The W state is the unique ground-state of a local Hamiltonian
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A recent work by Gioia and Thorngren [1f], shows that the W state,
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cannot be the unique ground-state of any 1-dimensional local Hamiltonian. In this short note, we show
that there exists a spectrally-gapped 2-local Hamiltonian H = E;; h;; with all-to-all connectivity for which
the W; state is the unique ground-state. Moreover, the local Hamiltonian term h;; for i # j € [n] is the
same term and is defined for a choice of 6 € (0, 1):
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Theorem 1. The 2-local Hamiltoniarl given by all-to-all connectivity and interaction h given by eq. @ has
a unique ground-state of [W1) at energy 9 and a spectral gap of at least

|01) + |10)) are two of the four Bell states.
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Proof. To prove this statement, we can define a generalization of the W; state to ¢ excitations:
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where X; = [] ¢, Xj. A simple calculation reveals that
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and therefore, we can calculate the 2-qubit reduced density matrix of [W;) directly:
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Then, the energy of [W;) with respect to H is
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It remains to show that any orthogonal vector to [W;) has energy larger than 6/n with respect to H. First
notice that H = P(r) "'HP(r) for any 7 € S(n). Therefore,

(YIHly) = E tr(P(x) 'HP(m) [y Xy1) = E tr(HP(n) [y Xy/| P(m) ™). (7)

The frustration in this Hamiltonian is necessary given that the reduced density matrix of the W, state.



Therefore, the energy of a state i/ equals that of its symmetrized version E ; P(r)"'¢/P(x). Since the sym-
metrized state is supported on the symmetric subspace, there exists a symmetric state of equal energy.
Therefore, it suffices to show that every orthogonal vector to [W;) within the symmetric subspace has
energy larger than 0/n.

Recall that the symmetric subspace for qubits is spanned by the states (W), [W1), [Wa), ..., [W,). Given
the orthogonality of the W states of different excitations and the expansion in the basis of / given in eq. (4),
it is easy to verify that (Wp|h[W;) = 0if £ = ¢. Equivalently, the off-diagonal terms in energy calculations
in the symmetric subspace are 0. This implies that the energy of the Hamiltonian & must be minimized for
some |W;) as the energy of any state Y, a;[W;) will be equal to that of the density matrix Y |e,|* [W,XW{.

We generalize our energy calculation of [W;) in eq. (6), to calculate that
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It is easy to see that this decreases as ¢ decreases. Therefore, [W,) is the eigenvector of minimal eigenvalue
orthogonal to [W;). Given the eigenvalue of [W) due to the previous equation, the spectral gap of H is at
least
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No “better” 2-local Hamiltonian exists

The issue with the local Hamiltonian term h defined in eq. (2) is that the ratio of eigenvalues of h scale
linearly in n. Is it possible to construct a 2-local term without such scaling? This is in fact impossible. Let
us restrict ourselves to Hamiltonians h with spectrum bounded € [0, 1].

To see this, consider a 2-local Hamiltonian H” with the property that

(Wi[H'[Wy) < min { (Wo[H'[Wo) , (W [H'[Wy), (W3[H'[W3) ... }. (10)

Notice that for any such H’, the Hamiltonian H” “E . S(n) P(r)""HP(rr) has the property that (W, [H”|W,) =
(W¢H'|W;) and H” is 2-local Hamiltonian where every local term is the same. Therefore, without loss of
generality, we can restrict to considering such Hamiltonians H’ = E;; h’(ij) Given the local interaction

term #’, define
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Then, the equations (W;[H'|W;) < (Wo|H'[Wp) and (W;[H'|W;) < (W,|H’|W,) are equivalent to
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These are equivalent to
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To minimize the energy of Wi and maximize the energy of Wy and W, with respect to A, it is optimal to set
E; = 1. Setting E; to be anything > 0 is equivalent to adding a global energy penalty, so we can without
loss of generality assume E; = 0 which forces Ey < n7£2 This is precisely what we show in our definition

of hin eq. (2).

1 W states of two different types of excitations

Consider a qudit system of local dimension d + 1 with a basis [0),[1),...,|d) for the local dimension. A
natural generalization of a W state to a qudit system could be
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where a € {1,2,...,d}" is a description of the excitation type. For any particular choice of g, this state is the
ground-state of a local Hamiltonian by simply adjusting the previous argument. Furthermore, we could
even construct a local Hamiltonian whose ground-state enforces a particular superposition over excitations
at site j.

But it seems hard to generate a local Hamiltonian which allows in its ground-space any state |W1(5)>.
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