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Robustness of proofs

How much of a classical proof does one need to read to ensure that it is correci?
For 100% confidence, the whole proof.

This notion was however shattered by the
Probabilistically checkable proofs (PCP) theorem [Arora et. al.? Dinur®].

It states that if one writes the proof down in a special way, then
for 99% confidence, only a constant number of bits need to be read!



Does a quantum version of the PCP
theorem hold?

Can quantum computation be done at
room- temperature?

Do quantum low-density parity-check
codes exist?

These questions may share a common answer!



A quantum perspective on the
classical PCP theorem
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A quantum perspective on the

classical PCP theorem
Constraint Satisfaction Problems ((SPs) Minimum energy
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PCP theorem rephrased
NP-hardness of (SPs [ Cook”! Levin’*]. e

It is NP-hard to estimate the energy E
of a CSP to +1/2.

Hy H,

Minimum energy

m

It is NP-hard to estimate the energy E E= inf ®nZ(c/)|1L1j|qb)
of a CSP to +m/4. MR

Is there an analogous theorem about the hardness of estimating the energy of
a local Hamiltonian problem?



QMA: Quantum Merlin-Arthur

\
Oh no! | don’t know how to |<;> o€ 2
tell if this LH has energy E = — T~
a i 1/2 Hy H,
J
[It does. Here is a proof: |¢) € (C*)®" J Infinitely powerful
Quantum Prover
Polynomial time Hmm, nefarious robot... | don’t know if | can trust you. But | can
Quantum Verifier probabilistically check if your proof is correct.
Pick a LH term H; at random. .
Measure to calculate £ = (¢|H;|¢). (Only QMA = set of problems for which
requires measuring local terms). there exists a quantum pl"OOf that can
E(mE) = E. be efficiently checkable in quantum

Repeating can give more accurate estimate. po|ynom|a| fime.



Quantum hardness of LH

LH is QMA-hard [Kitaev®?].
It is QMA-hard to estimate the energy of a local Hamiltonian H

to +Q(1/poly(m)).

It is QMA-hard to estimate the energy of a local Hamiltonian H
to

There exists a family of local Hamiltonians H(™ acting on n particles and constant
e > 0 such that V|&) with E = (¢|H|¢) < Anin(H) + em, |€) cannot be generated by
a constant-depth circuit.



Complexity of quantum states

Depth of minimum generating circuit
Minimum depth of any circuit C with 2-qubit gates s.t. [ip) = €|0)®",

Purely quantum notion
Every classical state x € {0,1}" can be generated by depth 1 circuit: X*.

It NP = QMA, ...
Groundstates |¢) of QMA-hard local . . .

. . There exists a family of local Hamiltonians
Hamiltonians H cannot be generated H® acting on 7 particles and constant ¢ >
by constant-depth circuits. 0 such that V|¢) with E = (¢|H|¢) <

Amin(H) + €m, |€) cannot be generated by a
constant-depth circuit.



Robustness of entanglement

There exists a family of local Hamiltonians H acting on n
particles and constant € > 0 such that all [¢) with E <
Amin(H) + em, |é) cannot be generated by a constant-depth
circuit.

qLTCs implies NLTS [Eldar-Harrow"]. No low-error trivial states (NLETS) theorem [Eldar-Harrow!].

If one can construct a CSS gLTC, then There exists a family of local Hamiltonians H™

NLTS follows. acting on n particles and constant € > 0 such that
for all e-low-error states |¢), |¢) cannot be

(Classically, LTCs were a part of the generated by a constant-depth circuit.

proof of the PCP theorem).



The goal today is to understand more about the
robustness of highly-complex entanglement.

1. Notions of robustness of entanglement

2. Approximate error correction



Part 1:
Notions of robustness of entanglement



Are these notions the same%

No low-error frivial states (NLETS) theorem [Eldar-Harrow!].
There exists a family of local Hamiltonians H™ acting There exists a family of local Hamiltonians H™ acting
on n particles and constant € > 0 such that v|¢) with  on n particles and constant € > 0 such that for all e-

E < Amin(H) + em, |¢) cannot be generated by a low-error states |¢), |€) cannot be generated by a
constant-depth circuit. constant-depth circuit.
Low-error state

A state |&) is a e-low-error state for a local Hamiltonian H, if there exists a subset S of size < en
of the particles and a groundstate |¢) € G such that Trg (|E)}&|) = Trs (|p)p]).

Our contribution
A simpler construction of NLETS Hamiltonian that shows low-error is

not the same as low-energy.
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Circuit-to-Hamiltonian construction

o) 1) [2)  I3)
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o) = [£)10)
¢1) — A|l/)0>
lpz) = Bly,)
l/J3> = C|Yy)

Together, {|1;)} are a “proof” that the circuit
was executed correctly.

But, |P) = [o)1) - [7) is not locally-
checkable.

Instead, the following “clock” state® is:

Y = ! N
| >—m;|t>|¢t>

*Quantum analog of Cook”'-Levin’3 Tableau.



Feynman-Kitaev Clock Hamiltonian

Express a computation as the groundstate of a 5-local Hamiltonian [Kitaev®]
Let C = C;Cr_4 ...C; be a circuit with gates {C;} and let |y,) =
1£)|0)®"~k be an initial state for |&) € (C2)®F,

There is a local Hamiltonian with ground space of:

T
_ _ 1 ] 1Y) = Cele—1),

Used to prove that Local Hamiltonians is QMA-hard [Kitaev®].



[0)%™ + 1)@

Approximate |cat) state |icat,) = =

Error states of cat states have Q(log n) circuit complexity

Let S be a subset of particles of size en. Then,

Tro(lcatycat]) = 0 ...0%(0 ... 0 er 1. 01 1]

Information theoretic argument shows this state has Q(logn) circuit
complexity.

But, caf states are not unique groundstates of local Hamiltonians...

Create a Hamiltonian whose groundspace is almost a cat state. This will preserve

the low-error property.




|0)®n + |1>®n
V2

Approximate |cat) state |icat,) =

Generate the FK clock Hamiltonian for the
i 1 circuit generating | cat). Has unique ground
® state if we restrict input fo |0)®™.

.

1 n
— E ®(n_t)

Intuition: For t > g,Ihe first % qubits form a cat state. Enough to prove that error
states have Q(logn) circuit complexity.



NLETS but not NLTS

With some additional technical details, can make construction 1-D geometrically local.

NLTS cannot be geometrically local.

Proof:
, ® o (o oo
Smaller than constant fraction
of terms will be violated. Can o > o oo
produce constant-depth states
for subsection. d A § O
® e o e o




Low-energy vs low-error

Low-energy
Correct definition for qPCP
Robustness of entanglement at room-temperature

Low-error
Errors attack specific particles

Reasonable model for physical processes, quantum faulttolerance,
noisy channels, noisy adiabatic quantum computation, etc.

M) = (A -7 +eN)*"(p) = z (1= )" BleBlvs (p)
S:|S|<2en



Part 2:
Approximate low-weight check codes



The quest for good qLDPC codes

Example: Toric Code [Kitaev” ]

Checks involve 0(1)

particles. ?

Each particle is involved ?

in 0(1) checks. )
Good LDPC codes yield fault-tolerant ¢
computation [ Gottesman™].



Currently...

Locality Approximation
Factor

CSS [Folklore] Q(n) Q(n) Q(n)
qLDPC [Tillich-Zémor®] Q(n) 0(/n) 0(1) 0
Subsystem [Bacon-Flammia-Harrow-Shi'’] Q(n) 0(n'~9) 0(1) 0

Approx. qLWC [N-Vazirani-Yuen'®] Q(n) Q(n) 0(1) 1/poly(n)



Approximate Error Correcting Codes

A w-local Hamiltonian H = H, + H, + ... + H_
acting on n qubits is a [[n, k, d]] code with error § if

Maps Enc, Dec s.t.
each term H, acts on at > (WIH|W) = 0 iff

' most w qubits P} W| = Enc(|E)E]) for
some [§) € (C*)®F

For all |¢) € (C?)®* ® R for purify register R, and
3. CPTP error map £ acting on (d — 1)/2 qubits

IDec o € o Enc(|pXo]) — o)Xl |l <6



Approximate qLWC codes

(SS Codes have good distance and rate but lack locality.

Create a Hamiltonian whose groundspace is almost exactly that of a (SS code but
is locally checkable.

Let V be the encoding =
circuit for a good CSS | J

Code.

|
K long

Choose K = 0(Ty 67%). Construct the clock Hamiltonian for
this “padded” circuit C.



Approximate qLWC codes

The groundspace of H is =~ the groundspace of a (SS code tensored with junk.
|l/)t> - CtCt 1- ClllpO);

_ 1 z
A N P o) = |£)]0)OR—H)
Butfort > Ty, |y,) = V|l/)0).ThUS, 1 — 0(62) fraction of [1,) = V],).

1
=~ : — ®(n_k) .
Gc NS téolt) R {VIo) : 11ho) = 1£)]0) }

Plus, G is the groundspace of a 5local ~ Remains fo define encoding and decoding
Hamiltonian! functions and check that distance and rate of
code is preserved.

[ Y,




Encoding and decoding circuits

Enc(p) = W(p ® [0)0|®T= )Wt for

1

£) o Tz Zeolt) ® CeCema - G )

W can be implemented efficiently by
first generating superposition over |t)
and the apply C.C;_; ...C;
conditionally.

Dec(o) = Trancilla (VTTrtime (O-)V)-

time is the collection of qubits holding
the time register and ancilla are the
last n — k qubits of the main register.

V is the encoding circuit of the CSS
code. Then VT is a decoding circuit.



Distance of code

Enc(p) = W(p ® 00|~ PwT for

) Pw T e olt) ® CeCemy - € 1)

Dec(o) = Trancilla (VTTrtime (o) V)-

time is the collection of qubits holding
the time register and ancilla are the
last n — k qubits of the main register.

Distance of code (sketch).

Tracing out time qubits, yields a mixed
state over t of main register.

W.h.p. t = T}, so we are decoding
EWpVT) for encoded state p.

Thus, distance is the same as that of

CSS code. Or Q(n).



Rate of code

Uses more qubits than (SS code.
Requires more qubits to store time
register. CSS circuits have 0(n?%) gates.

Storing |t) in unary would require
additional 0(T;) = 0(n“5~%) qubits!
Destroys rate (and distance).

Express time in base 0(r) where r is
the solution to T, = n".

Increases locality of Hamiltonian by
2r. If § = 1/poly(n) then still a local
Hamiltonian.

And rate and distance of Q(n).



The error-correcting zoo

Linear rate and distance codes with 0(1) row- and column-spare parity
check matrices exist.

Quantum locally testable codes (gLTC) [Aharanov-Eldar'?]
A local Hamiltonian H = ¥ H; is a qLTC with soundness R(6) if a state [i))

distance 6n from the groundspace G has energy E = (Y|H|y) = R(6) m.

Quantum low-weight check (qLWC) codes [ N-Vazirani-Yuen'®]
A local Hamiltonian H = ¥, H; is a qLWC if the groundspace G forms a

linear rate and distance code and each Hamiltonian term acts on 0(1)
particles.



Aside: Strong NLETS result

Theorem: Assuming QCMA==QMA, there is a family of local Hamiltonians H (" acfing on

n particles such that all e-low-error states of H(™ have super-polynomial circuit
complexity,

Proof idea: L € QMAcomp — QCMA of witness-checking circuits C. For
C € L, construct FK clock Hamiltonian H of following circuit.

e-error-states of H can be error-corrected

and then used as witnesses for C € L. But,
if they have polynomial circuit complexity,
then the generating circuit is a classical

witness. Then QMA = QCMA. 1.




The computational perspective seems to be
immensely useful for understanding
robustness of entanglement as well as
constructing novel error-correcting codes.



Open Questions

 Can approximate qLWC codes be made geometrically local?

* Do sulper-positions of low-error states requires large circuit
complexity? (vs convex combination)

* How do qLlWC codes compare to qLTCs, gLDPCs2 Do they
offer progress towards the gPCP conjecture?

« Combinatorial NLTS vs standard NLTS



