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Why study error-correcting codes?

Quantum fault tolerance 

• [Gottesman
09

] QLDPC ⇒ fault tolerance quantum 

computation with constant overhead

Interesting local Hamiltonians

• with robust entanglement properties

• toric code, color codes, etc.

Quantum PCP conjecture

• Hardness of approximation in quantum setting

• Entanglement at room temperature

Image: Daniel Gottesman, APS

input 𝑥 Verifier

Quantum Witness
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What makes a code good?

Rate

|𝜑⟩

Enc |𝜑⟩

Distance

Enc |𝜑⟩

|𝜑⟩

Decoding Circuit
Encoding Circuit

Stabilizer weight (locality)

𝐻1 𝐻2 𝐻3 …

Rate: 
𝑘

𝑛
= Ω(1)

Distance: 𝑑 = Ω(𝑛)
Locality: 𝑂(1)
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We show that optimal rate, distance and locality 

parameters are possible (modulo polylog corrections)

if we go beyond stabilizer codes to

non-commuting and approximate codes
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Quantum error 

correcting codes

Local

Hamiltonians

(with robust entanglement)

ex. toric code

this talk



Outline

• Coding theory definitions

• Uniformization via sorting circuits

• Spacetime Hamiltonians

• Spectral gap analysis

Chinmay Nirkhe Approx. QLDPC codes from spacetime Hamiltonians
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What is a LDPC code?

ow

ensity

arity

heck

L

D

P

C

Classically, a code 𝒞 is a dim 𝑘 subspace of ℤ2
𝑛
.

A linear code can be defined by a matrix 𝐻 ∈ ℤ2
𝑛× 𝑛−𝑘

.

𝒞 = 𝑥 ∈ ℤ2
𝑛 ∶ 𝐻𝑥 = 0

1 1 0
0 1 1

𝑥1
𝑥2
𝑥3

= 0𝐻 =
1 1 0
0 1 1

𝑥1 = 𝑥2 = 𝑥3 ⇒ 𝒞 = {000, 111}

𝐻 has 𝑐-locality if 𝐻 is 𝑐-row sparse and 𝑐-column sparse.
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Benefits of an LDPC code

𝐻 =
1 1 0
0 1 1

0

1

1

Since the checks overlap, they 

can’t be parallelized and must 

be done in series.

If the code is 𝑐-local, then the 

checks can be parallelized into 

𝑐3 + 𝑐 depth circuit.
1

0

Proof: Each check shares bits with at most 𝑐2 other checks. By coloring argument, requires 

𝑐2 + 1 rounds. Each round requires depth 𝑐.
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Quantum LDPC codes

For CSS codes 

(codes that handle 

𝑋 errors and 𝑍
errors separately), 

definition is easy…

both parity check 

matrices 𝐻𝑋 and 𝐻𝑍
need to have low 

density.

𝑋

𝑋

𝑋
𝑋

𝑍
𝑍

𝑍
𝑍

locality: 4

distance: 𝑂( 𝑛)

rate: 2/𝑛

Can we do better?

ex. toric code



Best known stabilizer codes

• [Tillich-Zemor
13

]

• rate: Ω(1)

• distance:𝑂( 𝑛)

• locality:𝑂(1)

• [Freedman-Meyer-Luo
02

]

• rate: Ω(1/𝑛)

• distance:𝑂( 𝑛 log 𝑛)

• locality:𝑂(1)

Chinmay Nirkhe Approx. QLDPC codes from spacetime Hamiltonians

To do better, we probably need 

to go past stabilizer codes!
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Going past stabilizer codes

Let 𝐻1, 𝐻2, … , 𝐻𝑚 be a set of 𝑐-local 

projectors acting on 𝑛 qubits.

Define the code-space 𝒞 as the mutual eigenspace:

𝒞 = 𝜑 ∈ ℂ2 ⊗𝑛 𝜑 𝐻𝑖 𝜑 = 0 ∀ 𝐻𝑖

not necessarily commuting

𝐻 = 𝐻1 +⋯+𝐻𝑚 is 𝑐-QLDPC if additionally each 

qubit participates in at most 𝑐 terms 𝐻𝑖. 
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First attempt [N-Vazirani-Yuen
18

]

CSS codes exist with linear rate and distance, but lack locality.

Create a Hamiltonian whose ground-space is almost exactly that of a 

CSS code but is locally checkable. 
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First attempt [N-Vazirani-Yuen
18

]

Create a Hamiltonian whose ground-space is almost exactly that of a 

CSS code but is locally checkable. 

Express a computation as the ground-state of a 5-local Hamiltonian 

(Feynman-Kitaev clock Hamiltonian) [Kitaev
99

]

𝐵

𝐶

|𝜓0⟩

𝐴

|𝜓1⟩ |𝜓2⟩ |𝜓3⟩

|𝜉⟩

|0⟩

𝜓0 = 𝜉 0
𝜓1 = 𝐴 𝜓0

𝜓2 = 𝐵|𝜓1⟩
𝜓3 = 𝐶|𝜓2⟩

Together, {|𝜓𝑡⟩} are a “proof” that the circuit was 

executed correctly. But, ෩Ψ = 𝜓0 𝜓1 … |𝜓𝑇⟩ is not 

locally-checkable.

Instead, the following ”clock” state* is:

Ψ =
1

𝑇 + 1


𝑡=0

𝑇

𝑡 |𝜓𝑡⟩

*Quantum analog of Cook
71

-Levin
73

Tableau.
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First attempt [N-Vazirani-Yuen
18

]

Create a Hamiltonian whose ground-space is almost exactly that of a 

CSS code but is locally checkable. 

Let 𝐶 = 𝐶𝑇𝐶𝑇−1…𝐶1 be a circuit with gates {𝐶𝑖} and let 𝜓0 = |𝜉⟩|0⟩⊗𝑛−𝑘

be an initial state for |𝜉⟩ ∈ ℂ2 ⊗𝑘
.

There is a local Hamiltonian with ground space of:

𝒢 = ቐ ቑΨ𝜉 =
1

𝑇 + 1


𝑡=0

𝑇

unary 𝑡 ⊗ 𝜓𝑡 ∶
𝜓𝑡 = 𝐶𝑡 𝜓𝑡−1 ,

𝜓0 = |𝜉⟩|0⟩⊗(𝑛−𝑘)
.
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First attempt [N-Vazirani-Yuen
18

]

Create a Hamiltonian whose ground-space is almost exactly that of a 

CSS code but is locally checkable. 

Let 𝑉 be the encoding 

circuit for a good CSS 

code.

Choose 𝐾 = 𝑂 𝑇𝑉𝛿
−2 .

𝑉 𝕀

𝐾 long

𝐶 =

Construct the clock Hamiltonian 

for this “padded” circuit 𝐶.
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First attempt [N-Vazirani-Yuen
18

]

The groundspace of 𝐻 is ≈ the groundspace of a CSS code tensored with junk.

𝒢𝐶 = ቐ ቑ
1

𝑇𝐶 + 1


𝑡=0

𝑇

𝑡 𝜓𝑡 :
𝜓𝑡 = 𝐶𝑡𝐶𝑡−1…𝐶1 𝜓0 ,

𝜓0 = |𝜉⟩|0⟩⊗(𝑛−𝑘)

But for 𝑡 ≥ 𝑇𝑉, 𝜓𝑡 = 𝑉 𝜓0 . Thus, 1 − 𝑂(𝛿2) fraction of 𝜓𝑡 = 𝑉 𝜓0 .

𝒢𝐶 ≈
1

𝑇𝐶 + 1


𝑡=0

𝑇

𝑡 ⊗ ൛ ൟ𝑉 𝜓0 ∶ 𝜓0 = 𝜉 0 ⊗(𝑛−𝑘) .

Plus, 𝒢𝐶 is the ground-space of a 

5-local Hamiltonian!

However, some qubits 

participate in many terms 𝐻𝑡.
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First attempt [N-Vazirani-Yuen
18

]

𝐻𝑡 checks that the slice 𝑡 |𝜓𝑡⟩ and the slice 𝑡 + 1 𝜓𝑡+1 satisfy

𝜓𝑡+1 = 𝑈𝑡|𝜓𝑡⟩

However, some qubits 

participate in many terms 𝐻𝑡.

𝑡th
gate of circuit

Locality of the code corresponds to the connectivity of the 

qubits in the circuit.

Minimize connectivity of the qubits in the circuit.
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Localizing the circuit via bitonic sorting circuits

Minimize connectivity of the qubits in the circuit.

Theorem [Batcher
65

]: There is a circuit of 

depth log2 𝑛 with log 𝑛 connectivity 

sorting 𝑛 elements.

Can stretch circuit by log2 𝑛 mult. depth 

and reduce connectivity to 𝑛.

Can be used anywhere 

to simplify circuit 

connectivity in any 

situation.
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Long clocks and brittle Hamiltonians

1 2 1 2 3 4

For Feynman-Kitaev clock 

Hamiltonian each layer of the 

circuit needs exactly 1 gate.

This yields long clocks and brittle Hamiltonians. 

Brittle Hamiltonian: Small spectral gap.

Not satisfying any 1equation of 𝜓𝑡+1 = 𝑈𝑡|𝜓𝑡⟩ has energy 𝑂(1/|𝐶|)
with |𝐶| = the number of gates in 𝐶.
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Long clocks and brittle Hamiltonians

This yields long clocks and brittle Hamiltonians. 

There are more than |𝐶| partial computations of a 

circuit! 

A
B

C

D

A

C

B C

B

D

= 2 2 1 |1⟩

Build Hamiltonian with 

ground-state of 

uniform superposition 

overall partial 

computations 𝜏:

 𝜏 |𝜓𝜏⟩

Space-time 

Hamiltonian 

[Breuckmann-Terhal
14

]
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Long clocks and brittle Hamiltonians

This yields long clocks and brittle Hamiltonians. 

There are more than |𝐶| partial computations of a 

circuit! 

A
B

C

D

A

C

B C

B

D

= 2 2 1 |1⟩

Build Hamiltonian with 

ground-state of 

uniform superposition 

overall partial 

computations 𝜏:

 𝜏 |𝜓𝜏⟩

Space-time 

Hamiltonian 

[Breuckmann-Terhal
14

]

Theorem: This yields a Hamiltonian for whom the spectral gap scales 

෨𝑂
1

𝑛3.09depth 𝐶 2

Instead of 𝑂
1

𝐶
as in standard Feynman-Kitaev clock Hamiltonian
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Long clocks and brittle Hamiltonians

This yields long clocks and brittle Hamiltonians. 

There are more than |𝐶| partial computations of a 

circuit! 

A
B

C

D

A

C

B C

B

D

= 2 2 1 |1⟩

Build Hamiltonian with 

ground-state of 

uniform superposition 

overall partial 

computations 𝜏:

 𝜏 |𝜓𝜏⟩

Space-time 

Hamiltonian 

[Breuckmann-Terhal
14

]

Theorem: This yields a Hamiltonian for whom the spectral gap scales 

෨𝑂
1

𝑛3.09depth 𝐶 2

Instead of 𝑂
1

𝐶
as in standard Feynman-Kitaev clock Hamiltonian

Bonus: Get 𝑂(polylog 𝑛) spatial locality
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Approximate decoding

Ψ =

𝜏

𝜏 |𝜓𝑡⟩

over all valid partial 

computations

≈

𝜏

𝜏 ⊗ |𝜓𝑓𝑖𝑛𝑎𝑙⟩

due to padding with 

identity gates

ℰ Ψ ≈ ℰ1 

𝜏

𝜏 ⊗ ℰ2(|𝜓𝑓𝑖𝑛𝑎𝑙⟩)

Approximate decoding:

1. Trace out clock 

registers

2. Apply underlying 

code decoding 

procedure
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Construction recap

A code with linear rate 

and distance and 

𝑂(log3 𝑛) depth encoding 

circuit [Brown-Fawzi
13

]

Uniformize the 

connectivity of the 

circuit using bitonic

sorting circuits

Build spacetime Hamiltonian of 

resulting code

[Breuckmann-Terhal
14

] 

Pad the 

circuit with 

identity 

gates
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Spectral gap analysis

Def: minimum non-zero eigenvalue of Hamiltonian 𝐻

Map the Hamiltonian to a Markov chain over the space of valid 

partial computations
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Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations 

of a bitonic block

True of all constructions built 

from bitonic sorting circuits
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Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations 

of a bitonic block

We noticed that bitonic

blocks look similar to a 

structure called dyadic 

tilings studied in

[Cannon-Levin-Stauffer
17

]

Dyadic tilings are ways of covering the 

unit square by 2𝑑 rectangles with corner 

coordinates at multiples of 2−𝑑
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Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations 

of a bitonic block
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Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations 

of a bitonic block
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Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations 

of a bitonic block
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Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations 

of a bitonic block
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Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations 

of a bitonic block

Theorem: The spectral gap of this Hamiltonian is 

෩Ω (𝑛−3.09).
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Summary of results

We constructed a new type of code based on spacetime 

Hamiltonians.

It has the following properties:

• rate: Ω(
1

polylog 𝑛
)

• distance:Ω(
𝑛

polylog 𝑛
)

• spatial-locality: Ω polylog 𝑛
• spectral-gap: Ω(𝑛−3.09)

Along the way, we also learned about

• localizing large stabilizers using 

circuit-to-Hamiltonian constructions

• uniformizing circuits with bitonic

sorting networks

• analysis of uniform circuits via 

Markov chain techniques
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What does this teach us?

First, this isn’t the ‘’perfect’’ error-correcting code or is realistic

Relaxing the requirements of stabilizer codes is helpful

• Code-space as the ground-space of a sum of non-commuting projectors

• Approximate error-correction 

There are connections between computation and error-

correction that we don’t fully understand! 

Thanks!


