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Robustness of proofs
How much of a classical proof does one need to read to ensure that it is correct?
For 100% confidence, the whole proof.

This notion was however shattered by the 
Probabilistically checkable proofs (PCP) theorem [Arora et. al.98,Dinur07].

It states that if one writes the proof down in a special way, then
for 99% confidence, only a constant number of bits need to be read!



Does a quantum version of the PCP 
theorem hold?

Can quantum computation be done at 
room- temperature?

Do quantum low-density parity-check 
codes exist?

These questions may share a common answer! 



A quantum perspective on the 
classical PCP theorem
The Local Hamiltonian Problem
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Each &< acts non-trivially on only a 
constant number of terms.
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Given a local Hamiltonian &, 
decide if minimum energy @ ≤ A
or @ ≥ C.
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A quantum perspective on the 
classical PCP theorem
Constraint Satisfaction Problems (CSPs)
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&. can be simultaneously expressed as 
diagonal matrices on the elements 

they act non-trivially on.
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The eigenvectors of & are the 

computational basis.
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PCP theorem rephrased

Minimum energy
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PCP theorem [Arora et. al.98,Dinur07].
It is NP-hard to estimate the energy 7
of a CSP to ±1/4.

Is there an analogous theorem about the hardness of estimating the energy of 
a local Hamiltonian problem?

NP-hardness of CSPs [Cook71,Levin73].
It is NP-hard to estimate the energy 7
of a CSP to ±1//.



Quantum hardness of LH

qPCP conjecture [Aharanov-Naveh02,Aaronson06].
It is QMA-hard to estimate the energy of a local Hamiltonian !
to ±Ω 1 . 

NLTS conjecture [Freedman-Hastings14].
There exist local Hamiltonians ! such that  ∀ ⟩|( with E =
( ! ( ≤ ,-./ ! + 1, ⟩|( cannot be generated by a 

constant-depth circuit.

NP ≠ QMA

LH is QMA-hard [Kitaev99].
It is QMA-hard to estimate the energy of a local Hamiltonian !
to ±Ω 1/poly(>) .



Complexity of quantum states

NLTS conjecture [Freedman-Hastings14].
There exists local Hamiltonians !
such that  ∀ ⟩|% with E = % ! % ≤
)*+, ! + ., ⟩|% cannot be 
generated by a constant-depth 
circuit.

Depth of minimum generating circuit
Minimum depth of any circuit / with 2-qubit gates s.t. 0 = / 0 ⊗3. 

Purely quantum notion
Every classical state 4 ∈ 0,1 3 can be generated by depth 1 circuit: 89.

If NP ≠ QMA,…
Ground-states |%⟩ of QMA-hard local 
Hamiltonians ! cannot be generated 
by constant-depth circuits.



The goal of our paper is to understand more about 
the robustness of highly-complex entanglement.

1. Notions of robustness of entanglement

2. Approximate error correction
[Not covered in this talk]



Part 1: 
Notions of robustness of entanglement



Are these notions the same?
No low-energy trivial states (NLTS) conjecture [Freedman-Hastings14].
There exists local Hamiltonians ! such that  ∀ ⟩|% with 
& ≤ ()*+ ! + -, ⟩|% cannot be generated by a 
constant-depth circuit.

No low-error trivial states (NLETS) theorem [Eldar-Harrow17].
There exists Hamiltonians ! such that for all --low-
error states ⟩|% , ⟩|% cannot be generated by a 
constant-depth circuit.

Low-error state
A state |%⟩ is a --low-error state for a local Hamiltonian !, if there exists a subset . of size ≤ -/
of the particles and a groundstate 0 ∈ 2 such that Tr5 |%⟩⟨%| = Tr5 |0⟩⟨0| .

Intuitively: The “Quantum
Hamming Distance” between
the two states is small.

|0〉
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Our contribution [Informal]
A simpler construction of a NLETS Hamiltonian that shows low-error 
is not the same as low-energy.



Circuit-to-Hamiltonian construction
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Together, {|'/⟩} are a “proof” that the circuit 
was executed correctly.

But, 1Ψ = '( '* … |'4⟩ is not locally-
checkable.

Instead, the following ”clock” state* is:

Ψ = 1
6 + 18/9(

4
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*Quantum analog of Cook71-Levin73 Tableau.



Feynman-Kitaev Clock Hamiltonian
Express a computation as the groundstate of a 5-local Hamiltonian [Kitaev99]
Let ! = !#!#$% …!% be a circuit with gates {!(} and let *+ =

|-⟩|0⟩⊗1$2 be an initial state for |-⟩ ∈ ℂ5 ⊗2.

There is a local Hamiltonian with ground space of:

6 = 7 8Ψ: =
1

< + 1
>
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#

unary F ⊗ *? ∶
*? = !? *?$% ,

*+ = |-⟩|0⟩⊗(1$2)
.

Used to prove that Local Hamiltonians is QMA-hard [Kitaev99]. > ? ⊗ | ?⟩



Approximate |!⟩ state
Error states of cat states have Ω(log () circuit complexity 
Let * be a subset of particles of size +(. Then,

Tr. |!⟩⟨!| = 0…0 0…0 + |1…1⟩⟨1…1|
2 .

Information theoretic argument shows this state has Ω log ( circuit 
complexity.
But, cat states are not unique groundstates of local Hamiltonians…

!7 = 0 ⊗7 + 1 ⊗7

2

Create a Hamiltonian whose groundspace is almost a cat state. This will preserve 
the low-error property.



Approximate |!⟩ state !# = 0 ⊗# + 1 ⊗#

2

H
Generate the FK clock Hamiltonian for the 
circuit generating ! . Has unique ground 
state if we restrict input to 0 ⊗#.

Ψ = 1
+ + 1,-./

#
0 ⊗ !- 0 ⊗(#2-)

Intuition: For 0 ≥ #
5,the first #5 qubits form a cat state. Enough to prove that error 

states have Ω(log +) circuit complexity.
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NLETS Theorem [N-Vazirani-Yuen18]
∃ a family of 3-local Hamiltonians ;(#) on a line, such that for all 
< < >

?@, the circuit depth of any <-noisy ground state A of ;(#) is at 

least >B log
#
B .

Superpolynomial Noisy Ground States [N-Vazirani-Yuen18]
If QCMA ≠ QMA,∃ a family of 7-local Hamiltonians ;(#), such 
that for an < > 0, the circuit depth of any <-noisy ground state A of 
;(#) grows faster than any polynomial of +.



NLETS but not NLTS
With some additional technical details, can make construction 1-D geometrically local.

NLTS cannot be geometrically local.
Proof:

Smaller than constant fraction 
of terms will be violated. Can 
produce constant-depth states 
for subsection.



NLETS but not NLTS

NLETS

NLETS

NLTS

qPCP

[N-Vazirani-Yuen18]

[Eldar-Harrow17]



Low-energy vs low-error
Low-energy
Correct definition for qPCP
Robustness of entanglement at room-temperature

Low-error
Errors attack specific particles
Reasonable model for physical processes, quantum fault-tolerance, 
noisy channels, noisy adiabatic quantum computation, etc.

ℳ " = 1 − & ℐ + &) ⊗+ " ≈ -
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Part 2: 
Approximate low-weight check codes



The “conjectured” error-correcting zoo

Conjectured: Quantum locally testable codes (qLTC) [Aharanov-Eldar13]
A local Hamiltonian ! = ∑!$ is a qLTC with soundness % & if a state |(⟩
distance &* from the groundspace + has energy , = ( ! ( ≥ % & ..

Conjectured: Quantum low-density parity-check codes (qLDPC) [Folklore]
Linear rate and distance codes with /(1) row- and column-spare parity 
check matrices exist.

Quantum low-weight check (qLWC) codes [N-Vazirani-Yuen18]
A local Hamiltonian ! = ∑!$ is a qLWC if the ground-space + forms a 
linear rate and distance code and each Hamiltonian term acts on / 1
particles.
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A local Hamiltonian ! = ∑!$ is a qLTC with soundness % & if a state |(⟩
distance &* from the groundspace + has energy , = ( ! ( ≥ % & ..

Conjectured: Quantum low-density parity-check codes (qLDPC) [Folklore]
Linear rate and distance codes with /(1) row- and column-spare parity 
check matrices exist.

Approximate quantum low-weight check (qLWC) codes [N-Vazirani-Yuen18]
A local Hamiltonian ! = ∑!$ is an approximate qLWC if the ground-
space + forms a linear rate and distance code and each Hamiltonian term 
acts on / 1 particles and there is an approximate decoding 
algorithm.



Open Questions
• Can approximate qLWC codes be made geometrically local? 
• Do super-positions of low-error states requires large circuit 

complexity? (vs convex combination)
• How do qLWC codes compare to qLTCs, qLDPCs? Do they 

offer progress towards the qPCP conjecture?
• Combinatorial NLTS vs standard NLTS

Thanks!



Maps Enc, Dec s.t.
Ψ ( Ψ = 0 iff
⟩|Ψ ⟨ |Ψ = Enc ⟩|0 ⟨ |0 for 

some ⟩|0 ∈ (ℂ4)⊗7

each term (8 acts on at 
most 9 qubits1. 2.

For all ⟩|: ∈ ℂ4 ⊗7 ⊗ℛ for purify register ℛ, and 
CPTP error map ℰ acting on (= − 1)/2 qubits3.

Dec ∘ ℰ ∘ Enc ⟩|: ⟨ |: = ⟩|: ⟨ |:

Error Correcting CodesApproximate
A 9-local Hamiltonian ( = (1 + (2 + … + (E
acting on F qubits is a [[F, H, =]] code with error J if

Dec ∘ ℰ ∘ Enc ⟩|: ⟨ |: − ⟩|: ⟨ |: ≤ J

A 9-local Hamiltonian ( = (1 + (2 + … + (E
acting on F qubits is a [[F, H, =]] code if



Currently…
Code Rate Distance Locality Approximation 

Factor
CSS [Folklore] Ω(#) Ω(#) Ω(#) 0
qLDPC [Tillich-Zémor13] Ω(#) &( #) &(1) 0
Subsystem [Bacon-Flammia-Harrow-Shi17] Ω(#) &(#()*) &(1) 0
Approx. qLWC [N-Vazirani-Yuen18] +(,) +(,) -(.) ./0123(,)


