Good approximate QLDPC codes from spacetime Hamiltonians

(or, why we should look at non-CSS codes)

Chinmay Nirkhe

joint work with

Thom Bohdanowicz Elizabe

Caltech University

Elizabeth Crosson
University of New Mexico

arXiv:1811.00277 STOC 2019 Henry Yuen
University of Toronto

Why study error-correcting codes?

Quantum fault tolerance

 [Gottesman⁰⁹] QLDPC ⇒ fault tolerance quantum computation with constant overhead

Quantum PCP conjecture

- · Hardness of approximation in quantum setting
- Entanglement at room temperature

Interesting local Hamiltonians

- with robust entanglement properties
- toric code, color codes, etc.

What makes a code good?

Rate $|\varphi\rangle$ Encoding Circuit

 $\mathrm{Enc}(|\varphi\rangle)$

Stabilizer weight (locality)

Distance

Rate:
$$\frac{k}{n} = \Omega(1)$$

Distance:
$$d = \Omega(n)$$

Locality: O(1)

We show that optimal rate, distance and locality parameters are possible (modulo polylog corrections)

if we go beyond stabilizer codes to

non-commuting and approximate codes

What is a LDPC code?

Classically, a code \mathcal{C} is a dim k subspace of \mathbb{Z}_2^n .

Low

A linear code can be defined by a matrix $H \in \mathbb{Z}_2^{n \times (n-k)}$.

 $\mathcal{C} = \{x \in \mathbb{Z}_2^n : Hx = 0\}$

D ensity

P arity

$$H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\rightarrow H = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$x_1 = x_2 = x_3 \qquad \Rightarrow \qquad \mathcal{C} = \{000, 111\}$$

H has c-locality if H is c-row sparse and c-column sparse.

Quantum LDPC codes

For CSS codes (codes that handle X errors and Z errors separately), definition is easy...

both parity check matrices H_X and H_Z need to have low density.

locality: 4

rate: 2/n

distance: $O(\sqrt{n})$

Can we do better?

Best known stabilizer codes

- [Tillich-Zemor¹³]
 - rate: $\Omega(1)$
 - distance: $O(\sqrt{n})$
 - locality:0(1)
- [Freedman-Meyer-Luo⁰²]
 - rate: $\Omega(1/n)$
 - distance: $O(\sqrt{n \log n})$
 - locality:0(1)

- [Bravyi-Hastings¹³]
 - rate: $\Omega(1)$
 - distance:O(n)
 - locality: $O(\sqrt{n})$

To do better, we probably need to go past stabilizer codes!

Going past stabilizer codes

Let $H_1, H_2, ..., H_m$ be a set of c-local projectors acting on n qubits.

Define the code-space \mathcal{C} as the mutual eigenspace:

$$\mathcal{C} = \left\{ |\varphi\rangle \in (\mathbb{C}^2)^{\otimes n} \middle| \langle \varphi | H_i | \varphi \rangle = 0 \; \forall \; H_i \right\}$$

 $H = H_1 + \cdots + H_m$ is c-QLDPC if additionally each qubit participates in at most c terms H_i .

CSS codes exist with linear rate and distance, but lack locality.

Create a Hamiltonian whose ground-space is almost exactly that of a CSS code but is locally checkable.

Create a Hamiltonian whose ground-space is almost exactly that of a CSS code but is locally checkable.

Let $C = C_T C_{T-1} \dots C_1$ be a circuit with gates $\{C_i\}$ and let $|\psi_0\rangle = |\xi\rangle |0\rangle^{\otimes n-k}$ be an initial state for $|\xi\rangle \in (\mathbb{C}^2)^{\otimes k}$.

There is a local Hamiltonian with ground space of:

$$\mathcal{G} = \left\{ |\Psi_{\xi}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\operatorname{unary}(t)\rangle \otimes |\psi_{t}\rangle : \frac{|\psi_{t}\rangle = C_{t} |\psi_{t-1}\rangle,}{|\psi_{0}\rangle = |\xi\rangle |0\rangle^{\otimes (n-k)}} \right\}.$$

Create a Hamiltonian whose ground-space is almost exactly that of a CSS code but is locally checkable.

Let *V* be the encoding circuit for a good CSS code.

Choose
$$K = O(T_V \delta^{-2})$$
.

Construct the clock Hamiltonian for this "padded" circuit C.

The groundspace of H is \approx the groundspace of a CSS code tensored with junk.

$$\mathcal{G}_{\mathcal{C}} = \left\{ \frac{1}{\sqrt{T_{\mathcal{C}} + 1}} \sum_{t=0}^{T} |t\rangle |\psi_{t}\rangle : \begin{array}{l} |\psi_{t}\rangle = \mathcal{C}_{t}\mathcal{C}_{t-1} \dots \mathcal{C}_{1} |\psi_{0}\rangle, \\ |\psi_{0}\rangle = |\xi\rangle |0\rangle^{\otimes (n-k)} \end{array} \right\}$$

But for $t \ge T_V$, $|\psi_t\rangle = V|\psi_0\rangle$. Thus, $1 - O(\delta^2)$ fraction of $|\psi_t\rangle = V|\psi_0\rangle$.

$$\mathcal{G}_C pprox rac{1}{\sqrt{T_C+1}} \sum_{t=0}^{T} |t\rangle \otimes \{V|\psi_0\rangle : |\psi_0\rangle = |\xi\rangle|0\rangle^{\otimes (n-k)}\}.$$

Plus, G_C is the ground-space of a 5-local Hamiltonian!

However, some qubits participate in many terms H_t .

However, some qubits participate in many terms H_t .

$$H_t$$
 checks that the slice $|t\rangle|\psi_t\rangle$ and the slice $|t+1\rangle|\psi_{t+1}\rangle$ satisfy $|\psi_{t+1}\rangle=U_t|\psi_t\rangle$

Locality of the code corresponds to the connectivity of the qubits in the circuit.

Minimize connectivity of the qubits in the circuit.

Localizing the circuit via bitonic sorting circuits

Minimize connectivity of the qubits in the circuit.

Theorem [Batcher⁶⁵]: There is a circuit of depth $\log^2 n$ with $\log n$ connectivity sorting n elements.

(a)

Can stretch circuit by $\log^2 n$ mult. depth and reduce connectivity to $\log n$.

Can be used anywhere to simplify circuit connectivity in any situation.

(b)

Long clocks and brittle Hamiltonians

This yields long clocks and brittle Hamiltonians.

There are more than |C| partial computations of a circuit!

Build Hamiltonian with ground-state of uniform superposition overall partial computations τ :

$$\sum | au
angle |\psi_{ au}
angle$$

Space-time Hamiltonian [Breuckmann-Terhal¹⁴]

Long clocks and brittle Hamiltonians

Theorem: This yields a Hamiltonian for whom the spectral gap scales $\widetilde{\Omega}\left(\frac{1}{n^{3.09} \mathrm{denth}(C)^2}\right)$

Instead of $\Omega\left(\frac{1}{|C|^2}\right)$ as in standard Feynman-Kitaev clock Hamiltonian

 $|\tau\rangle|\psi_{ au}\rangle$

n with

Space-time
Hamiltonian
[Breuckmann-Terhal¹⁴]

Long clocks and brittle Hamiltonians

Theorem: This yields a Hamiltonian for whom the spectral gap scales $\widetilde{\Omega}\left(\frac{1}{n^{3.09}\mathrm{depth}(\mathcal{C})^2}\right)$

Instead of $\Omega\left(\frac{1}{|C|}\right)$ as in standard Feynman-Kitaev clock Hamiltonian

Construction recap

A code with linear rate and distance and $O(\log^3 n)$ depth encoding circuit [Brown-Fawzi¹³]

Pad the encoding circuit with identity gates

: v I

Uniformize the connectivity of the circuit using bitonic sorting circuits

Build spacetime Hamiltonian of resulting code
[Breuckmann-Terhal¹⁴]

Spectral gap analysis

Def: minimum non-zero eigenvalue of Hamiltonian H

Map the Hamiltonian to a Markov chain over the space of valid partial computations

Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations of a bitonic block

True of all constructions built from bitonic sorting circuits

Spectral gap analysis

Spectral gap of the code is based on the mixing time of valid configurations

Theorem: The spectral gap of this Hamiltonian is

$$\widetilde{\Omega}$$
 $(n^{-3.09})$.

Summary of results

We constructed a new type of code based on spacetime Hamiltonians.

It has the following properties:

- rate: $\Omega(\frac{1}{\operatorname{polylog} n})$
- distance: $\Omega(\frac{n}{\text{polylog }n})$
- spatial-locality: $\Omega(\text{polylog } n)$
- spectral-gap: $\Omega(n^{-3.09})$

Along the way, we also learned about

- localizing large stabilizers using circuit-to-Hamiltonian constructions
- uniformizing circuits with bitonic sorting networks
- analysis of uniform circuits via Markov chain techniques

What does this teach us?

First, this isn't the "perfect" error-correcting code or is physically realistic

Relaxing the requirements of stabilizer codes is helpful

- Code-space as the ground-space of a sum of non-commuting projectors
- Approximate error-correction

There are connections between computation and errorcorrection that we don't fully understand!

