Classical descriptions of quentum stutes

Chimmay Nisture
UC Berkstey

Based on work with 1rani, Natarajan, Ras \& Yuen \& Arunachalam, Brayi, \& O'Gorman

How doers one describe a quantion state?
How does one use a description of a quantum state?

Do quentin problens of classical description length l hare classical solutions of length poly (l)? (BCMA is QMA) - If not, what is the shortest length of a solution to the problem? What about complexity notions?

A motivation for complexity of sols us problems.
The (Impagliasso-Wigclerson) unless NEXP $\subseteq \Sigma_{2} \subseteq P H$,
Succinct-3-coloring (NEXP-complete) does not have succinct solutions!

Succinct -3 -coloring: Input: $\langle c\rangle \leftarrow$ circuit description
a
a
\qquad
$G=$ graph implicitly defined by C.

$$
\text { edge } x \sim y \Leftrightarrow c(x, y)=1
$$

Goal: Decide if G is 3 -colorable.

A motivation for complexity of sols us problems.
Succinct -3 -coloring: Input: $\langle c\rangle \leftarrow$ circuit description
a

$G=$ graph implicitly opined by C.
edge $x \sim y \Leftrightarrow c(x, y)=1$.
Goal: Decide if G_{T} is 3 -colorable.
Say SBCOL instance $\langle c\rangle$ has a succinct sol. if \exists poly sized cat

outputting coloring $c(x)$ from optimal coloring.

The S3COL dresn't have succinct sols.

output 1 if

$$
x \sim y \text { AND } c(x) \notin c(y)
$$

Thm S3COL dresn't have succinct sols.

Then $\langle c\rangle \in$ S3COL if $\exists\langle\omega\rangle$ s.t. BIG-CKT is always satisfiable.

$$
\begin{aligned}
& \text { i.e. } \exists \omega \text { s.t. } \forall x, y \\
& B(x, y, w)=1 \\
& \Rightarrow N E X P \subseteq \Sigma_{2} \subseteq P H
\end{aligned}
$$

Why is this classical CS textbook PA important?
It provides a deer separation between the description complexity of sols. and questions.

Notice, that even with a succinct description of S3COL ne would not expect to check the problem in sub-exponential time.

$$
P \subseteq N P \subseteq \Sigma_{2} \subseteq P H \subseteq \ldots \subseteq N E X P
$$

Instend, description complexity yields a speedup among these large complexity class that all take exponential time.

Why is this classical CS textbook PA important?
It provides a clear separation between the description complexity of sols. and questions.

Notice, that even with a succinct description of S3COL ne would not expect to check the problem in sub-expanential time.

Today's talk: How should ne define description complexity for question problems and what is known?

Non-cleterministic quantum computation
QUA $\stackrel{?}{=}$ QCMA: Do all "classically describeable"
 quantum questions have "classically describable" solutions?

Note: both cases still speculate the problem is exp-hard for BPP (or $B Q P$). It's a matter of description.

Non-cleterministic quantum computation
QUA $\stackrel{?}{=}$ QCMA: Do all "classically describeable"
 quantum questions have "classically describable" solutions?

Note: both cases still speculate the problem is exp-hard for BPP (or BQP). It's a matter of description.

If QCMA $\neq Q M A$, what complexity class captures the classical complexity of solutions to QMA problems?

Search-to-clecisions:
How much harder is finding a solution than deciding if one exists?

For the class NP, it's equally hereof...

$$
\begin{aligned}
& \exists x_{2} \ldots x_{n}, \varphi\left(0, x_{2}, \ldots, x_{n}\right)=1 \\
& \begin{array}{l}
\text { yes } \\
\text { set } y_{1}=0
\end{array} \quad \begin{array}{l}
\text { no } \\
\exists x_{3} \ldots x_{n}, \varphi\left(y_{1}, 0, x_{3} \ldots x_{n}\right)=1
\end{array} \\
& \begin{array}{l}
y_{e s} \\
\text { set } y_{2}=0
\end{array} \quad \begin{array}{l}
\text { no } \\
\text { set } y_{2}=1
\end{array}
\end{aligned}
$$

End of process, $y_{1} \ldots y_{n}$ ferns a sol. to φ.

What about quentin search-to-decision?

Fins What does search-to-decision mean in this context? Issures: 1. QMA is a promix class.
2. The solution might depend on the verifier.

Search QMA def:
Given a canonical QMA problem described as a verifier V

output a state $|\psi\rangle$ which that verifier will accept with prob. $\frac{2}{3}$.

QMA search-to-decision reductions Input: Verier chat

Circuit with oracle gates O accessed in superposition

$$
O(x)= \begin{cases}1 & \text { if } x \text { encodes a YES QMA question } \\ 0 & \text { if } x \text { encodes a NO QMA question } \\ \text { cither if } x \text { encodes an invalid }\end{cases}
$$

cither if x encodes an invalid QMA question
Goal: Output $|\psi\rangle$ accepted ω pr $\frac{2}{3}$ by V.

Difficulties to overcome
There is no good way to binary search over the Hilbert space.
Trying to find $|\Psi\rangle$ by

Thu (Aaronsun/Folklure)
\exists a $2 n \times 1$ quay algorithm for generating any state
$|\psi\rangle$ up to $\exp (-n)$ accuracy.
(When applied to QMA sols., oracle complexity $=P P$.)
O ir theorem Thu $\left(I N N+{ }^{21}\right)$
\exists a 1-query PP algozitum for generating the
sol. to QMA problems.
(We also hare extensions to general states).

Crucial intuitions
(1) Building all states is unnecessarily powerful.

By counting, there are only $2^{\text {poly }(n)}$ QMA probleny $\ll \begin{aligned} & \exp (-n) \text { net } \\ & \text { over }\end{aligned}$ red vs. imaging-n-ness
(2) Since QMA states are verifiable, syjgens of amplitudes dort matter. $|\psi\rangle=\sum_{x} \alpha_{x}|x\rangle$, then $\exists|\phi\rangle=\sum_{x} \beta_{x}|x\rangle \quad \beta_{x} \in \mathbb{R}$ s.t. $|\langle\phi \mid \psi\rangle| \geq$ constant.
(3) If $|\psi\rangle$ is Haar-random, then the amplitudes concentrate $\operatorname{arousd} \frac{1}{\sqrt{2^{n}}}, \underset{|\psi\rangle \sim \text { Hour }}{E}|\langle x \mid \psi\rangle|^{2}=\frac{1}{2^{n}}, \underset{(\psi\rangle \sim \text { Mar }}{\mathbb{E}}|\langle x \mid \psi\rangle|^{4}=\frac{2}{2^{n}\left(2^{n}+1\right)}$.

Interlude: Phase states. $f:\{0,1\}^{n} \rightarrow\{0,1\}$

For any vector $|v\rangle \in \mathbb{R}^{2^{n}}$, best phase state approx $|v\rangle$ is with $f(x)=\operatorname{sgn}(\langle x \mid \nu\rangle)$.

$$
\Rightarrow\left\langle\psi_{p} \mid v\right\rangle=\frac{\||v\rangle \|_{1}}{\sqrt{2^{n}}}
$$

$\underline{\text { Lem }} \mid \overrightarrow{\operatorname{Pr}_{r}} \sim$ Hor $\left[\frac{\||v\rangle \|_{1}}{\sqrt{2^{n}}}<\frac{\sqrt{\alpha}}{2}\right]<\alpha$.

Phase states (cont.)
$\operatorname{Lem}_{|v\rangle \sim \text { Haar }_{\text {ac r }}}^{\operatorname{Pr}_{r}}\left[\frac{\||v\rangle \|_{1}}{\sqrt{2^{n}}}<\frac{\sqrt{\alpha}}{2}\right]<\alpha$.

$$
\left.\operatorname{Pig}_{\operatorname{Pr}}\left[\left|\left\langle\psi_{f} \mid \psi_{g}\right\rangle\right|\right\rangle \delta\right] \leqslant 2 \exp \left(-\frac{\delta^{2} \cdot 2^{n}}{3}\right) \quad \begin{aligned}
& \text { chernoff } \\
& \text { bound }
\end{aligned}
$$

In short, phase states form an effective net on the Hilbert space under the Hor measure.
 goal: show PP fr f st. $\left|\psi_{f}\right\rangle$ approximates QMA sol.

Small issues to handle
(1) Sol. $|\tau\rangle$ may not be approximable by phase states.

But for Clifford C, $C^{+} H C$ will be why. Then can rotate phase states by C^{t} to recover.
(2) To define $f_{n} f(x)=\operatorname{sgn}(\mathbb{R}(\langle x \mid \tau\rangle))$ ne need
$|\tau\rangle$. But,

$$
|\tau\rangle \propto(\mathbb{1}-H)^{\text {Pig }(n)} \underbrace{D\left|0^{n}\right\rangle}_{\substack{\text { nndtemec } \\
\text { stafford }}} \left\lvert\, \begin{gathered}
f(x)= \\
\operatorname{sgn}\left(\mathbb{R}\left(\langle x| C^{+}(\mathbb{1}-H)^{p} D\left|0^{n}\right\rangle\right)\right) .
\end{gathered}\right.
$$

Thin 1 query PP alg which outputs a state $|\psi\rangle$
s.t. $|\langle\psi \mid \tau\rangle|^{2} \geq 2^{-10} \quad$ why.

- Car add phase estimation to eitur output $|\tau\rangle \pm \frac{1}{p \cdot \operatorname{ly}(n)}$ ω pr 2^{-10}
- Algorithm is poralblizable with still one query to boost success prob. to $1-\frac{1}{\operatorname{poly}(n)}$.

I's this the best ne can do?

Oracle no-go result for QMA-search to QMA-decision
Thu (INN $\left.+{ }^{21}\right)$ reduction.

QMA search problem with no ${ }^{\theta}$ MA ${ }^{\theta}$ decision oracle alg.
$\theta=11-2\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|$ where $\left|\psi_{f}\right\rangle$ is a phase state
OR $\theta=1$. Problem: Decide which scenario.
Idea All sols. accepted ω pr $\geq \frac{2}{3}$, have large support on $\left|\psi_{f}\right\rangle$.

Oracle no -go (cont.)
Pf sketch: (1) Assmi $\exists \operatorname{alg} A^{\operatorname{QMA}^{\theta}, \theta}$ that produces $\left|\psi_{f}\right\rangle$.
(2) Show that when run on $\theta^{\prime}=\mathbb{1}-\left|\psi_{g}\right\rangle\left\langle\psi_{g}\right|$, alg's step-by-step behaviour is similar (hybrid alg).
(3) Argue whip should output nearly I states and yet cannot by hybrid alg.

Consequences
QMA sols. con be described by phase states corresponding to PP frs ($2^{\text {prly(n) }}$ PP pus and $2^{\text {prly(n) }}$ QMA problems)
us. $2^{2^{n}}$ phase states in general
\nexists any hope for search-to-decision reductions for generic phase states (which ore sols. to QMA ${ }^{\theta}$ problens)
Due to similarity of oracle separating QCMA/QMA, ne suspect same oracles show S-2-D No-go's.

And now for a different angle on the same problem
What can we say about the complexity of sols. When Verifier V has $t ~ T$-gates?

Well known that deterministic q. C. With $t T$-gates requires $2^{O(t)}$ poly (n) time.

The $\left(A B N O^{n}\right)$
$\underbrace{}_{\text {input }} 0 \ldots . .0$ The optimal state $|\tau\rangle$ maximizing $|\langle 0| V| \tau\rangle\left.\right|^{2}$ has form $W|\psi\rangle$ where $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{@ t}$ and W is a Clifford computable by prover and verifier.

A paramitrized approach to QMA
Alternate prospective: A reduction from QCSAT to Pauli Hamiltonian problem on t quits with $\leq 2^{t}$ terms.
Pf sketch if V has $0 T$-gates and only Clifford gates, then

$$
\begin{aligned}
& \langle\psi, 0| V^{+}(\mathbb{I}-z) V|\psi, 0\rangle \\
& =\left\langle\psi_{1} 0\right| g_{1}^{+} \ldots g_{m}^{+}(\mathbb{I}-z) g_{m^{\prime}} \cdot g_{1}|\psi, 0\rangle \\
& \left.=\langle\psi, 0| g_{1}^{+} \ldots g_{m-1}^{+}\left(\mathbb{I}-P_{m-1}\right) g_{m-1} \ldots g,\left|\psi_{1},\right\rangle\right) \\
& \quad=1-\langle\psi, 0| P_{0}|\psi, 0\rangle
\end{aligned}
$$

Pf sketch (cont.)

$$
P_{0}=P_{0}^{(1)} \otimes \ldots \otimes P_{0}^{(n)}
$$

$$
\max _{|\psi\rangle} 1-\langle\psi, 0| P_{0}|\psi, 0\rangle=1-\langle 0| P_{0}^{\prime}|0\rangle
$$

no dependence on $|\psi\rangle$!
only non-Clifford
What happens if gate $g_{i}=T$?

$$
\begin{aligned}
& P_{m}=z^{\text {hem prev }} \\
& P_{i}=g_{i+1}^{+} P_{i+1} g_{i+1}
\end{aligned}
$$

$T^{+} Z T=T, T^{+} \mathbb{I} T=\mathbb{I}$,
$T^{+} X T=\frac{1}{\sqrt{2}} X-\frac{1}{\sqrt{2}} Y, T^{+} Y T=\frac{1}{\sqrt{2}} X+\frac{1}{\sqrt{2}} Y$.
Then $P_{i}=P_{i}^{(1)}+P_{i}^{(2)} \longleftarrow$ sum of 2 Paulis.
Continue propogation fill end where ne reach $P_{0}^{(1)}+P_{0}^{(2)}$.

Pf sketch (cont.)
Easily extends to t T-gates to show that problem equiv. to $\left.\underset{|\psi\rangle}{\max }\langle\psi, 0| V^{t}(I-z) V|\psi, 0\rangle=\max \langle\psi\rangle, 0\left|\sum_{i=1}^{\leqslant 2^{t}} P_{0}^{(i)}\right| \psi, 0\right\rangle$.
Issue: Paulis $P_{0}^{(i)}$ are n quit Paulis. Still large sum.
Ans: \exists basis of $t+1$ Panlis s.t. each Pauli $P_{0}^{(i)}$ can be expressed as prod of basis terms.
Pf Induction with each \exists Clifford rotation st. basis is T- gate.

Pf sketch (cont.)
Basos B_{1}, \ldots, B_{t+1}. Then construct map

$$
\begin{aligned}
& B_{1} \longrightarrow \begin{cases}Z I I \ldots \\
B_{2} & \longrightarrow Z I \ldots \\
x Z I \ldots & \text { if } B_{1}, B_{2} \text { commute }\end{cases} \\
& B_{i} \longrightarrow \text { not }^{\left[B_{1} B_{i}=-B_{i} B_{1}\right]} \ldots X^{\left[B_{1.1} B_{i}=-B_{i} B_{i, 1}\right]} \geq I I \ldots . .
\end{aligned}
$$

\Rightarrow Every $P_{0}^{(i)}$ acts on $t+1$ qubits. $\left\lvert\, \begin{aligned} & \text { Con improve to } t \\ & \text { quits and explicit } \\ & \text { map } W \text { (see paper). }\end{aligned}\right.$

Final thoughts before 1 finish
(1) Devote more research to understanding descriptions of q. stats. Not the same as decision problems!
(2) Simpler descriptions lead to decision problem speedups.
(3) Big open questions are
(3.) QCMA $\stackrel{?}{=}$ QMA
(36) Is description complexity robust to small perturbations? NLTS conjecture.

