The parametrized complexity of QMA

Srinivasan Arunachalam (IBM) Sergey Bravyi (IBM) Sam Gunn (UC Berkeley) Chinmay Nirkhe (IBM, UC Berkeley) Bryan O'Gorman (IBM, UC Berkeley)

unpublished work; do not distribute

The toggle between P and BQP

Counting the number of non-Clifford gates in a circuit is a measure of how "non-classical" a given circuit is

Gottesman & Knill showed that there is a P algorithm for deciding a quantum circuit decision problem if the circuit only has Clifford gates

A series of works has extended this famous theorem to Clifford gates of low non-Clifford gate count (most often counting the number of T gates) in both the decision and sampling regime

This gives parametrized (in # of T gates = t) algorithms for quantum circuit problems.

Is there a toggle between P and QMA?

Canonical QMA: Does there exist a $|\psi\rangle$ such that the circuit accepts with probability > 2/3 or for all $|\psi\rangle$, is the acceptance probability bounded by < 1/3?

What is the complexity of the parametrized quantum circuit satisfiability problem when the circuit on

- n qubits,
- *m* ancilla,
- s gates,
- t non-Clifford gates (T gates)?

Is there a toggle between P and QMA?

C

ciı

What is the complexity of the parametrized quantum circuit satisfiability problem when the circuit on

- ac *n* qubits,
 - *m* ancilla,
 - s gates,
 - t non-Clifford gates (T gates)?

Theorem: There exists a reduction to an equivalent QCSAT problem on

- $\min(n, t)$ qubits,
- $m + n \min(n, t)$ ancilla,
- $s + O((n+m)^2 / \log(n+m))$ gates,
- t non-Clifford gates (T gates).

the

Non-determinism and quantum don't clash

- Yoganathan, Jozsa, and Strelchuk 2019 construct a reduction that reduces the computation (after classical processing) to a new t T-gate computation on n qubits witness but with no ancilla.
- In our result we maintain the ancilla but drastically reduces the witness to $\min(n, t)$ size.
- Furthermore, we give an $2^{\max(2+\alpha),\omega)\cdot\min(n,t)} \cdot \operatorname{poly}(s) \approx 5.3^t$ runtime algorithm for solving parametrized QCSAT
 - α is stabilizer rank of magic states
 - ω is matrix multiplication constant

The Clifford perspective

- **Clifford group** = span(*H*, *CNOT*, *S*)
- Classically simulable because $CPC^{\dagger} = P'$ for any Pauli P

Warmup: Clifford QCSAT is in P The measurement at the end $|0\rangle\langle 0| = \frac{I+Z}{2}$ so we are trying to optimize $\frac{1}{2} + \frac{1}{2} |\langle \psi| \otimes \langle 0^m | C^{\dagger}ZC | \psi \rangle \otimes |0^m \rangle|^2 = \frac{1}{2} + \frac{1}{2} |\langle \psi| P | \psi \rangle \otimes \langle 0^m | Q | 0^m \rangle|^2$ for Paulis *P*, *Q*.

Since we are trying to maximize $|\psi\rangle$ then $\langle \psi|P|\psi\rangle = 1$ in best case.

3 cases: $\frac{1}{2} + \frac{1}{2} |\langle 0^m | Q | 0^m \rangle|^2 \in \{0, 1, \frac{1}{2}\}$. Can easily calculate given Q and Q is calculable using standard Clifford calculus.

What happens when there are T gates

While Clifford conjugation maintain Paulis ... $T^{\dagger}IT = I$ $T^{\dagger}XT = (X + Y)/\sqrt{2}$ $T^{\dagger}YT = (X - Y)/\sqrt{2}$ $T^{\dagger}ZT = Z$

So, by induction on the gates of a circuit C, we see that $C^{\dagger}ZC$ can be expressed as the lin. combination of $\leq 2^{t}$ terms

Many terms but few linearly independent ones

Claim: There exists a basis of t + 1 Pauli terms so that all 2^t terms can be expressed as products of basis terms.

Proof by induction: Base case: $I^{\dagger} ZI = Z = b_1$.

Let $C = g_s g_{s-1} \dots g_1$. At step *i*, let basis be b_1, \dots, b_j .

- If g_i is Clifford then, new basis of $g_i^{\dagger} b_1 g_i, \dots, g_i^{\dagger} b_j g_i$.
- If $g_i = T$ acting on qubit q,
 - then first rewrite basis so that only b_1 , b_2 act non-trivially on qubit q
 - at most one of $b_1(q)$ and $b_2(q)$ is $\in \{X, Y\}$ and the other is $\{I, X\}$.
 - wlog assume $b_1(q) = X$. Then add $b_{j+1} = b_1 \cdot (XY)_q$ to the basis.

Many terms but few linearly independent ones

Claim: Since the $\leq 2^t$ Paulis have a linearly independent basis of t + 1 Pauli terms, then there exists a Clifford unitary W mapping these Pauli to a space of at most t + 1 qubits.

Proof sketch: Each linearly independent Pauli defines a "qubit" and so W can be constructed by a sequence of Clifford SWAP gate-like gadgets.

A more sophisticated analysis produces W exactly with only poly (s) pre-processing (not included in this talk).

Interesting lower bound from upper bounds

- A reduction to a witness of length t
- A $5.3^t \cdot poly(s)$ algorithm for solving parametrized QCSAT

Classical Exponential Time Hypothesis: SAT formulas on n variables cannot be solved in time $2^{o(n)}$.

Corollary: There does **not** exist a generic reduction from SAT formulas on n variables to SAT formulas on o(n) variables.

Interesting lower bound from upper bounds

- A reduction to a witness of length t
- A $5.3^t \cdot poly(s)$ algorithm for solving parametrized QCSAT

Quantum proof length optimality Conjecture: There does not exist a generic reduction from QCSAT formulas with witness length n to QCSAT formulas with witness length o(n).

Corollary: Assuming conj., in the worst case for QMA-hard problems, $t = \Omega(n)$.

Lower bound for the complexity of $|W\rangle$

Any local Hamiltonian H with m terms can be expressed as the sum of O(m) local Pauli terms.

Then there exists a Clifford operator C s.t. $H = \langle W_{O(m)} | C | W_{O(m)} \rangle$

So, the local Hamiltonian problem can be expressed as

 $\max_{\psi} \langle \psi, W | C | \psi, W \rangle$

Assume $|W\rangle = V|0^k\rangle$ for V a circuit consisting of t T-gates.

Lower bound for the complexity of $|W\rangle$

Assume $|W_{O(m)}\rangle = V|0^k\rangle$ for V a circuit consisting of t T-gates. Then, the problem can be rewritten as

 $\max_{\psi} \langle \psi, W | C | \psi, W \rangle = \max_{\psi} \langle \psi, 0^k | V^{\dagger} C V | \psi, 0^k \rangle$ which can be reduced to (by main result) to witness length t.

Assuming optimal proof length conjecture, $t = \Omega(m)$ proving a linear lower bound on T-gate complexity of $|W\rangle$ state. Proof is robust to 1/poly(m) noise or O(1) noise assuming QPCP.

What's next

- Many other QMA-complete problems are built from q. circuits
 - How many of them also have parametrized complexity solutions
 - Ex. Non-identity check problem is in P for Clifford unitaries
- Is there a parameter like non-Clifford gate count that parametrizes the complexity of the local Hamiltonian problem?
- Is there a parameter that scales the problem between NP and QMA?
 - What about between QCMA and QMA?