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Robustness of proofs
How much of a classical proof does one need to read to ensure that it is correct?
For 100% confidence, the whole proof.

This notion was however shattered by the 
Probabilistically checkable proofs (PCP) theorem [Arora et. al.98,Dinur07].

It states that if one writes the proof down in a special way, then
for 99% confidence, only a constant number of bits need to be read!



Does a quantum version of the PCP 
theorem hold?

Can quantum computation be done at 
room- temperature?

Do quantum low-density parity-check 
codes exist?

These questions may share a common answer! 



A quantum perspective on the 
classical PCP theorem
The Local Hamiltonian Problem
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Given a local Hamiltonian &, 
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A quantum perspective on the 
classical PCP theorem
Constraint Satisfaction Problems (CSPs)
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&: can be expressed as a 
diagonal matrix on the elements 

is acts non-trivially on.

⟹
The eigenvectors of & are the 

computational basis.



PCP theorem rephrased

Minimum energy

E = inf
& ∈(ℂ*)⊗-.
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PCP theorem [Arora et. al.98,Dinur07].
It is NP-hard to estimate the energy 5
of a CSP to ±7/4.

Is there an analogous theorem about the hardness of estimating the energy of 
a local Hamiltonian problem?

NP-hardness of CSPs [Cook71,Levin73].
It is NP-hard to estimate the energy 5
of a CSP to ±1/2.



QMA: Quantum Merlin-Arthur
Oh no! I don’t know how to 
tell if this LH has energy ! =
# ± 1/2

It does. Here is a proof: ( ∈ (ℂ,)⊗/

Hmm, nefarious robot… I don’t know if I can trust you. But I can 
probabilistically check if your proof is correct.

QMA = set of problems for which 
there exists a quantum proof that can 
be efficiently checkable in quantum
polynomial time.

Pick a LH term 01 at random.
Measure to calculate 2! = ( 01 ( . (Only 
requires measuring local terms).

3 4 2! = !.
Repeating can give more accurate estimate.

Polynomial time
Quantum Verifier

Infinitely powerful
Quantum Prover



Quantum hardness of LH

qPCP conjecture [Aharanov-Naveh02,Aaronson06].
It is QMA-hard to estimate the energy of a local Hamiltonian !
to ±Ω $ . 

NLTS conjecture [Freedman-Hastings14].
There exists a family of local Hamiltonians !(&) acting on ( particles and constant 
) > 0 such that  ∀ ⟩|/ with E = / ! / ≤ 3456 ! + )$, ⟩|/ cannot be generated by 
a constant-depth circuit.

NP ≠ QMA

LH is QMA-hard [Kitaev99].
It is QMA-hard to estimate the energy of a local Hamiltonian !
to ±Ω 1/poly($) .



Complexity of quantum states

NLTS conjecture [Freedman-Hastings14].
There exists a family of local Hamiltonians 
!(#) acting on % particles and constant & >
0 such that  ∀ ⟩|, with E = , ! , ≤
0123 ! + &5, ⟩|, cannot be generated by a 
constant-depth circuit.

Depth of minimum generating circuit
Minimum depth of any circuit 6 with 2-qubit gates s.t. 7 = 6 0 ⊗#. 

Purely quantum notion
Every classical state 9 ∈ 0,1 # can be generated by depth 1 circuit: =>.

If NP ≠ QMA,…
Groundstates |,⟩ of QMA-hard local 
Hamiltonians ! cannot be generated 
by constant-depth circuits.



Robustness of entanglement
No low-energy trivial states (NLTS) conjecture [Freedman-Hastings14].
There exists a family of local Hamiltonians !(#) acting on %
particles and constant & > 0 such that all ⟩|+ with , ≤
./01 ! + &3, ⟩|+ cannot be generated by a constant-depth 
circuit.

qLTCs implies NLTS [Eldar-Harrow17].
If one can construct a CSS qLTC, then 
NLTS follows.

(Classically, LTCs were a part of the 
proof of the PCP theorem).

No low-error trivial states (NLETS) theorem [Eldar-Harrow17].
There exists a family of local Hamiltonians !(#)
acting on % particles and constant & > 0 such that 
for all &-low-error states ⟩|+ , ⟩|+ cannot be 
generated by a constant-depth circuit.



The goal today is to understand more about the 
robustness of highly-complex entanglement.

1. Notions of robustness of entanglement

2. Approximate error correction



Part 1: 
Notions of robustness of entanglement



Are these notions the same?
No low-energy trivial states (NLTS) conjecture [Freedman-Hastings14].
There exists a family of local Hamiltonians !(#) acting 
on % particles and constant & > 0 such that  ∀ ⟩|, with 
- ≤ /012 ! + &4, ⟩|, cannot be generated by a 
constant-depth circuit.

No low-error trivial states (NLETS) theorem [Eldar-Harrow17].
There exists a family of local Hamiltonians !(#) acting 
on % particles and constant & > 0 such that for all &-
low-error states ⟩|, , ⟩|, cannot be generated by a 
constant-depth circuit.

Low-error state
A state |,⟩ is a &-low-error state for a local Hamiltonian !, if there exists a subset 5 of size ≤ &%
of the particles and a groundstate 6 ∈ 8 such that Tr; |,⟩⟨,| = Tr; |6⟩⟨6| .

Our contribution
A simpler construction of NLETS Hamiltonian that shows low-error is 
not the same as low-energy.



Circuit-to-Hamiltonian construction
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Together, {|'/⟩} are a “proof” that the circuit 
was executed correctly.

But, 1Ψ = '( '* … |'4⟩ is not locally-
checkable.

Instead, the following ”clock” state* is:
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*Quantum analog of Cook71-Levin73 Tableau.



Feynman-Kitaev Clock Hamiltonian
Express a computation as the groundstate of a 5-local Hamiltonian [Kitaev99]
Let ! = !#!#$% …!% be a circuit with gates {!(} and let *+ =

|-⟩|0⟩⊗1$2 be an initial state for |-⟩ ∈ ℂ5 ⊗2.

There is a local Hamiltonian with ground space of:

6 = 7 8Ψ: =
1

< + 1
>

?@+

#

unary F ⊗ *? ∶
*? = !? *?$% ,

*+ = |-⟩|0⟩⊗(1$2)
.

Used to prove that Local Hamiltonians is QMA-hard [Kitaev99].



Approximate |cat⟩ state
Error states of cat states have Ω(log +) circuit complexity 
Let - be a subset of particles of size .+. Then,

Tr1 |cat⟩⟨cat| = 0…0 0…0 + |1…1⟩⟨1…1|
2 .

Information theoretic argument shows this state has Ω log + circuit 
complexity.
But, cat states are not unique groundstates of local Hamiltonians…

cat: = 0 ⊗: + 1 ⊗:

2

Create a Hamiltonian whose groundspace is almost a cat state. This will preserve 
the low-error property.



Approximate |cat⟩ state cat& = 0 ⊗& + 1 ⊗&

2

H
Generate the FK clock Hamiltonian for the 
circuit generating cat . Has unique ground 
state if we restrict input to 0 ⊗&.

Ψ = 1
. + 1/012

&
3 ⊗ cat0 0 ⊗(&50)

Intuition: For 3 ≥ &
8,the first &8 qubits form a cat state. Enough to prove that error 

states have Ω(log .) circuit complexity.



NLETS but not NLTS
With some additional technical details, can make construction 1-D geometrically local.

NLTS cannot be geometrically local.
Proof:

Smaller than constant fraction 
of terms will be violated. Can 
produce constant-depth states 
for subsection.



Low-energy vs low-error
Low-energy
Correct definition for qPCP
Robustness of entanglement at room-temperature

Low-error
Errors attack specific particles
Reasonable model for physical processes, quantum fault-tolerance, 
noisy channels, noisy adiabatic quantum computation, etc.

ℳ " = 1 − & ℐ + &) ⊗+ " ≈ -
.: . 012+

1 − & +3 . & . ). "



Part 2: 
Approximate low-weight check codes



The quest for good qLDPC codes
Example: Toric Code [Kitaev97]

Checks involve !(1)
particles.

Each particle is involved
in !(1) checks. Error!

Good LDPC codes yield fault-tolerant 
computation [Gottesman14].



Currently…
Code Rate Distance Locality Approximation 

Factor
CSS [Folklore] Ω(#) Ω(#) Ω(#) 0
qLDPC [Tillich-Zémor13] Ω(#) &( #) &(1) 0
Subsystem [Bacon-Flammia-Harrow-Shi17] Ω(#) &(#()*) &(1) 0
Approx. qLWC [N-Vazirani-Yuen18] Ω(#) Ω(#) &(1) 1/poly(#)



Maps Enc, Dec s.t.
Ψ ( Ψ = 0 iff
⟩|Ψ ⟨ |Ψ = Enc ⟩|0 ⟨ |0 for 

some ⟩|0 ∈ (ℂ4)⊗7

each term (8 acts on at 
most 9 qubits1. 2.

For all ⟩|: ∈ ℂ4 ⊗7 ⊗ℛ for purify register ℛ, and 
CPTP error map ℰ acting on (= − 1)/2 qubits3.

Error Correcting CodesApproximate
A 9-local Hamiltonian ( = (1 + (2 + … + (D
acting on E qubits is a [[E, G, =]] code with error I if

Dec ∘ ℰ ∘ Enc ⟩|: ⟨ |: − ⟩|: ⟨ |: ≤ I



Approximate qLWC codes
CSS Codes have good distance and rate but lack locality.

Create a Hamiltonian whose groundspace is almost exactly that of a CSS code but 
is locally checkable.

Let ! be the encoding 
circuit for a good CSS 
Code.

Choose " = $ %& '() .

! *

" long

Construct the clock Hamiltonian for 
this “padded” circuit +.

+ =



Approximate qLWC codes
The groundspace of ! is ≈ the groundspace of a CSS code tensored with junk.

#$ = & '1
)$ + 1

+
,-.

/

0 1, : 1, = 3,3,45 …35 1. ,
1. = |9⟩|0⟩⊗(>4?)

But for 0 ≥ )B , 1, = C 1. . Thus, 1 − E(FG) fraction of 1, = C 1. .

#$ ≈
1

)$ + 1
+
,-.

/

0 ⊗ H IC 1. ∶ 1. = 9 0 ⊗(>4?) .

Plus, #$ is the groundspace of a 5-local 
Hamiltonian!

Remains to define encoding and decoding 
functions and check that distance and rate of 
code is preserved.



Encoding and decoding circuits
Encoding circuit.
Enc $ = &($⊗ 0 0 ⊗ *+, )&. for

/ ↦1
2
3452

∑789
34 : ⊗ ;7;7+2 …;2 |/⟩

& can be implemented efficiently by 
first generating superposition over |:⟩
and the apply ;7;7+2 …;2
conditionally.

Approximate decoding circuit.
Dec A = TrDEFGHHD I.TrJGKL A I .

time is the collection of qubits holding 
the time register and ancilla are the 
last S − U qubits of the main register.

I is the encoding circuit of the CSS 
code. Then I. is a decoding circuit.



Distance of code
Encoding circuit.
Enc $ = &($⊗ 0 0 ⊗ *+, &- for

. ↦0
1

2341
∑678
23 9 ⊗ :6:6+1 …:1 |.⟩

Approximate decoding circuit.
Dec @ = TrCDEFGGC H-TrIFJK @ H .

time is the collection of qubits holding 
the time register and ancilla are the 
last R − T qubits of the main register.

Distance of code (sketch).
Tracing out time qubits, yields a mixed 
state over 9 of main register.

W.h.p. 9 ≥ VW so we are decoding 
ℰ(H$H-) for encoded state $.

Thus, distance is the same as that of 
CSS code. Or Ω(R). 



Rate of code
Uses more qubits than CSS code.
Requires more qubits to store time
register. CSS circuits have %('() gates.

Storing |+⟩ in unary would require 
additional % -. = %('(01() qubits! 
Destroys rate (and distance).

Store register in different base.
Express time in base %(2) where 2 is 
the solution to -. = '3.

Increases locality of Hamiltonian by 
22. If 0 = 1/poly(') then still a local 
Hamiltonian.

And rate and distance of Ω(').



The error-correcting zoo

Quantum locally testable codes (qLTC) [Aharanov-Eldar13]
A local Hamiltonian ! = ∑!$ is a qLTC with soundness % & if a state |(⟩
distance &* from the groundspace + has energy , = ( ! ( ≥ % & ..

Quantum low-density parity-check codes (qLDPC) [Folklore]
Linear rate and distance codes with /(1) row- and column-spare parity 
check matrices exist.

Quantum low-weight check (qLWC) codes [N-Vazirani-Yuen18]
A local Hamiltonian ! = ∑!$ is a qLWC if the groundspace + forms a 
linear rate and distance code and each Hamiltonian term acts on / 1
particles.



Aside: Strong NLETS result
Theorem: Assuming QCMA≠QMA, there is a family of local Hamiltonians "($)acting on 
& particles such that all '-low-error states of "($) have super-polynomial circuit 
complexity,
Proof idea: ( ∈ QMAcomp − QCMA of witness-checking circuits 3. For 
3 ∈ (, construct FK clock Hamiltonian " of following circuit.

4 5 46 3

'-error-states of " can be error-corrected 
and then used as witnesses for 3 ∈ (. But, 
if they have polynomial circuit complexity, 
then the generating circuit is a classical 
witness. Then QMA = QCMA. ⊥.



The computational perspective seems to be 
immensely useful for understanding 

robustness of entanglement as well as 
constructing novel error-correcting codes.



Open Questions
• Can approximate qLWC codes be made geometrically local? 
• Do super-positions of low-error states requires large circuit 

complexity? (vs convex combination)
• How do qLWC codes compare to qLTCs, qLDPCs? Do they 

offer progress towards the qPCP conjecture?
• Combinatorial NLTS vs standard NLTS

Thanks!


