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We know that most 
quantum states are 
complex…

⊗ ⊗ ⊗ ⊗⋯ ≈ 2!! states

⊗ ⊗ ⊗ ⊗⋯ = 2" states

Quantum:

Classical:



but how many of 
them are interesting 
for physics?
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Quantum states that are 
interesting for physics

The energy operator in quantum mechanics is 
called the Hamiltonian. 

Interesting physical systems are defined by 
Hamiltonians of a special form called local 
Hamiltonians.

𝐻 =#ℎ!

Due to the importance of ground states in 
condensed matter physics,

we would really like to know if ground states of 
local Hamiltonians have efficient (i.e. short) 
classical descriptions.

Our result [Natarajan-Nirkhe]: Probably not.

We can construct some nearly physical 
Hamiltonians for which there are provably no 
efficient classical descriptions.⊗ ⊗ ⊗ ⊗⋯

ℎ! = ⟩|000 ⟨000| − ⟩|111 ⟨111|



Why IBM Quantum should
care about this problem…

Receiving |𝜓⟩ as a quantum state requires that 
the client can receive qubits from IBM. 

This isn’t realistic.

However, it would be nice if instead we could 
send a convincing description of 𝜓 .

Hi IBM –

Please calculate the 
ground state of 𝐻 = ∑ℎ!

for me.

Thanks,
– The Client

Dear Client –

These qubits describe the 
ground state – measure with 
your quantum device to verify.

Best,
– IBM
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The connection to the theory of 
quantum computation

The energy operator in quantum mechanics is 
called the Hamiltonian. 

Interesting physical systems are defined by 
Hamiltonians of a special form called local 
Hamiltonians.

𝐻 =#ℎ!

The problem of calculating the ground energy

𝐸 = min
|'⟩

𝜓 𝐻 𝜓

famously connects physics to computer science 
as the problem is complete for the class QMA.

QMA = Quantum Merlin-Arthur

If the ground state can always be verifiably
classically described, then the problem is 
complete for the class QCMA.

QCMA = Quantum-Classical Merlin-Arthur

⊗ ⊗ ⊗ ⊗⋯

ℎ! = ⟩|000 ⟨000| − ⟩|111 ⟨111|



Proving that not all ground states of 
local Hamiltonians can be 
(verifiably) classically described is

equivalent to

proving that QCMA ≠ QMA.

vs.

DALL-E 2 renderings.



Theorem [Natarajan-Nirkhe]: There is a 
black-box distribution 𝐷 for which we can 
prove that

QCMA𝐷 ≠ QMA𝐷.

This is the strongest evidence yet that ground 
states cannot be classically described.



Proving QCMA ≠ QMA outright would have 
incredible implications for complexity theory. 
Consequently, it requires truly novel techniques.

Local 
Hamiltonians

Sparse 
Hamiltonians

𝑛-bit boolean
functions

(classical oracles)

Distributions over 𝑛-bit 
boolean functions 

(distribution oracles)

= ⟹ ⟹
𝑛-qubit quantum 

unitaries
(unitary oracles)

⟹

Previous constructions 
[AK07, FK18]This work!

Instead, the best we can do is slightly 
generalize the notion of local Hamiltonians 
until we can prove QCMA ≠ QMA.

Optimal oracle 
separation
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Low energies of sparse 
graph Hamiltonians

If 𝐻 is the Hamiltonian corresponding to a 𝑑-
regular sparse graph,

then −𝐻 is a Hamiltonian with ground energy 
equal to −𝑑 with a ground state of ∑)∈ +,- ! |𝑥⟩, 
the uniform super position.

What is the second smallest eigenvalue?

If the graph has ≥ 2 connected components,
it is also −𝑑.

If the graph is 𝛼-expanding,
it is −𝑑 + 𝛼𝑑.

Theorem 1: Deciding if a graph (given as black-
box sparse adjacency list) either has multiple 
connected components or is 0.01-expanding is in 
QMA.

This also holds for certain distributions over 
graphs.

Theorem 2: For the same set of distributions, we 
can show that no efficient QCMA algorithm exists.

Together they prove QCMA𝐷 ≠ QMA𝐷.



The QMA algorithm
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is a eigenvector of eigenvalue −𝑑 as well and is 
orthogonal to ∑)∈ +,- ! |𝑥⟩.

Quantum solution is to provide 𝜉./0123/4 which proves 
that there are 2 eigenvectors of eigenvalue −𝑑.

If the graph is 𝛼-expanding, this test fails with 
probability 𝛼/4 as there is only 1 eigenvector of 
eigenvalue −𝑑 and the next eigenvalue is −𝑑 + 𝛼𝑑. 



Sketch of QCMA impossibility result

In the QMA algorithm, we saw that the solution 
state only depends on the vertices in the 
connected component.

Step 1: “Blind” the problem using distributions 
over graphs so that solutions can only depend on 
the vertices in the connected component.

Step 2: Use counting arguments to show that the 
number of connected components is ≥ 25 ! while the 
number of classical descriptions is ≤ 26/07(9).

So many (2-.< ! ) graphs must correspond to the same 
proof.

Step 3: Argue with Ramsey theory that the set of 
graphs corresponding to the same proof includes a 
very structured set of graphs (called a sunflower).

Step 4: If a QCMA algorithm existed, then there is a 
BQP algorithm for just the sunflower. Prove this is 
impossible using a combination of the polynomial and 
adversary methods (~30 page proof).



Future directions

• How can we remove the distributions from the oracle separations of QCMA and QMA?

• Can we use the techniques to prove oracle separations for other quantum complexity classes 
such as QMA(2) and QMA?

• What does the problem say about the quantum probabilistically checkable proofs conjecture 
and the inapproximability problem for local Hamiltonians?

• Does this oracle improve the hardness of search-to-decision impossibility results for QMA?

Thank you for listening.

Chinmay Nirkhe (IBM Quantum Cambridge) and Anand Natarajan (MIT) 




