Lower bounds on the complexity of quantum proofs

Chinmay Nirkhe

UC Berkeley
August $29^{\text {th }}, 2022$

SNAKE! WALL! SPEAR! TREE!

SNAKE! WALL! SPEAR! TREE!

SNAKE! WALL! SPEAR! TREE!

SNAKE! WALL! SPEAR! TREE!

SNAKE! WALL! SPEAR! TREE!

$$
\begin{aligned}
& =\frac{|\langle n\rangle+| 4\rangle}{\sqrt{2}} \\
& =\frac{|\operatorname{|n~}\rangle-|4\rangle}{\sqrt{2}}
\end{aligned}
$$

And now for the actual dissertation...

Lower bounds on the complexity of quantum proofs

Chinmay Nirkhe

UC Berkeley
August $29^{\text {th }}, 2022$

Understanding classical proofs

Understanding classical proofs
$N P=$ the class of all efficiently (pol yen) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).

Understanding classical proofs
$N P=$ the class of all efficiently (poly (n) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CPs).
\square
1
1 \square
0
1 \square 1

Understanding classical proofs
$N P=$ the class of all efficiently (poly (n) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).
\square
01
1
1
0
1
local check $C_{i}=x_{1} \oplus x_{2} \oplus x_{3}=0$.

$$
C_{i}:\{0,1\}^{3} \longrightarrow[0,1] .
$$

Understanding classical proofs
$N P=$ the class of all efficiently (poly (n) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).

local check $C_{i}=x_{1} \oplus x_{2} \oplus x_{3}=0$.
$\left[\begin{array}{cc}C_{i} & \text { not necessarily } \\ \text { geometrically } \\ \text { local }\end{array}\right]$

$$
\begin{aligned}
& C_{i}:\{0,1\}^{3} \longrightarrow[0,1] . \\
& C:\{0,1\}^{n} \rightarrow[0, m] \quad \text { by } C(x)=\sum_{i=1}^{m} C_{i}(x)
\end{aligned}
$$

Understanding classical proofs
$N P=$ the class of all efficiently (pol yen) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).

local check $C_{i}=x_{1} \oplus x_{2} \oplus x_{3}=0$.

$$
C:\{0,1\}^{n} \rightarrow[0, m] \quad \begin{aligned}
& C_{i}:\{0,1\}^{3} \longrightarrow[0,1] . \\
& \text { by } C(x)=\sum_{i=1}^{m} C_{i}(x) \quad
\end{aligned} \quad \begin{aligned}
& \text { Decide if } \\
& \text { (1) } \exists x, C(x)=0 . \\
& \text { (2) } \forall x, C(x) \geq 1 .
\end{aligned}
$$

Two extensions of the notion of proofs

Two extensions of the notion of proofs

Two extensions of the notion of proofs

$$
\cdot v \cdot w \cdot m \cdot q_{p} \cdot m^{\prime} \cdot p_{v} \cdot q_{w}
$$

q. pp. so thy require a q. venfier (BQP)

Calculating ground energy of local Hamittorans is a complete problem

Two extensions of the notion of proofs

$$
\cdot v \cdot w \cdot m \cdot q_{p} \cdot q_{n} \cdot q_{p} \cdot q_{w}
$$

q. pf. so the require a q. verifier (BQP)

Calculating ground energy of local Hamittorans is a complete problem
$h_{i}=$ linear liar operator calculating energy

$$
h_{i}=|000\rangle\langle 000|+|111\rangle\langle 111|
$$

Two extensions of the notion of proofs

$$
\cdot v \cdot w \cdot m \cdot q_{p} \cdot m^{2} \cdot q_{v} \cdot q_{w}
$$

q. $p p$. so the require a q. verifier (BQP)

Calculating ground energy of local Hamiltanans is a complete problem
$h_{i}=$ linear liar operator calculating energy

$$
\begin{aligned}
& H=\sum_{i=1}^{m} n_{i} \quad|\psi\rangle \longmapsto\langle\psi| H|\psi\rangle \text { (energy) }
\end{aligned}
$$

Two extensions of the notion of proofs
$h_{i}=$ liner bol opentro caluataing energy

Two extensions of the notion of proofs
$h_{i}=$ liner bol opentro caluataing energy

QM
$\boldsymbol{H}=\sum_{i=1}^{m} n_{i} \quad|\varphi\rangle \longmapsto\langle\psi| H|\psi\rangle$ (energy)
ground energy $\lambda_{\text {min }}(\boldsymbol{H})=\min _{|\psi\rangle}\langle\psi| \boldsymbol{H}|\psi\rangle$

Two extensions of the notion of proofs
$h_{i}=$ linear local operator calculating energy

$\cdots h_{i}=|000\rangle\langle 000|+|11\rangle\langle 111|$
$H=\sum_{i=1}^{m} n_{i} \quad|\psi\rangle \longmapsto\langle\psi| H|\psi\rangle$ (energy)
ground energy $\lambda_{\text {min }}(H)=\min _{|\psi\rangle}\langle\psi| H|\psi\rangle$
QMA-hard to decide for $b-a=1 /$ poly (m),
(1) $\lambda_{\min }(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\min }(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 / \mathrm{poly}(m)$,

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\text {min }}(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 /$ poly (m),

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\text {min }}(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$
\Rightarrow groundstates of local Hamiltonians are a "canonical" form for all q. pps.

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 /$ poly (m),

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\min }(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$
\Rightarrow groundstates of local Hamiltonians are a "canonical" form for all q. pps.
It's widely believed that NP $\neq Q M A$

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 /$ poly (m),

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle_{1}\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\min }(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$
\Rightarrow groundstates of local Hamiltonians are a "canonical" form for all q. pps.
It's widely believed that NP $\neq Q M A$
Therefore, not all groundstates of local Hamiltonians can be classically describeot (in an efficiently verifiable manner)

Two extensions of the notion of proofs

Two extensions of the notion of proofs
we thinte of pfs as requining step-by- step checting.

Two extensions of the notion of proofs
we thine of $p f s$ as requing step-by-step checking.

PCP theorem Every NP problem (ie. very Pf.) can be converted into a form st. only $O(1)$ bits
need to be read to be 99% confident in validity.

Two extensions of the notion of proofs
we think of pis as requiring step-by-step checking.

PCP theorem Every NP problem (i.e. every Pf!) can be converted into a form st. only $O(1)$ bits need to be read to be 99% confident in validity.
NP-hard to decide if $\quad[C(x)=$ analog of $\langle\psi| H|\psi\rangle]$
(1) $\exists x, C(x)=0$
(1) $\exists x, C(x)=0$
(2) $\forall x, C(x) \geq \frac{m}{2}$ (prev. 1)

Two extensions of the notion of proofs
we think of pis as requiring step-by-step checking.

PCP theorem Every NP problem (i.e. every Pf!) can be converted into a form st. only $O(1)$ bits need to be read to be 99% confident in validity.
NP-hard to decide if $\quad[C(x)=$ analog of $\langle\psi| H|\psi\rangle]$
(1) $\exists x, C(x)=0$
(1) $\exists x, C(x)=0$
(2) $\forall x, C(x) \geq \frac{m}{2}$ (prev. 1)

Important consequence: Noisy pis suffice!

Two extensions of the notion of proofs
we think of ifs as requiring step-by-step checking.

PCP theorem Every NP problem (i.e. every Pf!) can be converted into a form st. only $O(1)$ bits need to be read to be 99% confident in validity.
NP-hard to decide if
(1) $\exists x, C(x)=0$$\quad[C(x)=$ analog of $\langle\psi| H|\psi\rangle]$
(2) $\forall x, C(x) \geq \frac{m}{2}$ (prev. 1)

Important consequence: Noisy pis suffice!
Any x st. $C(x)<\frac{m}{4}$ can be prob. verified with $O(1)$ queries.

The Quantum Prob. Checkable PA. Conjecture

The Quartuon Prob. Checkable PA. Conjecture

Conjective: Every QMA problem (i.e. quantum Pf.) can be converted into a from s.t. only $O(1)$ quits need to be measured.

The Quantum Prob. Checkable PF. Conjecture

Conjecture: Every QMA problem (i.e. quantum pf!) can be converted into a form st. only $O(1)$ quits need to be measured.

Conj. For $\varepsilon>0$, it's QMA - hard to decicle
(1) $\exists|\psi\rangle$ st. $\langle\psi| H|\psi\rangle=O$ (morally)
(2) $\forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq \varepsilon m$

The Quantum Prob. Checkable PF. Conjecture

Conj. For $\varepsilon>0$, it's QMA - hard to decicle
(1) $\exists|\psi\rangle$ st. $\langle\psi| H|\psi\rangle=O$ (morally)
(2) $\forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq \varepsilon m$

Conjecture: Every QMA problem (i.e. quantum pf!) can be converted into a form st. only $O(1)$ quits need to be measured.

Similar to PCP theorem, every state of energy $\leq \frac{\varepsilon}{2} m$ is a valid pf! for a QPCP local Hamiltonians.

Set of pts is much larger!

An important consequence of QPCPS
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP pts. cannot be classically described local Hamiltonions are also valid (in any efficiently checkable manner) pts (since they are noisy pis.)

An important consequence of $Q P C P_{s}$
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP
pts. cannot be classically described local Hamiltonions are also valid (in any efficiently checkable manner) pts (since they are noisy pis.)
\Rightarrow There exist local Hamiltonians such that every low energy state cannot be classically described

An important consequence of QPCPS
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP pts. cannot be classically described local Hamiltonions are also valid (in any efficiently checkable manner) pts (since they are noisy pis.)
\Rightarrow There exist local Hamiltonians such that every low energy state cannot be classically described

Constant depth q. circuit descriptions are classically Checkable pfs for output state

An important consequence of $Q P C P_{s}$
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP pts. cannot be classically described local Hamiltonions are also valid
(in any efficiently checkable manner) pts (since they are noisy pis.)
\Rightarrow There exist local Hamiltonians such that every low energy state cannot be classically described

Constant depth q. circuit descriptions are classically Checkable pos for output state

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit. [Frecdiman-Hastings 14]

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

- If it was false, then QPCP would have been trivially false.
- Makes a statement about physically realizable robust entanglement.

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

- If it was false, then QPCP would have been trivially false.
- Makes a statement about physically realizable robust entanglement.

Theorem [Anurag Anshu, Niko Breuckmann, \& C.N. '22]
Local Hamiltonians corresponding to most linear-rate and -distance QLDPC errorcorrecting codes are NLTS Hamiltonians.

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

- If it was false, then QPCP would have been trivially false.
- Makes a statement about physically realizable robust entanglement.

Theorem [Anurag Anshu, Niko Breuckmann, \& C.N. '22]
Local Hamiltonians corresponding to most* linear-rate and -distance QLDPC errorcorrecting codes are NLTS Hamiltonians.
$\exists \varepsilon>0$, and Hamiltonian family H s.t. every state ψ of energy $\leq \varepsilon n$, the minimum depth circuit to generate ψ is $\Omega(\log n)$.

Proof sketch of the NLTS theorem
(1) Trivial states \Rightarrow Local Hamiltonians
\Rightarrow Circuit clepth lower bounds

Light cones for
low depth circuits

Proof sketch of the NLTS theorem
(1) Trivial states \Rightarrow Local Hamiltonians
\Rightarrow Circuit clepth lower bounds
Error Correction Codes (ECC)

Lightcones for low depth circuits
(2)

low energy Subspace of expanding codes.

Proof sketch of the NLTS theorem
(1) Trivial states \Rightarrow Local Hamiltonians
\Rightarrow Circuit clepth lower bounds

Lightcones for low depth circuits

Error Correction Codes (ECC)
(2)

low energy subspace of expanding codes.
(3)

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{n \prime}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{w^{\prime}}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}^{m}\langle\psi| h_{i}|\psi\rangle \\
& =\sum_{i}^{m}\left\langle o^{n^{\prime}}\right| u^{+} h_{i} u\left|o^{n^{\prime}}\right\rangle
\end{aligned}
$$

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{w^{\prime}}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}^{m}\langle\psi| h_{i}|\psi\rangle \\
& =\sum_{i}^{m} \underbrace{\left.0^{n^{\prime}}\left|u^{+} h_{i} u\right| 0^{n^{\prime}}\right\rangle}
\end{aligned}
$$

computation on $O\left(2^{t}\right)$ quits

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{w^{\prime \prime}}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}^{m}\langle\psi| h_{i}|\psi\rangle \\
& =\sum_{i}^{m} \underbrace{\left\langle 0^{n^{\prime}}\right| U^{+} h_{i} u\left|0^{n^{\prime}}\right\rangle}
\end{aligned}
$$

computation on $O\left(2^{t}\right)$ quits

Low-clepth states are classical witnesses for energy

Trivial states \Rightarrow Local Hamiltonians

The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian.

Trivial states \Rightarrow Local Hamiltonians

The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian. $H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wire projectors enforcing quits equal $\left.\mid 0\right\rangle$.

Trivial states \Rightarrow Local Hamiltonians

The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian. $H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wise projectors enforcing quits equal $\left.\mid 0\right\rangle$.
H_{0} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$, with eigenvectors $|x\rangle$ of eigenvalue $|x|$.

Trivial states \Rightarrow Local Hamiltonians
The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian.
$H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wire projectors enforcing quits equal $\left.\mid 0\right\rangle$.
H_{0} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$ with eigenvectors $|x\rangle$ of
Let $H_{u}=u^{+} H u$ for depth t circuit u. eigenvalue $|x|$.

Trivial states \Rightarrow Local Hamiltonians
The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian.
$H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wire projectors enforcing quits equal $\left.\mid 0\right\rangle$.
H_{0} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$, with eigenvectors $|x\rangle$ of
Let $H_{u}=u^{+} H u$ for depth t circuit u. eigenvalue $|x|$.
H_{u} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$, with eigenvectors $u|x\rangle$ of
And H_{u} is a 2^{t}-local Hamiltonian. eigenvalue $|x|$.

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-S}=\psi_{-S}^{\prime}
$$

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\Psi_{-s}^{\prime}
$$

Ex. The states $\left|{ }^{n}\right\rangle=\frac{\left|0^{n}\right\rangle \pm\left|1^{n}\right\rangle}{\sqrt{2}}$ are $(n-1)$ locally indistinguishable.

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{\prime}
$$

Ex. The states $\left|1_{ \pm}\right\rangle=\frac{\left|0^{n}\right\rangle \pm\left|1^{n}\right\rangle}{\sqrt{2}}$ are $(n-1)$ locally indistinguishable.

Any strict reduced density matrix equals

$$
\left(\theta_{ \pm}\right)_{-s}=\frac{|0\rangle\left\langle\left. 0\right|^{n-|s|}+\mid 1\right\rangle\left\langle\left. 1\right|^{n-|s|}\right.}{2}
$$

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{\prime}
$$

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1} \quad \Psi_{-S}=\Psi_{-S}^{\prime}$.

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{s} .
$$

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.

Pf. $\left.\left\langle\psi^{\prime}\right| H_{u}\left|\psi^{\prime}\right\rangle=\sum_{i}\left\langle\psi^{\prime}\right| h_{i}\left|\psi^{\prime}\right\rangle\right\rangle$

$$
=\sum_{i}\langle\psi| h_{i}|\psi\rangle^{2}
$$

since H_{u} is 2^{t}-local and are $d>2^{t}$ locally indistinguishable

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{s} .
$$

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.
Pf. $\left.\left\langle\psi^{\prime}\right| H_{u}\left|\psi^{\prime}\right\rangle=\sum_{i}\left\langle\psi^{\prime}\right| h_{i}\left|\psi^{\prime}\right\rangle\right\rangle \begin{aligned} & \text { since } H_{u} \text { is } 2^{t} \text {-local } \\ & \text { and are } d>2^{t} \text { locally }\end{aligned}$

$$
=\sum_{i}^{2}\langle\psi| h_{i}|\psi\rangle=\langle\psi| \boldsymbol{H}|\psi\rangle=0
$$

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{\prime} \text {. }
$$

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $\left.|\psi\rangle=U 10^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.
Pf. $\left.\left\langle\psi^{\prime}\right| H_{u}\left|\psi^{\prime}\right\rangle=\sum_{i}\left\langle\psi^{\prime}\right| h_{i}\left|\psi^{\prime}\right\rangle\right\rangle \quad \begin{aligned} & \text { since } H_{u} \text { is } 2^{t} \text {-local } \\ & \text { and are } d>2^{t} \text { locally }\end{aligned}$

$$
=\sum_{i}^{i}\langle\psi| h_{i}|\psi\rangle=\langle\psi| H|\psi\rangle=0
$$

But groundstate $|\psi\rangle$ is unique! $\Rightarrow|\psi\rangle=\left|\psi^{\prime}\right\rangle$, a contradiction!

Local indistinguishability
Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.

Local indistinguishability
Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$
Since, spectral gap of H_{u} is 1 , this argument is only robust to perturbations of $O\left(\frac{1}{n}\right)$.

Local indistinguishability
Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $\left.|\psi\rangle=U 10^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$
Since, spectral gap of H_{u} is 1 , this argument is only robust to perturbations of $O\left(\frac{1}{n}\right)$.

Using mathematics from Chebysher polynomials, we can make l.b. robust.

Local indistinguishability
Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$. Since, spectral gap of H_{u} is 1 , this argument is only robust to perturbations of $O\left(\frac{1}{n}\right)$.

Using mathematics from Chebysher polynomials, we can make l.b. robust.
Theorem Let $S_{1} S_{2} \subset\{0,1\}^{n}$ be sets and $p(\cdot)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(S_{1}\right), p\left(S_{2}\right) \geq \mu$, then minimum q. Aet. depth to generate p

$$
\text { is } \quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)
$$

Local indistinguishability
Theorem Let $S_{11} S_{2} \subset\{0,1\}^{n}$ be sets and $\left.p()^{\prime}\right)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(S_{1}\right), p\left(S_{2}\right) \geq \mu$, then minimum q. celt. depth to generate p is $\quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)$.

Local indistinguishability
Theorem Let $S_{1} S_{2} \subset\{0,1\}^{n}$ be sets and $p(\cdot)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(s_{1}\right), p\left(s_{2}\right) \geq \mu$, then minimum q. ckt. depth to generate p is $\quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)$.

Local indistinguishability
Theorem Let $S_{1} S_{2} \subset\{0,1\}^{n}$ be sets and $p(\cdot)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(s_{1}\right), p\left(s_{2}\right) \geq \mu$, then minimum q. ckt. depth to generate p is $\quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)$.

Pf sketch. Let $|\psi\rangle$ generate p.

Local indistinguishability
Theorem Let $S_{1} S_{2} \subset\{0,1\}^{n}$ be sets and $p(\cdot)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(S_{1}\right), p\left(S_{2}\right) \geq \mu$, then minimum q. celt. depth to generate p is $\quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)$.

Pf sketch. Let $|\psi\rangle$ generate p. Then 3 region R st.

Local indistinguishability
Theorem Let $S_{1} S_{2} \subset\{0,1\}^{n}$ be sets and $p(\cdot)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(S_{1}\right), p\left(S_{2}\right) \geq \mu$, then minimum q. celt. depth to generate p is $\quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)$.

Pf sketch. Let $|\psi\rangle$ generate p. Then 3 region R st.

Local indistinguishability
Theorem Let $S_{1} S_{2} \subset\{0,1\}^{n}$ be sets and $p(\cdot)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(S_{1}\right), p\left(S_{2}\right) \geq \mu$, then minimum q. ckt. depth to generate p

$$
\text { is } \quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)
$$

Pf sketch. Let $|\psi\rangle$ generate P.
Then 3 region R st.
$\left|\psi^{\prime}\right\rangle=$ "flip sign of $|\psi\rangle$ on $R^{\prime \prime}$ and $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are approx. locally indistinguishable.

Local indistinguishability
Theorem Let $S_{11} S_{2} \subset\{0,1\}^{n}$ be sets and $\left.p()^{\prime}\right)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(S_{1}\right), p\left(S_{2}\right) \geq \mu$, then minimum q. celt. depth to generate p is $\quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)$.

Local indistinguishability
Theorem Let $S_{1} S_{2} \subset\{0,1\}^{n}$ be sets and $p(\cdot)$ a prob. dist. on $\{0,1\}^{n}$. If $p\left(S_{1}\right), p\left(S_{2}\right) \geq \mu$, then minimum q. ckt. depth to generate p

$$
\text { is } \quad \Omega\left(\log \left(\frac{\operatorname{dist}\left(S_{11} S_{2}\right)^{2} \cdot \mu}{n}\right)\right)
$$

When $\operatorname{dist}\left(S_{1}, S_{2}\right) \geq \omega(\sqrt{n})$ and $\mu=\Omega(1)$,
we call such distributions nell spread. To prove NLTS, we need to show \exists a local Hamiltonians whore entire low-energy subspace induces vell-spread distributions.

Expanding codes \& Tanner codes
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

Expanding codes \& Tanner codes $\quad(H)(x)=(0)$
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

Expanding codes \& Tanner codes $\quad(H)(x)=(0)$
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
We can draw the adjacency graph
corresponding to H.

Expanding codes \& Tanner codes

$$
\left(\begin{array}{ll}
H
\end{array}\right)(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
We can draw the adjacency graph
corresponding to H. If the graph is small-set expanding, $\Gamma(A) \geq(1-\gamma) d|A|$

for all $|A| \leq c_{2} n$, then the low-energy subspace of the code clusters into far-apurt regions.

Expanding codes \& Tanner codes

$$
H \quad(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
We can draw the adjacency graph
corresponding to H. If the graph is small-set expanding, $\Gamma(A) \geq(1-\gamma) d|A|$

for all $|A| \leq c_{2} n$, then the low-energy subspace of the code clusters into far-apart regions.

Expanding codes \& Tanner codes

$$
H \quad(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
We can draw the adjacency graph
corresponding to H. If the graph is small-set expanding, $\Gamma(A) \geq(1-\gamma) d|A|$

for all $|A| \leq c_{2} n$, then the low-energy subspace of the code clusters into far-apart regions.

Expanding codes \& Tanner codes

$$
H \quad(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
We can draw the adjacency graph
corresponding to H. If the graph is small-set expanding, $\Gamma(A) \geq(1-\gamma) d|A|$

for all $|A| \leq c_{2} n$, then the low-energy subspace of the code clusters into far-apart regions.

Expanding codes \& Tanner codes

$$
\left(\begin{array}{ll}
H
\end{array}\right)(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
We can draw the adjacency graph
corresponding to H. If the graph is small-set expanding, $\Gamma(A) \geq(1-\gamma) d|A|$

for all $|A| \leq c_{2} n$, then the low-energy subspace of the code clusters into far-apart regions.

Expanding codes \& Tanner codes

$$
H \quad(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
We can draw the adjacency graph
corresponding to H. If the graph is small-set expanding, $\Gamma(A) \geq(1-\gamma) d|A|$

for all $|A| \leq c_{2} n$, then the low-energy subspace of the code clusters into far-apart regions.
For all $y \in\{0,1\}^{n}$ s.t. $|H y| \leq \varepsilon m$, then either
(1) $|y| \leq c_{1} \cdot \varepsilon n$ or (2) $|y| \geq c_{2} n$

Expanding codes \& Tanner codes

$$
\left(\begin{array}{ll}
H
\end{array}\right)(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$ We can draw the adjacency graph
corresponding to H.
bits

γ-expanding

For all $y \in\{0,1\}^{n}$ s.t. $|H y| \leq \varepsilon m$, then either
(1) $|y| \leq c_{1} \cdot \varepsilon n$ or
(2) $|y| \geq c_{2} n$

Expanding codes \& Tanner codes

$$
\left(\begin{array}{ll}
H
\end{array}\right)(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$ We can draw the adjacency graph
corresponding to H.

γ-expanding

For all $y \in\{0,1\}^{n}$ s.t. $|H y| \leq \varepsilon m$, then either
(1) $|y| \leq c_{1} \cdot \varepsilon n$ or (2) $|y| \geq c_{2} n$

Pf sketch: $A=\operatorname{supp}(y) . \Gamma^{+}(A)=$ unique neighbors of $|A|$. $\left|\Gamma^{+}(A)\right| \geq(1-2 \gamma) d|A|$. Every check in $\Gamma^{+}(A)$ will flag. So $|H y| \geq(1-2 \gamma) d|y|$ unless $|y| \geq c_{2} n$

Expanding codes \& Tanner codes $\quad(H)(x)=(0)$
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

Expanding codes \& Tanner codes $(H)(x)=(0)$
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

Expanding codes \& Tanner codes

$$
\left(\begin{array}{ll}
H
\end{array}\right)(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as $\operatorname{ker} H$ for $H \in \mathbb{F}_{2}^{m \times n}$
The low-energy space of a code is a great support for a distribution that we hope to prove is
 nell-spread.

Expanding codes \& Tanner codes

$$
H \quad(x)=\left(\begin{array}{l}
0
\end{array}\right)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$
The low-energy space of a code is a great support fr a distribution that we hope to prove is nell-spread.

Only question is how to construct Hamiltonian with such property?

Quantum error correcting codes

Consider a state subject to an craswe error.

Quantum error correcting codes

Consider a state subject to an craswe error.

Quantum error correcting codes

Consider a state subject to an crasure error.

If ne could recover the original state then unless \bigcirc contains no information about the original state, this violates the no-cloning theorem.

Quantum error correcting codes

Consider a state subject to an craswe error.

Erasure error-correction implies local indistinguishability for codes.

If ne could recover the original state then unless \bigcirc contains no information about the original state, this violates the no-cloning theorem.

Quantum error correcting codes

Erasure error-correction
implies local indistinguishability
for codes.

Quantum error correcting codes

Erasure error-correction implies local indistinguishability for codes.

Exact codeurds of codes of distance d require circuits of clepth $\geq \Omega(\log d)$ to generate.

Quantum error correcting codes

Erasure error-correction implies local indistinguishability for codes.

Exact codumerds of codes of distance d require circuits of clepth $\geq \Omega(\log d)$ to generate.

Error-correcting codes that are LDPC naturally han a local Hamiltonian, one that applies every local check.

Quantum error correcting codes

Erasure error-correction implies local indistinguishability for codes.

Exact codeurerds of codes of distance d require circuits of depth $\geq \Omega(\log d)$ to generate.

Error-correcting codes that are LDPC naturally han a local Hamiltonian, one that applies every local check.

How do we prove circuit depth lower bounds for the lowenergy subspace of these code Hamiltonians?

Optimal - parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steane codes that comet for X-type (bit-flip) and Z-type (phase-flip) errors separately.

Optimal -parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steare codes that correct for X-type (bit-flip) and Z-type (phase-flip) errors separately.
They are constructed from two classical codes C_{x}, C_{z} (w. check-matrix H_{x}, H_{z}) st. $C_{x}^{\perp} \subseteq C_{z}$ (equiv. $C_{z}^{\perp} \subseteq C_{x}$)

Optimal -parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steane codes that comet for X-type (bit-flip) and Z-type (phase-flip) errors separately.

They are constructed from two classical codes $C_{x}, C_{z}\left(w\right.$. check-matrix $\left.H_{x}, H_{z}\right)$ s.t. $C_{x}^{\perp} \subseteq C_{z}\left(\right.$ equiv. $\left.C_{z}^{\perp} \subseteq C_{x}\right)$.

$$
d_{z}=\min _{w \in C_{z}}|w|_{C_{x}^{+}} \quad, \quad d_{x}=\min _{w \in C_{x}}|\omega|_{C_{z}^{\perp}}
$$

where $|\omega|_{S}=\min _{\omega^{\prime} \in S}\left|\omega+\omega^{\prime}\right|$

Optimal -parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steane codes that comet for X-type (bit-flip) and Z-type (phase-flip) errors separately.
They are constructed from two classical codes C_{x}, C_{z} (w. check-matrix H_{x}, H_{z}) st. $C_{x}^{\perp} \subseteq C_{z}$ (equiv. $C_{z}^{\perp} \subseteq C_{x}$)

$$
d_{z}=\min _{\omega \in C_{z}}|\omega|_{C_{x}^{\perp}}, d_{x}=\min _{\omega \in C_{x}}|\omega|_{C_{z}^{1}}
$$

where $|\omega|_{S}=\min _{\omega^{\prime} \in S}\left|\omega+\omega^{\prime}\right|$
$d=\min \left\{d_{x}, d_{z}\right\}$.

cluster of C_{z} related by adding C_{x}^{\perp}.

Expanding CSS codes
Similar to dassical example, we consider codes that have the property that if $\left|H_{z} y\right| \leq \varepsilon m$ then either
(1) $|y|_{c_{x}^{+}} \leq c_{1} \varepsilon n$ or
(2) $|y|_{c_{x}^{\perp}} \geq c_{2} n$.

Expanding CSS codes
Similar to dassical example, we consider codes that have the property that if $\left|H_{z} y\right| \leq \varepsilon m$ then either
(1) $|y|_{c_{x}^{+}} \leq c_{1} \varepsilon n$ or
(2) $|y|_{c_{x}^{\perp}} \geq c_{2} n$.

And, if we consider a $\frac{\varepsilon}{200}$-low-energy state of the code's local Hamiltonian, measuring in the Z-basis yields a
 dist. 99.56 supported on

The uncertainty principle

The uncertainty principle

The uncertainty principle
All that remains to show is that the distribution is not 998 concentrated on any 1 cluster.

The uncertainty principle
All that remains to show is that the distribution is not 998 concentrated on any 1 cluster. \Rightarrow dist. is nell-spreac $\left(\mu=\frac{1}{400}\right)$

The uncertainty principle
All that remains to show is that the distribution is not 998 concentrated on any 1 cluster. \Rightarrow dist. is nell-spreac $\left(\mu=\frac{1}{400}\right)$ \Rightarrow circuit depth lover bound.

The uncertainty principle
All that remains to show is that the distribution is not 99% concentrated on any 1 cluster. \Rightarrow dist. is nell-spread ($\mu=\frac{1}{400}$) \Rightarrow circuit depth lower bound.

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

The uncertainty principle
All that remains to show is that the distribution is not 99% concentrated on any 1 cluster. \Rightarrow dist. is nell-spread ($\mu=\frac{1}{400}$)
\Rightarrow circuit depth lower bound.

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leqslant 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
|S| \leq\binom{ n}{o(m)} \cdot \underbrace{2^{r x}}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
& |S| \leq \underbrace{\binom{n}{0(n)} \cdot \underbrace{c_{x}^{1} \text { ref. }}}_{\text {violate cher }} \leq 2^{r_{x}} \leq 0(\sqrt{\varepsilon} n) \\
& |T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
& |S| \leq \underbrace{\binom{n}{O(n)} \cdot \underbrace{C_{x}^{1} d f .}}_{\text {violate churn }} \leq 2^{r_{x}+O(\sqrt{\varepsilon} n)} \\
& |T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leqslant 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle $D_{x}(T) \leq 2 \sqrt{\frac{1}{100}}+2^{r_{x}+r_{z}+O(\sqrt{\varepsilon} n)-n}$

$$
\begin{aligned}
& |S| \leq \underbrace{\binom{n}{0(n)} \cdot \underbrace{r_{x}}_{x_{x}^{x} d f .} \leq 2^{r_{x}+o(\sqrt{\varepsilon} n)}}_{\text {violate cunt }} \\
& |T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. $D_{x} D_{z}$

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
D_{x}(T) & \leq 2 \sqrt{\frac{1}{100}}+2^{r_{x}+\sqrt[\varepsilon]{\varepsilon}+O(\sqrt{\varepsilon} n)-n} \\
& =\frac{1}{5}+2^{-k+O(\sqrt{\varepsilon} n)} \begin{aligned}
\text { code nate }
\end{aligned}
\end{aligned}
$$

$$
|T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leqslant 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
& \begin{aligned}
& D_{x}(T) \leq 2 \sqrt{\frac{1}{100}}+2^{r_{x}+r_{z}+O(\sqrt{\varepsilon} n)-n} \\
&=\frac{1}{5}+2^{-k+} \uparrow(\sqrt{\varepsilon} n) \\
& \text { coder rater }
\end{aligned} \\
& \text { So if } \varepsilon<O\left(\frac{k^{2}}{n^{2}}\right) \text {, then } D_{x}(T)<0.99 .
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

Conclusion of the proof
CSS code of linear-rate and linear-distance which are expanding are NLTS.
any state violating εn checks cannot be the output of a constant depth ckt.

Conclusion of the proof
CSS code of linear-rate and linear-distance which are expanding are NLTS. any state violating εn checks cannot be the output of a constant depth ckt.

QPCP conjecture implications
(1) Much harder to disprove QPCP now!
(2) We need a stronger classical ansatz for classical proofs of local Hamiltonions.

Acknowledgments

Acknowledgments: 1ncredible Advisors

Umesh Vazirani

Acknowledgments: 1ncredible Advisors

Umesh Vazirani

Zeph Landan

Acknowledgments: Incredible Advisors

Umesh Vazirami

Zeph Landau

Acknowledgments: My wonderful family

Acknowledgments: The best research environment

Acknowledgments

