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Calculating ground-energy is a hard problem

defined by local interactions

each 𝑘-local interaction is described by
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the relevant states in physics are the 
“low-energy” states of 𝐇

energy of |𝜓⟩ := ⟨𝜓|𝐇|𝜓⟩ (eigenvalue)

[Kitaev’99]: It is QMA-hard
to calculate any value

min
|,⟩

⟨𝜓|𝐇|𝜓⟩ ±
1

poly(𝑛)

𝐇 =$
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Calculating ground-energy is a hard problem



How hard is ground-energy approximation?

𝐸 = 0

𝐸 = 𝜆!"#
𝐸 = 𝜆!"# +

$
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𝐸 = 𝜆!"# + 𝜖𝑛

𝐸 = 𝑂(𝑛)

NP-hard

QMA-complete
𝐸 = 𝜆!"# + 𝜖′𝑛

conjectured to be
QMA-complete 



Why are quantum PCPs harder to prove than PCPs?

No cloning theorem.

Dinur’s 2007 proof of PCP theorem:
• Preprocessing
• Convert interaction graph into expander
• Replace high-locality variables with a 

cloud connected by consistency checks
• Gap amplification
• Have each vertex describe not only it’s 

assignment, but it’s neighborhood
• Check consistency between 

neighborhoods

• Alphabet reduction
• Apply error-correction to reduce alphabet
• Replace high-locality variables with a 

cloud connected by consistency checks
• Repeat 𝑂(log 𝑛) times

Many of these steps violate no-cloning 
theorem) although some can be avoided).



Why are quantum PCPs harder to prove than PCPs?

No cloning theorem.

Dinur’s 2007 proof of PCP theorem:
• Preprocessing
• Convert interaction graph into expander
• Replace high-locality variables with a 

cloud connected by consistency checks
• Gap amplification
• Have each vertex describe not only it’s 

assignment, but it’s neighborhood
• Check consistency between 

neighborhoods

• Alphabet reduction
• Apply error-correction to reduce alphabet
• Replace high-locality variables with a 

cloud connected by consistency checks
• Repeat 𝑂(log 𝑛) times

Many of these steps violate no-cloning 
theorem) although some can be avoided).



How hard is ground-energy approximation?

𝐸 = 0

𝐸 = 𝜆!"#
𝐸 = 𝜆!"# +

$
%&'((*)

 

𝐸 = 𝜆!"# + 𝜖𝑛

𝐸 = 𝑂(𝑛)

NP-hard

QMA-complete
𝐸 = 𝜆!"# + 𝜖′𝑛

conjectured to be
QMA-complete 



State complexity classes

description of a decision problem
ex. Does 𝐶 accept any quantum state?

yes/no (binary) answer

description of a quantum state
ex. the accepting quantum state of 𝐶

a quantum state 𝜓 matching the 
description

Decision Complexity Class State Complexity Class



The QPCP conjecture and state complexity

Def. (stateNP)
A set of strings (𝑥#)#∈ℕ	is a stateNP representation of states (𝜓#)#∈ℕ if 𝑥# 
can be used to calculate tr	(𝑂𝜓#) for any local observable 𝑂.

Examples
• 𝑥#	= description of a constant-depth 

quantum circuit
• 𝑥#	= description of matrix-product state
• 𝑥#	= listing of stabilizers for a stabilizer state

Non-Examples
• 𝑥#	= a list claiming to describing a map
 𝑂 ↦ tr(𝑂𝜓#)
• 𝑥#	= a purported classical shadow a 

quantum state 𝜓#
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𝐸 = 𝑂(𝑛)

QMA-complete

𝐸 = 𝜆!"# + 𝜖′𝑛

conjectured to be
QMA-complete 

If 𝑥# # ∈ stateNP

QMA=NP
𝐸 = 𝜆!"# + 𝜖𝑛



The QPCP conjecture and state complexity

The QPCP conjecture implies State Complexity Lower Bounds!

QPCP conj. + 𝒞 ≠ QMA implies state𝒞 
lower-bounds for 𝜖-low energy states 
of local Hamiltonians.

Extracts the state complexity 
hardness statements underlying the 
QPCP conjecture.

When 𝒞 = NP, QPCP conj. implies 
many stateNP lower bounds 
including

NLTS [FH’14]:
There exist local Ham. systems with 
every ≤ 𝜖𝑛-energy state requiring at 

least Ω(log	log 𝑛) circuit depth



No Low-energy Trivial States (NLTS) Theorem
Anshu, Breuckmann, and Nirkhe ‘22.

For any 𝑛 > 0, there exists an 𝑛-qubit local Hamiltonian system such that every ≤ 𝜖𝑛-energy state 
requires at least Ω(log 𝑛) circuit depth.

The NLTS problem

Seq. of partial results: [EH’17,NVY’18,Eld’21,BKKT’19,AN’20,AB’22] 

Robust entanglement can (theoretically) exist at room temperature!

Our proof of NLTS is based on quantum error-correction; specifically, 
high-rate and high-distance quantum error correcting codes

(more on this soon)



What should we try to solve next?

Stronger state complexity bounds
Construct local Hams. with state 
complexity lower bounds for all low-
energy states
• NLSS conjecture [G-LG’22,CCNN’23]
• Trivially-rotated stabilizer states  

lower bounds

Reintroduce computational hardness
• Prove that QPCPs are MA-hard (or 

even just BQP-hard)
• Construct local Hams. which are 

simultaneous NLTS and NP-hard
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Proof sketch of the NLTS result

First, we need a method for proving circuit-depth lower bounds

Fact 1

For every 𝑡-depth circuit 𝐶, the local Ham.

𝐇 =8
*AB

	C

ℎ* =8
*AB

	C

𝐶|1⟩⟨1|*𝐶D

is 2E-local and has a unique ground-state of 𝐶|0⟩ 
with spectral gap 1.

Proof: by induction on 
the depth of 𝐶. 



Proof sketch of the NLTS result

Fact 2

Let 𝑥B, 𝑥F, … , 𝑥G ∈ 0,1 C be points 
such that 𝑥*⊕𝑥H > 𝐿. Then,

𝜓 =8
HAB

G
𝛼H|𝑥H⟩

cannot be the unique ground-state of 
a 𝐿-local Hamiltonian 𝐇 = ∑ℎ*.  

Proof: Define

𝜓′ = −𝛼- 𝑥- +$
./0

1
𝛼. 𝑥. .

For any 𝐿 −local term ℎ,

𝜓 ℎ 𝜓 = $
.,.!/-

1
𝛼.𝛼.!

3 ⟨𝑥.! ℎ 𝑥.⟩

= $
./-

1
𝛼.

0⟨𝑥. ℎ 𝑥.⟩

= 𝜓4 ℎ 𝜓4 .

Therefore, 𝜓 𝐇 𝜓 = 𝜓′ 𝐇 𝜓′  proving non-
uniqueness.
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Corollary

Let 𝑥B, 𝑥F, … , 𝑥G ∈ 0,1 C be points 
such that 𝑥*⊕𝑥H > 𝐿. Then,

𝜓 =8
HAB

G
𝛼H|𝑥H⟩

is not the output of a O(log	𝐿)	depth 
quantum circuit.

Proof: Define
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./0
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{0,1}#

𝐿 𝐿



Proof sketch of the NLTS result

Corollary

Let 𝑆B, 𝑆F, … , 𝑆G ⊂ 0,1 C be subsets 
such that dist(𝑆H, 𝑆HN) > 𝐿. Then

𝜓 =8
HAB

G
𝛼H|𝑣H⟩

for ΠO! 𝑣! = |𝑣!⟩ is not the output of a 
O(log	𝐿)	depth quantum circuit.
 

{0,1}#

𝐿 𝐿

“well-spread dist.”



Robust well-spread lower bounds

Theorem

Let 𝑆(, 𝑆) 	⊂ 0,1 * be subsets such 
that dist(𝑆(, 𝑆)) > 𝐿. Any distribution 
𝐷 with mass 𝐷 𝑆( , 𝐷 𝑆) ≥ 𝜇 

has circuit-depth lower bounds of

Ω log
𝐿)	𝜇
𝑛

.

{0,1}#

𝐿 𝐿

“well-spread dist.”

{0,1}#

𝑆&
𝑆'

𝐿



Finding well-spread distributions

25

There is a really nice visual associated with 
classical error-correcting codes

This is the view of the exact solutions to a linear-
distance error-correcting code {𝑥 ∶ |𝐻𝑥| = 0}

{0,1}#

Ω(𝑛
) Ω(𝑛)

What does the low-energy space look like?
For classical codes, it includes any vector 
supported on  {𝑥 ∶ 𝐻𝑥 ≤ 𝜖𝑛}

If the matrix 𝐻 represents a small-set expanding 
graph, then it looks like this
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There is a really nice visual associated with error-
correcting codes

This is the view of the exact solutions to a linear-
distance error-correcting code {𝑥 ∶ |𝐻𝑥| = 0}

What does the low-energy space look like?
For classical codes, it includes any vector 
supported on  {𝑥 ∶ 𝐻𝑥 ≤ 𝜖𝑛}

If the matrix 𝐻 represents a small-set expanding 
graph, then it looks like this

{0,1}#

Ω(𝑛
) Ω(𝑛)

radius ≤ 𝜖𝑛

Finding well-spread distributions
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There is a really nice visual associated with error-
correcting codes

This is the view of the exact solutions to a linear-
distance error-correcting code {𝑥 ∶ |𝐻𝑥| = 0}
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Finding well-spread distributions



{0,1}#

Ω(𝑛
)

Ω(𝑛)

radius ≤ 𝜖𝑛

Ω(𝑛
)

Proof: Let 𝜓 = ∑./-1 𝛼 𝑣.  with each |v5⟩ 
supported on a different region.

Define

𝜓′ = −𝛼- 𝑣- +$
./0

1
𝛼. 𝑣. .

For any 𝐿 −local term ℎ,

𝜓 ℎ 𝜓 = $
.,.!/-

1
𝛼.𝛼.!

3 ⟨𝑣.! ℎ 𝑣.⟩

= $
./-

1
𝛼.

0
⟨𝑣. ℎ 𝑣.⟩

= 𝜓4 ℎ 𝜓4 .

Then, 𝑣. ∝ 𝜓 − |𝜓4⟩ and of equal energy to 
|𝜓⟩ and |𝜓4⟩.

If there exists a low-energy state |𝜓⟩ 
supported only on these purple regions, 
then there exists a state |𝜙⟩ of the same 
energy but only supported on one purple 
region.

Finding well-spread distributions



{0,1}#

Ω(𝑛
)

Ω(𝑛)

radius ≤ 𝜖𝑛

Ω(𝑛
)

If there exists a low-energy state |𝜓⟩ 
supported only on these purple regions, 
then there exists a state |𝜙⟩ of the same 
energy but only supported on one purple 
region.

An apparent contradiction:

1. Find a state |𝜓⟩ that is well-spread
2. Find a local Hamiltonian 𝐇 with |𝜓⟩ as a 

ground-state
3. States |𝜙⟩ supported on one region are 

also ground-states of 𝐇
4. Can’t prove that |𝜙⟩ is well-spread 

Finding well-spread distributions



Multiple bases to the rescue

Uncertainty lemma intuition: 
If a state’s measurement in the 𝑍-basis is rather certain then the 
measurement in the 𝑋-basis is rather uncertain.

𝑍-basis 𝑋-basis

{0,1}# {0,1}#

∀	𝑆, 𝑇 ⊂ 0, 1 *, 𝐷7 𝑇 ≤ 2 1 − 𝐷8 𝑆 +
𝑆 ⋅ |𝑇|
2*

𝑆
𝑇



Multiple bases to the rescue

The (current) NLTS intuition: 
Show that every low-energy state’s measurement in the 𝑍-basis or in the 
𝑋-basis is well-spread.

{0,1}#

Ω( 𝑛)



Multiple bases to the rescue

The (current) NLTS intuition: 
Show that every low-energy state’s measurement in the 𝑍-basis or in the 
𝑋-basis is well-spread.

Example
If you measure the ground-
state of the toric code in the 𝑍-
basis, you get one of 4 
measurement classes 
corresponding to loops.



Multiple bases to the rescue

The (current) NLTS intuition: 
Show that every low-energy state’s measurement in the 𝑍-basis or in the 
𝑋-basis is well-spread.

Example
If you measure the ground-
state of the toric code in the 𝑍-
basis, you get one of 4 
measurement classes 
corresponding to loops.

If the measurement is 
concentrated in the 𝑍-basis,
then it won’t be concentrated 
in the 𝑋-basis.

|0,0⟩

|1,0⟩

|0,1⟩

|1,1⟩



Proving NLTS via “well-spreadness” and codes

Good rate:
• Degeneracy is necessary for proving well-spreadness
• How much degeneracy matters! A high-rate helps 

prove well-spreadness in some basis

Good distance:
• Distance is needed for proving robust well-spread 

lower bounds

Good expansion
• Needed for “shape” of low-energy distributions

The (current) NLTS intuition: 
Show that every low-energy state’s measurement in the 𝑍-basis or in the 
𝑋-basis is well-spread.

{0,1}#

Ω(𝑛
)

Ω(𝑛)

radius ≤ 𝜖𝑛

Ω(𝑛
)



What should we try to solve next?

Stronger state complexity bounds
Construct local Hams. with state 
complexity lower bounds for all low-
energy states
• NLSS conjecture [G-LG22,CCNN23]
• Trivially-rotated stabilizer states  

lower bounds

Reintroduce computational hardness
• Prove that QPCPs are MA-hard (or 

even just BQP-hard)
• Construct local Hams. which are 

simultaneous NLTS and NP-hard
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Superpositions over NP solutions

The [ABN22] NLTS construction is a stabilizer Hamiltonian 
and all stabilizer terms commute so, 𝜆;<= 𝐇>?@ = 0.

In general, any stabilizer Hamiltonian is easy to analyze.

Simultaneously NP-hard and NLTS Hamiltonians:
Can we construct a family of Hamiltonians such that 
1. every ≤ 𝜆;<= 𝐇 + 𝜖𝑛 –energy state cannot be 

generated by a low-depth circuit
2. It is NP-hard to decide if 𝜆;<= 𝐇 ≤ 𝑎𝑛 or ≥ 𝑏𝑛 



Superpositions over NP solutions

Simultaneously NP-hard and NLTS Hamiltonians:
Can we construct a family of Hamiltonians such that 
1. every ≤ 𝜆;<= 𝐇 + 𝜖𝑛 –energy state cannot be 

generated by a low-depth circuit
2. It is NP-hard to decide if 𝜆;<= 𝐇 ≤ 𝑎𝑛 or ≥ 𝑏𝑛 

{0,1}#

𝐿

Issue:
Unless 𝐇A is 𝐿-local, then every |𝑥⟩ is a 
ground-state for 𝐶 𝑥 = 0.

Then 𝐇A = 𝐶. (And isn’t NLTS).

Idea 1:
Let 𝐶 be a YES-instance CSP. Find a 
Hamiltonian 𝐇A with ground-state

𝜓 ∝ 8
A B CD

|𝑥⟩
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ℎ( = F
):)∋(

𝑄)

,&

|+⟩⟨+|( F
):)∋(

𝑄)

,&

where the constraints are 𝑃) and

𝑄) = 𝑃) + 𝛿𝕀

Idea 2 [AN22,AGK23]:
Let 𝐶 be a YES-instance PCP-CSP. There 
exists a Hamiltonian 𝐇A with ground-state

𝜓 ∝ 8
B∈{D,(}&

𝛿|A(B)||𝑥⟩



Superpositions over NP solutions
Lemma (morally speaking) [AN22,AGK23]:
The Hamiltonian 𝐇A is combinatorial NLTS.

Observation: 𝐇A is not NLTS necessarily.
Pf. When 𝐶 𝑥 = 0 corresponds to a collapsing hash fn,
there exists a non-well spread low-energy state.
Fundamental issue: 𝐇A is defined too much in one basis.

Idea 2 [AN22,AGK23]:
Let 𝐶 be a YES-instance PCP-CSP. There 
exists a Hamiltonian 𝐇A with ground-state

𝜓 ∝ 8
B∈{D,(}&

𝛿|A(B)||𝑥⟩
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𝑄)
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|+⟩⟨+|( F
):)∋(

𝑄)

,&

where the constraints are 𝑃) and

𝑄) = 𝑃) + 𝛿𝕀

Collapsing hash fn:

(roughly speaking), it is hard to distinguish
∑B:O B CP |𝑥⟩ from |𝑥′⟩ for any ℎ 𝑥Q = 𝑠.
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A surprising connection to quantum money/lightning

Quantum Money Proposal [Zhandry17]:
For a hash function ℎ, the money state is

$P ∝ 8
R:O R CP

|𝑦⟩

Thm [Zhandry17]: If ℎ is collision-resistant and non-
collapsing, then this is a quantum lightning scheme.

{0,1}#

Issue: 
If solutions of ℎS((𝑠) are ≤ 𝐿 close to each other, then there is a brute-force 𝑛T-time 
algorithm for breaking collision-resistance.

Else, ℎ is collapsing by any algorithm that looks like Hamiltonian energy estimation.



An intermediate problem for both q. lightning and QPCP

For an NP problems given by a CSP 𝐶(, 𝐶), construct a Hamiltonian 
𝐇A',A(  with ground-state |𝜓⟩ with measurement statistics:

𝑍-basis 𝑋-basis

{0,1}# {0,1}#

Can derive 𝑥 s.t. 
𝐶& 𝑥 = 0

Can derive 𝑦 s.t. 
𝐶' 𝑦 = 0

Key desired property: Measuring a ground-state of 𝐇A',A(will give us 
some entropy over solutions to either 𝐶( or 𝐶). 
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An intermediate problem for both q. lightning and QPCP

For an NP problems given by a CSP 𝐶(, 𝐶), construct a Hamiltonian 
𝐇A',A(  with ground-state |𝜓⟩ with measurement statistics:

𝑍-basis 𝑋-basis

{0,1}# {0,1}#

Can derive 𝑥 s.t. 
𝐶& 𝑥 = 0

Can derive 𝑦 s.t. 
𝐶' 𝑦 = 0

Key desired property: Measuring a ground-state of 𝐇A',A(will give us 
some entropy over solutions to either 𝐶( or 𝐶). 

Please suggest a name for this object!



What should we try to solve next?

Stronger state complexity bounds
Construct local Hams. with state 
complexity lower bounds for all low-
energy states
• NLSS conjecture [G-LG22,CCNN23]
• Trivially-rotated stabilizer states  

lower bounds

Reintroduce computational hardness
• Prove that QPCPs are MA-hard (or 

even just BQP-hard)
• Construct local Hams. which are 

simultaneous NLTS and NP-hard



Proving stronger lower bounds than NLTS

Constant-depth quantum circuits are just one of 
many classical witness that can be provided for 
an NP proof. 

QPCP Conj. + NP≠QMA ⟹
   lower-bounds for all families of NP witnesses

Open question: Can we prove lower-bounds for 
some other families of NP witnesses? Is there is a 
family of local Hamiltonians for which all known 
NP witnesses are insufficient?

Any state of this form is also a NP witness. These 
are called “trivially-rotated stabilizer states”.

NLTS+ conjecture: There exists local Hamiltonian 
such that all such states have energy ≥ 𝜖𝑛.

Our proof of NLTS does not satisfy this!

Clifford circuit

constant-depth circuit

0  …. .… 0
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The trouble with quantum codes
Thm (folklore) 
The < 𝑑-sized reduced density 
matrices of code-states are an 
invariant of the encoded state.

No Cloning Theorem Quantum Error-Correction Local Indistinguishability

Ψ 0 ↦ Ψ |Ψ⟩
correctable erasure error

recovery map

cloning of erased qubits

Resolution:       qubits are 
completely determined by 
the error-correcting code 

qubit state does not
depend on which state is 
encoded

encoded state



The trouble with quantum codes

At the highest level of generality, 
one could summarize the 
classical PCP theorem as an 
elegant locally testable code 
wrapped around the satisfying 
assignment for the formula.

Could we do the same for 
quantum PCPs?

If we use a q. code with dist. 
𝑑, then the local Ham. must 
have locality ℓ > 𝑑 due to 
local indistinguishability.

Thm (folklore) 
The < 𝑑-sized reduced density 
matrices of code-states are an 
invariant of the encoded state.




