Classicel descriptions of quentum states

Chinney Nitche

Based on work with 1 rani, Natarajan, Rao & Yuen & Armadralam, Brayi, & O'Gorman

How does one clisciles a quatum state? How does one use a description of a quantum state? Do quentim problems of classical description lengten l'have classical solutions of length poly(e)? (BCMA vs QMA) - IP not, what is the shortest length of a solution to the problem? What about complexity notions?

A motivation for complexity of sols us problems.

Thun (Impaglics10-Wigderson) unless NEXP C Z2 EPH,

Succinct-3-coloring (NEXP-complete) does not have succinct solutions!

Succinct - 3 - coloring: Input: (c) < circuit description

edge
$$x \sim y \iff C(x,y) = 1$$

Goal: Decide if G is 3-colorable.

A motivation for complexity of sols us problems. Goal: Decide if G is 3-colorable. has a succinct sol. if 3 Say S3COL instance (C) poly sized cht outputting coloring C(x) from optimal colonny.

The S3COL doesn't have succinct sols. cix) ciy) W is always χ satisfiable.

cutput 1 if

X~y AND C(X) = C(y).

Thm S3COL doesn't have succinct sols. PP 17 3 cix) ciy) W is always satisfiable.

Then (C) & S3COL iff

I (w) s.t. BIG-CKT is

always satisfiable.

i.e.
$$\exists \omega \text{ s.t. } \forall x,y$$

$$B(x,y,\omega) = 1$$

Why is this classical CS textbook of important?

It provides a clear separation between the description complexity of sols, and questions.

Notice, that even with a succinet description of S3COL we would not expect to check the problem in $\frac{exponential}{exponential}$ time.

PENPEZZEPHS... ENEXP

Instead, description complexity yields a speedup among these large complexity classes that all take exponential time.

Why is this classical CS textbook of important? It provides a clear separation between the discription complexity of sols, and questions. Notice, that even with a succinet description of S3COL me would not expect to check the problem in Sub-exponential time. Today's talk: How should me define description complexity for quantum problems and what is known?

Mon-cleterninistic quantum computation

QMA = QCMA: Do all "classically describeable"

quantum questions have "classically describable" solutions?

Note: both cases still speculate the problem is exp-hard for BPP (or BQP). It's a matter of description.

Mon-cleterministic quantum computation

QMA = QCMA: Do all "classiculty describeable"

quantum questions have "classically describable" solutions?

IF QCMA FQMA, what complexity class captures the classical complexity of solutions to QMA problems?

Search-to-clecisions:

How much harder is finding a solution than deciding if one exists?

For the class NP, it's equally hard...

$$yes$$

set $y_1 = 0$
 yes
 yes

End of process,

Yiii yn fernis a sol.

What about quantum search-to-clecision? First What does search-to-decision wear in this context? Issures: 1. QMA is a promise class. 2. The solution might depend on the verifier. Search QMA def: Given a canonical QMA problem described as a verifier V Output a state (4) which that verifier will $\frac{1}{111}$ accept with prob. $\frac{2}{3}$.

(V) (000)

QMA search-to-decision reductions Input: Verifier cht $\begin{array}{c|c} u_{k} & \overline{} &$ Circuit with oracle gates O accessed in superposition $O(x) = \begin{cases} 1 & \text{if } x \text{ encodes a YES QMA quotion} \\ 0 & \text{if } x \text{ encodes a NO QMA question} \end{cases}$ either if x encodes an invalid QMA question Goal: Output IV) accepted w pr = by V.

Difficulties to overcome

There is no good way to binary search over the Hilbert space.

Trying to find (4) by
a seq. of projectors is a no-go path. entanglement destroying (also why ground-space dim counting seems had).

Thm (Aaronson (Folkline) I a 2n+1 gury algorithm for generating any state (4) up to exp(-n) accuracy. (When applied to QMA sols., oracle complexity = PP.) Our theorem Thm (INN+21) I a 1-query PP algorithm for generating the sol, to QMA problems.

(Ne also have extensions to general states).

Crucial intuitions

(1) Building all states is unnecessarily powerful.

By counting, there are only 2 Poly(n) QMA problems « exp(-n) net real vs. imaginageness Over H.

(2) Since QMA states are verifiable, signs of amplitudes don't

matter. $|\psi\rangle = \sum_{x} \kappa_{x} |x\rangle$, then $\exists |\phi\rangle = \sum_{x} \beta_{x} |x\rangle$ $\beta_{x} \in \mathbb{R}$

s.t. $|\langle \phi | \psi \rangle| \ge \text{constant}$. (3) If (4) is Haar-random, then the amplitudes concentrate

around $\frac{1}{\sqrt{2^n}}$ $\left(\frac{1}{\sqrt{2^n}}\right)^2 = \frac{1}{2^n}$ $\left(\frac{1}{\sqrt{2^n}}\right)^4 = \frac{2}{2^n(2^n+1)}$.

Interlucle: Phase states.
$$f: \{0,1\}^n \rightarrow \{0,1\}$$

$$|\Psi_{f}\rangle = \frac{1}{\sqrt{2^n}} \sum_{\chi} (-1)^{\chi} |\chi\rangle = f \int_{\mathbb{R}^n} \frac{\mathbb{H}}{\mathbb{H}} \frac{10\chi}{10\chi}$$

For any vector $|v\rangle \in \mathbb{R}^r$, best phase state approx $|v\rangle$ is with $f(x) = sgn(\langle x|v\rangle)$.

$$\Rightarrow \langle \Psi_{P} | \nu \rangle = \frac{\| |\nu \rangle \|_{1}}{\sqrt{2^{n}}}$$

Lem P_r $\left(\frac{\| |v\rangle\|_1}{\sqrt{2^n}} < \frac{\sqrt{\alpha}}{2}\right) < \alpha$

Phase states (cont.) Lem P_r $\left[\frac{\| \|v\|_1}{\sqrt{2^n}} < \frac{\sqrt{\alpha}}{2}\right] < \alpha$.

 $Pr\left[|\langle \Psi_{p}|\Psi_{g}\rangle|>\delta\right]\leq 2\exp\left(-\frac{5^{2}\cdot2^{n}}{3}\right)$ Chernoff bound.

In short, phase states form an effective net for the Hilbert space under the Haar measure.

goal: show PP for f s.t.

Small issues to handle

1) Sol. (2) may not be approximable by phase states.

But for Clifford C, C+HC will be whp. Then can rotate phase state by C+ to recover.

(2) To define for $f(x) = sgn(IR(\langle x | \tau \rangle))$ ne need $|\tau\rangle$. But

IT>. But,

[T) \times (11-H) Poly(n)

Modern Clifford

State

 $f(x) = \frac{f(x)}{sgn(\mathbb{R}(\langle x|C^{t}(1-H)^{p}D|o^{n}\rangle))}$

Then I guery PP alg which outputs a state 14) s.t. (<4/7) 2 2 2 0 whp. - Can add phase estimation to either output IT) ± 1
Poly(n) w pr 2-10. - Algorithm is porallelizable with still one guerry to boost success prob. to $1 - \frac{1}{poly(n)}$.

Is this the best ne can do?

Oracle no-go result for QMA-search to QMA-decision Thm (INN+21) reduction.

QMA seurch problem with no QMA cleeisian oracle alg.

O= 11-2/47×41 where lyp is a phose state

OR 0=11. Problem: Decide which scenario.

Idea All sols. accepted w pr = 2 3, have large support

on lys

Oracle no-go (cont.)

Pr shetch: (D) Assur 3 alg A " that produces 147).

(2) Show that when run on $O' = 11 - |\psi_g\rangle\langle\psi_g|$, alg's step-by-step behavior is similar (hybrid alg).

(3) Argue who should output nearly _ ! States and yet cannot by hybrid alg.

Consequences

QMA soils. can be described by phase states corresponding to PP fins (2^{polyth}) PP fins and 2^{polyth}) QMA problems)

vs. 2^{2nd} phase states in general

Z any hope for search—to—decision reductions for

generic phase states (which are sols. to QMA problems)

Due to similarity of oracle separating QCMA/QMA, we suspect same oracles show S-2-D No-go's.

And now for a different angle on the same problem What can me say about the complexity of sols. When Verifier V has t T-gates? Well known that deterministic q. c. with

To Togetes requires 20(+) poly(n) time. Thm (ABNO") 0,---.0 The optimal state IT > maximizing (0/V/T) 2 input has from WIY) where IY> E((2) to and W is a Clifford Computable by prover and verifier.

A paramitrized approach to QMA

Alternate puspective: A reduction from QCSAT to Pauli Hamiltonian problem on t qubits with $\leq 2^t$ terms.

If sketch If V has O T-gates and only Clifford gates, then

$$P_m = Z$$

$$P_i = g_{i+1}^{\dagger} P_{i+1} g_{i+1}$$

$$P_{i+1} g_{i+1} = 1 - \langle \Psi_i \circ | P_0 | \Psi_i \circ \rangle$$

Pf sketch (cont.)

Po = P(") ⊗ ⊗ P(")

 $max 1 - \langle 4,0|P_0|4,0 \rangle = 1 - \langle 0|P_0'|_0 \rangle$

no dependence on IV>!

Only non-Clifford
What heppens if gate g: = T?

Pm = Z from prev. Pi = gt Pigiti

T+2T=T, T+11T=1

 $T^{\dagger} \times T = \frac{1}{\sqrt{2}} \times - \frac{1}{\sqrt{$

Then $P_i = P_i^{(1)} + P_i^{(2)} \leftarrow sum of 2 Paulis.$

Continue propogation fill end where he reach Po + Po!

Pf sketch (cont.) Easily extends to t T-gates to show that problem equiv, to max $\langle \Psi, 0 | V^{\dagger}(\mathbb{I}-2) V | \Psi, 0 \rangle = \max_{\{\Psi\}} \langle \Psi, 0 | \sum_{i=1}^{\epsilon_2} P_i^{(i)} | \Psi, 0 \rangle$ Issue: Paulis Po cre n qubit Paulis. Still large sum.

Ans: I basis of t+1 Paulis s.t. each Pauli Po can
be expressed as prod of basis terms.

Pt Induction with each I Clifford rotation s.t. basis is
T-gute.

mapped onto ++1 qubits.

Basis Bij..., Bt-1. Then construct map B, -> ZII... $B_2 \longrightarrow \begin{cases} IZII... & if B_1B_2 commute \\ XZII... & if not \end{cases}$ $\mathcal{B}_{:} \longrightarrow X \qquad [\mathcal{B}_{i}, \mathcal{B}_{:-}, \mathcal{B}_{i}, \mathcal{B}_{:-}, \mathcal{B}_{i}, \mathcal{B}_{i}] \qquad [\mathcal{B}_{i}, \mathcal{B}_{i}, \mathcal{B}_{i}, \mathcal{B}_{i}] \qquad Z \mathcal{I} \mathcal{I}$ => Every Po acts on t+1 qubits. | Can improve to t map W (see paper).

Pf sketch (cont.)

Final thoughts before I finish

- Devote more research to understanding descriptions of q. states. Not the same as decision problems!
- 2) Simpler descriptions lead to decision problem speedups.
- (3) Big open questions ore
 - (32) CCMA = QMA
 - (36) Is description complexity robust to small perturbations? NLTS conjecture.