NLTS Hamiltonians from good quantum codes

Anurag Anshu (Harvard)
Niko Breuckmann (Bristol)
Chinmay Nirkhe (IBM Quantum)

Understanding classical proofs

Understanding classical proofs
$N P=$ the class of all efficiently (pol yen) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).

Understanding classical proofs
$N P=$ the class of all efficiently (poly (n) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CPs).
\square
1
1 \square
0
1 \square 1

Understanding classical proofs
$N P=$ the class of all efficiently (poly (n) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).
\square
01
1
1
0
1
local check $C_{i}=x_{1} \oplus x_{2} \oplus x_{3}=0$.

$$
C_{i}:\{0,1\}^{3} \longrightarrow[0,1] .
$$

Understanding classical proofs
$N P=$ the class of all efficiently (poly (n) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).

local check $C_{i}=x_{1} \oplus x_{2} \oplus x_{3}=0$.
$\left[\begin{array}{cc}C_{i} & \text { not necessarily } \\ \text { geometrically } \\ \text { local }\end{array}\right]$

$$
\begin{aligned}
& C_{i}:\{0,1\}^{3} \longrightarrow[0,1] . \\
& C:\{0,1\}^{n} \rightarrow[0, m] \quad \text { by } C(x)=\sum_{i=1}^{m} C_{i}(x)
\end{aligned}
$$

Understanding classical proofs
$N P=$ the class of all efficiently (pol yen) time) checkable proofs.
NP has complete problems such as Constraint Satisfaction Problems (CSPs).

local check $C_{i}=x_{1} \oplus x_{2} \oplus x_{3}=0$.

$$
C:\{0,1\}^{n} \rightarrow[0, m] \quad \begin{aligned}
& C_{i}:\{0,1\}^{3} \longrightarrow[0,1] . \\
& \text { by } C(x)=\sum_{i=1}^{m} C_{i}(x) \quad
\end{aligned} \quad \begin{aligned}
& \text { Decide if } \\
& \text { (1) } \exists x, C(x)=0 . \\
& \text { (2) } \forall x, C(x) \geq 1 .
\end{aligned}
$$

Two extensions of the notion of proofs

Two extensions of the notion of proofs

Two extensions of the notion of proofs

$$
\cdot v \cdot w \cdot m \cdot q_{p} \cdot m^{\prime} \cdot p_{v} \cdot q_{w}
$$

q. pp. so thy require a q. venfier (BQP)

Calculating ground energy of local Hamittorans is a complete problem

Two extensions of the notion of proofs

$$
\cdot v \cdot w \cdot m \cdot q_{p} \cdot q_{n} \cdot q_{p} \cdot q_{w}
$$

q. pf. so the require a q. verifier (BQP)

Calculating ground energy of local Hamittorans is a complete problem
$h_{i}=$ linear liar operator calculating energy

$$
h_{i}=|000\rangle\langle 000|+|111\rangle\langle 111|
$$

Two extensions of the notion of proofs

$$
\cdot v \cdot w \cdot m \cdot q_{p} \cdot m^{2} \cdot q_{v} \cdot q_{w}
$$

q. $p p$. so the require a q. verifier (BQP)

Calculating ground energy of local Hamiltanans is a complete problem
$h_{i}=$ linear liar operator calculating energy

$$
\begin{aligned}
& H=\sum_{i=1}^{m} h_{i} \quad|\psi\rangle \longmapsto\langle\psi| H|\psi\rangle \text { (energy) }
\end{aligned}
$$

Two extensions of the notion of proofs
$h_{i}=$ liner bol opentro caluataing energy

Two extensions of the notion of proofs
$h_{i}=$ liner bol opentro caluataing energy

QM
$\boldsymbol{H}=\sum_{i=1}^{m} n_{i} \quad|\varphi\rangle \longmapsto\langle\psi| H|\psi\rangle$ (energy)
ground energy $\lambda_{\text {min }}(\boldsymbol{H})=\min _{|\psi\rangle}\langle\psi| \boldsymbol{H}|\psi\rangle$

Two extensions of the notion of proofs
$h_{i}=$ linear local operator calculating energy

$\cdots h_{i}=|000\rangle\langle 000|+|11\rangle\langle 111|$
$H=\sum_{i=1}^{m} n_{i} \quad|\psi\rangle \longmapsto\langle\psi| H|\psi\rangle$ (energy)
ground energy $\lambda_{\text {min }}(H)=\min _{|\psi\rangle}\langle\psi| H|\psi\rangle$
QMA-hard to decide for $b-a=1 /$ poly (m),
(1) $\lambda_{\min }(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\min }(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 / \mathrm{poly}(m)$,

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\text {min }}(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 /$ poly (m),

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\text {min }}(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$
\Rightarrow groundstates of local Hamiltonians are a "canonical" form for all q. pps.

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 /$ poly (m),

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle,\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\min }(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$
\Rightarrow groundstates of local Hamiltonians are a "canonical" form for all q. pps.
It's widely believed that NP $\neq Q M A$

Two extensions of the notion of proofs
QMA-hard to decide for $b-a=1 /$ poly (m),

(1) $\lambda_{\text {min }}(H) \leq a \Leftrightarrow \exists|\psi\rangle_{1}\langle\psi| H|\psi\rangle \leq a$
(2) $\lambda_{\min }(H) \geq b \Leftrightarrow \forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq b$
\Rightarrow groundstates of local Hamiltonians are a "canonical" form for all q. pps.
It's widely believed that NP $\neq Q M A$
Therefore, not all groundstates of local Hamiltonians can be classically describeot (in an efficiently verifiable manner)

Two extensions of the notion of proofs

Two extensions of the notion of proofs
we thinte of pfs as requining step-by- step checting.

Two extensions of the notion of proofs
we thine of $p f s$ as requing step-by-step checking.

PCP theorem Every NP problem (ie. very Pf.) can be converted into a form st. only $O(1)$ bits
need to be read to be 99% confident in validity.

Two extensions of the notion of proofs
we think of pis as requiring step-by-step checking.

PCP theorem Every NP problem (i.e. every Pf!) can be converted into a form st. only $O(1)$ bits need to be read to be 99% confident in validity.
NP-hard to decide if $\quad[C(x)=$ analog of $\langle\psi| H|\psi\rangle]$
(1) $\exists x, C(x)=0$
(1) $\exists x, C(x)=0$
(2) $\forall x, C(x) \geq \frac{m}{2}$ (prev. 1)

Two extensions of the notion of proofs
we think of pis as requiring step-by-step checking.

PCP theorem Every NP problem (i.e. every Pf!) can be converted into a form st. only $O(1)$ bits need to be read to be 99% confident in validity.
NP-hard to decide if $\quad[C(x)=$ analog of $\langle\psi| H|\psi\rangle]$
(1) $\exists x, C(x)=0$
(1) $\exists x, C(x)=0$
(2) $\forall x, C(x) \geq \frac{m}{2}$ (prev. 1)

Important consequence: Noisy pis suffice!

Two extensions of the notion of proofs
we think of ifs as requiring step-by-step checking.

PCP theorem Every NP problem (i.e. every Pf!) can be converted into a form st. only $O(1)$ bits need to be read to be 99% confident in validity.
NP-hard to decide if
(1) $\exists x, C(x)=0$$\quad[C(x)=$ analog of $\langle\psi| H|\psi\rangle]$
(2) $\forall x, C(x) \geq \frac{m}{2}$ (prev. 1)

Important consequence: Noisy pis suffice!
Any x st. $C(x)<\frac{m}{4}$ can be prob. verified with $O(1)$ queries.

The Quantum Prob. Checkable PA. Conjecture

The Quartuon Prob. Checkable PA. Conjecture

Conjective: Every QMA problem (i.e. quantum Pf.) can be converted into a from s.t. only $O(1)$ quits need to be measured.

The Quantum Prob. Checkable PF. Conjecture

Conjecture: Every QMA problem (i.e. quantum pf!) can be converted into a form st. only $O(1)$ quits need to be measured.

Conj. For $\varepsilon>0$, it's QMA - hard to decicle
(1) $\exists|\psi\rangle$ st. $\langle\psi| H|\psi\rangle=O$ (morally)
(2) $\forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq \varepsilon m$

The Quantum Prob. Checkable PP. Conjecture

Conj. For $\varepsilon>0$, it's QMA - hard to decicle
(1) $\exists|\psi\rangle$ st. $\langle\psi| H|\psi\rangle=O$ (morally)
(2) $\forall|\psi\rangle,\langle\psi| H|\psi\rangle \geq \varepsilon m$

Conjecture: Every QMA problem (i.e. quantum pf!) can be converted into a form st. only $O(1)$ quits need to be measured.

Similar to PCP theorem, every state of energy $\leq \frac{\varepsilon}{2} m$ is a valid pf! for a QPCP local Hamiltonians.

Set of pts is much larger!

An important consequence of QPCPS
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP pts. cannot be classically described local Hamiltonions are also valid (in any efficiently checkable manner) pts (since they are noisy pis.)

An important consequence of QPCPS
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP
pts. cannot be classically described local Hamiltonions are also valid (in any efficiently checkable manner) pts (since they are noisy pis.)
\Rightarrow There exist local Hamiltonians with no succinct classical descriptions for any low-energy state

An important consequence of $Q P C P_{s}$
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP pts. cannot be classically described local Hamiltonions are also valid (in any efficiently checkable manner) pts (since they are noisy pis.)
\Rightarrow There exist local Hamiltonians with no succinct classical descriptions for any low-energy state

Constant depth q. circuit descriptions are classically Checkable pfs for output state

An important consequence of $Q P C P_{s}$
(A) (if $N P \neq Q M A$) quantum
(B) low energy states of QPCP pts. cannot be classically described local Hamiltonions are also valid
(in any efficiently checkable manner) pts (since they are noisy pis.)
\Rightarrow There exist local Hamiltonians with no succinct classical descriptions for any low-energy state

Constant depth q. circuit descriptions are classically Checkable pos for output state

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit. [Frecdiman-Hastings 14]

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

- If it was false, then QPCP would have been trivially false.
- Makes a statement about physically realizable robust entanglement.

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

- If it was false, then QPCP would have been trivially false.
- Makes a statement about physically realizable robust entanglement.

Theorem [Anurag Anshu, Niko Breuckmann, \& C.N. '22]
Local Hamiltonians corresponding to most linear-rate and -distance QLDPC errorcorrecting codes are NLTS Hamiltonians.

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

- If it was false, then QPCP would have been trivially false.
- Makes a statement about physically realizable robust entanglement.

Theorem [Anurag Anshu, Niko Breuckmann, \& C.N. '22]
Local Hamiltonians corresponding to most* linear-rate and -distance QLDPC errorcorrecting codes are NLTS Hamiltonians. (includes [Leverrier-Zémor] construction).

No low energy trivial states There exist local Hams. st. no low-energy state is the output of a constant depth circuit.
[Freedman-Hastings 14]

- If it was false, then QPCP would have been trivially false.
- Makes a statement about physically realizable robust entanglement.

Theorem [Anurag Anshu, Niko Breuckmann, \& C.N. '22]
Local Hamiltonians corresponding to most* linear-rate and -distance QLDPC errorcorrecting codes are NLTS Hamiltonians. (includes [Leverrier-Zémor] construction).
$\exists \varepsilon>0$, and Hamiltonian family H s.t. every state ψ of energy $\leq \varepsilon n$, the minimum depth circuit to generate ψ is $\Omega(\log n)$.

Proof sketch of the NLTS theorem
(1) Trivial states \Rightarrow Local Hamiltonians
\Rightarrow Circuit clepth lower bounds

Light cones for
low depth circuits

Proof sketch of the NLTS theorem
(1) Trivial states \Rightarrow Local Hamiltonians
\Rightarrow Circuit clepth lower bounds
Error Correction Codes (ECC)

Lightcones for low depth circuits
(2)

low energy Subspace of expanding codes.

Proof sketch of the NLTS theorem
(1) Trivial states \Rightarrow Local Hamiltonians
\Rightarrow Circuit clepth lower bounds

Lightcones for low depth circuits

Error Correction Codes (ECC)
(2)

low energy subspace of expanding codes.
(3)

Proof sketch of the NLTS theorem
(1) Trivial states \Rightarrow Local Hamiltonians
\Rightarrow Circuit clepth lower bounds

Lightcones for
low depth circuits

Lightcones and quantum circuits

Lightcones and quantum circuits

Low-clepth states are classical witnesses for energy

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Low-clepth states are classical witnesses for energy

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Low-clepth states are classical witnesses for energy

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Low-clepth states are classical witnesses for energy

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{n \prime}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.
\square
Low-clepth states are classical witnesses for energy

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{w^{\prime}}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}^{m}\langle\psi| h_{i}|\psi\rangle \\
& =\sum_{i}^{m}\left\langle o^{n^{\prime}}\right| u^{+} h_{i} u\left|o^{n^{\prime}}\right\rangle
\end{aligned}
$$

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{w^{\prime}}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}^{m}\langle\psi| h_{i}|\psi\rangle \\
& =\sum_{i}^{m} \underbrace{\left.0^{n^{\prime}}\left|u^{+} h_{i} u\right| 0^{n^{\prime}}\right\rangle}
\end{aligned}
$$

computation on $O\left(2^{t}\right)$ quits

Lightcones and quantum circuits
If A is a local operator and U is a q. circuit of depth t, then $U^{+} A U$ is a $\leq 2^{t}$. $|A|$ local operator.

Given a local Hamiltonian $H=\sum_{i}^{m} h_{i}$ and a state $|\psi\rangle=U\left|0^{w^{\prime \prime}}\right\rangle$, we can evaluate $\langle\psi| H|\psi\rangle$ in classical time $2^{2^{t}}$. poly $(n)=$ poly (n) when $t=O(1)$.

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}^{m}\langle\psi| h_{i}|\psi\rangle \\
& =\sum_{i}^{m}\langle\underbrace{\left\langle 0^{n^{\prime}}\right| u^{+} h_{i} u\left|o^{n^{\prime}}\right\rangle}
\end{aligned}
$$

computation on $O\left(2^{t}\right)$ quits

Low-clepth states are classical witnesses for energy

Trivial states \Rightarrow Local Hamiltonians

The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian.

Trivial states \Rightarrow Local Hamiltonians

The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian. $H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wire projectors enforcing quits equal $\left.\mid 0\right\rangle$.

Trivial states \Rightarrow Local Hamiltonians

The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian. $H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wise projectors enforcing quits equal $\left.\mid 0\right\rangle$.
H_{0} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$, with eigenvectors $|x\rangle$ of eigenvalue $|x|$.

Trivial states \Rightarrow Local Hamiltonians
The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian.
$H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wire projectors enforcing quits equal $\left.\mid 0\right\rangle$.
H_{0} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$ with eigenvectors $|x\rangle$ of
Let $H_{u}=u^{+} H u$ for depth t circuit u. eigenvalue $|x|$.

Trivial states \Rightarrow Local Hamiltonians
The state $\left|0^{n \prime}\right\rangle$ is the unique solution to a very simple local Hamiltonian.
$H_{0}=\sum_{i=1}^{n^{\prime}}|1\rangle\left\langle\left. 1\right|_{i} \leftarrow\right.$ qubit-wire projectors enforcing quits equal $\left.\mid 0\right\rangle$.
H_{0} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$, with eigenvectors $|x\rangle$ of
Let $H_{u}=u^{+} H u$ for depth t circuit u. eigenvalue $|x|$.
H_{u} is commuting and has a spectrum of $0,1,2, \ldots, n^{\prime}$, with eigenvectors $u|x\rangle$ of
And H_{u} is a 2^{t}-local Hamiltonian. eigenvalue $|x|$.

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-S}=\psi_{-S}^{\prime}
$$

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\Psi_{-s}^{\prime}
$$

Ex. The states $\left|{ }^{n}\right\rangle=\frac{\left|0^{n}\right\rangle \pm\left|1^{n}\right\rangle}{\sqrt{2}}$ are $(n-1)$ locally indistinguishable.

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{\prime}
$$

Ex. The states $\left|1_{ \pm}\right\rangle=\frac{\left|0^{n}\right\rangle \pm\left|1^{n}\right\rangle}{\sqrt{2}}$ are $(n-1)$ locally indistinguishable.

Any strict reduced density matrix equals

$$
\left(\theta_{ \pm}\right)_{-s}=\frac{|0\rangle\left\langle\left. 0\right|^{n-|s|}+\mid 1\right\rangle\left\langle\left. 1\right|^{n-|s|}\right.}{2}
$$

Local indistinguishability
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{\prime}
$$

Local indistinguishability \Rightarrow Ct depth lover bands
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{\prime}
$$

Local indistinguishability \Rightarrow Cat depth lover bands
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\psi_{-s}^{\prime} \text {. }
$$

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.

Local indistinguishability \Rightarrow Ct depth lover bands
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\Psi_{-s}^{\prime} \text {. }
$$

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.

$$
\text { Pf. } \left.\left\langle\psi^{\prime}\right| H_{u}\left|\psi^{\prime}\right\rangle=\sum_{i}\left\langle\psi^{\prime}\right| h_{i}\left|\psi^{\prime}\right\rangle\right\rangle
$$

since H_{u} is 2^{t}-local and are $d>2^{t}$ locally indistinguishable

$$
=\sum_{i}\langle\psi| h_{i}|\psi\rangle
$$

Local indistinguishability \Rightarrow Ct depth lover bands
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-s}=\Psi_{-s}^{\prime}
$$

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.
Pf. $\left.\left\langle\psi^{\prime}\right| H_{u}\left|\psi^{\prime}\right\rangle=\sum_{i}\left\langle\psi^{\prime}\right| h_{i}\left|\psi^{\prime}\right\rangle\right\rangle \quad \begin{aligned} & \text { since } H_{u} \\ & \text { is } 2^{t} \text {-local }\end{aligned}$ and are $d>2^{t}$ locally indistinguishable

$$
=\sum_{i}\langle\psi| h_{i}|\psi\rangle=\langle\psi| H_{u}|\psi\rangle=0
$$

Local indistinguishability \Rightarrow Cat depth lover bands
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable if for every region S of size $\leq d_{1}$

$$
\psi_{-S}=\psi_{-S}^{\prime} \text {. }
$$

Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.
Pf. $\left.\left\langle\psi^{\prime}\right| H_{u}\left|\psi^{\prime}\right\rangle=\sum_{i}\left\langle\psi^{\prime}\right| h_{i}\left|\psi^{\prime}\right\rangle\right\rangle \quad \begin{aligned} & \text { since } H_{u} \text { is } 2^{t} \text {-local } \\ & \text { and are } d>2^{t} \text { locally }\end{aligned}$ and are $d>2^{t}$ locally indistinguishable

$$
=\sum_{i}\langle\psi| h_{i}|\psi\rangle=\langle\psi| H_{u}|\psi\rangle=0
$$

But groundstate $|\psi\rangle$ is unique! $\Rightarrow|\psi\rangle=\left|\psi^{\prime}\right\rangle$, a contradiction!

Local indistinguishability
Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$.

Local indistinguishability
Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $|\psi\rangle=U\left|0^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$
Since, spectral gap of H_{u} is 1 , this argument is only robust to perturbations of $O\left(\frac{1}{n}\right)$.

Local indistinguishability
Lemma $|f| \psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ are d-locally indistinguishable, then if $\left.|\psi\rangle=U 10^{n}\right\rangle$ for u of depth t, then $2^{t} \geq d . \Rightarrow t \geq \log d$
Since, spectral gap of H_{u} is 1 , this argument is only robust to perturbations of $O\left(\frac{1}{n}\right)$.

Using mathematics from Chebysher polynomials, we can make l.b. robust.

Robust local indistinguishability

Robust local indistinguishability

$$
\pi \stackrel{\alpha A}{I} \mathbb{I}-\frac{H_{u}}{n}
$$

Robust local indistinguishability

$$
\Pi \stackrel{\Delta \Perp}{=} \mathbb{I}-\frac{H_{u}}{n} \Rightarrow \| \pi-|\psi\rangle\langle\psi| \|_{\infty} \leq 1-\frac{1}{n} \quad \begin{aligned}
& \text { a weak } \\
& \text { appeximater } \\
& \text { projector. }
\end{aligned}
$$

Robust local indistinguishability

$$
\begin{aligned}
& \pi \frac{\alpha A}{I} \mathbb{I}-\frac{H_{u}}{n} \Rightarrow\left\|\mathbb{I}-\left|\psi X_{\psi}\right|\right\|_{\infty} \leq 1-\frac{1}{n} \quad \begin{array}{l}
\text { a weak } \\
\text { appraimater } \\
\text { projector. }
\end{array} \\
& \exists p: \mathbb{R} \rightarrow \mathbb{R} \text { of } \operatorname{deg} O_{k}(\sqrt{n}) \text { st. } \| p\left(H_{\omega}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu
\end{aligned}
$$

Robust local indistinguishability

$$
\begin{aligned}
& \pi \stackrel{\alpha \AA}{=} \mathbb{I}-\frac{H_{u}}{n} \Rightarrow \| \pi-|\psi\rangle\langle\psi| \|_{\infty} \leq 1-\frac{1}{n} \quad \begin{array}{l}
\text { a weak } \\
\text { approximates } \\
\text { projector. }
\end{array} \\
& \exists p: \mathbb{R} \rightarrow \mathbb{R} \text { of } \operatorname{deg} O_{\mu}(\sqrt{n}) \text { s.t. } \| p\left(H_{w}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu
\end{aligned}
$$

1- p is the Chebyshev poly. approx. of the OR function.

Robust local indistinguishability

$$
\begin{aligned}
& \pi \stackrel{\alpha f}{=} \mathbb{I}-\frac{H_{u}}{n} \Rightarrow \| \pi-|\psi\rangle\langle\psi| \|_{\infty} \leq 1-\frac{1}{n} \quad \begin{array}{c}
\text { a weak } \\
\text { approximates } \\
\text { projector. }
\end{array} \\
& \exists p: \mathbb{R} \rightarrow \mathbb{R} \text { of } \operatorname{deg} O_{r}(\sqrt{n}) \text { s.t. } \| p\left(H_{\omega}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu
\end{aligned}
$$

1-p is the Chebyshev poly. approx. of the OR function.

Robust local indistinguishability

$$
P\left(H_{u}\right) \text { is a } L:=O\left(2^{t} \cdot \sqrt{n}\right)
$$

local Ham. st.

$$
\| P\left(H_{u}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu .
$$

Robust local indistinguishability
Let D be the dist. on $\{0,1\}^{n}$ formed by measuring $|\psi\rangle$.

$$
P\left(H_{u}\right) \text { is a } L:=O\left(2^{t} \cdot \sqrt{n}\right)
$$

local Ham. st.

$$
\| P\left(H_{u}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu .
$$

Robust local indistinguishability
Let D be the dist. on $\{0,1\}^{n}$ formed by measuring $|\psi\rangle$.

$$
P\left(H_{u}\right) \text { is a } L:=O\left(2^{t} \cdot \sqrt{n}\right)
$$

local Ham. st.

$$
\| P\left(H_{u}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu .
$$

$$
\text { Assume } D\left(S_{1}\right)>\mu \notin D\left(S_{2}\right)>\mu
$$

Robust local indistinguishability

$$
P\left(H_{u}\right) \text { is a } L:=O\left(2^{t} \cdot \sqrt{n}\right)
$$

local Ham. st.
Let D be the dist. on $\{0,1\}^{n}$

$$
\| P\left(H_{u}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu .
$$ formed by measuring $|\psi\rangle$.

Assume $D\left(S_{1}\right)>\mu \quad \notin D\left(S_{2}\right)>\mu$
Let $\Pi_{S_{1}}, \Pi_{S_{2}}$ be prog. onto the sets S_{1} \& S_{2}, respectively

Robust local indistinguishability
Let D be the dist. on $\{0,1\}^{n}$ formed by measuring $|\psi\rangle$.

(1)

$$
\| \pi_{s_{1}}|\psi\rangle\langle\psi| \pi_{s_{2}} \|_{\infty}>\mu
$$

Assume $D\left(S_{1}\right)>\mu \notin D\left(S_{2}\right)>\mu$
Let $\Pi_{S_{1}}, \Pi_{S_{2}}$ be prog. onto the sets $S_{1} \& S_{2}$, respectively

Robust local indistinguishability

$$
P\left(H_{u}\right) \text { is a } L:=O\left(2^{t} \cdot \sqrt{n}\right)
$$

Let D be the dist. on $\{0,1\}^{n}$ local Ham. st.

$$
\| P\left(H_{u}\right)-|\psi\rangle\langle\psi| \|_{\infty} \leq \mu .
$$

formed by measuring $|\psi\rangle$.

Assume $D\left(S_{1}\right)>\mu \quad \notin D\left(S_{2}\right)>\mu$
Let $\Pi_{S_{1}}, \Pi_{S_{2}}$ be prog. onto the sets S_{1} \& S_{2}, respectively
(1)

$$
\| \pi_{s_{1}}|\psi\rangle\langle\psi| \pi_{S_{2}} \|_{\infty}>\mu
$$

Robust local indistinguishability
Let D be the dist. on $\{0,1\}^{n}$ formed by measuring $|\psi\rangle$.

(1)

$$
\| \pi_{s_{1}}|\psi\rangle\left\langle\psi \mid \pi_{s_{2}} \|_{\infty}\right\rangle \mu
$$

Assume $D\left(S_{1}\right)>\mu \notin D\left(S_{2}\right)>\mu$
Let $\Pi_{s_{1}}, \Pi_{s_{2}}$ be prof: onto the sets $S_{1} \not \& S_{2}$, respectively
(2)

$$
\left\|\pi_{s_{1}} p\left(H_{u}\right) \pi_{s_{2}}\right\|_{\infty}=0
$$

due to locality of $p\left(H_{u}\right)$ being small.

Robust local indistinguishability
Thu Any dist. D st. $D\left(S_{1}\right), D\left(S_{2}\right)>\mu$ carnot be generated by a quantum circuit
 of depth $\leq \Omega\left(\log \left(\frac{L^{2} \mu}{n}\right)\right)$.

Robust local indistinguishability
Thu Any dist. D st. $D\left(S_{1}\right), D\left(S_{2}\right)>\mu$ carnot be generated by a quantum circuit
 of depth $\leqslant \Omega\left(\log \left(\frac{L^{2} \mu}{n}\right)\right)$.
Cor. Any state $|\psi\rangle$ whore measurement dist is D also has the same lover bound.

Robust local indistinguishability
Thu Any dist. D s.t. $D\left(S_{1}\right), D\left(S_{2}\right)>\mu$ carnot be generated by a quantum circuit
 of depth $\leqslant \Omega\left(\log \left(\frac{L^{2} \mu}{n}\right)\right)$.
Cor. Any state $|\psi\rangle$ whore measurement dist is D also has the same lover bound.

If $L \geq \omega(\sqrt{n})$ and $\mu \geq \Omega(1)$, call D a "nell-spread" dist. well-spread dist. is a signature of quantum depth.

Proof sketch of the NLTS theorem
Error Correction Codes (ECC)
(2)

low energy subspace
of expanding codes.

Expanding codes \& Tanner codes
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

Expanding codes \& Tanner codes $\quad(H)(x)=(0)$
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

Expanding codes \& Tanner codes $(H)(x)=(0)$
A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

Expanding codes \& Tanner codes

$$
\left(\begin{array}{ll}
H
\end{array}\right)(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$ when H is adj. matrix of small-sect expanding bipartite graph

Expanding codes \& Tanner codes

$$
\left(\begin{array}{ll}
H
\end{array}\right)(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

The low-energy space of a code is a great support for a distribution that we hope to prove is nell-spread.
when H is adj. matrix of small-set expareing bipartite graph

Expanding codes \& Tanner codes

$$
H \quad(x)=(0)
$$

A linear code $\subseteq\{0,1\}^{n}$ can be expressed as her H for $H \in \mathbb{F}_{2}^{m \times n}$

The low-energy space of a code is a great support Or a distribution that we hope to prove is nell-spread.
when H is adj. matrix of small-set expanding bipartite graph

Only question is how to construct Hamiltonian with such property?

Proof sketch of the NLTS theorem
(3)

Quantum error correcting codes

Consider a state subject to an craswe error.

Quantum error correcting codes

Consider a state subject to an craswe error.

Quantum error correcting codes

Consider a state subject to an craswe error.

Quantum error correcting codes

Consider a state subject to an crasure error.

If ne could recover the original state then unless \bigcirc contains no information about the original state, this violates the no-cloning theorem.

Quantum error correcting codes

Consider a state subject to an craswe error.

Erasure error-correction implies local indistinguishability for codes.

If ne could recover the original state then unless \bigcirc contains no information about the original state, this violates the no-cloning theorem.

Quantum error correcting codes

Erasure error-correction
implies local indistinguishability
for codes.

Quantum error correcting codes

Erasure error-correction implies local indistinguishability for codes.

Exact codeurds of codes of distance d require circuits of clepth $\geq \Omega(\log d)$ to generate.

Quantum error correcting codes

Erasure error-correction implies local indistinguishability for codes.

Exact codumerds of codes of distance d require circuits of clepth $\geq \Omega(\log d)$ to generate.

Error-correcting codes that are LDPC naturally han a local Hamiltonian, one that applies every local check.

Quantum error correcting codes

Erasure error-correction implies local indistinguishability for codes.

Exact codeurerds of codes of distance d require circuits of depth $\geq \Omega(\log d)$ to generate.

Error-correcting codes that are LDPC naturally han a local Hamiltonian, one that applies every local check.

How do we prove circuit depth lower bounds for the lowenergy subspace of these code Hamiltonians?

Optimal - parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steane codes that comet for X-type (bit-flip) and Z-type (phase-flip) errors separately.

Optimal -parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steare codes that correct for X-type (bit-flip) and Z-type (phase-flip) errors separately.
They are constructed from two classical codes C_{x}, C_{z} (w. check-matrix H_{x}, H_{z}) st. $C_{x}^{\perp} \subseteq C_{z}$ (equiv. $C_{z}^{\perp} \subseteq C_{x}$)

Optimal -parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steane codes that comet for X-type (bit-flip) and Z-type (phase-flip) errors separately.

They are constructed from two classical codes $C_{x}, C_{z}\left(w\right.$. check-matrix $\left.H_{x}, H_{z}\right)$ s.t. $C_{x}^{\perp} \subseteq C_{z}\left(\right.$ equiv. $\left.C_{z}^{\perp} \subseteq C_{x}\right)$.

$$
d_{z}=\min _{w \in C_{z}}|w|_{C_{x}^{+}} \quad, \quad d_{x}=\min _{w \in C_{x}}|\omega|_{C_{z}^{\perp}}
$$

where $|\omega|_{S}=\min _{\omega^{\prime} \in S}\left|\omega+\omega^{\prime}\right|$

Optimal -parameter CSS codes
There is a class of q. codes called Calderbank-Shor-Steane codes that comet for X-type (bit-flip) and Z-type (phase-flip) errors separately.
They are constructed from two classical codes C_{x}, C_{z} (w. check-matrix H_{x}, H_{z}) st. $C_{x}^{\perp} \subseteq C_{z}$ (equiv. $C_{z}^{\perp} \subseteq C_{x}$)

$$
d_{z}=\min _{\omega \in C_{z}}|\omega|_{C_{x}^{\perp}}, d_{x}=\min _{\omega \in C_{x}}|\omega|_{C_{z}^{1}}
$$

where $|\omega|_{S}=\min _{\omega^{\prime} \in S}\left|\omega+\omega^{\prime}\right|$
$d=\min \left\{d_{x}, d_{z}\right\}$.

cluster of C_{z} related by adding C_{x}^{\perp}.

Expanding CSS codes
Similar to dassical example, we consider codes that have the property that if $\left|H_{z} y\right| \leq \varepsilon m$ then either
(1) $|y|_{c_{x}^{+}} \leq c_{1} \varepsilon n$ or
(2) $|y|_{c_{x}^{\perp}} \geq c_{2} n$.

Expanding CSS codes
Similar to dassical example, we consider codes that have the property that if $\left|H_{z} y\right| \leq \varepsilon m$ then either
(1) $|y|_{c_{x}^{+}} \leq c_{1} \varepsilon n$ or
(2) $|y|_{c_{x}^{\perp}} \geq c_{2} n$.

And, if we consider a $\frac{\varepsilon}{200}$-low-energy state of the code's local Hamiltonian, measuring in the Z-basis yields a
 dist. 99.56 supported on

The uncertainty principle

The uncertainty principle

The uncertainty principle
All that remains to show is that the distribution is not 998 concentrated on any 1 cluster.

The uncertainty principle
All that remains to show is that the distribution is not 998 concentrated on any 1 cluster. \Rightarrow dist. is nell-spreac $\left(\mu=\frac{1}{400}\right)$

The uncertainty principle
All that remains to show is that the distribution is not 998 concentrated on any 1 cluster. \Rightarrow dist. is nell-spreac $\left(\mu=\frac{1}{400}\right)$ \Rightarrow circuit depth lover bound.

The uncertainty principle
All that remains to show is that the distribution is not 99% concentrated on any 1 cluster. \Rightarrow dist. is nell-spread ($\mu=\frac{1}{400}$) \Rightarrow circuit depth lower bound.

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

The uncertainty principle
All that remains to show is that the distribution is not 99% concentrated on any 1 cluster. \Rightarrow dist. is nell-spread ($\mu=\frac{1}{400}$)
\Rightarrow circuit depth lower bound.

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leqslant 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
|S| \leq\binom{ n}{o(m)} \cdot \underbrace{2^{r x}}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
& |S| \leq \underbrace{\binom{n}{0(n)} \cdot \underbrace{c_{x}^{1} \text { diff. }}}_{\text {violate cher }} \leq 2^{r_{x}} \leq 0(\sqrt{\varepsilon} n) \\
& |T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
& |S| \leq \underbrace{\binom{n}{O(n)} \cdot \underbrace{C_{x}^{1} d f .}}_{\text {violate churn }} \leq 2^{r_{x}+O(\sqrt{\varepsilon} n)} \\
& |T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with dits. D_{x}, D_{z}

$$
D_{x}(T) \leqslant 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle $D_{x}(T) \leq 2 \sqrt{\frac{1}{100}}+2^{r_{x}+r_{z}+O(\sqrt{\varepsilon} n)-n}$

$$
\begin{aligned}
& |S| \leq \underbrace{\binom{n}{o(n)} \cdot \underbrace{r_{x}}_{x^{1} d f} \leq 2^{r_{x}+o(\sqrt{\varepsilon} n)}}_{\text {volute cunt }} \\
& |T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. $D_{x} D_{z}$

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
D_{x}(T) & \leq 2 \sqrt{\frac{1}{100}}+2^{r_{x}+\sqrt[\varepsilon]{\varepsilon}+O(\sqrt{\varepsilon} n)-n} \\
& =\frac{1}{5}+2^{-k+O(\sqrt{\varepsilon} n)} \begin{aligned}
\text { code nate }
\end{aligned}
\end{aligned}
$$

$$
|T| \leq 2^{r_{z}+O(\sqrt{\varepsilon} n)}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leqslant 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2999 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

The uncertainty principle

$$
\begin{aligned}
& \begin{aligned}
& D_{x}(T) \leq 2 \sqrt{\frac{1}{100}}+2^{r_{x}+r_{z}+O(\sqrt{\varepsilon} n)-n} \\
&=\frac{1}{5}+2^{-k+} \uparrow(\sqrt{\varepsilon} n) \\
& \text { code rater }
\end{aligned} \\
& \text { So if } \varepsilon<O\left(\frac{k^{2}}{n^{2}}\right) \text {, then } D_{x}(T)<0.99 .
\end{aligned}
$$

Uncertainty principle: For sets $S_{1} T \subseteq\{0,1\}^{n}$, any state ψ with distr. D_{x}, D_{z}

$$
D_{x}(T) \leq 2 \sqrt{1-D_{z}(S)}+\sqrt{\frac{|S| \cdot|T|}{2^{n}}}
$$

Assume D_{z} is 2998 concentrated on some Z-cluster S. Then for any X-cluster T, $D_{x}(T)<0.99 \Rightarrow$ Either D_{x} or D_{z} is nell-spread.

Conclusion of the proof
CSS code of linear-rate and linear-distance which are expanding are NLTS.
The [Levervier-Zémo '21] construction can be shown by small modification of the distance bound pf to satisfy these conditions.

Conclusion of the proof
CSS coddle of linear-rate and linear-distance which are expanding are NLTS.
The [Levervier-Zéma '21] construction can be shown by small modification of the distance bound pf to satisfy these conditions.

In progress: All linear-rete and-distance codes are NLTS.

What's next after NLTS
NLTS is a necessary consequence of QPCP that isolated the problem of robust entanglement from the computational question.

What's next after NLTS
NLTS is a necessary consequence of QPCP that isolated the problem of robust entanglement from the computational question.
Next step: introduce computation, find NLTS Hamiltanions that capture NP (or MA) computations.

What's next after NLTS
Constant-depon q. Circuits acre just ore of many possible NP pps of the ground-evergy.

What's next after NLTS
Constant-depth q. Circuits are just ore of many possible NP pfs of the grounet-energy.

Other exampler include stab. circuits, some efficiuntly contraetible tensors, ete. or samplable-queryable states ([Gharabian' Le Gell '21] MA witress)

What's next after NLTS
Constant-depth q. Circuits are just ore of many possible NP pts of the grounet-energy.
Other examples indue stab. circuits, some efficiently contractible tensors, te. or samplable-queryable states ([Gharabian- Le Gall '21] MA witness)

1 think we need to prove loner bounds for the following ansctz:

