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We know that most 
quantum states are 
complex…

⊗ ⊗ ⊗ ⊗⋯ ≈ 2!! states

⊗ ⊗ ⊗ ⊗⋯ = 2" states

Quantum:

Classical:



but how many of 
them are interesting 
for physics?

⊗ ⊗ ⊗ ⊗⋯ ≈ 2!! states

⊗ ⊗ ⊗ ⊗⋯ = 2" states

Quantum:

Classical:



Quantifying the states that are 
interesting for physics

The energy operator in quantum mechanics is 
called the Hamiltonian. 

Interesting physical systems are defined by 
Hamiltonians of a special form called local 
Hamiltonians.

𝐇 =#ℎ!

Due to the importance of ground states in 
condensed matter physics,

we would really like to know if ground states of 
local Hamiltonians have efficient (i.e. short) and 
verifiable classical descriptions.

This talk:

We prove lower bounds on the classical 
description complexity of ground (and low-energy) 
states of local Hamiltonians.⊗ ⊗ ⊗ ⊗⋯

ℎ! = ⟩|000 ⟨000| − ⟩|111 ⟨111|



Are there local Hamiltonian 
ground states that cannot be 
described by polynomial 
depth quantum circuits?

The converse is false [Kitaev03]. For 
every circuit 𝐶, there exists a LH with 

ground state ≈ 𝐶 0! ⊗ junk .



A counting exercise …

How many local Hamiltonians are there?

Each ℎ! can be described by 𝑂(2"ℓ log 𝑛) bits.

There are 𝑛ℓ terms, so 𝐇 can be described by 
𝑂 2"ℓ𝑛ℓ log 𝑛 bits.

So, there are at most 2$%&'()) local Hamiltonians 
for ℓ = 𝑂(1).

How many depth 𝑡 quantum circuits are there?

Each row of the quantum circuit can be described 
by a matching and 𝑛/2 4 ×4 matrices.

So, there are 2+(, )!) quantum circuits of depth 𝑡.

Therefore, counting arguments alone don’t show 
separation and, secondly, both the number of local 
Hamiltonians and “accessible” quantum states are 
≪ number of quantum states (2"").

⊗ ⊗ ⊗ ⊗⋯

ℎ! = ⟩|000 ⟨000| − ⟩|111 ⟨111|



The space of quantum states

𝑛 qubit states (~2!! many)

local Hamiltonian ground states (2#$%&(() many) constant-depth circuit outputs (2*((!) many)
polynomial-depth circuit outputs (2#$%&(() many)

morally, the QCMA v. QMA question

local Hamiltonian low-energy states (2+"#,#$%&(() many)

all the low-energy states of a 
NLTS Hamiltonian 𝐇



Outline of today’s talk

Oracle separations between QMA and QCMA [1]
i.e., proving polynomial lower bounds for ground state descriptions 
(for a generalization of local Hamiltonians)

The NLTS problem [2]
i.e., proving logarithmic-depth circuit lower bounds for
all low-energy states of some local Hamiltonians

Quantum search-to-decision reductions [3]
i.e., why we cannot study the complexity of quantum states via
the study of quantum decision problems

[1] A classical oracle separation between QMA and QCMA (2022).
[2] NLTS Hamiltonians from quantum codes (2022).

[3] Quantum search-to-decision and the state synthesis problem (2022).



A classical oracle 
separations for 
QCMA and QMA



The connection to quantum 
complexity theory

The energy operator in quantum mechanics is 
called the Hamiltonian. 

Interesting physical systems are defined by 
Hamiltonians of a special form called local 
Hamiltonians.

𝐇 =#ℎ!

The problem of calculating the ground energy

𝐸 = min
|.⟩

𝜓 𝐇 𝜓

famously connects physics to computer science 
as the problem is complete for the class QMA.

QMA = Quantum Merlin-Arthur

If the ground state can always be verifiably
classically described, then the problem is 
complete for the class QCMA.

QCMA = Quantum-Classical Merlin-Arthur

⊗ ⊗ ⊗ ⊗⋯

ℎ! = ⟩|000 ⟨000| − ⟩|111 ⟨111|



QMA

QMA: The set of problems that can be verified by 
a prover sending a quantum state to the verifier 
which the verifier uses in a quantum circuit.

Complete problem: Deciding if there exists a 
quantum state |𝜓⟩ such that 

YES: 𝜓 𝐇 𝜓 ≤ 𝑎
NO: or else, 𝜓 𝐇 𝜓 ≥ 𝑎 + 1/𝑛0 for all states

Hi Prover –

Please calculate the 
ground state of 𝐇 = ∑ℎ$

for me.

Thanks,
– The Verifier

Dear Verifier –

These qubits describe the 
ground state – measure with 
your quantum device to verify.

Best,
– The Prover



QCMA

QCMA: The set of problems that can be verified by 
a prover sending a classical string to the verifier 
which the verifier uses in a quantum circuit.

Complete problem: Deciding if there exists a 
quantum state |𝜓⟩ such that 

YES: 𝜓 𝐇 𝜓 ≤ 𝑎
NO: or else, 𝜓 𝐇 𝜓 ≥ 𝑎 + 1/𝑛0 for all states

where in both cases, |𝜓⟩ is the output of a 
quantum circuit of polynomial depth.

Hi Prover –

Please calculate the 
ground state of 𝐇 = ∑ℎ$

for me.

Thanks,
– The Verifier

Dear Verifier –

Here is a classical description 
of the ground state as a 
quantum circuit you can run.

Best,
– The Prover



The question, of whether 
QCMA and QMA are equal, is a 
major open question in 
quantum complexity theory.



QCMA ≠ QMA

implies

that not all local Hamiltonians 
ground states have short verifiable 
classical descriptions.

vs.

DALL-E 2 renderings.

Contrapositive: If short descriptions always exist, then prover can 
always send the short description instead of the quantum state.



Theorem [Natarajan-Nirkhe22]: There is a 
black-box distribution 𝐷 for which we can 
prove that

QCMA𝐷 ≠ QMA𝐷.

This is the strongest evidence yet that ground 
states cannot be classically described.



Proving QCMA ≠ QMA outright would have 
incredible implications for complexity theory. 
Consequently, it requires truly novel techniques.

Local 
Hamiltonians

Sparse 
Hamiltonians

𝑛-bit boolean
functions

(classical oracles)

Distributions over 𝑛-bit 
boolean functions 

(distribution oracles)

= ⟹ ⟹
𝑛-qubit quantum 

unitaries
(unitary oracles)

⟹

Previous constructions 
[AK07, FK18]This work!

Instead, the best we can do is slightly 
generalize the notion of local Hamiltonians 
until we can prove QCMA ≠ QMA.

Optimal oracle 
separation
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Low energies of sparse 
graph Hamiltonians

If 𝐇 is the Hamiltonian corresponding to a 𝑑-
regular sparse graph,

then −𝐇 is a Hamiltonian with ground energy 
equal to −𝑑 with a ground state of ∑5∈ 7,9 " |𝑥⟩, 
the uniform super position.

What is the second smallest eigenvalue?

If the graph has ≥ 2 connected components,
it is also −𝑑.

If the graph is 𝛼-expanding,
it is −𝑑 + 𝛼𝑑.

Theorem 1: Deciding if a graph (given as black-
box sparse adjacency list) either has multiple 
connected components or is 0.01-expanding is in 
QMA.

This also holds for certain distributions over 
graphs.

Theorem 2: For the same set of distributions, we 
can show that no efficient QCMA algorithm exists.

Together they prove QCMA𝐷 ≠ QMA𝐷.



The QMA algorithm

𝜉- =
3 + 4 + 5 + 7 + |8⟩

5
𝜉+ =

1 + 2 + |6⟩
3

Easy to check that 

𝜉:%&;<=%> =
5
8
𝜉" −

3
8
𝜉9

is a eigenvector of eigenvalue −𝑑 as well and is 
orthogonal to ∑5∈ 7,9 " |𝑥⟩.

Quantum solution is to provide 𝜉:%&;<=%> which proves 
that there are 2 eigenvectors of eigenvalue −𝑑.

If the graph is 𝛼-expanding, this test fails with 
probability 𝛼/4 as there is only 1 eigenvector of 
eigenvalue −𝑑 and the next eigenvalue is −𝑑 + 𝛼𝑑. 



Sketch of QCMA impossibility result

In the QMA algorithm, we saw that the solution 
state only depends on the vertices in a connected 
component.

Let’s first try to prove an easier subproblem: an 
impossibility result for all classical proofs that 
only depend on the vertices in one connected 
component.

Notation: 𝑁 = 2) (number of vertices).
z = 𝑁?/97 (size of each component).

Setup: YES instance graphs are promised to have 𝑁/𝑧
expanding connected components each of size 𝑧. NO 
instance graphs have 1 expanding component.

Assume that for every set 𝑆 ⊂ [𝑁] of size 𝑧, there exists 
exactly one YES instance that has 𝑆 has a connected 
component and that the proof for said YES instance 
depends only on 𝑆.

YES instance NO instance 

𝑆



Many YES instances correspond to the 
same proof 𝜋

Assume there exists a bijection between [YES 
instance graphs] and [sets of size 𝑧].

Then, there are at least A
B ≥ 2A..0 YES instances. 

And, the number of proofs of length 𝑞 is at most 2C.

Pidgeon-hole principle: If there was a QCMA
algorithm for all YES instances with proof of length 𝑞, 
then there exists a popular proof 𝜋 ∈ {0,1}C such that 
at least 2A..0DC ≥ 2A..1 graphs correspond to 𝜋.

By the bijection, 2A..1 [sets of size 𝑧] correspond to 𝜋.

Ramsey theory: “If the set is large enough, there exists a 
subset which is structured”

Within the unstructured set of YES instances that 
correspond to 𝜋, there exists a set of YES instances that 
are structured: they form a sunflower:

Sunflower: A collection Σ of sets of size 𝑧 such that
(1) (core) ∃ 𝐹 ⊂ [𝑁] such that ∀ 𝑆 ∈ Σ, 𝐹 ⊂ 𝑆.
(2) ∀ 𝑥 ∈ ⋃E∈F 𝑆 ∖ 𝐹, then 

Pr
E∈F

𝑥 ∈ 𝑆 ≤
𝑧
𝑁

7.??
.

[𝑁]𝐹



Fixing the proof of a QCMA algorithm 
yields a BQP algorithm

Consider the BQP algorithm 𝒜 generated by fixing 
the popular proof 𝜋 into the QCMA algorithm.

• 𝒜 must answer YES (with high probability) on 
every graph corresponding to a subset 𝑆 in the 
sunflower Σ.

• 𝒜 must answer NO (with high probability) on every 
NO instance graph.

We will show that any algorithm 𝒜 achieving these 
two tasks requires exponential time.

Ramsey theory: “If the set is large enough, there exists a 
subset which is structured”

Within the unstructured set of YES instances that 
correspond to 𝜋, there exists a set of YES instances that 
are structured: they form a sunflower:

Sunflower: A collection Σ of sets of size 𝑧 such that
(1) (core) ∃ 𝐹 ⊂ [𝑁] such that ∀ 𝑆 ∈ Σ, 𝐹 ⊂ 𝑆.
(2) ∀ 𝑥 ∈ ⋃E∈F 𝑆 ∖ 𝐹, then 

Pr
E∈F

𝑥 ∈ 𝑆 ≤
𝑧
𝑁

7.??
.

[𝑁]𝐹



The adversary method

Sunflower: A collection Σ of sets of size 𝑧 such that
(1) (core) ∃ 𝐹 ⊂ [𝑁] such that ∀ 𝑆 ∈ Σ, 𝐹 ⊂ 𝑆.
(2) ∀ 𝑥 ∈ ⋃E∈F 𝑆 ∖ 𝐹, then 

Pr
E∈F

𝑥 ∈ 𝑆 ≤
𝑧
𝑁

7.??
.

Ideal sunflower corresponding to 𝐹:

Σ=HIJ& = 𝑆 ⊂ [𝑁] 𝑆 = 𝑧, 𝐹 ⊂ 𝑆 .

Lemma: Any quantum algorithm cannot distinguish a 
graph sampled from Σ and a graph sampled from 
Σ=HIJ& without making an exponential number of 
queries to the graph.

[𝑁]𝐹 [𝑁]𝐹≈$%&' ) K;IL=I:

Then by assumption, 𝒜 must answer YES (with high 
probability) on every graph corresponding to a subset 
𝑆 in the sunflower Σ=HIJ&.

𝒜 must answer YES (with high probability) on every 
graph corresponding to a subset 𝑆 in the sunflower Σ.



Random walk 
sampling reduction

We now generate an algorithm 𝒜′ which has 𝐹 hard-
coded. 𝒜′ will not be time-efficient (just query-
efficient).

Starting with a random point 𝑣9, 𝒜′ applies a random 
walk sampling to sample points

𝑉 = {𝑣9, 𝑣", … , 𝑣 M }
from the same connected component.

[𝑁]𝐹

𝒜 must answer YES (with high probability) on every 
graph corresponding to a subset 𝑆 in the sunflower Σ=HIJ&.

[𝑁]𝐹≈$%&' ) K;IL=I:

𝒜′ picks a permutation 𝜎: 𝑁 → 𝑁 mapping 𝑉 → 𝐹. 

Then, 𝒜′ simulates 𝒜 except when a query to vertex 𝑤
is made, 𝒜′ queries 𝜎D9(𝑤).

By the correctness of 𝒜 and the random walk being a 
good sampler (our YES instances are expanding within 
components), 𝒜′ must also succeed with high 
probability.

This gives a BQP algorithm 𝒜′ for deciding the original 
problem (modulo a few technicalities).

→=N$&=I: IOP=QI>< J&R [𝑁]



Appeal to known quantum query lower bounds

[Ambainis-Childs-Liu11] proved a exponential q. 
query lower bound for the problem (without proof). 

Overall, we have shown that any classical proof
depending only on the vertices in one connected 
component cannot help with this problem. 

In other words, a “near-sighted” classical prover – one 
who can only see the overall structure of the graph 
(connected components) but not internal structures 
(such as edges, triangles, etc.) – cannot help.

But recall from our QMA algorithm, a “near-sighted” 
quantum prover can help!

Can we “blind” the classical prover so that she is near-
sighted? Blinding the quantum prover has no effect.

[𝑁]𝐹 [𝑁]𝐹≈$%&' ) K;IL=I: [𝑁]→=N$&=I: IOP=QI>< J&R

[ACL11] query lower bound



Blinding the classical prover

Let 𝐷E be the uniform distribution over all graphs 
that have a connected component 𝑆 for 𝑆 of size 𝑧.

Meaning, the prover only knows the graph up to the 
distribution. This is equivalent to the prover only 
answering based on the connected component 𝑆 – this 
is the same as blinding the prover until it is ”near-
sighted”.

Blinding the classical prover yields our impossibility 
result while blinding the quantum prover has no effect.

This proves that there is a distribution over graphs which 
separates QMA and QCMA.

Removing the “blinding” step seems difficult as there 
are known obstacles that need avoiding.

Prover

𝜉(𝐷E (or 𝜉(𝐷S))

Verifier

𝐺 ←$ 𝐷E

𝑉U(|𝜉⟩)
(or 𝑉U 𝜉 )

𝐷E



The combination 
of multiple query 
lower bounds

Statistical distance
𝐷" to 𝐷0
This is useful for proving information 
theoretic indistinguishability 
between two distributions.

The techniques used here are 
Pinsker’s inequality and KL 
divergence bounds.

We use statistical distance to argue 
that sampling the graph followed by 
sampling a set of points from the 
graph is indistinguishable from 
sampling the points first and then a 
corresponding graph.

The polynomial method
𝐷0 to 𝐷V
This is useful for proving that two 
structured distributions whose 
supports are far from each other are 
indistinguishable.

The polynomial method requires 
that the distributions have simple 
generating functions and is hard to 
apply, but very powerful when 
applicable.

We use this to argue that a 
distribution almost entirely 
supported on NO instances is 
indistinguishable from a distribution 
supported on YES instances.

At a high level, the proof 
relies on showing that 
two distributions 𝐷9 and 
𝐷V over boolean fns. 
cannot be distinguished 
by quantum query 
algorithms without 
exponentially many q. 
queries.

This is proven in 3 
steps.

The adversary method
𝐷9 to 𝐷"
This is useful for proving a lightly 
structured distribution is 
indistinguishable from a fully 
structured distribution.

The most famous use of the 
adversary method is to prove the 
[BBBV97] lower bound for 
unconstrained search. I.e., 
distinguishing functions with 
Hamming weight 1 from the 0 
function.

We use the adversary method to 
connect the sunflower derived from 
Ramsey theory to the ideal 
sunflower.



Theorem [Natarajan-Nirkhe22]: There is a 
black-box distribution 𝐷 over boolean
functions for which we can prove that

QCMA𝐷 ≠ QMA𝐷.

This is the strongest evidence yet that ground 
states cannot be classically described.



The NLTS problem 
and the QPCP 
conjecture



The space of quantum states

𝑛 qubit states (~2!! many)

local Hamiltonian ground states (2#$%&(() many) constant-depth circuit outputs (2*((!) many)
polynomial-depth circuit outputs (2#$%&(() many)

morally, the QCMA v. QMA question

local Hamiltonian low-energy states (2+"#,#$%&(() many)

all the low-energy states of a 
NLTS Hamiltonian 𝐇

QMA

and the complexity class that they serve as witness for

QCMA

NP

also, QMA 
(assuming the QPCP conj.) 



The hardness of low-energy states

QPCP Conjecture: For some 𝜖 > 0 , it is QMA-hard 
to decide whether the ground energy of a local 
Hamiltonian 𝐇 = ∑ !W9

X ℎ! is

(yes) small:    𝜓 𝐻 𝜓 ≤ 𝑎
(no) or large:  𝜓 𝐻 𝜓 ≥ 𝑎 + 𝜖𝑚

Simple consequence: Any state |𝜓Y⟩ of energy ≤
𝑎 + Z

"
𝑚 is also a verifiable if the QPCP conj. is true

Therefore, the set of witnesses not only includes 
ground states but also low-energy states

NLTS Thm [Anshu-Breuckmann-Nirkhe22]: There 
exists a local Hamiltonian s.t. no low-energy states 
(≤ 𝜖𝑛) is the output of a constant-depth circuit.

QPCP Conj. + NP≠QMA ⟹ NLTS

i.e., a necessary, but not sufficient, consequence 

NLTS is an unconditional statement, unlike the 
previous QCMA v QMA separation.



Sketch of the NLTS proof

We first need a technique for proving logarithm-
depth circuit depth lower bounds.

Local indistinguishability: Two states 𝜓 and |𝜓Y⟩ are 
𝑑-locally indistinguishable if every reduced density 
matrix on 𝑑 qubits is the same.

Fact: 𝑑-locally indistinguishable states have Ω(log 𝑑)
circuit-depth lower bounds.

Corollary: If measuring a quantum state yields a 
probability distribution 𝑝 such that there exist two 
subsets 𝑆9, 𝑆" ⊂ {0,1}) with 𝑝 𝑆9 , 𝑝 𝑆" ≥ Ω 1
and the Hamming distance between 𝑆9 and 𝑆" is 
Ω(𝑛), then the quantum state has a 𝛺(log 𝑛) circuit 
depth lower bound.

{0,1})

𝑆9
𝑆"

Ω(𝑛)

{0,1})

Ω(𝑛)

The challenge is to find a local Hamiltonian for which 
every low-energy state when measured yields such a 
“well-spread” distribution.

The low-energy subset of a linear-distance error-
correcting code is supported like a “well-spread” dist.



Sketch of the NLTS proof

By considering quantum LDPC error-correcting 
codes of constant-rate and linear-distance (plus an 
additionally robustness property), we can find the 
“well-spread” property and construct local 
Hamiltonians with the NLTS property.

The key is using the uncertainty lemma to argue that 
for any state, measuring in either the standard or 
Hadamard basis must yield a well-spread 
distribution.

This is because the quantum code simultaneously 
corrects large X- and Z-errors. 

The challenge is to find a local Hamiltonian for which 
every low-energy state when measured yields such a 
“well-spread” distribution.

The low-energy subset of a linear-distance error-
correcting code is supported like a “well-spread” dist.

{0,1})

𝑆9
𝑆"

Ω(𝑛)

{0,1})

Ω(𝑛)



Proving stronger lower bounds 
than NLTS

Constant-depth quantum circuits are just one of 
many classical witness that can be provided for 
an NP proof. 

QPCP Conj. + NP≠QMA ⟹
lower-bounds for all families of NP witnesses

Open question: Can we prove lower-bounds for 
some other families of NP witnesses? Is there is a 
family of local Hamiltonians for which all known 
NP witnesses are insufficient?

Any state of this form is also a NP witness.

NLTS+ conjecture: There exists local Hamiltonian 
such that all such states have energy ≥ 𝜖𝑛.

Our proof of NLTS does not satisfy this!

Clifford circuit

constant-depth circuit

0  …. .… 0



Quantum search-
to-decision 
reductions



NP has search-to-decision 
reductions

Say there is a black box which takes as input 
3SAT formulas 𝜑 and outputs (with pr = 1) if they 
are satisfiable or not…

Crucially, it does not tell you the solution 
(satisfying assignment) 𝑥 ∈ 0,1 ) s.t. 𝜑 𝑥 = 1.

This is a black box for NP and repeated uses can 
be used to build a solution 𝑥 ∈ 0,1 ).

Let 𝜑|[2,[!,…,[3 be the restriction of 𝜑 on the first 𝑘
variables.

𝜑|7

𝜑|7,7

𝜑|9,7

𝜑|7,7,7

𝜑|7,9,7

𝜑|9,9,7

𝜑|9,7,7

= satisfiable

= un-satisfiable

After 𝑛 queries, we learn a complete satisfying 
assignment.

NP-Search ⊆ PDecision-NP



Does QMA have search-to-
decision reductions?

In classical CS theory, defining decision problems 
as the de facto model of computation is justified 
by search-to-decision reductions.

What about in quantum CS? Is the same 
definition justified? Or do we need to rectify our 
de facto notion of computation?

[Irani-Natarajan-Nirkhe-Rao-Yuen21]:

Theorem 1: QMA-search is reducible to 1-query 
PP-decision

Theorem 2: Oracle proof that QMA-search not 
reducible to QMA-decision

Theorem 1: Let (𝐇, 𝑎, 𝑏) be a local Hamiltonian 
problem. If the problem is a YES instance, there 
exists a BQP algorithm making 1-query to a PP-
oracle such that the output state of the algorithm 
has energy ≤ 𝑎 + (𝑏 − 𝑎)/2.

Theorem 2: We show that a unitary oracle 
corresponding to a QCMA v QMA separation also 
proves that QMA-search is not reducible to QMA-
decision

It’s open whether our distribution oracle also 
proves such an impossibility result.



Understanding quantum states

The difference in quantum search-to-decision 
reductions and classical search-to-decision 
reductions suggests that quantum states cannot 
be entirely studied through the lens of decision 
problems.

We need to better understand the complexity of 
quantum states and ideally how to prove 
polynomial-depth lower bounds for quantum 
states without oracles.

Other open questions:

How can we remove the distributions from the 
oracle separations between QCMA and QMA?

Can we use the techniques to prove oracle 
separations for other quantum complexity classes 
such as QMA(2) and QMA?

What is the power of BQPQMA? It lies somewhere 
between QMA and QCMA.

Thank you for listening.

Chinmay Nirkhe (IBM Quantum Cambridge)




