The parametrized complexity of quantum verification
 Srinivasan Arunachalam (IBM)
 Sergey Bravyi (IBM)
 Chinmay Nirkhe (UC Berkeley \rightarrow IBM)
 Bryan O'Gorman (IBM)

The toggle between P and BQP

Counting the number of non-Clifford gates in a circuit is a measure of how "non-classical" a given circuit is

Gottesman \& Knill showed that there is a P algorithm for deciding a quantum circuit decision problem if the circuit only has Clifford gates

A series of works has extended this famous theorem to Clifford gates of low non-Clifford gate count (most often counting the number of T gates) in both the decision and sampling regime

This gives parametrized (in \# of T gates $=t$) algorithms for quantum circuit problems.

Is there a toggle between P and QMA?

Canonical QMA: Does there exist a $|\psi\rangle$ such that the circuit accepts with probability $>2 / 3$ or for all $|\psi\rangle$, is the acceptance probability bounded by $<1 / 3$?

What is the complexity of the parametrized quantum circuit satisfiability problem when the circuit on

- n qubits,
- mancilla,
- s gates,
- t non-Clifford gates (T gates)?

Is there a toggle between P and QMA?

Non-determinism and quantum don't clash

- Yoganathan, Jozsa, and Strelchuk 2019 construct a reduction that reduces the computation (after classical processing) to a new t T-gate computation on n qubits witness but with no ancilla.
- In our result we maintain the ancilla but drastically reduces the witness to t size.
- Furthermore, we give an $2^{\max (2+\alpha), \omega) \cdot t} \cdot \operatorname{poly}(s) \approx 5.3^{t}$ runtime algorithm for solving parametrized QCSAT
- α is stabilizer rank of magic states
- ω is matrix multiplication constant

The Clifford perspective

- Clifford group $=\operatorname{span}(H, C N O T, S)$
- Classically simulable because $C P C^{\dagger}=P^{\prime}$ for any Pauli P

Warmup: Clifford QCSAT is in P
The measurement at the end $|0\rangle\langle 0|=\frac{I+Z}{2}$ so we are trying to optimize $\left.\frac{1}{2}+\frac{1}{2}\left|\langle\psi| \otimes\left\langle 0^{m}\right| C^{\dagger} Z C\right| \psi\right\rangle\left.\otimes\left|0^{m}\right\rangle\right|^{2}=\frac{1}{2}+\frac{\left.1\langle\psi| P|\psi\rangle \otimes\left\langle 0^{m}\right| Q\left|0^{m}\right\rangle\right|^{2}}{2}$ for Paulis P, Q.

Since we are trying to maximize $|\psi\rangle$ then $\langle\psi| P|\psi\rangle=1$ in best case.
3 cases: $\left.\frac{1}{2}+\frac{1}{2}\left|\left\langle 0^{m}\right| Q\right| 0^{m}\right\rangle\left.\right|^{2} \in\{0,1,1 / 2\}$. Can easily calculate given Q and Q is calculable using standard Clifford calculus.

What happens when there are T gates

While Clifford conjugation maintain Paulis ...

$$
\begin{gathered}
T^{\dagger} I T=I \\
T^{\dagger} X T=(X+Y) / \sqrt{2} \\
T^{\dagger} Y T=(X-Y) / \sqrt{2} \\
T^{\dagger} Z T=Z
\end{gathered}
$$

So, by induction on the gates of a circuit C, we see that $C^{\dagger} Z C$ can be expressed as the lin. combination of $\leq 2^{t}$ terms

Many terms but few linearly independent ones

Claim: There exists a basis of $t+1$ Pauli terms so that all 2^{t} terms can be expressed as products of basis terms.

Proof by induction: Base case: $I^{\dagger} Z I=Z=\mathrm{b}_{1}$.
Let $C=g_{s} g_{s-1} \ldots g_{1}$. At step i, let basis be b_{1}, \ldots, b_{j}.

- If g_{i} is Clifford then, new basis of $g_{i}^{\dagger} b_{1} g_{i}, \ldots, g_{i}^{\dagger} b_{j} g_{i}$.
- If $g_{i}=T$ acting on qubit q,
- then first rewrite basis so that only b_{1}, b_{2} act non-trivially on qubit q
- at most one of $b_{1}(q)$ and $b_{2}(q)$ is $\in\{X, Y\}$ and the other is $\{I, Y\}$
- wlog assume $b_{1}(q)=X$. Then add $b_{j+1}=b_{1} \cdot(X Y)_{q}$ to the basis.

Many terms but few linearly independent ones

Claim: Since the $\leq 2^{t}$ Paulis have a linearly independent basis of $t+1$ Pauli terms, then there exists a Clifford unitary W mapping these Pauli to a space of at most $t+1$ qubits.

Proof sketch: Each linearly independent Pauli defines a "qubit" and so W can be constructed by a sequence of Clifford SWAP gate-like gadgets.

A more sophisticated analysis produces W exactly with only poly (s) pre-processing (not included in this talk).

Interesting lower bound from upper bounds

- A reduction to a witness of length t
- A $5.3^{t} \cdot \operatorname{poly}(s)$ algorithm for solving parametrized QCSAT

Classical Exponential Time Hypothesis: SAT formulas on n variables cannot be solved in time $2^{o(n)}$.

Corollary: There does not exist a generic reduction from SAT formulas on n variables to SAT formulas on $o(n)$ variables.

Interesting lower bound from upper bounds

- A reduction to a witness of length t
- A $5.3^{t} \cdot \operatorname{poly}(s)$ algorithm for solving parametrized QCSAT

ETH \Rightarrow Quantum proof length optimality Conjecture: There does not exist a generic reduction from QCSAT formulas with witness length n to QCSAT formulas with witness length $o(n)$.

Corollary: Assuming conj., in the worst case for QMA-hard problems, $t=\Omega(n)$.

Lower bound for the complexity of $|W\rangle$

Any local Hamiltonian H with m terms can be expressed as the sum of $O(m)$ local Pauli terms.

Then there exists a Clifford operator C s.t. $H=\left\langle W_{O(m)}\right| C\left|W_{O(m)}\right\rangle$
So, the local Hamiltonian problem can be expressed as

$$
\max _{\psi}\langle\psi, W| C|\psi, W\rangle
$$

Assume $|W\rangle=V\left|0^{k}\right\rangle$ for V a circuit consisting of t T-gates.

Lower bound for the complexity of $|W\rangle$

Assume $\left|W_{O(m)}\right\rangle=V\left|0^{k}\right\rangle$ for V a circuit consisting of t T-gates.
Then, the problem can be rewritten as

$$
\max _{\psi}\langle\psi, W| C|\psi, W\rangle=\max _{\psi}\left\langle\psi, 0^{k}\right| V^{\dagger} C V\left|\psi, 0^{k}\right\rangle
$$

which can be reduced to (by main result) to witness length t.

Assuming optimal proof length conjecture, $t=\Omega(m)$ proving a linear lower bound on T-gate complexity of $|W\rangle$ state. Proof is robust to $1 / \operatorname{poly}(m)$ noise or $O(1)$ noise assuming QPCP.

What's next

- A computational method for "testing" avg-case QMA vs QCMA
- Many other QMA-complete problems are built from q. circuits
- How many of them also have parametrized complexity solutions
- Ex. Non-identity check problem is in P for Clifford unitaries
- Is there a parameter like non-Clifford gate count that parametrizes the complexity of the local Hamiltonian problem?
- Is there a parameter that scales the problem between NP and QMA?
- What about between QCMA and QMA?

