Differential Privacy: What it is, What it is not

"I like the privacy, but it does make it hard to see."
Niloofar Mireshghallah

Generative AI \& Data!

Forbes

FORBES > INNOVATION > CONSUMER TECH
GPT-4 Beats 90\% Of Lawyers Trying To Pass The Bar

John Koetsier Senior Contributor ©
Journalist, analyst, author, and speaker.

有 OpenAI
 DAA

- GPT-4 is trained on about 13 trilllion tokens (~25TB data)
- DALL-E was trained on a dataset of over 250 million image-caption pairs

Most of this data is web-scraped!

Most of this data is web-scraped! What could go wrong?

Models Can Reveal Training Data!

Researchers recovered over 10,000 examples, including a dozen PII, from ChatGPT's training data at a query cost of $\mathbf{\$ 2 0 0}$ USD

And It's Not Just Text!

(ars TECHNICA
birgit tech suaile policy ches camicg culvire sit

Paper: Stable Diffusion "memorizes" some images, sparking privacy concerns

But out of 300,000 high-probability images tested, researchers found a 0.03% memorization rate. EnJ EDWARDS - 21/12023, 10:37 AM

Researchers extracted $\mathbf{9 4}$ images out of $\mathbf{3 5 0 , 0 0 0}$ most frequent examples in the training data of Stable Diffusion.

This is not a new problem!

This is not a new problem!

What did people do before, for privacy?
Let's take a step back!

US Census

Collection and release of demographic data

- Name, age, sex, race, ethnicity and relationship to household head is collected.
- This is used to determine the number of House seats, allocate resources, etc.

US Census

Collection and release of demographic data

- Name, age, sex, race, ethnicity and relationship to household head is collected.
- This is used to determine the number of House seats, allocate resources, etc.
- What else 'can be inferred' from this?
- Teenage children living with a single parent, same-sex couples with children, families that are mixed-race

"We'll be putting you in the 'crabby neighbor', demographic."

Problem: We have sensitive tabular data, and want to make decisions based on it!

Aggregate tables and anonymize?

Reconstruction and Re -identification

Linking public data to external data sources to re-identify specific individuals within the data.

Name	Age	Sex	\square	Age	Sex	Race	Relationship
Jane Smith	66	Female		66	Female	Black	Married
Joe Public	84	Male		84	Male	Black	Married
John Citizen	30	Male		30	Male	White	Married

External Data
Confidential Data
Reconstruction and re-identification on 2010 census data successfully reidentified $\mathbf{5 2}$ million records.

What else can we do?

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:
- Inferring anything about her from M model over D, that we would not be able to infer from M^{\prime}, over D^{\prime}

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:
- Inferring anything about her from M model over D, that we would not be able to infer from M^{\prime}, over D^{\prime}
- \boldsymbol{D}^{\prime} is different from D in only one data point, Alice.

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:
- Inferring anything about her from M model over D, that we would not be able to infer from M^{\prime}, over D^{\prime}
- \boldsymbol{D}^{\prime} is different from D in only one data point, Alice.

John

Jane

Alice

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:
- Inferring anything about her from M model over D, that we would not be able to infer from M^{\prime}, over D^{\prime}
- \boldsymbol{D}^{\prime} is different from D in only one data point, Alice.

John

Jane

Alice

Bob

Clinical Trial

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:
- Inferring anything about her from M model over D, that we would not be able to infer from M^{\prime}, over D^{\prime}
- \boldsymbol{D}^{\prime} is different from D in only one data point, Alice.

John

Jane

Alice

Clinical Trial

Why is this not a leak?

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:
- Inferring anything about her from M model over D, that we would not be able to infer from M^{\prime}, over D^{\prime}
- \boldsymbol{D}^{\prime} is different from D in only one data point, Alice.

John

Jane

Clinical Trial

Removing Alice from the data yields the same conclusion!

Differential Privacy and Data Leakage

Intuition

- Leakage of Alice's record in dataset D is:
- Inferring anything about her from M model over D, that we would not be able to infer from M^{\prime}, over D^{\prime}
- \boldsymbol{D}^{\prime} is different from D in only one data point, Alice.

John

Jane

Alice

Differential Privacy and Data Leakage

Definition and assumptions

- Differential Privacy (DP) provides a mathematically rigorous framework to limit an adversary's ability to distinguish whether any individual record was used in the computation of a statistic (e.g. mean, or a model) over a dataset.
- This distinguishability is quantified by privacy loss or privacy budget, ε.

Differential Privacy and Data Leakage

Definition and assumptions

- Differential Privacy (DP) provides a mathematically rigorous framework to limit an adversary's ability to distinguish whether any individual record was used in the computation of a statistic (e.g. mean, or a model) over a dataset.
- This distinguishability is quantified by privacy loss or privacy budget, ε.
- If a pattern is common in data, DP would reveal it. However uncommon patterns are obfuscate and smoothed out.

...What's the catch?

Differential privacy is not free!

Providing accurate data

Safeguarding individual privacy

```
Data Quality|Bnae Kegouqe
Dada Qualitg|Vrkk Jzcfkdy
Data Qaality|Dncb PrhvBln
Dzte Qvality|Dncb Prtnavy
Dfha Quapyti|Tgta Ppijacy
Tgta Qucjity|Dfha Pnjvico
Dncb Qhulitn|Dzhe Njivaci
Ntue Quevdto|Dzte Privecy
Vrkk Zuhnvry|Dada Privacg
Bnaq Denorbe|Data Privacy
```


Differential privacy is not free!

What does this look like in practice?

Providing accurate data


```
Data Quality|Bnae Kegouqe
Dada Qualitg|Vrkk Jzcfkdy
Data Qaality|Dncb PrhvBln
Dzte Qvality|Dncb Prtnavy
Dfha Quapyti|Tgta Ppijacy
Tgta Qucjity|Dfha Pnjvico
Dncb Qhulitn|Dzhe Njivaci
Ntue Quevdto|Dzte Privecy
Vrkk Zuhnvry|Dada Privacg
Bnaq Denorbe|Data Privacy
```


US Census

Impact on different demographics

- Post-Enumeration Survey (PES) estimate how well the 2020 Census counted everyone.
- PES results show:
- The Hispanic population had an undercount rate of $\mathbf{4 . 9 9 \%}$. This is statistically different from a 1.54\% undercount in 2010.

US Census

Impact on different demographics

- Post-Enumeration Survey (PES) estimate how well the 2020 Census counted everyone.
- PES results show:
- The Hispanic population had an undercount rate of $\mathbf{4 . 9 9 \%}$. This is statistically different from a $\mathbf{1 . 5 4 \%}$ undercount in 2010.
- The White population had an overcount rate of $\mathbf{1 . 6 4 \%}$. This is statistically different from an overcount of 0.83% in 2010.

Differential Privacy has disproportionate impact on the tails of the distribution

Differential Privacy has disproportionate impact on the tails of the distribution

Watch out for outliers!

Back to our problem: What about Generative AI?

Textual Data

Let's assume we want to release a medical dataset for research purposes.

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

Covid Cough ||T machine

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

Covid Cough CT machine

\square

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes. Covid Cough CT machine

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

Covid \mid Cough $|\mid$ CT machine

CT machine

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

Covid Cough CT machine

Textual Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

Covid Cough CT machine

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

22 yo F has numbness in extremities and brain fog. She received a lumbar puncture, which requires local anesthesia.

What would applying DP look like here?

What Does it Mean for a Language Model to Preserve Privacy?

Hannah Brown ${ }^{1}$, Katherine Lee ${ }^{2}$, Fatemehsadat Mireshghallah ${ }^{3}$ Reza Shokri ${ }^{1}$, Florian Tramèr ${ }^{4 *}$
${ }^{1}$ National University of Singapore, ${ }^{2}$ Cornell University ${ }^{3}$ University of California San Diego, ${ }^{4}$ Google
\{hsbrown, reza\}@comp.nus.edu.sg kate.lee168@gmail.com fatemeh@ucsd.edu tramer@google.com

Abstract

Natural language reflects our private lives and identities, making its privacy concerns as broad as those of real life. Language models lack the ability to understand the context and sensitivity of text, and tend to memorize phrases present in their training sets. An adversary can exploit this tendency to extract training data. Depending on the nature of the content and the context in which this dat was collected, this could violate expectations of privacy. Thus, there is a growing interest in techniques for training language models that preserve privacy. In this paper, we discuss the mismatch between the narrow assumptions made by popular data protection techniques (data sanitization and differentia privacy), and the broadness of natural language and of privacy as a social norm. We argue that existing protection methods cannot guarantee a generic and meaningful notion of privacy for language models We conclude that language models should be trained on text data which was explicitly produced for public use.

Differential Privacy for Text

Assumptions and challenges

1. DP is developed for data with clear boundaries between records, what is right definition of record, for text data?

- Token? word? Sentence? Document?

Differential Privacy for Text

Assumptions and challenges

1. DP is developed for data with clear boundaries between records, what is right definition of record, for text data?

- Token? word? Sentence? Document?

2. Who owns a record is sometimes non-trivial in text (and other modalities), and there is always correlations in the data

- Example: 'Bob, did you hear about Alice's divorce? She was pretty upset!'

Let's assume each person's document is a record, and apply DP!

We take the entire dataset, train a generative model with DP-SGD on it, and sample new data points from that model.

DP on Text Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

22 yo F has numbness in extremities and brain fog. She received a lumbar puncture, which requires local anesthesia.

DP on Text Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

22 yo F has numbness in extremities and brain fog. She received a lumbar puncture, which requires local anesthesia.

35 yo M has covid and a cough. The CT machine at the hospital is broken.

18 yo F has covid and a cough.

40 yo M has covid and hearing problems.

What DP does:
 Capture the trends and patterns

DP on Text Data

28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

22 yo F has numbness in extremities and brain fog. She received a lumbar puncture, which requires local anesthesia.

Covid

Cough
CT machine

What DP doesn't do:
 Selectively detect and obfuscate 'sensitive' information, while keeping 'necessary' information intact!

DP on Text Data

> 28 yo F positive for covid \& has a cough. Didn't receive a lung CT since the only machine in the hospital is broken.

32 yo M came to ER, tested positive for covid and had a cough. Family history of diabetes.

45 yo M w/ respiration problems has covid and a headache. Lung CT is delayed because the only machine is broken.

Identifying information

35 yo M has covid and a cough. The CT machine at the hospital is broken

18 yo F has covid and a cough.

22 yo F has numbness in extremities and brain fog. She received a lumbar puncture, which requires local anesthesia.

Repeated information might be sensitive!

DP on Text Data

Information that appears only once might be non-sensitive and necessary!

DP doesn't capture the

 nuances of privacy for text!
DP doesn't capture the nuances of privacy for text!

Or even other data-modalities! -images:

DP doesn't capture the

 nuances of privacy for text!
Or even other data-modalities! -images:

Is a single image a record? Or each face?

DP doesn't capture the

 nuances of privacy for text!
Or even other data-modalities! -images:

Is a single image a record? Or each face?

Whose record is this?

DP doesn't capture the nuances of privacy for text!

Or even other data-modalities! -images:

Is a single image a record? Or each face?

Whose record is this?

Does it even matter? These are celebrities...

Conclusion

Conclusion

- What DP is:

- A great tool for computing private statistics, over independent tabular data
- Context-free, worst-case privacy measure

Conclusion

- What DP is:

- A great tool for computing private statistics, over independent tabular data
- Context-free, worst-case privacy measure
- What DP is not:
- Free in terms of data utility
- A sensitive data/span detection and scrubbing tool

Thank You!

niloofar@cs.washington.edu
Also thanks to Katherine Lee, A. Feeder Cooper, Matthew Jagielski, Milad Nasr, Gautam Kamath and Yejin Choi for helpful feedback and discussions!

