical addresses, leads to the security vulnerability de-

scribed in Chapter 1. Since a user application can manipulate physical ad-
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dresses and present them as DMA addresses, it can potentially read and

write to any physical address in the system, including those that are allo-

cated to other user processes, through DMA activities. To eliminate such a

vulnerability, one needs to limit the visibility and handling of DMA addresses

to only trusted user service processes that perform the storage accesses on

behalf of untrusted user application processes.

2.3 Inter-Process Communication

TRUDI utilizes two different forms of inter-process communication (IPC):

Unix domain socket and shared memory. First, for Unix domain socket,

communication occurs exclusively in the OS kernel. Two processes can con-

nect via Unix socket by opening the socket’s file descriptor on both ends.

Though Unix sockets can be beneficial for their simplicity and security (one

can change the permissions on a socket file descriptor), they involve many

system calls. This increases overhead [6] compared to shared memory com-

munication. For shared memory IPC, two processes need to open the same

region of memory. Each process can read and write to that memory in order

to communicate.

2.4 Relevance

Userspace-initiated I/O is becoming commonplace for performance [1, 2, 3].

Thus, efficiently providing memory isolation is key to preventing malicious

actors trying to read and corrupt memory of other processes. Furthermore,

modern accelerators like GPUs and FPGAs also enable userspace-initiated

I/O [7, 8]. This increases the already large attack surface exposed by DMA

vulnerabilities. Previous exploits in this area have been demonstrated [9, 10].

Currently, there is no performant mechanism for accelerators like GPUs to

make requests to the trusted OS. The only current methods of doing so are

Unified Virtual Memory (UVM) and Heterogeneous Memory Management.

UVM has performance limitations, as its page fault handling incurs substan-

tial software overhead, and GPU threads can only communicate to a CPU

OS [2, 11].
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The work in this thesis provides a performant framework where trusted

user-level processes map and maintain DMA addresses on behalf of an un-

trusted user application processes. The trusted user process returns a handle

for the maintained DMA access to the user application process. When the

user application needs to request storage data access, it presents the han-

dle to the trusted user process, which in turn programs the storage devices

with the maintained DMA address. This approach eliminates the need to

expose the DMA address to the user application process. Just as impor-

tantly, it avoids having to trust a user application process to present a valid,

legitimate DMA address for storage data.
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CHAPTER 3

DESIGN AND IMPLEMENTATION

This chapter describes the components of the system design in detail. TRUDI

consists of a client, or user, process requesting operations from a server pro-

cess. Section 3.1 describes how communication is established via Unix socket.

Next, Section 3.2 details how the client can share buffers with the server,

which registers them for use in future requests. Finally, Section 3.3 shows

how inter-process communication can be maintained via a high-throughput

queue, a use case of the buffer sharing mechanism. Figure 3.1 shows a high-

level overview of the system design. Later, Chapter 4 will analyze how this

system design addresses the fundamental security issues we introduced pre-

viously in Chapter 1.

Figure 3.1: System Design Overview

3.1 Unix Socket

A Unix socket is used to establish client and server connection. It trans-

ports the buffer registration commands (Section 3.2.3) and shared memory

file descriptor (fd), so that shared memory buffers can be created on both

processes.

The server process is the first to be initiated, with the socket() system

call, followed by bind() to assign it to an address [12, 13]. Then, listen()

marks the socket as passive, so that when a client’s connection request arrives,

accept() completes the connection [14, 15].

7



The client process connects to an existing server process through the

socket() and connect() system calls [16], giving the client a file descriptor,

socketfd, to use for communicating with the server. When a client connects,

the server creates a client handler process by calling the fork() system call

[17]. After fork(), every client’s server process has its own copy of the server

state, including the mapping for buffers. This allows for isolation between

each client handler.

After connecting, the client can use write() on the file descriptor for the

socket to send data to the server and use read() on the same socket to get

responses from the server. The server can similarly communicate with the

client via write() and read() on the file descriptor it gets when a client

connects. Below is an example of client code sending a file descriptor via

Unix socket to a server (Line 3) and waiting for its response (Line 4):

1 char buffer [256];

2 sprintf (& buffer [0], "%d", fd); //put data into buffer

3 write(socketfd , buffer , strlen(buffer)); //write to socket fd

4 read(socketfd , buffer , 255); //read response

Listing 3.1: Unix socket example

This scheme can be used by the client to send predefined commands, e.g.

register buffer, to the server, who will respond appropriately.

3.2 Sharing Buffers

Shared memory between client and server is allocated for each buffer. The

method for doing so differs for CPU and GPU, but the process is always

initiated on the client side.

3.2.1 CPU Shared Memory

The Linux dmabuf subsystem allows for a buffer that corresponds to some

memory to be shared across the system for DMA [18]. The buffer can be

mapped to user space, kernel space, or external devices. Linux currently

includes the driver /dev/udmabuf, obviating the need to create a new kernel

driver to utilize dmabuf functionality.
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For CPU applications, the process of creating and memory-mapping a

shared buffer is shown in Listing 3.2. First, the client opens /dev/udmabuf

(Line 16). Then, memfd create() creates a file for the memory region (Line

17), which is sealed with fcntl() (Line 18) [19, 20, 21]. Finally, an ioctl()

call (Line 28) on the udmabuf device creates and opens the dma buf file

for the memory region created with memfd create() [22]. The return value

is a file descriptor for the dma buf which will then be used in mmap() to

map the memory region backed by the dma buf into the process’s address

space [23]. Note that the MAP SHARED flag must be included. For TRUDI,

we adapted from the usage of the original developers of the udmabuf device

[24, 25, 26, 27].

1 struct udmabuf_create {

2 uint32_t memfd;

3 uint32_t flags;

4 uint64_t offset;

5 uint64_t size;

6 };

7

8 // Create ioctl identifier for udmabuf_create

9 #define UDMABUF_CREATE _IOW(‘u’, 0x42 , struct udmabuf_create)

10

11 struct udmabuf_create create;

12 int devfd , memfd , fd;

13 off_t size;

14

15 //Open udmabuf driver and create shared buffer

16 devfd = open("/dev/udmabuf", O_RDWR);

17 memfd = memfd_create("udmabuf -test", MFD_ALLOW_SEALING);

18 fcntl(memfd , F_ADD_SEALS , F_SEAL_SHRINK);

19 size = getpagesize () * NUM_PAGES;

20 ftruncate(memfd , size);

21 memset (&create , 0, sizeof(create));

22

23 //Open and memory -map dma_buf file

24 create.memfd = memfd;

25 create.offset = 0;

26 create.size = size;

27 create.flags = 0;

28 fd = ioctl(devfd , UDMABUF_CREATE , &create);

29 void * mmap_addr = (mmap(NULL , 4096, PROT_READ|PROT_WRITE ,
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30 MAP_SHARED , fd, 0));

Listing 3.2: CPU udmabuf

Then, the dma buf fd is sent to the server through the Unix socket. A file

descriptor (fd) is a process-specific pointer to kernel data [28]. Therefore,

before memory-mapping, the server must translate the received fd to its

process-specific fd. As Listing 3.3 shows, the server translates the client’s fd

using SYS pidfd getfd (Line 10 in Listing 3.3) [29]. In order to determine

the client’s pid, which is needed to translate the fd, the server must check the

socket options using getsockopt()(Line 6) [30]. This prevents a malicious

application from specifying another process’s pid to register a buffer it did

not create.

1 socklen_t len;

2 struct ucred creds;

3 len = sizeof(struct ucred);

4

5 //Get client credentials

6 getsockopt(socketfd , SOL_SOCKET , SO_PEERCRED , &creds , &len);

7 int pid = creds.pid;

8

9 //Use client ’s pid to translate fd

10 int newfd = syscall(SYS_pidfd_getfd , syscall(SYS_pidfd_open ,

11 pid , 0), fd , 0);

Listing 3.3: Server fd translation

3.2.2 GPU Shared Memory

CUDA now allows buffer sharing with dma buf [31]. In order to take ad-

vantage of this functionality, one must check if it is supported as shown in

Listing 3.4.

1 cuDeviceGetAttribute (&attr ,

2 CU_DEVICE_ATTRIBUTE_DMA_BUF_SUPPORTED , cudev);

Listing 3.4: Checking for CUDA dma buf support

If supported, a user can obtain a handle to memory in the form of a dma buf

as shown in Listing 3.5.

1 cuMemGetHandleForAddressRange ((void *)&handle , ptr , sz,
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2 CU_MEM_RANGE_HANDLE_TYPE_DMA_BUF_FD , 0ULL)

Listing 3.5: Obtaining dma buf fd

For GPU applications, a shared buffer is created with the CUDA Driver

API [32], rather than the Linux API described above. The shared memory is

allocated and memory mapped by the client as shown in Listing 3.6. First,

cuMemGetAllocationGranularity is used to compute the total size of the

memory region to be allocated (Line 11). Then, cuMemAddressReserve re-

serves an address range (Line 16) before the memory can be created and mem-

ory mapped with cuMemCreate and cuMemMap, respectively (Lines 17-18).

Memory access flags must be set appropriately with cuMemSetAccess (Line

2). Finally, the client obtains the buffer handle by calling cuMemGetHandle-

ForAddressRange with the flag CU MEM RANGE HANDLE TYPE DMA BUF FD (Line

27). This handle is essentially a file descriptor and is still sent over the Unix

socket (Listing 3.1).

1 size_t sz;

2 CUdeviceptr ptr;

3 CUmemAccessDesc accessDesc;

4 CUmemGenericAllocationHandle hdl;

5

6 //Get allocation granularity

7 CUmemAllocationProp prop = {};

8 prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;

9 prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;

10 prop.location.id = dev;

11 CUresult ret = cuMemGetAllocationGranularity (&aligned_sz ,

12 &prop , CU_MEM_ALLOC_GRANULARITY_MINIMUM);

13 sz = ((size + aligned_sz - 1) / aligned_sz) * aligned_sz;

14

15 // Allocate and MemMap

16 cuMemAddressReserve (&ptr , sz , 0ULL , 0ULL , 0ULL);

17 cuMemCreate (&hdl , sz, &prop , 0);

18 cuMemMap(ptr , sz, 0ULL , hdl , 0ULL);

19

20 //Set Access

21 accessDesc.location.id = device;

22 accessDesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;

23 accessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;

24 cuMemSetAccess(ptr , sz , &accessDesc , 1ULL);

25
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26 //Get handle

27 cuMemGetHandleForAddressRange ((void *)&handle , ptr , sz,

28 CU_MEM_RANGE_HANDLE_TYPE_DMA_BUF_FD , 0ULL);

Listing 3.6: GPU shared buffer code

In addition to the handle, the size is also sent to the server via the socket.

The server must also get its own version of the handle using SYS pidfd getfd

(Line 10 of Listing 3.7), which is then used to import the allocation with

cuMemImportFromShareableHandle() (Line 12). The server completes cuMem-

AddressReserve() with its own ptr (Line 15). At that point, cuMemMap()

and cuMemSetAccess() are invoked (Lines 16 and 22). Note that an addi-

tional call to cuMemGetHandleForAddressRange() would be needed to ob-

tain the dma buf file descriptor, which the server can use for DMA mapping.

1 // Received from socket

2 int handle;

3 size_t sz;

4

5 CUdeviceptr ptr;

6 CUmemAccessDesc accessDesc;

7 CUmemGenericAllocationHandle hdl;

8

9 // Translate handle and import memory

10 int newhandle = syscall(SYS_pidfd_getfd , syscall(

11 SYS_pidfd_open , pid , 0), handle , 0);

12 cuMemImportFromShareableHandle (&hdl , (void *)(uintptr_t)

newhandle , CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR);

13

14 // Memory map

15 cuMemAddressReserve (&ptr , sz , 0ULL , 0ULL , 0ULL);

16 cuMemMap(ptr , sz, 0ULL , hdl , 0ULL);

17

18 //Set Access

19 accessDesc.location.id = device;

20 accessDesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;

21 accessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;

22 cuMemSetAccess(ptr , sz , &accessDesc , 1ULL);

Listing 3.7: Server opens shared buffer
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3.2.3 Buffer Registration

Upon creation of the shared buffer, the server “registers” the buffer in the

buffer map. This maps each buffer to a handle, which is sent back to the

client. The client must use a handle to identify a registered buffer when

communicating requests to the server. The client can create several shared

buffers with the server, each of which will have a corresponding handle.

To do so, the client would specify the commands “register buffer” or

“unregister buffer”. When a buffer is registered, it is added to buffer map,

and the corresponding handle is sent back to the client. If the client requests

to unregister a buffer, the server removes the entry for the requested handle,

responding with an error if no such entry exists. Listing 3.8 shows the fields

of buffer registration requests.

1 struct register_req{

2 char op; //"R" or "U" (register or unregister)

3 uint32_t fd; // Buffer fd if "R", else ignored

4 size_t size; // buffer size if "R", else ignored

5 uint32_t handle; // Handle if "U", else ignored

6 };

Listing 3.8: Buffer registration command

Every client handler in the server keeps a map of registered buffers, and for

each buffer it maintains metadata in the buffer map entry shown in Listing

3.9.

1 struct buffer_map_entry{

2 uint32_t fd; //DMA buffer fd

3 uint64_t dma_addr; //DMA address if applicable

4 size_t size; // buffer size

5 };

Listing 3.9: buffer map entry struct

The buffer map enables the server to check which buffers a client has created

and therefore has access to. In the future, if the client requests to read or

write with a handle that does not exist in the map, the server will respond

with an error. Additionally, the server will check the size element to deter-

mine if a request has been made with either a size or offset value that is out

of range, responding with an error as well.
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3.3 High-Throughput Queue

While read and write requests can be communicated through the existing

Unix socket, this communication has a couple of shortcomings. First, it limits

the usability to CPU application threads, meaning other accelerators such

as GPUs cannot use it. Second, communication through the socket requires

system calls which have high overhead [6]. In this section, we will show how

we can use the buffer sharing mechanism to create an isolated communication

channel. Once a connection is established between the two processes, the

overhead that sockets incur from context switching is no longer necessary,

as the two processes can communicate through shared memory. Figure 3.2

shows an overview of the primary system design with an additional queue.

Figure 3.2: System Design Overview with Queue

3.3.1 Instantiation

A queue is set up using the same methods shown in Section 3.2, except

both the client and server must cast the memory map result to type Queue,

shown in Listing 3.10. Queues are differentiated with separate registration

commands “register queue” and “unregister queue”, and are registered

in a queue map similar to the buffer map.

3.3.2 Sample Implementation

The sample queue implementation, class Queue, is shown in Listing 3.10.

1 class Queue {

2 // Physical array of data elements

3 data_op data[QUEUE_SIZE ];
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4 // Atomically updated tickets for enqueuing and dequeuing

5 atomic <uint32_t > head_ticket , tail_ticket;

6 // Atomically updated physical queue holding ticket turns

7 atomic <uint32_t > pos_tickets[QUEUE_SIZE ];

8 public:

9 void enqueue(data_op buf_info , response data ...);

10 void dequeue(data_op *buf_info);

11 };

Listing 3.10: Queue struct

The queue holds elements of type data op, exhibited in Listing 3.11.

1 struct data_op{

2 char op; //read or write

3 unsigned buffer_id; //id for registered buffer

4 uint64_t offset; // offset into buffer

5 uint64_t bytes; // number of bytes for read or write

6 uint64_t key; // location of read or write data

7 };

Listing 3.11: data op struct

The location of read and write data is an implementation choice for the

server. It could come from a storage device, over the network, a filesystem,

etc. The buffer id should be a handle for a previously registered buffer,

which the server will translate to perform the request, responding with an

error message if needed.

In this sample implementation, on enqueue() or dequeue(), each thread

will receive a “virtual ticket”, as shown Listing 3.12. For enqueue, the ticket

is calculated by incrementing the tail (Line 2), and for dequeue, the ticket

is calculated by incrementing the head (Line 18). The virtual ticket is then

used to determine its corresponding turn and position in the physical tickets

array. The turn is used to coordinate between the client and server actions on

the data array. It can be one of the following: enqueue, dequeue, or receive

response.

1 void Queue:: enqueue(data_op buf_info , response data ...) {

2 auto my_virtual_ticket = tail_ticket.fetch_add (1);

3 //set turn to enqueue state

4 auto turn = (my_virtual_ticket / QUEUE_SIZE) * 3;

5 auto pos = my_virtual_ticket % QUEUE_SIZE;

6 while (turn != pos_tickets[pos].load()); //wait for turn

7 data[pos] = buf_info;
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8 pos_tickets[pos]. fetch_add (1); //add 1 for dequeue state

9 //wait for receive response turn value

10 while ((turn + 2) != pos_tickets[pos].load());

11 /*get response data from data[pos]

12 ...

13 */

14 pos_tickets[pos]. fetch_add (1);

15 }

16

17 void Queue:: dequeue(data_op * buf_info) {

18 auto my_virtual_ticket = head_ticket.fetch_add (1);

19 //set turn to dequeue state

20 auto turn = (( my_virtual_ticket / QUEUE_SIZE) * 3) + 1;

21 auto pos = my_virtual_ticket % QUEUE_SIZE;

22 while (turn != pos_tickets[pos].load()); //wait for turn

23 *buf_info = data[pos];

24 /*set fields in data[pos] to indicate response

25 ...

26 */

27 pos_tickets[pos]. fetch_add (1); //add 1 for receive

response state

28 }

Listing 3.12: Code for enqueue and dequeue

Figure 3.3: Queue State Machine

Figure 3.3 outlines the flow of the queue. When the client wants to enqueue a

request, it must wait for the turn value in its entry in the physical tickets array
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(pos tickets[pos]) to be equal to its turn value (Line 6). It then increments

pos tickets[pos] to indicate that it is the turn of the server thread with the

same virtual ticket to dequeue (Line 8), and waits for a response turn value

in the same physical ticket array entry (Line 10). When the server is done

dequeuing and handling the data operation, it increments pos tickets[pos]

(Line 27) to indicate that it is the turn of the corresponding client thread

to receive the response (Line 11). This implementation ensures that every

thread’s request is handled in order and efficiently.

3.4 Putting it all Together

Listing 3.13 shows a simplified example of a client process utilizing the system

design. The client creates a 4KB buffer to be shared with the trusted server

to be mapped for DMA. It prepares (Lines 11-14) and sends (Line 17) a buffer

registration request, and receives the buffer handle (Line 18-20). On buffer

registration, the server can map the buffer for DMA with an I/O device as

needed. Then, the client creates (Line 26) and registers (Line 29-35) a queue.

Finally, it can use the newly registered queue to send a write request to write

back data in the previously registered buffer (Line 49).

1 size_t buff_size = 4096;

2 size_t queue_size = 8192;

3 int resp;

4 int buff_fd , queue_fd;

5 int buff_handle;

6

7 // Create a buffer

8 /* Allocate shared buffer (Listing 3.2/3.6) to get handle */

9

10 //Fill in buffer registration request fields

11 struct register_req;

12 register_req.op = "R"; // Register buffer

13 register_req.fd = buff_fd;

14 register_req.size = buff_size;

15

16 //Send request and receive handle for buffer

17 write(socketfd , register_req , sizeof(register_req));

18 read(socketfd , resp , sizeof(resp));

19 if(resp < 0) printf("Buffer registration error");
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20 else buff_handle = resp;

21

22 // Create a Queue

23 /* Allocate another shared buffer for queue */

24

25 //Cast buffer to Queue type

26 Queue *req_queue = new ((void *) ptr) Queue ();

27

28 //Fill in queue registration request fields

29 struct register_req;

30 register_req.op = "QR"; // Register queue

31 register_req.fd = queue_fd;

32 register_req.size = queue_size;

33

34 //Send request and receive response

35 write(socketfd , register_req , sizeof(register_req));

36 read(socketfd , resp , sizeof(resp));

37 if(resp < 0) printf("Queue registration error");

38

39 //Fill in data operation request fields

40 struct data_op request;

41 request.op = "W";

42 request.buffer_id = buff_handle;

43 request.offset = 0;

44 request.bytes = sizeof(data_op);

45 request.key = request_key; // Source of write data

46

47 /* In client kernel */

48 // Enqueue write request

49 req_queue ->enqueue(request);

Listing 3.13: User process queue example
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CHAPTER 4

ANALYSIS

4.1 Shared Buffer

The simple use case of the shared memory that we have enabled is a buffer

that is shared between processes. More specifically, this buffer can be a DMA

buffer, meaning that higher performance memory can be shared between

GPU processes and even be used for data transfers with I/O devices.

Because each buffer that is shared is registered in the buffer map, they

can also be used in read/write requests from the client. It is important to

note that each forked server opens its corresponding client’s shared memory

and has its own copy of the buffer map. Therefore, this design provides a

security guarantee by means of isolation between processes. Each process

can only make I/O requests through the trusted server, which determines if

the requested handle is present in its isolated buffer map. This effectively

blocks external processes from performing DMA to or from locations in sys-

tem memory that do not belong to them. Additionally, traditional virtual

memory already prevents a client process from accessing another process’s

buffer, as it would not be in the client’s address space. The trusted server

also keeps all DMA addresses stored in the isolated buffer map. As a result,

it can securely map buffers for DMA, whilst not exposing the DMA address

or the ability to program DMAs to any client process.

Further, the server validates all client requests. It responds with an error

if a client specifies an unregistered buffer handle, as well as a size or offset

that is out of range. This prevents access to not only a buffer’s backing

memory, but also to arbitrary system memory by means of an overflow attack.

Consequently, the trusted server can validate requests, perform appropriate

address translations, and securely program an I/O device as requested by

the client.
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As discussed in Section 2.4, GPU threads were previously only able to

communicate with the CPU OS as a trusted entity. Now that we have enabled

buffer registration, as well as the queue registration which will be analyzed

in more detail in Section 4.2, we have created a new mechanism. TRUDI

facilitates communication between GPU threads and a trusted GPU process,

with all of the security benefits identified above.

4.2 Read/Write Request Queue

A use case of this shared memory method is the secure queue mechanism

shown in Listing 3.12. Because queues are isolated between processes, no

outside process can inject read or write requests to any registered buffer or

queue that does not belong to them.

Figure 4.1 shows the performance of the queue implementation we pre-

sented in the last chapter. The experiment is set up with a queue of depth

512, each client thread submitting one queue request, and 512 server pro-

cessing GPU threads running on an NVIDIA A100 GPU. As we increase

the number of client threads, the throughput can reach a peak of 15 million

requests per second. The significant drop in throughput after 214 threads is

likely attributed to improper inter and intra-warp contention management

in our sample queue implementation. Since the queue serves as an example

for the use of the shared buffer mechanism, we leave the performance tuning

of the queue implementation for future work.

The queue is an example of how the central mechanism we have created can

be used to enable an isolated, performant communication channel between

user processes and the trusted server process for both CPU and GPU.
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Figure 4.1: Scaling client threads with 512 server threads and 512 as queue
size
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CHAPTER 5

CONCLUSION

The system design that we have created achieves shared memory between

a user application and a trusted server, such that a shared memory buffer

can be registered by the server for future secure memory access. With the

additional ability to create a queue from a shared buffer, one can build high-

performance trusted services, even for accelerators like GPUs. This memory

sharing method is novel in that two GPU-accelerated processes can commu-

nicate, in contrast to other methods, such as UVM, in which GPU threads

can only communicate with a CPU OS. We showed how the buffer sharing

mechanism guarantees security through process isolation, server validation

of client requests, and concealment of DMA addresses. Case study analysis

of the high-throughput queue shows how TRUDI enables the creation of a

high-throughput, secure trusted process that can program I/O devices on

behalf of a user application. Thus, userspace-initiated I/O can continue to

be used for its performance benefits, without the risk of the fundamental

DMA address vulnerability.
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