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1 NP-hard todecide if [C(X) =

analog of SPIHIR]
↑Ps 07x,C(x) =0

② vx, C(x) == (prev. 1)

Importantconsequence.pssuffice!Any
xSt.C(X)c.can

be prob, verified with OCI queries.
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- Makes a statementabout physically realizable robust entanglement.

Theovern [Anurag Anshu, Niho Breuchmann,$C.N.'22]
Local Hamiltonians correspondingto mostlinear-rate and-distance QLDPC error-

correcting codes are NLTS Hamiltonians. (includes (Levervier.Zemor] construction).
7930, and Hamiltonian family H s.t.

every state
4of energy -2n,

the minimum depth circuit togenerate Pis a (logn).
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states => Local Hamiltonians

The state 10" is the unique solution to a very simple local Hamiltonian.

Ho =in17)(). < qubit-wise projections enforcing qubits equal 10

Ho is commuting and has a spectrum of 0, 1, 2, ..., n',with eigenvectors (x) of

LetHu =2
+

H x for depth -circuit2.
eigenvalue (x).

He is commuting and has a spectrum of 0,1,2, ..., n',with eigenvectors 11(x) of

eigenvalue (x).
And He is a 2--local Hamiltonian.



Lolaindistinguishability
Two states 14and 14' are d-locally indistinguishable if for every region s
of size = d, *Y's .



Lolaindistinguishability
Two states 14and 14' are d-locally indistinguishable if for every region s

of size = d, *Y's .

Ex. The states () =1
are (n-1) locally indistinguishable.



Lolaindistinguishability
Two states 14and 14' are d-locally indistinguishable if for every region s

of size = d, *Y's .

Ex. The states |8-1) =111
are (n-1) locally indistinguishable.

Any strictreduced density matrixequals

(f)-1)
s

=onts1+kSXIMse



Lolaindistinguishability
Two states 14) and 14') are d-locally indistinguishable if for every regions
of size = d, *Y's .



Lolaindistinguiarability> depthbounds
Two states 14and 14' are d-locally indistinguishable if for every region s

of size = d, *Y's .



Lolaindistinguiarability> depthbounds
Two states 14and 14' are d-locally indistinguishable if for every region S
of size = d, *Y's .

Lemma If (4) and It's are d-locallyindistinguishable, then if
14) =U102) forus of depth t, then 2tzd=> ogd.



Lolaindistinguiarability> depthbounds
Two states 14and 14' are d-locally indistinguishable if for every region S
of size = d, *Y's .

Lemma If (4) and It's are d-locallyindistinguishable, then if
14) =U102) forus of depth t, then 2tzd=> ogd.
#<P'Hulr') =G <P'lhilR'since He

is alocal

and ared>2+ locallyindistinguishable
- 9(4(hi/4)



Lolaindistinguiarability> depthbounds
Two states 14and 14' are d-locally indistinguishable if for every region s

of size = d, *Y's .

Lemma If (4) and It's are d-locallyindistinguishable, then if
14) =U102) forus of depth t, then 2tzd=> ogd.
#<P'Hulr') =G <P'lhilR'since He

is alocal

and ared>2+ locallyindistinguishable

=5(4/4i /4) =<4(+/4) =0
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Two states 14and 14' are d-locally indistinguishable if for every region s

of size = d, *Y's .

Lemma If (4) and It's are d-locallyindistinguishable, then if
14) =U102) forus of depth t, then 2tzd=> ogd.
#<P'Hulr') =G <P'lhilR'since He

is alocal

and ared>2+ locallyindistinguishable
=[ <4/4/4) =<P(H/4) =0

Butgroundstate IP)"is unique!=> IP)=14', a contradiction!
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Lemma If (4) and It's are d-locallyindistinguishable, then if
14) =U102) forus of depth t, then 2tzd=> ogd.
Since, spectral gap of Hus is 1, this argumentis onlyrobustto

perturbations of 0(k).

Using mathematics from Chebysher polynomials, we can make C.b. robust.
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#I- => 1T - 14x41//.=1 - approximate
projector.

->p.R-Rofdeg Q(V) st./p(+(n) - 14)(+///. = p
I-p is the Chebysher poly, approxof the ORfunction.

p(0) =1, (p(z) ) =p P(Hu) is a local Hamiltonian of

2. locality0(24.v)
↳itis

locality.* ploy degree

1

Hu
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p(Hu) is a Li =0(2tr)
Robustindistinguishabilitylocal Ham. s.t.
LetDbe the dist. on 30,134 ↑Hu) - ()(1ll0 =r)

2

formed by measuringaPCIc"*PCSCheo88: 5, 4 Sc, respectively

① ②

11 TTs,l4><4ITTsel/o<M ITTs, p(Hu) TTs,10 =0

due to locality of p (Hu) being small.
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Robustindistinguishability
Ihm Any dist. Ds.t.D(S.),D(Sc) >M88.
cannotbe generated by a quantumcircuit

ofdepth <2(log) M))
Zor. Any state (4) whose measurementdist is D

also has the same lower bound.

If Lsw/on) and MCR(1), call Da "well-spread"dist.

well-spread dist. is a signature of quantum depth.
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The low-energy space of
when Iis adj matrixof

small-setexpanding bipartitegraph
a code isa great support
for a distribution that timeEETO

SOS
H

we hope to prove
is

well-spread. * =

cochwords

Onlyquestion is hour toconstruct Hamiltonian with such property?
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to generate.

Error-correcting codes thatare LDDC

naturally have a local Hamiltonian 1 #onoweopocritenterone thatapplies every local check.

cocle Hamiltonians?
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In
progress:

All linear-rateand distance codes are NLTS.
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Nextstep:introduce computation, find NITS Hamiltonians

thatcaptureNP(or MA) computations.



wasnextafter NLTS

Constant-depth g. circuitsare justone & many possible NP p
of the ground-energy.

S



wasnextafter NLTS

Constant-depth g. circuitsare justone & many possible NP p
of the ground-energy.

Other examples include stab.circuits, some efficiently contractible tensors, etc.
or samplable - queryable states ([GharabicaZe Gell'21] MAwitness)



wasnextafter NLTS

Constant-depth g. circuitsare justone & many possible NP p
of the ground-energy.

Other examples include stab.circuits, some efficiently contractible tensors, etc.
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I think we need to
prove

lower

bounds for the following ansatzi F-:::::...and


