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Calculating ground-energy is a hard problem

defined by local interactions

each k-local interaction is described by

Hamiltonian h; = < oo )I 2k
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Calculating ground-energy is a hard problem

the relevant states in physics are the
“low-energy” states of H

energy of [y) := (Y|H|Y) (eigenvalue)

[Kitaev'?9]: It is QMA-hard
to calculate any value

min(p[H[ip) £ poly(n)




How hard Is ground-energy approximation?

E=0(0n)

NP-hard
/ conjectured to be
= Amin + €n /QMA complete
Ami +en
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Why are quantum PCPs harder to prove than PCPs?

No cloning theorem. « Alphabet reduction

* Apply error-correction to reduce alphabet
Dinur’s 2007 proof of PCP theorem: * Replace high-locality variables with a
* Preprocessing cloud connected by consistency checks

« Convert interaction graph into expander <« Repeat 0(logn) times

« Replace high-locality variables with a
cloud connected by consistency checks

« Gap amplification Many of these steps violate no-cloning

* Have each vertex describe not only it’s theorem) although some can be avoided).
assignment, but it’s neighborhood

* Check consistency between
neighborhoods
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State complexity classes

Decision Complexity Class

description of a decision problem
ex. Does C accept any quantum state?

ves/no (binary) answer

State Complexity Class

description of a quantum state
ex. the accepting quantum state of C

l

a quantum state ¥ matching the
description



The QPCP conjecture and state complexity

Def. (stateNP)
A set of strings (x,)nen IS @ StateNP representation of states (Y,,)nen If X,
can be used to calculate tr (0Oy,,) for any local observable 0.

Examples
e x, =description of a constant-depth

Non-Examples
UGN € e T X, = a list claiming to describing a map
L . 0 - tr(0yY,)
» x, = description of matrix-product state .
L . N * x, =a purported classical shadow a
» x, = listing of stabilizers for a stabilizer state
gquantum state ¢,
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The QPCP conjecture and state complexity

Def. (stateNP)

A set of strings (x,)nen 1S @ StateNP representation of states (¥, )nen If X5,
can be used to calculate tr (0Oy,,) for any local observable 0.

E=0(0n)

E = Apin + €n
QOMA=NP |
conjectured to be

E = Ay + €0 — QMA_Complete
If (xp), € stateNP — %

E = /1min + pol}l,(n) < QMA'Com I.ete

E = Amin p
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The QPCP conjecture and state complexity

The QPCP conjecture implies State Complexity Lower Bounds!

QPCP con|. + C #+# OQMA implies stateC
lower-bounds for e-low energy states
of local Hamiltonians.

Extracts the state complexity
hardness statements underlying the
QPCP conjecture.

When ¢ = NP, QPCP con|. implies
many stateNP lower bounds
Including

-

o

NLTS [FH14]:
There exist local Ham. systems with
every < en-energy state requiring at
least Q(log logn) circuit depth

~

)




The NLTS problem

No Low-energy Trivial States (NLTS) Theorem
Anshu, Breuckmann, and Nirkhe 22.

Forany n > 0, there exists an n-qubit local Hamiltonian system such that every < en-energy state
Qequires at least Q(logn) circuit depth.

)

Seq. of partial results: [EH17 NVY'18 Eld21 BKKT 1% AN20 AB"22]
Robust entanglement can (theoretically) exist at room temperature!

Our proof of NLTS is based on quantum error-correction; specifically,
high-rate and high-distance quantum error correcting codes

(more on this soon)



What should we try to solve next?

v

Stronger state complexity bounds

Construct local Hams. with state

complexity lower bounds for all low-

energy states

« NLSS conjecture [G-LG22,CCNN 23]

« Trivially-rotated stabilizer states
lower bounds

N

Reintroduce computational hardness

* Prove that QPCPs are MA-hard (or
even just BOQP-hard)

 (Construct local Hams. which are
simultaneous NLTS and NP-hard



The NLTS problem

No Low-energy Trivial States (NLTS) Theorem
Anshu, Breuckmann, and Nirkhe 22.

Forany n > 0, there exists an n-qubit local Hamiltonian system such that every < en-energy state
Qequires at least Q(logn) circuit depth.

)

Seq. of partial results: [EH17 NVY'18 Eld21 BKKT 1% AN20 AB"22]
Robust entanglement can (theoretically) exist at room temperature!

Our proof of NLTS is based on quantum error-correction; specifically,
high-rate and high-distance quantum error correcting codes

(more on this soon)



Proof sketch of the NLTS result

First, we need a method for proving circuit-depth lower bounds

Fact 1 Proof: by induction on
the depth of C.

For every t-depth circuit C, the local Ham.

H=Zhi=ZC|1><1|iCT u
i=1 =1

is 2t-local and has a unigue ground-state of €|0)
with spectral gap 1.




Proof sketch of the NLTS result

Fact 2

Let xq, X5, ..., X, € {0,1}" be points
such that |x; @ x;| > L. Then,

=), )

cannot be the unique ground-state of
a L-local Hamiltonian H = Y h;.

Proof: Define

m

W) = —abe)+ ) alx)

j=2
Forany L —local term h,

Wikly) = ) aal(plhly)
1] =

m 2
= Z | ¢xj Rl x;)

J=1

= (W' |hly’).

Therefore, (YW|H|y) = (Y'|H|Y') proving non-
uniqueness.



Proof sketch of the NLTS result

Corollary
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=), )

Is not the output of a O(log L) depth
gquantum circuit.

Proof: Define

m

W) = —abe)+ ) alx)
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Therefore, (YW|H|y) = (Y'|H|Y') proving non-
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Proof sketch of the NLTS result

Corollary

Let S4,S,, ..., S, € {0,1}" be subsets

such that dist(S;, Sj,) > L. Then / v\z‘
m
=) gl
j=1

for Ils |v;) = |v;) is not the output of a
O(log L) depth quantum circuit.

“well-spread dist.”



Robust well-spread lower bounds

Theorem

{0,1}"

) L =.
has circuit-depth lower bounds of

( (L2 M)) “well-spread dist.”
Qllogl—) ).

n

Let S1,S, < {0,1}" be subsets such
that dist(51,S5,) > L. Any distribution
D with mass D(S;), D(S;) = u




Finding well-spread distributions

There is a really nice visual associated with
classical error-correcting codes

{0,1}"

This is the view of the exact solutions to a linear-
distance error-correcting code {x : |Hx| = 0}

What does the low-energy space look like?
For classical codes, it includes any vector
supported on {x : |Hx| < en}

If the matrix H represents a small-set expanding
graph, then it looks like this

25
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Finding well-spread distributions

Proof: Let |[p) = X7, a|v;) with each |v)

{0,1}" supported on a different region.
: radius < en Define
° {) m
A=Y W) =—alod+ ) aly)
[} ]:
: Q&‘)’ For any L —local term h,
[ J _ m .I.
Wity = ) ekl
If there exists a low-energy state |y) = Z __1|aj|2<vjlh|vj>
supported only on these regions, _ J_<¢,|h|¢,>_
then there exists a state |¢) of the same
energy but only supported on Then, |v;) o« [) — |y and of equal energy to

region. Y)Y and |y°).



Finding well-spread distributions

An apparent contradiction:

{0,13"
_ . 1. Find a state |y) that is well-spread
DA ~20,) 2. Find a local Hamiltonian H with |i) as a
y&;\\. ground-state

. ol 3. States |¢) supported on one region are
also ground-states of H
4. Can’t prove that |¢) is well-spread

It there exists a low-energy state |y)
supported only on these regions,
then there exists a state |¢) of the same

energy but only supported on
region.



Multiple bases to the rescue

Uncertainty lemma intuition:
If a state’s measurement in the Z-basis is rather certain then the
measurement in the X-basis is rather uncertain.

S| - |T]
VS,Tc{0,1}",  Dy(T)<2y1—Dz(S)+ Rz
(0.1)" {0,13"
S
T

Z-basis X-basis



Multiple bases to the rescue

The (current) NLTS intuition:
Show that every low-energy state’s measurement in the Z-basis or in the
X-basis is well-spread.

Ss~<
~
~
~
~~o
~
~
~
~
~
~
~

S
S~




Multiple bases to the rescue

The (current) NLTS intuition:
Show that every low-energy state’s measurement in the Z-basis or in the

X-basis is well-spread.

Example

If you measure the ground-
state of the toric code in the Z-
basis, you get one of 4
measurement classes
corresponding to loops.

g0
0t



Multiple bases to the rescue

The (current) NLTS intuition:
Show that every low-energy state’s measurement in the Z-basis or in the

X-basis is well-spread.

10,0) 10,1)

Example

If you measure the ground-
state of the toric code in the Z-
basis, you get one of 4
measuremept classes 11,0) 11,1)
corresponding to loops.

If the measurement is
concentrated in the Z-basis,
then it won’t be concentrated
In the X-basis.

¢
¢



Proving NLTS via “well-spreadness” and codes

The (current) NLTS intuition:
Show that every low-energy state’s measurement in the Z-basis or in the
X-basis is well-spread.

Good rate:

« Degeneracy Is necessary for proving well-spreadness

« How much degeneracy matters! A high-rate helps
prove well-spreadness in some basis

Good distance: y%‘

« Distance is needed for proving robust well-spread . Q@
/
lower bounds -

radius < en

Good expansion
* Needed for “shape” of low-energy distributions




What should we try to solve next?

v

Stronger state complexity bounds

Construct local Hams. with state

complexity lower bounds for all low-

energy states

« NLSS conjecture [G-LG22,CCNN23]

« Trivially-rotated stabilizer states
lower bounds

N

Reintroduce computational hardness

* Prove that QPCPs are MA-hard (or
even just BOQP-hard)

 (Construct local Hams. which are
simultaneous NLTS and NP-hard
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Superpositions over NP solutions

The [ABN22] NLTS construction is a stabilizer Hamiltonian
and all stabilizer terms commute so, Amin(Hagy) = 0.

In general, any stabilizer Hamiltonian (s easy to analyze.

Simultaneously NP-hard and NLTS Hamiltonians:

Can we construct a family of Hamiltonians such that

1. every < Anin (H) + en —energy state cannot be
generated by a low-depth circuit

2. Ttis NP-hard to decide if Aqin(H) < an or = bn




Superpositions over NP solutions

Simultaneously NP-hard and NLTS Hamiltonians: {0,1}"
Can we construct a family of Hamiltonians such that .
1. every < Anin (H) + en —energy state cannot be ~_
generated by a low-depth circuit \
2. Itis NP-hard to decide if Aqin(H) < an or = bn ‘
Idea 1: Issue:
Let C be a YES-instance CSP. Find a Unless H¢ is L-local, then every |x) Is a
Hamiltonian H, with ground-state ground-state for C(x) = 0.
Then H- = C. (And isn’t NLTS).
o Y Ix) ‘

C(x)=0



Superpositions over NP solutions

Simultaneously NP-hard and NLTS Hamiltonians:

Can we construct a family of Hamiltonians such that

1. every < Anin (H) + en —energy state cannot be
generated by a low-depth circuit

2. Itis NP-hard to decide if Aqin(H) < an or = bn

[dea 2 [AN?22,AGK?3]:
Let C be a YES-Instance PCP-CSP. There
exists a Hamiltonian Hy with ground-state

Py ) 8@

x€{0,1}"

hy = (]_[ Qe>_1 |+><+|v<1_[ Qe>_1

e:eov e:eov

where the constraints are P, and

Q, = P, + 61



Superpositions over NP solutions

Lemma (morally speaking) [AN22, AGK23]:
The Hamiltonian H, is combinatorial NLTS.

Observation: H. 1s not NLTS necessarily.
Pf. When C(x) = 0 corresponds to a collapsing hash fn,
there exists a non-well spread low-energy state.

Fundamental issue: H Is defined too much in one basis.

Idea 2 [AN22, AGK23]; . (

Collapsing hash fn:

(roughly speaking), it is hard to distinguish
Yx:h(x)=s |X) from [x') for any h(x") =s.

-1 -1
[ ] Qe> |+><+|v<1_[ Qe>

where the constraints are P, and

Q, = P, + 61



Superpositions over NP solutions

Lemma (morally speaking) [AN22 AGK?23]:

The Hamiltonian H, is combinatorial NLTS. {0,1}"
Observation: H. 1s not NLTS necessarily. f\«
Pf. When C(x) = 0 corresponds to a collapsing hash fn, A

there exists a non-well spread low-energy state. N

Fundamental issue: H Is defined too much in one basis.

Idea 2 [AN22 AGK?3]: ) -1
Let C be a YES-instance PCP-CSP. There oy = el;[v Qe | [+){H]y
exists a Hamiltonian Hy with ground-state |

[ ] Qe>—1

e:eov

where the constraints are P, and

proc ) Q= Feval

x€{0,1}"



A surprising connection to quantum money/lightning

Quantum Money Proposal [Zhandry1/]: {0,13" /\
For a hash function h, the money state is

A
1$.) o 2 17) A
y:h(y)=s ,/.\ A 8

Thm [Zhandry17]: If h is collision-resistant and non-
collapsing, then this is a quantum lightning scheme.

Issue:

If solutions of h™1(s) are < L close to each other, then there is a brute-force nt-time
algorithm for breaking collision-resistance.

Else, h is collapsing by any algorithm that looks like Hamiltonian energy estimation.



An intermediate problem for both g. lightning and QPCP

For an NP problems given by a CSP Cy, C,, construct a Hamiltonian

Hc, ¢, with ground-state [¢) with measurement statistics: Can derive y s.t.
C,(y) =0

{0,1}n {0’1}71 /

/-

Can derive x s.t.
C(x) =0 Z-basis X-basis

Key desired property: Measuring a ground-state of H, ¢, will give us
some entropy over solutions to either Cy or Cs.
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An intermediate problem for both g. lightning and QPCP

For an NP problems given by a CSP Cy, C,, construct a Hamiltonian

Hc, ¢, with ground-state [¢) with measurement statistics: Can derive y s.t.
C,(y) =0

o,1" 0,1 -

Please suggest a name for this object!

/

Can derive x s.t.
C(x) =0 Z-basis X-basis

Key desired property: Measuring a ground-state of H, ¢, will give us
some entropy over solutions to either Cy or Cs.
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Reintroduce computational hardness
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Proving stronger lower bounds than NLTS

Constant-depth quantum circuits are just one of
many classical witness that can be provided for
an NP proof.

QPCP Conj. + NP£OMA =
lower-bounds for all families of NP witnesses

Open question: Can we prove lower-bounds for
some other families of NP witnesses? Is there is a
family of local Hamiltonians for which all known
NP witnesses are insufficient?

constant-depth circuit

Clifford circuit

Any state of this form is also a NP witness. These
are called “trivially-rotated stabilizer states”.

NLTS+ conjecture: There exists local Hamiltonian
such that all such states have energy > en.

Our proof of NLTS does not satisfy this!
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» Trivially-rotated stabilizer states
lower bounds

special class of stateMA lower bounds
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The trouble with quantum codes

Thm (folklore)

The < d-sized reduced density
matrices of code-states are an
Invariant of the encoded state.

[ No Cloning Theorem ] + [Quantum Error-Correction ]'I#[ Local Indistinguishability ]
encoded state
@ Resolution:‘qubits are

completely determined by

l correctable erasure error the error-correcting code
F)10) = [F)T) @ +O

‘ qubit state does not
1 recovery map depend on which state is

encoded
@ D+e

cloning of erased qubits




The trouble with quantum codes

Thm (folklore)
The < d-sized reduced density

At the highest level of generality, matrices of code-states are an
one could summarize the invariant of the encoded state.
classical PCP theorem as an -
elegant locally testable code If we use a g. code with dist.
wrapped around the satisfying @ thenthe local Ham. must
assignment for the formula. have locality € > d due to

local indistinguishabillity.

Could we do the same for
quantum PCPs?






