Approximate low-weight check codes and circuit lower bounds for noisy ground states

Chinmay Nirkhe (UC Berkeley) Umesh Vazirani (UC Berkeley) Henry Yuen (U. Toronto)

> arXiv:1802.07419 ICALP 2018, TQC 2018

Robustness of proofs

How much of a classical proof does one need to read to ensure that it is correct? For 100% confidence, the whole proof.

This notion was however shattered by the **Probabilistically checkable proofs (PCP)** theorem [Arora et. al.⁹⁸,Dinur⁰⁷].

It states that if one writes the proof down in a special way, then for 99% confidence, only a constant number of bits need to be read!

Does a quantum version of the PCP theorem hold?

Can quantum computation be done at room-temperature?

Do quantum low-density parity-check codes exist?

These questions may share a common answer!

A quantum perspective on the classical PCP theorem

The Local Hamiltonian Problem

Each
$$H_j$$
 acts non-trivially on only a constant number of terms.
 $\|H_j\| \le 1$

$$H = \frac{1}{m} \sum_{j=1}^{m} H_j$$

Given a local Hamiltonian H, decide if minimum energy $E \le a$ or $E \ge b$.

Minimum energy

$$\mathbf{E} = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \langle \phi | H | \phi \rangle = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \frac{1}{m} \sum_{j=1}^m \langle \phi | H_j | \phi \rangle$$

A quantum perspective on the classical PCP theorem

Constraint Satisfaction Problems (CSPs)

Each H_j acts non-trivially on only a constant number of terms. $\|H_i\| \le 1$

$$H = \frac{1}{m} \sum_{j=1}^{m} H_j$$

Minimum energy

$$\mathbf{E} = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \langle \phi | H | \phi \rangle = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \frac{1}{m} \sum_{j=1}^m \langle \phi | H_j | \phi \rangle$$

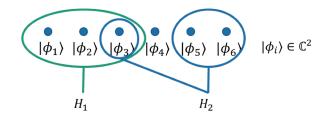
H_j can be simultaneously expressed as diagonal matrices on the elements they act non-trivially on.

The eigenvectors of *H* are the computational basis.

PCP theorem rephrased

NP-hardness of CSPs [Cook⁷¹,Levin⁷³]. It is NP-hard to estimate the energy E of a CSP to $\pm 1/m$.

PCP theorem [Arora et. al.⁹⁸, Dinur⁰⁷]. It is NP-hard to estimate the energy E of a CSP to $\pm 1/4$.



Minimum energy

$$\mathbf{E} = \inf_{|\phi\rangle \in (\mathbb{C}^2)^{\otimes n}} \frac{1}{m} \sum_{j=1}^m \langle \phi | H_j | \phi \rangle$$

Is there an analogous theorem about the hardness of estimating the energy of a local Hamiltonian problem?

Quantum hardness of LH

LH is QMA-hard [Kitaev⁹⁹].

It is QMA-hard to estimate the energy of a local Hamiltonian H to $\pm \Omega(1/\text{poly}(m))$.

qPCP conjecture [Aharanov-Naveh⁰², Aaronson⁰⁶]. It is QMA-hard to estimate the energy of a local Hamiltonian H to $\pm \Omega(1)$.

 $NP \neq QMA$

NLTS conjecture [Freedman-Hastings¹⁴].

There exist local Hamiltonians H such that $\forall |\xi\rangle$ with $E = \langle \xi | H | \xi \rangle \leq \lambda_{\min}(H) + \epsilon$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

Complexity of quantum states

Depth of minimum generating circuit Minimum depth of any circuit C with 2-qubit gates s.t. $|\psi\rangle = C|0\rangle^{\otimes n}$.

Purely quantum notion

Every classical state $x \in \{0,1\}^n$ can be generated by depth 1 circuit: X^x .

If NP \neq QMA,...

Ground-states $|\xi\rangle$ of QMA-hard local Hamiltonians *H* cannot be generated by constant-depth circuits. NLTS conjecture [Freedman-Hastings¹⁴]. There exists local Hamiltonians Hsuch that $\forall |\xi\rangle$ with $E = \langle \xi | H | \xi \rangle \leq \lambda_{\min}(H) + \epsilon$, $|\xi\rangle$ cannot be generated by a constant-depth circuit. The goal of our paper is to understand more about the robustness of highly-complex entanglement.

1. Notions of robustness of entanglement

2. Approximate error correction [Not covered in this talk]

Part 1: Notions of robustness of entanglement

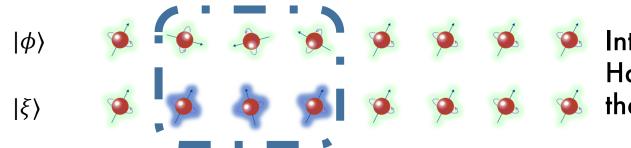
Are these notions the same?

No low-energy trivial states (NLTS) conjecture [Freedman-Hastings¹⁴]. There exists local Hamiltonians H such that $\forall |\xi\rangle$ with $E \leq \lambda_{\min}(H) + \epsilon$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

No low-error trivial states (NLETS) theorem [Eldar-Harrow¹⁷]. There exists Hamiltonians H such that for all ϵ -lowerror states $|\xi\rangle$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

Low-error state

A state $|\xi\rangle$ is a ϵ -low-error state for a local Hamiltonian H, if there exists a subset S of size $\leq \epsilon n$ of the particles and a groundstate $|\phi\rangle \in \mathcal{G}$ such that $\operatorname{Tr}_{S}(|\xi\rangle\langle\xi|) = \operatorname{Tr}_{S}(|\phi\rangle\langle\phi|)$.



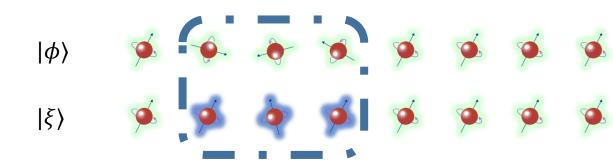
Intuitively: The "Quantum Hamming Distance" between the two states is small.

Are these notions the same?

No low-energy trivial states (NLTS) conjecture [Freedman-Hastings¹⁴]. There exists local Hamiltonians H such that $\forall |\xi\rangle$ with $E \leq \lambda_{\min}(H) + \epsilon$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

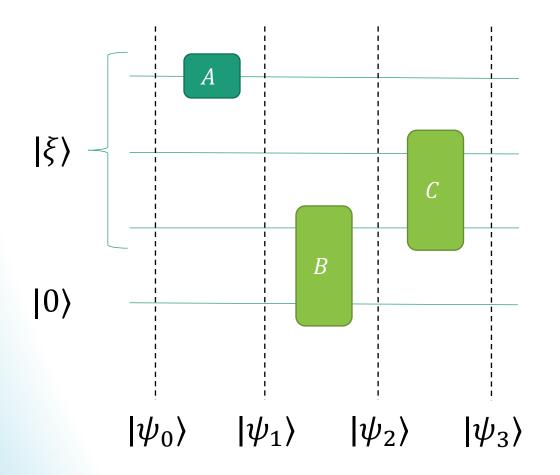
No low-error trivial states (NLETS) theorem [Eldar-Harrow¹⁷]. There exists Hamiltonians H such that for all ϵ -lowerror states $|\xi\rangle$, $|\xi\rangle$ cannot be generated by a constant-depth circuit.

Our contribution [Informal] A simpler construction of a NLETS Hamiltonian that shows low-error is not the same as low-energy.



Intuitively: The "Quantum Hamming Distance" between the two states is small.

Circuit-to-Hamiltonian construction



 $\begin{aligned} |\psi_0\rangle &= |\xi\rangle |0\rangle \\ |\psi_1\rangle &= A |\psi_0\rangle \\ |\psi_2\rangle &= B |\psi_1\rangle \\ |\psi_3\rangle &= C |\psi_2\rangle \end{aligned}$

Together, $\{|\psi_t\rangle\}$ are a "proof" that the circuit was executed correctly.

But, $|\tilde{\Psi}\rangle = |\psi_0\rangle |\psi_1\rangle \dots |\psi_T\rangle$ is not locally-checkable.

Instead, the following "clock" state* is: $|\Psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |t\rangle |\psi_t\rangle$

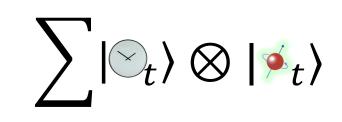
*Quantum analog of Cook⁷¹-Levin⁷³ Tableau.

Feynman-Kitaev Clock Hamiltonian

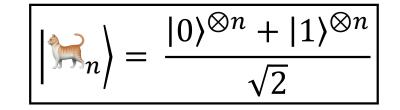
Express a computation as the groundstate of a 5-local Hamiltonian [Kitaev⁹⁹] Let $C = C_T C_{T-1} \dots C_1$ be a circuit with gates $\{C_i\}$ and let $|\psi_0\rangle =$ $|\xi\rangle|0\rangle^{\otimes n-k}$ be an initial state for $|\xi\rangle \in (\mathbb{C}^2)^{\otimes k}$.

There is a local Hamiltonian with ground space of: $\mathcal{G} = \left\{ |\Psi_{\xi}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{l} |\operatorname{unary}(t)\rangle \otimes |\psi_{t}\rangle : \frac{|\psi_{t}\rangle = C_{t} |\psi_{t-1}\rangle,}{|\psi_{0}\rangle = |\xi\rangle |0\rangle^{\otimes (n-k)}} \right\}.$

Used to prove that Local Hamiltonians is QMA-hard [Kitaev⁹⁹]. $\sum | \otimes_t \rangle \otimes | \neq_t \rangle$



Approximate $|\rangle\rangle$ state



Error states of cat states have $\Omega(\log n)$ circuit complexity Let S be a subset of particles of size ϵn . Then,

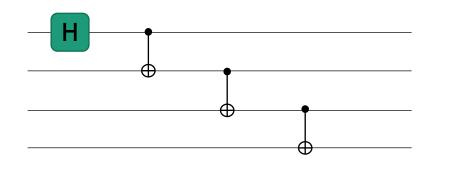
Information theoretic argument shows this state has $\Omega(\log n)$ circuit complexity.

But, cat states are not unique groundstates of local Hamiltonians...

Create a Hamiltonian whose groundspace is almost a cat state. This will preserve the low-error property.

Approximate | >> state

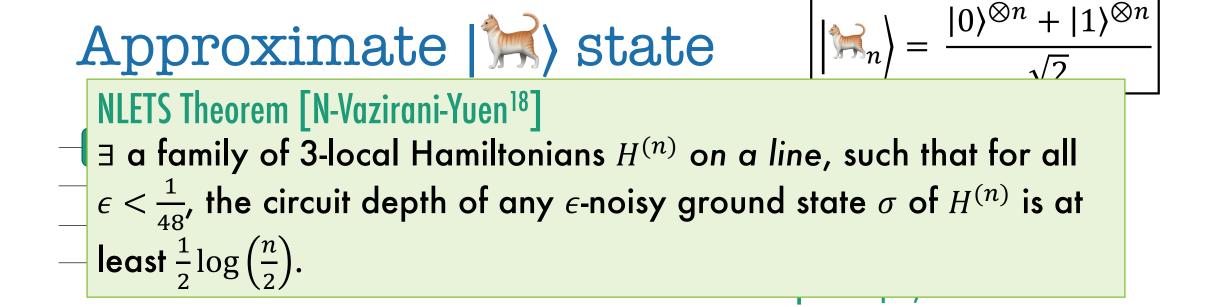
$$\left| \bigotimes_{n} \right\rangle = \frac{|0\rangle^{\otimes n} + |1\rangle^{\otimes n}}{\sqrt{2}}$$



Generate the FK clock Hamiltonian for the circuit generating $|\Im\rangle$. Has unique ground state if we restrict input to $|0\rangle^{\otimes n}$.

$$|\Psi\rangle = \frac{1}{\sqrt{n+1}} \sum_{t=0}^{n} |t\rangle \otimes \left| \Im_{t} \right\rangle |0\rangle^{\otimes (n-t)}$$

Intuition: For $t \ge \frac{n}{3}$, the first $\frac{n}{3}$ qubits form a cat state. Enough to prove that error states have $\Omega(\log n)$ circuit complexity.



Superpolynomial Noisy Ground States [N-Vazirani-Yuen¹⁸] If QCMA \neq QMA, \exists a family of 7-local Hamiltonians $H^{(n)}$, such that for an $\epsilon > 0$, the circuit depth of any ϵ -noisy ground state σ of $H^{(n)}$ grows faster than any polynomial of n.

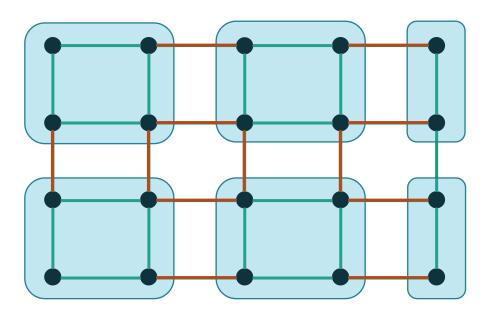
states have $\Omega(\log n)$ circuit complexity.

NLETS but not NLTS

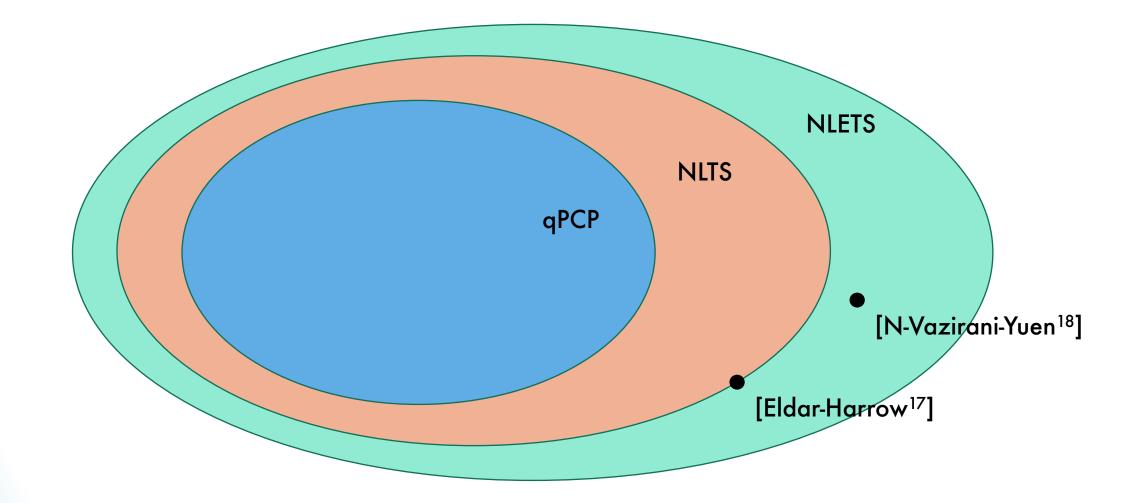
With some additional technical details, can make construction 1-D geometrically local.

NLTS cannot be geometrically local. Proof:

Smaller than constant fraction of terms will be violated. Can produce constant-depth states for subsection.



NLETS but not NLTS



Low-energy vs low-error

Low-energy Correct definition for qPCP Robustness of entanglement at room-temperature

Low-error

Errors attack specific particles Reasonable model for physical processes, quantum fault-tolerance, noisy channels, noisy adiabatic quantum computation, etc.

$$\mathcal{M}(\rho) = \left((1-\epsilon)\mathcal{I} + \epsilon \mathcal{N} \right)^{\otimes n}(\rho) \approx \sum_{S:|S| \le 2\epsilon n} (1-\epsilon)^{n-|S|} \epsilon^{|S|} \mathcal{N}^{S}(\rho)$$

Part 2: Approximate low-weight check codes

The "conjectured" error-correcting zoo

Quantum low-weight check (qLWC) codes [N-Vazirani-Yuen¹⁸] A local Hamiltonian $H = \sum H_j$ is a qLWC if the ground-space G forms a linear rate and distance code and each Hamiltonian term acts on O(1) particles.

Conjectured: Quantum low-density parity-check codes (qLDPC) [Folklore] Linear rate and distance codes with O(1) row- and column-spare parity check matrices exist.

Conjectured: Quantum locally testable codes (qLTC) [Aharanov-Eldar¹³] A local Hamiltonian $H = \sum H_j$ is a qLTC with soundness $R(\delta)$ if a state $|\psi\rangle$ distance δn from the groundspace G has energy $E = \langle \psi | H | \psi \rangle \ge R(\delta) m$.

The "conjectured" error-correcting zoo

Approximate quantum low-weight check (qLWC) codes [N-Vazirani-Yuen¹⁸] A local Hamiltonian $H = \sum H_j$ is an approximate qLWC if the groundspace G forms a linear rate and distance code and each Hamiltonian term acts on O(1) particles and there is an approximate decoding algorithm.

Conjectured: Quantum low-density parity-check codes (qLDPC) [Folklore]

Linear rate and distance codes with O(1) row- and column-spare parity check matrices exist.

Conjectured: Quantum locally testable codes (qLTC) [Aharanov-Eldar¹³] A local Hamiltonian $H = \sum H_j$ is a qLTC with soundness $R(\delta)$ if a state $|\psi\rangle$ distance δn from the groundspace G has energy $E = \langle \psi | H | \psi \rangle \ge R(\delta) m$.

Open Questions

- Can approximate qLWC codes be made geometrically local?
- Do super-positions of low-error states requires large circuit complexity? (vs convex combination)
- How do qLWC codes compare to qLTCs, qLDPCs? Do they offer progress towards the qPCP conjecture?
- Combinatorial NLTS vs standard NLTS

Thanks!

Approximate ting Codes

A w-local Hamiltonian $H = H_1 + H_2 + ... + H_m$ acting on n qubits is a [[n, k, d]] code with error δ if

1. $\frac{\text{each term } H_i \text{ acts on at}}{\text{most } w \text{ qubits}}$

Maps Enc, Dec s.t.

2. $\langle \Psi | H | \Psi \rangle = 0$ iff $|\Psi \rangle \langle \Psi | = \text{Enc}(|\xi \rangle \langle \xi |)$ for some $|\xi \rangle \in (\mathbb{C}^2)^{\otimes k}$

For all $|\phi\rangle \in (\mathbb{C}^2)^{\otimes k} \otimes \mathcal{R}$ for purify register \mathcal{R} , and 3. CPTP error map \mathcal{E} acting on (d-1)/2 qubits $\|\mathbb{D} \operatorname{errer} \mathcal{E} \mathcal{E} \operatorname{Errer}(\langle \phi \rangle \langle \phi \rangle \langle \phi +) | \phi \rangle \langle \phi \rangle \langle \phi \notin \delta$

Currently...

Code	Rate	Distance	Locality	Approximation Factor
CSS [Folklore]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	0
qLDPC [Tillich-Zémor ¹³]	$\Omega(n)$	$O(\sqrt{n})$	0(1)	0
Subsystem [Bacon-Flammia-Harrow-Shi ¹⁷]	$\Omega(n)$	$O(n^{1-\epsilon})$	0(1)	0
Approx. qLWC [N-Vazirani-Yuen ¹⁸]	$oldsymbol{\Omega}(oldsymbol{n})$	$\Omega(n)$	0 (1)	1/poly (<i>n</i>)