Good approximate QLDPC codes from spacetime Hamiltonians

Chinmay Nirkhe

joint work with

Thom Bohdanowicz

Caltech

Elizabeth Crosson

University of New Mexico

arXiv:1811.00277

QIP 2019

Henry Yuen University of Toronto

Berkeley

nirkhe@cs.berkeley.edu

Why study error-correcting codes?

Quantum fault tolerance

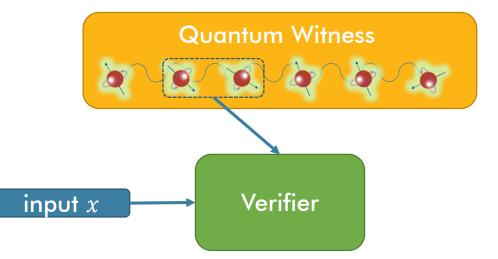
• [Gottesman⁰⁹] QLDPC ⇒ fault tolerance quantum computation with constant overhead

Quantum PCP conjecture

- Hardness of approximation in quantum setting
- Entanglement at room temperature

Interesting local Hamiltonians

- with robust entanglement properties
- toric code, color codes, etc.



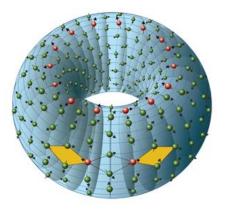
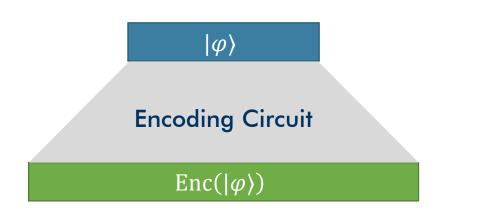


Image: Daniel Gottesman, APS

What makes a code good?

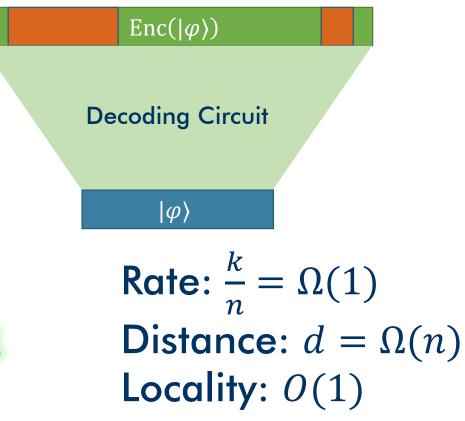
Rate



Stabilizer weight (locality)

$$H_1 H_2 H_3 \dots$$

Distance



We show that optimal rate, distance and locality parameters are possible (modulo polylog corrections)

if we go beyond stabilizer codes to

non-commuting and approximate codes

Outline

- Coding theory definitions
- Uniformization via sorting circuits
- Spacetime Hamiltonians
- Spectral gap analysis

What is a LDPC code?

Classically, a code C is a dim k subspace of \mathbb{Z}_2^n .

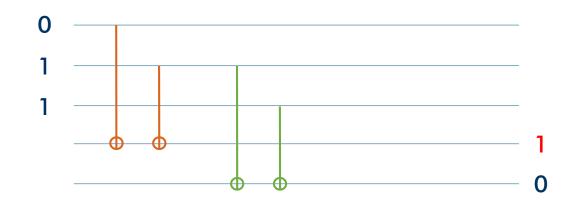
Low A linear code can be defined by a matrix $H \in \mathbb{Z}_{2}^{n \times (n-k)}$. D ensity P arity C heck $H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0$ $x_{1} = x_{2} = x_{3} \implies C = \{000, 111\}$

H has *c*-locality if *H* is *c*-row sparse and *c*-column sparse.

Benefits of an LDPC code

 $H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

Since the checks overlap, they can't be parallelized and must be done in series.



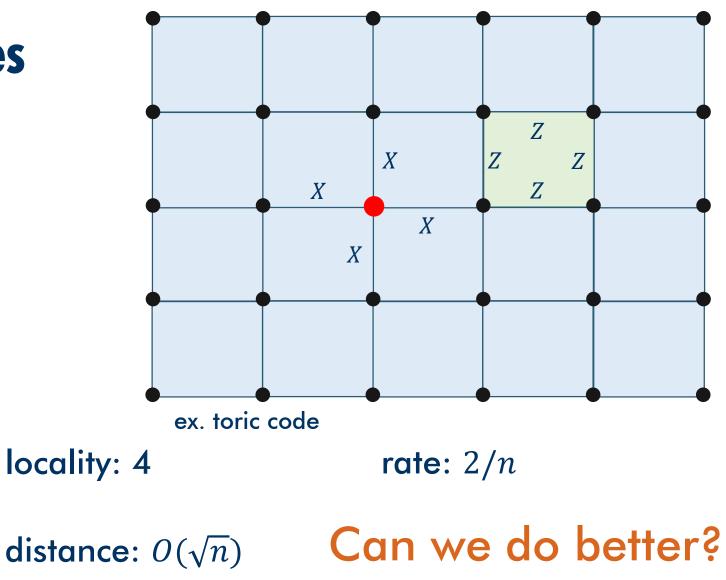
If the code is *c*-local, then the checks can be parallelized into $c^3 + c$ depth circuit.

Proof: Each check shares bits with at most c^2 other checks. By coloring argument, requires $c^2 + 1$ rounds. Each round requires depth c.

Quantum LDPC codes

For CSS codes (codes that handle X errors and Z errors separately), definition is easy...

both parity check matrices H_X and H_Z need to have low density.



Best known stabilizer codes

- [Tillich-Zemor¹³]
 - rate: $\Omega(1)$
 - distance: $O(\sqrt{n})$
 - locality:0(1)
- [Freedman-Meyer-Luo⁰²]
 - rate: $\Omega(1/n)$
 - distance: $O(\sqrt{n \log n})$
 - locality:0(1)

To do better, we probably need to go past stabilizer codes!

Going past stabilizer codes

Let $H_1, H_2, ..., H_m$ be a set of *c*-local projectors acting on *n* qubits.

not necessarily commuting

Define the code-space C as the mutual eigenspace: $C = \{ |\varphi\rangle \in (\mathbb{C}^2)^{\otimes n} | \langle \varphi | H_i | \varphi \rangle = 0 \forall H_i \}$

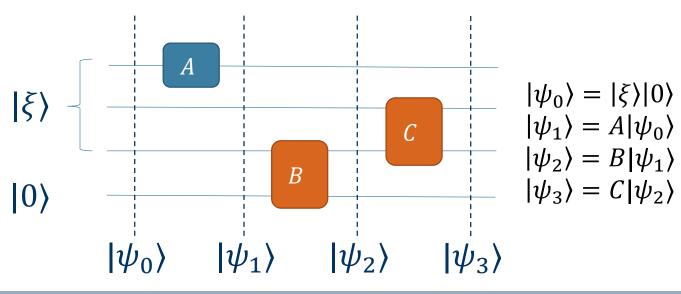
 $H = H_1 + \dots + H_m$ is *c*-QLDPC if additionally each qubit participates in at most *c* terms H_i .

CSS codes exist with linear rate and distance, but lack locality.

Create a Hamiltonian whose ground-space is almost exactly that of a CSS code but is locally checkable.

Create a Hamiltonian whose ground-space is almost exactly that of a CSS code but is locally checkable.

Express a computation as the ground-state of a 5-local Hamiltonian (Feynman-Kitaev clock Hamiltonian) [Kitaev⁹⁹]



Together, $\{|\psi_t\rangle\}$ are a "proof" that the circuit was executed correctly. But, $|\widetilde{\Psi}\rangle = |\psi_0\rangle|\psi_1\rangle \dots |\psi_T\rangle$ is not locally-checkable.

Instead, the following "clock" state* is:

$$|\Psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |t\rangle |\psi_t\rangle$$

*Quantum analog of Cook⁷¹-Levin⁷³ Tableau.

Create a Hamiltonian whose ground-space is almost exactly that of a CSS code but is locally checkable.

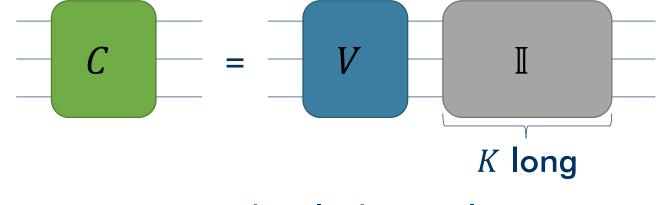
Let $C = C_T C_{T-1} \dots C_1$ be a circuit with gates $\{C_i\}$ and let $|\psi_0\rangle = |\xi\rangle |0\rangle^{\otimes n-k}$ be an initial state for $|\xi\rangle \in (\mathbb{C}^2)^{\otimes k}$.

There is a local Hamiltonian with ground space of:

$$\mathcal{G} = \left\{ |\Psi_{\boldsymbol{\xi}}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\operatorname{unary}(t)\rangle \otimes |\psi_{t}\rangle : \frac{|\psi_{t}\rangle = C_{t} |\psi_{t-1}\rangle,}{|\psi_{0}\rangle = |\boldsymbol{\xi}\rangle |0\rangle^{\otimes (n-k)}} \right\}.$$

Create a Hamiltonian whose ground-space is almost exactly that of a CSS code but is locally checkable.

Let V be the encoding circuit for a good CSS code.



Choose $K = O(T_V \delta^{-2})$.

Construct the clock Hamiltonian for this "padded" circuit *C*.

The groundspace of H is \approx the groundspace of a CSS code tensored with junk.

$$\mathcal{G}_{\mathcal{C}} = \left\{ \frac{1}{\sqrt{T_{\mathcal{C}} + 1}} \sum_{t=0}^{T} |t\rangle |\psi_{t}\rangle : \begin{array}{c} |\psi_{t}\rangle = C_{t}C_{t-1} \dots C_{1} |\psi_{0}\rangle, \\ |\psi_{0}\rangle = |\xi\rangle |0\rangle^{\otimes (n-k)} \end{array} \right\}$$

But for $t \ge T_V$, $|\psi_t\rangle = V|\psi_0\rangle$. Thus, $1 - O(\delta^2)$ fraction of $|\psi_t\rangle = V|\psi_0\rangle$. $\mathcal{G}_C \approx \frac{1}{\sqrt{T_C + 1}} \sum_{t=0}^T |t\rangle \otimes \{V|\psi_0\rangle : |\psi_0\rangle = |\xi\rangle|0\rangle^{\otimes (n-k)}\}.$

Plus, G_C is the ground-space of a 5-local Hamiltonian!

However, some qubits participate in many terms H_t .

However, some qubits participate in many terms H_t .

 H_t checks that the slice $|t\rangle|\psi_t\rangle$ and the slice $|t+1\rangle|\psi_{t+1}\rangle$ satisfy $|\psi_{t+1}\rangle = U_t|\psi_t\rangle$ $t^{\text{th} gate of circuit}$

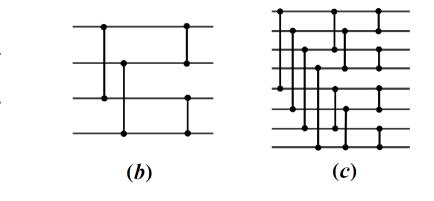
Locality of the code corresponds to the connectivity of the qubits in the circuit.

Minimize connectivity of the qubits in the circuit.

Localizing the circuit via bitonic sorting circuits

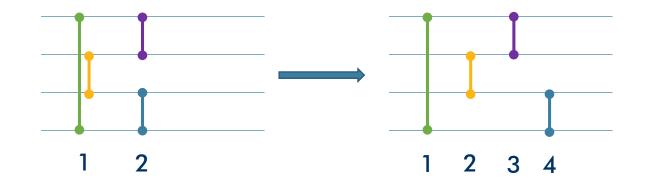
Minimize connectivity of the qubits in the circuit.

- Theorem [Batcher⁶⁵]: There is a circuit of depth $\log^2 n$ with $\log n$ connectivity sorting n elements.
- Can stretch circuit by $\log^2 n$ mult. depth and reduce connectivity to n.



Can be used anywhere to simplify circuit connectivity in any situation.

(*a***)**

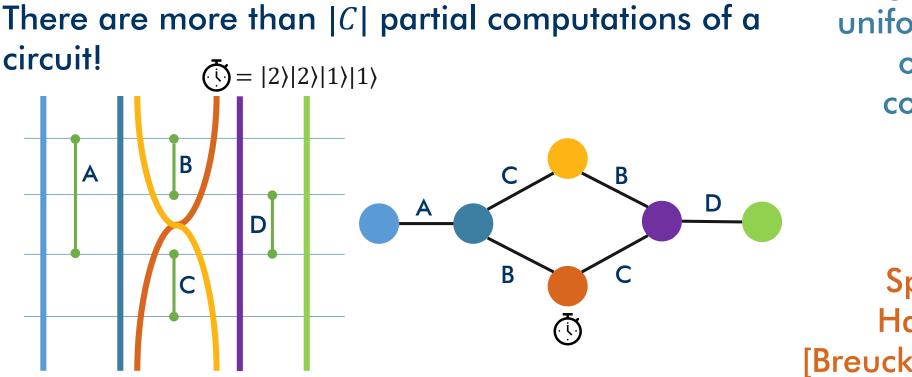


For Feynman-Kitaev clock Hamiltonian each layer of the circuit needs exactly 1 gate.

This yields long clocks and brittle Hamiltonians.

Brittle Hamiltonian: Small spectral gap. Not satisfying any 1 equation of $|\psi_{t+1}\rangle = U_t |\psi_t\rangle$ has energy O(1/|C|) with |C| = the number of gates in C.

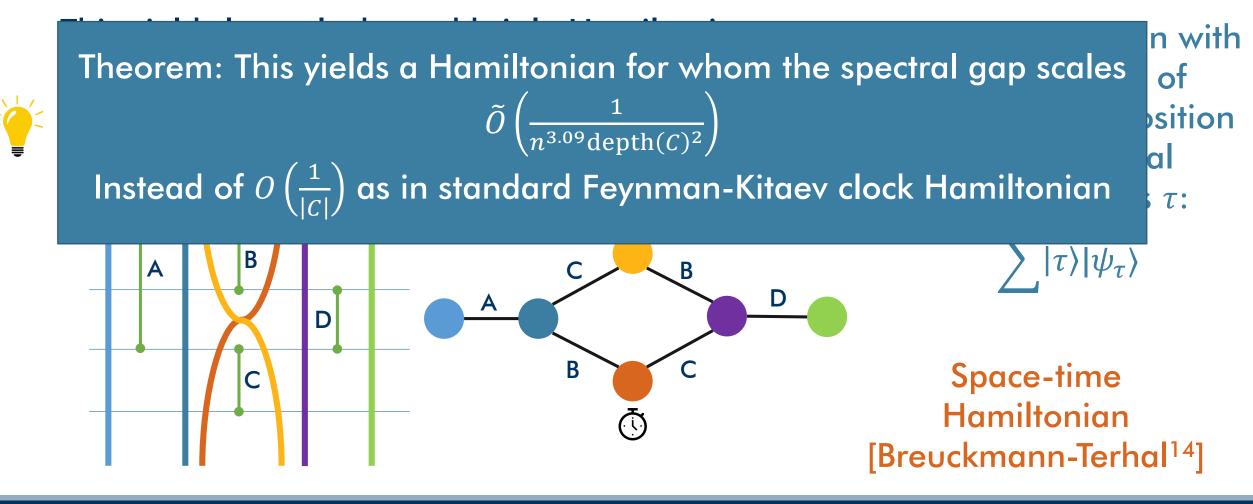
This yields long clocks and brittle Hamiltonians.

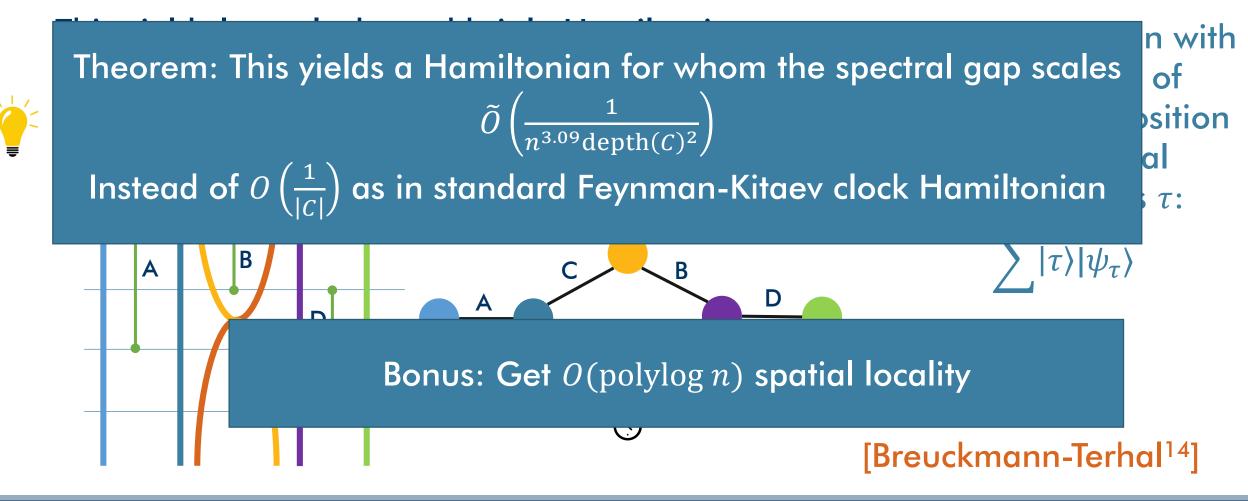


Build Hamiltonian with ground-state of uniform superposition overall partial computations τ:

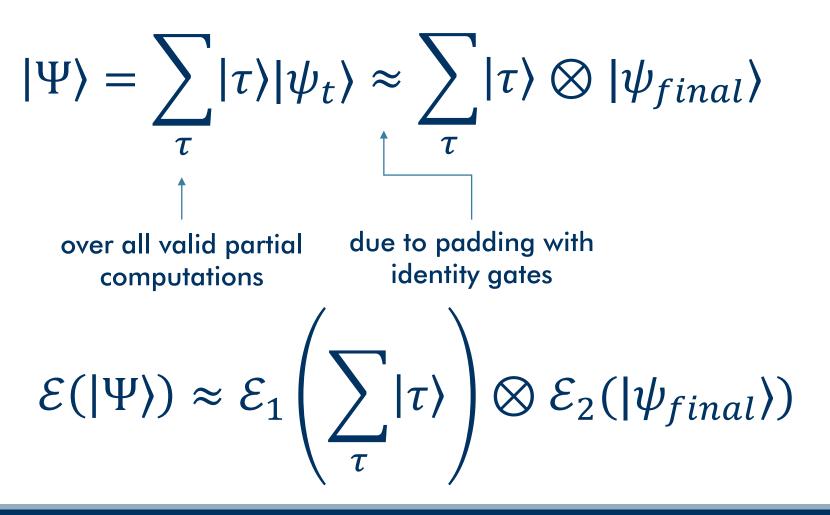
 $|\tau\rangle|\psi_{\tau}\rangle$

Space-time Hamiltonian [Breuckmann-Terhal¹⁴]





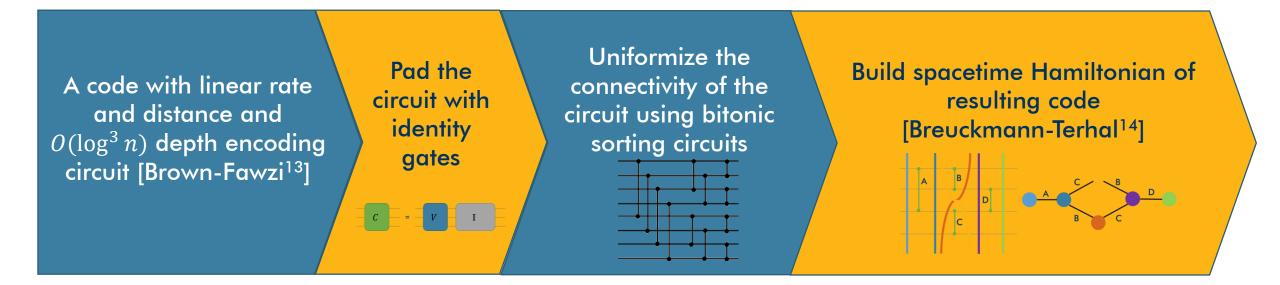
Approximate decoding



Approximate decoding:

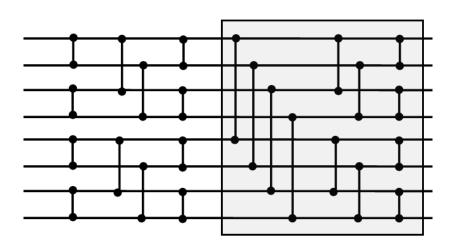
- 1. Trace out clock registers
- 2. Apply underlying code decoding procedure

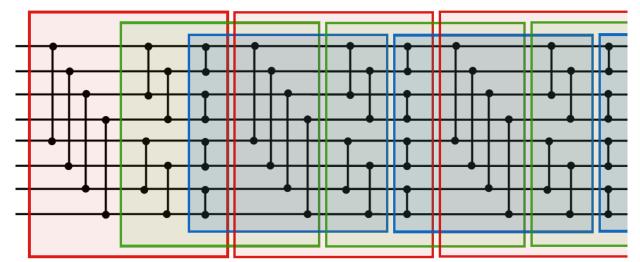
Construction recap



Def: minimum non-zero eigenvalue of Hamiltonian *H*

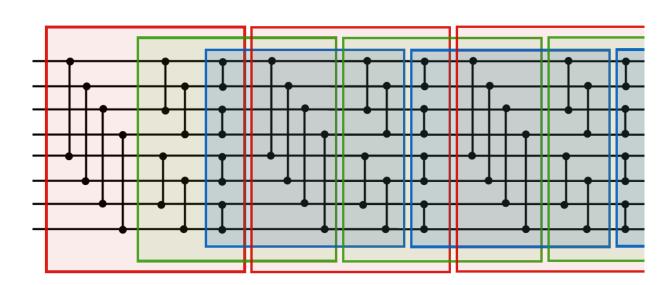
Map the Hamiltonian to a Markov chain over the space of valid partial computations





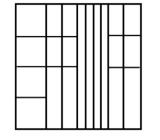
Spectral gap of the code is based on the mixing time of valid configurations of a bitonic block

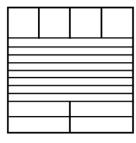
True of all constructions built from bitonic sorting circuits

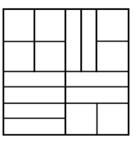


Spectral gap of the code is based on the mixing time of valid configurations of a bitonic block

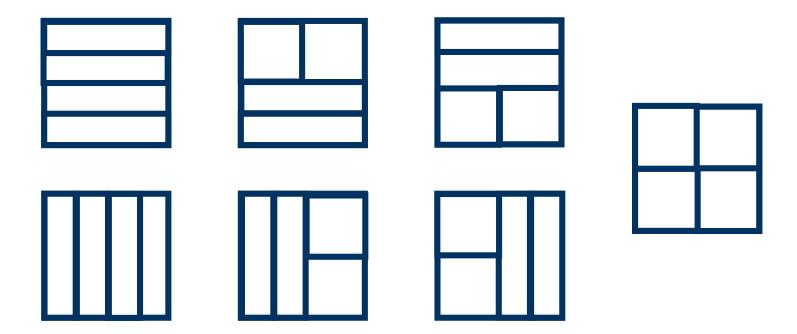
We noticed that bitonic blocks look similar to a structure called dyadic tilings studied in [Cannon-Levin-Stauffer¹⁷]

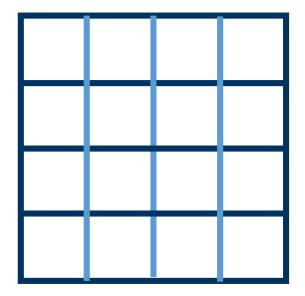


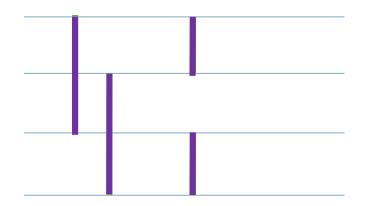


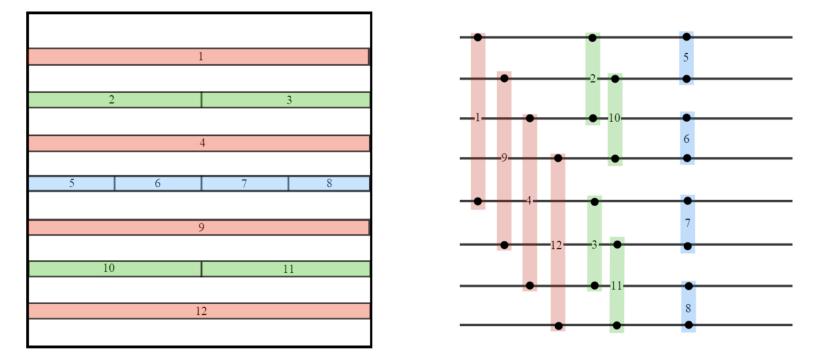


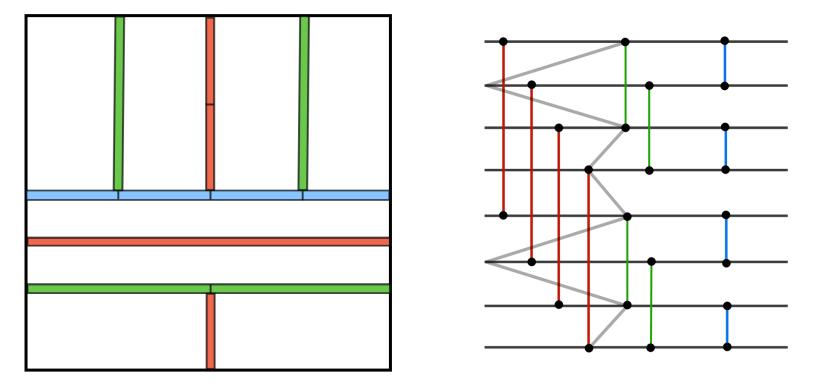
Dyadic tilings are ways of covering the unit square by 2^d rectangles with corner coordinates at multiples of 2^{-d}











Spectral gap of the code is based on the mixing time of valid configurations of a bitonic block

Theorem: The spectral gap of this Hamiltonian is

 $\widetilde{\Omega}(n^{-3.09}).$

Summary of results

We constructed a new type of code based on spacetime Hamiltonians.

- It has the following properties:
- rate: $\Omega(\frac{1}{\operatorname{polylog} n})$
- distance: $\Omega(\frac{n}{\operatorname{polylog} n})$
- spatial-locality: $\Omega(\text{polylog } n)$
- spectral-gap: $\Omega(n^{-3.09})$

Along the way, we also learned about

- Iocalizing large stabilizers using circuit-to-Hamiltonian constructions
- uniformizing circuits with bitonic sorting networks
- analysis of uniform circuits via Markov chain techniques

What does this teach us?

First, this isn't the "perfect" error-correcting code or is realistic

Relaxing the requirements of stabilizer codes is helpful

- Code-space as the ground-space of a sum of non-commuting projectors
- Approximate error-correction

There are connections between computation and errorcorrection that we don't fully understand!

