Approximate low-weight check codes and circuit lower bounds for noisy ground states

Chinmay Nirkhe

nirkhe@cs.berkeley.edu

arXiv:1802.07419

Henry Yuen

Chinmay Nirkhe

rkhe Umesh

Umesh Vazirani

Robustness of proofs

How much of a classical proof does one need to read to ensure that it is correct? For 100% confidence, the whole proof.

This notion was however shattered by the **Probabilistically checkable proofs (PCP)** theorem [Arora et. al.⁹⁸,Dinur⁰⁷].

It states that if one writes the proof down in a special way, then for 99% confidence, only a constant number of bits need to be read!

Does a quantum version of the PCP theorem hold?

Can quantum computation be done at room-temperature?

Do quantum low-density parity-check codes exist?

These questions may share a common answer!

A quantum perspective on the classical PCP theorem

The Local Hamiltonian Problem

Each H_j acts non-trivially on only a constant number of terms. $\|H_j\| \le 1$

$$H = \sum_{j=1}^{m} H_j$$

Minimum energy

$$\mathbf{E} = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \langle \phi | H | \phi \rangle = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \sum_{j=1}^m \langle \phi | H_j | \phi \rangle$$

Given a local Hamiltonian H, estimate its minimum energy E.

A quantum perspective on the classical PCP theorem

Constraint Satisfaction Problems (CSPs)

Each H_j acts non-trivially on only a constant number of terms. $\|H_i\| \le 1$

$$H = \sum_{j=1}^{m} H_j$$

Minimum energy

$$\mathbf{E} = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \langle \phi | H | \phi \rangle = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \sum_{j=1}^m \langle \phi | H_j | \phi \rangle$$

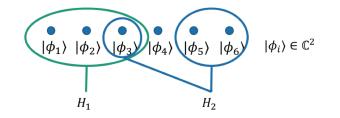
H_j can be expressed as a diagonal matrix on the elements is acts non-trivially on.

The eigenvectors of *H* are the computational basis.

PCP theorem rephrased

NP-hardness of CSPs [Cook⁷¹,Levin⁷³]. It is NP-hard to estimate the energy E of a CSP to $\pm 1/2$.

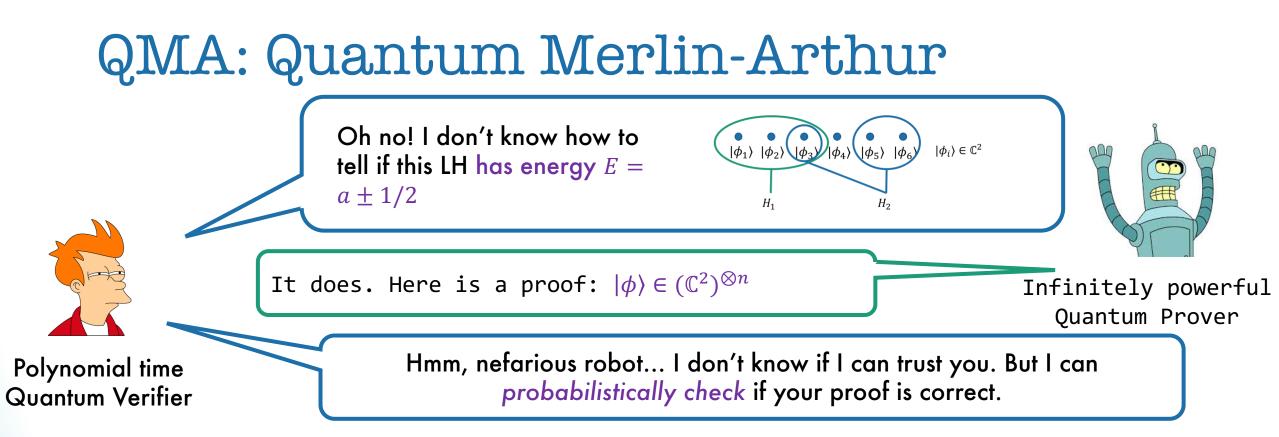
PCP theorem [Arora et. al.⁹⁸, Dinur⁰⁷]. It is NP-hard to estimate the energy E of a CSP to $\pm m/4$.



Minimum energy

$$\mathbf{E} = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \sum_{j=1}^m \langle \phi | H_j | \phi \rangle$$

Is there an analogous theorem about the hardness of estimating the energy of a local Hamiltonian problem?



Pick a LH term H_j at random. Measure to calculate $\tilde{E} = \langle \phi | H_j | \phi \rangle$. (Only requires measuring local terms).

$$\mathbb{E}(m\tilde{E})=E.$$

Repeating can give more accurate estimate.

QMA = set of problems for which there exists a *quantum* proof that can be efficiently checkable in *quantum* polynomial time.

Quantum hardness of LH

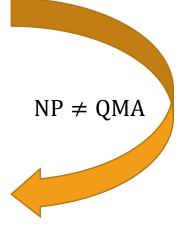
LH is QMA-hard [Kitaev⁹⁹].

It is QMA-hard to estimate the energy of a local Hamiltonian H to $\pm \Omega(1/\text{poly}(m))$.

qPCP conjecture [Aharanov-Naveh⁰², Aaronson⁰⁶]. It is QMA-hard to estimate the energy of a local Hamiltonian H to $\pm \Omega(m)$.

NLTS conjecture [Freedman-Hastings¹⁴].

There exists a family of local Hamiltonians $H^{(n)}$ acting on n particles and constant $\epsilon > 0$ such that $\forall |\xi\rangle$ with $E = \langle \xi | H | \xi \rangle \leq \lambda_{\min}(H) + \epsilon m$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.



Complexity of quantum states

Depth of minimum generating circuit Minimum depth of any circuit C with 2-qubit gates s.t. $|\psi\rangle = C|0\rangle^{\otimes n}$.

Purely quantum notion Every classical state $x \in \{0,1\}^n$ can be generated by depth 1 circuit: X^x .

If NP \neq QMA,...

Groundstates $|\xi\rangle$ of QMA-hard local Hamiltonians *H* cannot be generated by constant-depth circuits.

NLTS conjecture [Freedman-Hastings¹⁴].

There exists a family of local Hamiltonians $H^{(n)}$ acting on n particles and constant $\epsilon > 0$ such that $\forall |\xi\rangle$ with $E = \langle \xi | H | \xi \rangle \leq \lambda_{\min}(H) + \epsilon m$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

Robustness of entanglement

No low-energy trivial states (NLTS) conjecture [Freedman-Hastings¹⁴]. There exists a family of local Hamiltonians $H^{(n)}$ acting on n particles and constant $\epsilon > 0$ such that all $|\xi\rangle$ with $E \leq \lambda_{\min}(H) + \epsilon m$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

qLTCs implies NLTS [Eldar-Harrow¹⁷]. If one can construct a CSS qLTC, then NLTS follows.

(Classically, LTCs were a part of the proof of the PCP theorem).

No low-error trivial states (NLETS) theorem [Eldar-Harrow¹⁷]. There exists a family of local Hamiltonians $H^{(n)}$ acting on n particles and constant $\epsilon > 0$ such that for all ϵ -low-error states $|\xi\rangle$, $|\xi\rangle$ cannot be generated by a constant-depth circuit. The goal today is to understand more about the robustness of highly-complex entanglement.

1. Notions of robustness of entanglement

2. Approximate error correction

Part 1: Notions of robustness of entanglement

Are these notions the same?

No low-energy trivial states (NLTS) conjecture [Freedman-Hastings¹⁴]. There exists a family of local Hamiltonians $H^{(n)}$ acting on *n* particles and constant $\epsilon > 0$ such that $\forall |\xi\rangle$ with $E \le \lambda_{\min}(H) + \epsilon m$, $|\xi\rangle$ cannot be generated by a constant-depth circuit. No low-error trivial states (NLETS) theorem [Eldar-Harrow¹⁷]. There exists a family of local Hamiltonians $H^{(n)}$ acting on n particles and constant $\epsilon > 0$ such that for all ϵ low-error states $|\xi\rangle$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

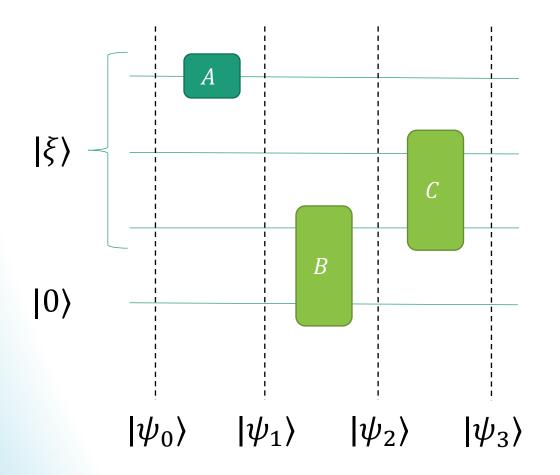
Low-error state

A state $|\xi\rangle$ is a ϵ -low-error state for a local Hamiltonian H, if there exists a subset S of size $\leq \epsilon n$ of the particles and a groundstate $|\phi\rangle \in G$ such that $\operatorname{Tr}_{S}(|\xi\rangle\langle\xi|) = \operatorname{Tr}_{S}(|\phi\rangle\langle\phi|)$.

Our contribution

A simpler construction of NLETS Hamiltonian that shows low-error is not the same as low-energy.

Circuit-to-Hamiltonian construction



 $\begin{aligned} |\psi_0\rangle &= |\xi\rangle |0\rangle \\ |\psi_1\rangle &= A |\psi_0\rangle \\ |\psi_2\rangle &= B |\psi_1\rangle \\ |\psi_3\rangle &= C |\psi_2\rangle \end{aligned}$

Together, $\{|\psi_t\rangle\}$ are a "proof" that the circuit was executed correctly.

But, $|\tilde{\Psi}\rangle = |\psi_0\rangle |\psi_1\rangle \dots |\psi_T\rangle$ is not locally-checkable.

Instead, the following "clock" state* is: $|\Psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |t\rangle |\psi_t\rangle$

*Quantum analog of Cook⁷¹-Levin⁷³ Tableau.

Feynman-Kitaev Clock Hamiltonian

Express a computation as the groundstate of a 5-local Hamiltonian [Kitaev⁹⁹] Let $C = C_T C_{T-1} \dots C_1$ be a circuit with gates $\{C_i\}$ and let $|\psi_0\rangle = |\xi\rangle|0\rangle^{\otimes n-k}$ be an initial state for $|\xi\rangle \in (\mathbb{C}^2)^{\otimes k}$.

There is a local Hamiltonian with ground space of: $\mathcal{G} = \left\{ |\Psi_{\xi}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\mathrm{unary}(t)\rangle \otimes |\psi_{t}\rangle : \frac{|\psi_{t}\rangle = C_{t} |\psi_{t-1}\rangle,}{|\psi_{0}\rangle = |\xi\rangle |0\rangle^{\otimes (n-k)}} \right\}.$

Used to prove that Local Hamiltonians is QMA-hard [Kitaev⁹⁹].

Approximate |cat> state

$$|\operatorname{cat}_n\rangle = \frac{|0\rangle^{\otimes n} + |1\rangle^{\otimes n}}{\sqrt{2}}$$

Error states of cat states have $\Omega(\log n)$ circuit complexity Let S be a subset of particles of size ϵn . Then, $\operatorname{Tr}_{S}(|\operatorname{cat}\rangle\langle\operatorname{cat}|) = \frac{|0\dots0\rangle\langle0\dots0| + |1\dots1\rangle\langle1\dots1|}{2}$.

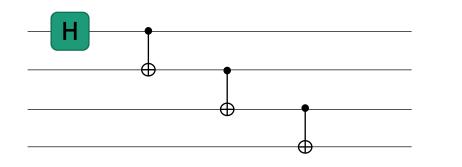
Information theoretic argument shows this state has $\Omega(\log n)$ circuit complexity.

But, cat states are not unique groundstates of local Hamiltonians...

Create a Hamiltonian whose groundspace is almost a cat state. This will preserve the low-error property.

Approximate |cat> state

$$|\operatorname{cat}_n\rangle = \frac{|0\rangle^{\otimes n} + |1\rangle^{\otimes n}}{\sqrt{2}}$$



Generate the FK clock Hamiltonian for the circuit generating $|cat\rangle$. Has unique ground state if we restrict input to $|0\rangle^{\otimes n}$.

$$|\Psi\rangle = \frac{1}{\sqrt{n+1}} \sum_{t=0}^{n} |t\rangle \otimes |\operatorname{cat}_t\rangle|0\rangle^{\otimes (n-t)}$$

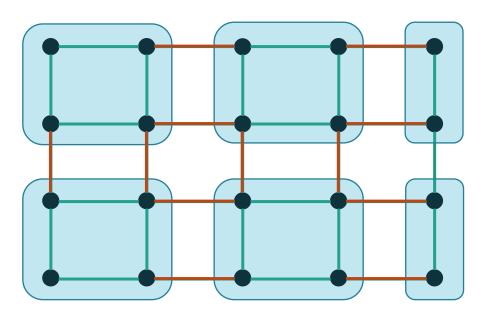
Intuition: For $t \ge \frac{n}{3}$, the first $\frac{n}{3}$ qubits form a cat state. Enough to prove that error states have $\Omega(\log n)$ circuit complexity.

NLETS but not NLTS

With some additional technical details, can make construction 1-D geometrically local.

NLTS cannot be geometrically local. Proof:

Smaller than constant fraction of terms will be violated. Can produce constant-depth states for subsection.



Low-energy vs low-error

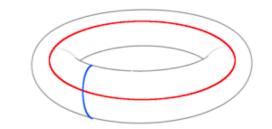
Low-energy Correct definition for qPCP Robustness of entanglement at room-temperature

Low-error

Errors attack specific particles Reasonable model for physical processes, quantum fault-tolerance, noisy channels, noisy adiabatic quantum computation, etc.

$$\mathcal{M}(\rho) = \left((1-\epsilon)\mathcal{I} + \epsilon \mathcal{N} \right)^{\otimes n}(\rho) \approx \sum_{S:|S| \le 2\epsilon n} (1-\epsilon)^{n-|S|} \epsilon^{|S|} \mathcal{N}^{S}(\rho)$$

Part 2: Approximate low-weight check codes



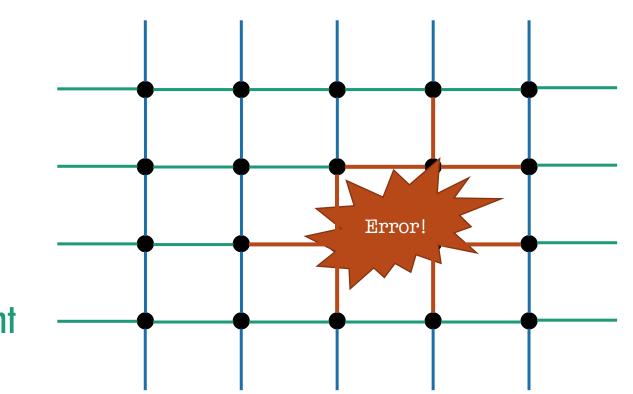
The quest for good qLDPC codes

Example: Toric Code [Kitaev⁹⁷]

Checks involve O(1) particles.

Each particle is involved in O(1) checks.

Good LDPC codes yield fault-tolerant computation [Gottesman¹⁴].



Currently...

Code	Rate	Distance	Locality	Approximation Factor
CSS [Folklore]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	0
qLDPC [Tillich-Zémor ¹³]	$\Omega(n)$	$O(\sqrt{n})$	0(1)	0
Subsystem [Bacon-Flammia-Harrow-Shi ¹⁷]	$\Omega(n)$	$O(n^{1-\epsilon})$	0(1)	0
Approx. qLWC [N-Vazirani-Yuen ¹⁸]	$\Omega(n)$	$\Omega(n)$	0(1)	1/poly(n)

Approximate Error Correcting Codes

A w-local Hamiltonian $H = H_1 + H_2 + ... + H_m$ acting on n qubits is a [[n, k, d]] code with error δ if

1. $\frac{\text{each term } H_i \text{ acts on at}}{\text{most } w \text{ qubits}}$

Maps Enc, Dec s.t.

2. $\langle \Psi | H | \Psi \rangle = 0$ iff $|\Psi \rangle \langle \Psi | = \text{Enc}(|\xi \rangle \langle \xi |)$ for some $|\xi \rangle \in (\mathbb{C}^2)^{\otimes k}$

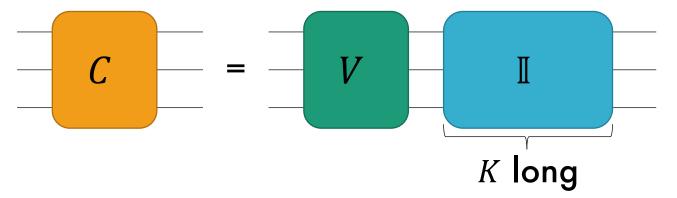
For all $|\phi\rangle \in (\mathbb{C}^2)^{\otimes k} \otimes \mathcal{R}$ for purify register \mathcal{R} , and **3.** CPTP error map \mathcal{E} acting on (d-1)/2 qubits $\|\text{Dec} \circ \mathcal{E} \circ \text{Enc}(|\phi\rangle\langle\phi|) - |\phi\rangle\langle\phi| \| \leq \delta$

Approximate qLWC codes

CSS Codes have good distance and rate but lack locality.

Create a Hamiltonian whose groundspace is almost exactly that of a CSS code but is locally checkable.

Let V be the encoding circuit for a good CSS Code.



Choose
$$K = O(T_V \delta^{-2})$$
.

Construct the clock Hamiltonian for this "padded" circuit C.

Approximate qLWC codes

The groundspace of H is \approx the groundspace of a CSS code tensored with junk.

$$\mathcal{G}_{C} = \left\{ \frac{1}{\sqrt{T_{C} + 1}} \sum_{t=0}^{T} |t\rangle |\psi_{t}\rangle : \begin{array}{c} |\psi_{t}\rangle = C_{t}C_{t-1} \dots C_{1} |\psi_{0}\rangle, \\ |\psi_{0}\rangle = |\xi\rangle |0\rangle^{\otimes (n-k)} \end{array} \right\}$$

But for $t \ge T_{V}$, $|\psi_t\rangle = V|\psi_0\rangle$. Thus, $1 - O(\delta^2)$ fraction of $|\psi_t\rangle = V|\psi_0\rangle$. $\mathcal{G}_C \approx \frac{1}{\sqrt{T_C + 1}} \sum_{t=0}^T |t\rangle \otimes \{V|\psi_0\rangle : |\psi_0\rangle = |\xi\rangle|0\rangle^{\otimes (n-k)}\}.$

Plus, \mathcal{G}_C is the groundspace of a 5-local Hamiltonian!

Remains to define encoding and decoding functions and check that distance and rate of code is preserved.

Encoding and decoding circuits

Encoding circuit. $Enc(\rho) = W(\rho \otimes |0\rangle \langle 0|^{\otimes (n-k)})W^{\dagger}$ for

$$|\xi\rangle \mapsto_W \frac{1}{\sqrt{T_c+1}} \sum_{t=0}^{T_c} |t\rangle \otimes C_t C_{t-1} \dots C_1 |\xi\rangle$$

W can be implemented efficiently by first generating superposition over $|t\rangle$ and the apply $C_t C_{t-1} \dots C_1$ conditionally. Approximate decoding circuit. $Dec(\sigma) = Tr_{ancilla}(V^{\dagger}Tr_{time}(\sigma)V).$

time is the collection of qubits holding the time register and ancilla are the last n - k qubits of the main register.

V is the encoding circuit of the CSS code. Then V^{\dagger} is a decoding circuit.

Distance of code

Encoding circuit. $Enc(\rho) = W(\rho \otimes |0\rangle \langle 0|^{\otimes (n-k)} W^{\dagger} \text{ for }$

$$|\xi\rangle \mapsto_W \frac{1}{\sqrt{T_c+1}} \sum_{t=0}^{T_c} |t\rangle \otimes C_t C_{t-1} \dots C_1 |\xi\rangle$$

Approximate decoding circuit. $Dec(\sigma) = Tr_{ancilla}(V^{\dagger}Tr_{time}(\sigma)V).$

time is the collection of qubits holding the time register and ancilla are the last n - k qubits of the main register.

Distance of code (sketch).

Tracing out time qubits, yields a mixed state over t of main register.

W.h.p. $t \ge T_V$ so we are decoding $\mathcal{E}(V\rho V^{\dagger})$ for encoded state ρ .

Thus, distance is the same as that of CSS code. Or $\Omega(n)$.

Rate of code

Uses more qubits than CSS code. **Requires more qubits to store** time register. CSS circuits have $O(n^2)$ gates. the solution to $T_c = n^r$.

Storing $|t\rangle$ in unary would require additional $O(T_c) = O(n^2 \delta^{-2})$ qubits! Destroys rate (and distance).

Store register in different base.

Express time in base O(r) where r is

Increases locality of Hamiltonian by 2r. If $\delta = 1/\text{poly}(n)$ then still a local Hamiltonian.

And rate and distance of $\Omega(n)$.

The error-correcting zoo

Quantum low-density parity-check codes (qLDPC) [Folklore]

Linear rate and distance codes with O(1) row- and column-spare parity check matrices exist.

Quantum locally testable codes (qLTC) [Aharanov-Eldar¹³]

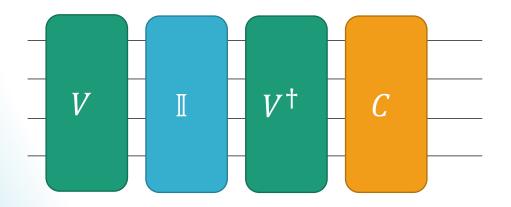
A local Hamiltonian $H = \sum H_j$ is a qLTC with soundness $R(\delta)$ if a state $|\psi\rangle$ distance δn from the groundspace G has energy $E = \langle \psi | H | \psi \rangle \ge R(\delta) m$.

Quantum low-weight check (qLWC) codes [N-Vazirani-Yuen¹⁸] A local Hamiltonian $H = \sum H_j$ is a qLWC if the groundspace G forms a linear rate and distance code and each Hamiltonian term acts on O(1) particles.

Aside: Strong NLETS result

Theorem: Assuming QCMA \neq QMA, there is a family of local Hamiltonians $H^{(n)}$ acting on n particles such that all ϵ -low-error states of $H^{(n)}$ have super-polynomial circuit complexity,

Proof idea: $L \in \text{QMAcomp} - \text{QCMA of witness-checking circuits } C$. For $C \in L$, construct FK clock Hamiltonian H of following circuit.



 ϵ -error-states of H can be error-corrected and then used as witnesses for $C \in L$. But, if they have polynomial circuit complexity, then the generating circuit is a classical witness. Then QMA = QCMA. \perp . The computational perspective seems to be immensely useful for understanding robustness of entanglement as well as constructing novel error-correcting codes.

Open Questions

- Can approximate qLWC codes be made geometrically local?
- Do super-positions of low-error states requires large circuit complexity? (vs convex combination)
- How do qLWC codes compare to qLTCs, qLDPCs? Do they offer progress towards the qPCP conjecture?
- Combinatorial NLTS vs standard NLTS

Thanks!