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Quantum states are 
exponentially complex
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Quantum states are 
exponentially complex

Space of 𝑛 particle states = ℂ!! How is it possible to represent 
quantum states without 
exponential complexity?

physically relevant corner
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defined by local interactions

each 𝑘-local interaction is described by
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A global view on the interactions
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A short description of the interactions
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local Hamiltonian
𝐇 has a short (poly(𝑛)) length description

the relevant states in physics are the 
“low-energy” states of 𝐇

energy of a state |𝑣⟩ := eigenvalue of |𝑣⟩

low-energy means small-eigenvalue

calculating the low-energy states of 𝐇
involves piecing together the solutions of 
each of the local terms {ℎ.}
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Describing low-energy states

Space of 𝑛 particle states = ℂ!!

physically relevant corner



Describing low-energy states

Space of 𝑛 particle states = ℂ!!

low-energy states of local Hamiltonians

What does “low” mean?

ground-state
= 

eigenvector of minimal e-value

up to energy ≤ 𝜖𝑛

any vector |𝑣⟩ such that 𝑣 𝐇 𝑣 ≤ 𝜖𝑛

describes the states at constant temperature



Describing low-energy states
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𝐇 has a short (poly(𝑛)) length description

Are there short descriptions
for the ground-states of 𝐇?

[Kitaev’99]: It is QMA-hard (Quantum NP)
to describe the ground-states

What about the low-energy states? Could 
any of them be easy to describe?

Today’s talk: when low-energy states are 
hard to describe



Outline for the 
remainder of the talk

- NLTS and QPCP conjectures (description lower bounds)
- Stronger lower bounds in distribution-testing
- Defining state complexity 
- Ideas for future research and open problems



Part 1: The NLTS 
conjecture

Kristina Armitage for Quanta Magazine

lower bounds on the 
description complexity of 
quantum states



The relationship between 
description complexity and entanglement

entanglement 
structure

description 
length

quantum entanglement
doesn’t suffice to describe each individual particle

the longer the description ⇛ the more “complex” the entanglement

description length is a “measure” of entanglement complexity

Are there local Hamiltonians with no 
short description low-energy states?

today’s central question



The relationship between 
description complexity and entanglement

entanglement 
structure

description 
length

computational 
complexity

Are there local Hamiltonians with no 
short description low-energy states?

today’s central question



The circuit model

computation can be described in the circuit model
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The circuit model

computation can be described in the circuit model
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The circuit model

likewise, quantum computation can be described in the circuit model
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The circuit model

likewise, quantum computation can be described in the circuit model
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Circuit depth as a measure of complexity

likewise, quantum computation can be described in the circuit model
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1
2
1 1
1 −1

|0⟩

|0⟩

|0⟩

X

X

H
0⟩ 1 |1 + 1⟩ 0 |1

2

quantum computation also gives us a measure of complexity for states!

depth

definition: depth(|𝑣⟩) = minimum depth over all circuits outputting |𝑣⟩ from |00…0⟩



The (quantum) computational yardstick

efficient classical algorithm for 
calculating the energy of |𝑣⟩ for any LH 𝐇

efficient quantum algorithm for 
calculating the energy of |𝑣⟩ for any LH 𝐇

depth |𝑣⟩ = minimum depth 
of circuit with output |𝑣⟩

O(log log 𝑛) depth =: “trivial”

poly(𝑛) depth

2((%) depth

all states
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Our motivating question, reframed
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Are there local Hamiltonians with no 
short description low-energy states?

today’s central question
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Our motivating question, reframed

Are there local Hamiltonians with no
trivial-depth low-energy states?

today’s central question
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The NLTS problem

No Low-energy Trivial States (NLTS) Conjecture
Freedman and Hastings ‘14.

For any 𝑛 > 0, there exists an 𝑛-qubit local Hamiltonian system such that every ≤ 𝜖𝑛-energy state 
requires at least 𝜔(log log 𝑛) circuit depth.

Seq. of partial results: [EH’17,NVY’18,Eld’21,BKKT’19,AN’20,AB’22] 

low-error states

thermal states

“one-sided” low-energy states
every ≤ 𝑜(𝑛)-energy state 

all low-energy “combinatorial” states



No Low-energy Trivial States (NLTS) Theorem
Anshu, Breuckmann, and Nirkhe ‘22.

For any 𝑛 > 0, there exists an 𝑛-qubit local Hamiltonian system such that every ≤ 𝜖𝑛-energy state 
requires at least Ω(log 𝑛) circuit depth.

The NLTS problem

Seq. of partial results: [EH’17,NVY’18,Eld’21,BKKT’19,AN’20,AB’22] 

Robust entanglement can (theoretically) exist at warm temperature!

NLTS is an engineering feat – construction builds on Hamiltonian 
complexity, error-correction, and expander graphs

First evidence of the entanglement conjectured to exist by the 
quantum PCP conjecture (more on this next)



Part 1b: The quantum 
PCP conjecture
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The classical PCP theorem
“the most important result in complexity theory since Cook's theorem” –Ingo Wegener

prover

verifier
classical 
poly 𝑛

time 

3-SAT 
formula 𝜙

assignment
(or proof) 𝑥

NP

A verifier needs to read the entire proof 𝑥 to check correctness

PCP theorem (proof checking): there is a family of NP-complete 
proofs so that only a constant number of bits need to be read!

PCP Theorem (satisfiability) [AS’92]:
NP-complete to estimate the satisfiability of a 

SAT formula 𝜙 to 1% multiplicative error

What is the quantum analog?



The quantum PCP conjecture

prover

verifier
quantum
poly 𝑛

time 

local Ham. 𝐇 ground-state |𝑣⟩

QMA

PCP Theorem (satisfiability) [AS’92]:
NP-complete to estimate the satisfiability of a 

SAT formula 𝜙 to 1% multiplicative error

QPCP Conjecture (satisfiability) [AN’02]:
QMA-complete to estimate the ground-energy 

of a local Hamiltonian up to  
1% multiplicative error



Implications for robust entanglement
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Implications for robust entanglement

prover

verifier
quantum 
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time 

local Ham. 𝐇 low-energy state |𝑣⟩

QPCP Conjecture (satisfiability) [AN’02]:
QMA-complete to estimate the ground-energy 

of a local Hamiltonian up to  
1% multiplicative error

assuming the QPCP conjecture

QMA



Implications for robust entanglement
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If there always exists a low-energy state |𝑣⟩ which is 
the output of a trivial-depth circuit 𝐶, 



Implications for robust entanglement

prover

verifier
classical
poly 𝑛

time 

local Ham. 𝐇 low-energy state |𝑣⟩

QPCP Conjecture (satisfiability) [AN’02]:
QMA-complete to estimate the ground-energy 

of a local Hamiltonian up to  
1% multiplicative error

assuming the QPCP conjecture

QMA

If there always exists a low-energy state |𝑣⟩ which is 
the output of a trivial-depth circuit 𝐶, 

then the prover can send the description of 𝐶 instead.

description of 𝐶

= NP
widely believed to be false



Implications for robust entanglement

QPCP Conjecture (satisfiability) [AN’02]:
QMA-complete to estimate the ground-energy 

of a local Hamiltonian up to  
1% multiplicative error

NLTS Theorem:
There exist local Hamiltonian systems with 

every ≤ 0.01𝑛-energy state 
requiring at least Ω(log 𝑛) circuit depth

(assuming QMA ≠ NP)



NLTS proof intuition

• Exotic examples of entanglement
• Intuition for circuit lower bounds
• Making the circuit lower bounds robust

Kristina Armitage for Quanta Magazine



Quantum error-correcting codes

APS/Alexandra Iosub

parity check 𝐶! ⟺ local Ham. term ℎ!

code-space ⟺ ground-space

are a rich source of local Hamiltonian 
examples with exotic entanglement

Error-correcting codes are good candidates for 
NLTS because there is a folklore proof that 
the code-states are not trivial



A primer on quantum error-correcting codes

any 𝑘 qubit state

𝑛 qubit codeword

𝑑 qubit erasure

recovery map

encoding

decoding

code-space = space of all 
encoded codewords

, ,
= Enc



Minimum depth distinguisher

What is the minimum depth circuit which 
distinguishes two orthogonal codewords?

Thm (folklore)
Any distinguishing circuit must 
have depth at least Ω(log 𝑑)
where 𝑑 is the code distance.

0 1

depth

This is a quantum phenomenon!
It does not occur classically; ex. repetition code

0 ↦ 000…000
1 ↦ 111…111

Corollary (folklore)
Codewords require circuits of 
depth Ω(log 𝑑) to generate.



Properties of trivial-depth states

depth 𝑡
2+

Thm (folklore)
Any distinguishing circuit must 
have depth at least Ω(log 𝑑)
where 𝑑 is the code distance.

0

output qubit only depend on few 
input qubits for low-depth circuits



Properties of trivial-depth states

depth 𝑡
2+

output qubit only depend on few 
input qubits for low-depth circuits

Thm (folklore)
Any distinguishing circuit must 
depend on at least 𝑑 + 1 qubits 
where 𝑑 is the code distance.

0



Local indistinguishability of 
codewords Thm (folklore)

Any distinguishing circuit must 
depend on at least 𝑑 + 1 qubits 
where 𝑑 is the code distance.

No Cloning Theorem Quantum Error-Correction Local Indistinguishability

Ψ 0 ↦ Ψ |Ψ⟩
correctable erasure error

recovery map

cloning of erased qubits

Resolution:       qubits are 
completely determined by 
the error-correcting code 

qubit state does not
depend on which state is 
encoded

encoded state



Extending the lower bounds to low-energy states

What about low-energy states?

Local indistinguishability is a brittle

Requires proving a “robust” version of 
the proof technique in order to apply

local indistinguishability

circuit lower bounds

q. error-correcting
codewords ground-states of error-correcting code 

Hamiltonians have circuit-depth lower 
bounds



Local indistinguishability is a brittle proof technique

|Ψ⟩

|Ψ′⟩



Local indistinguishability is a brittle proof technique

|Ψ⟩

|Ψ′⟩

|Ψ⟩

|Ψ′⟩

subset of low-energy states

Need a technique for extending lower-bound to the cone around |𝜓⟩



Extending the lower bounds to 
low-energy states

local indistinguishability

circuit lower bounds

q. error-correction

robust circuit lower 
bounds

Code Properties

rate [AN20]

distance [EH17]

expansion [ABN22]

local indistinguishability Heisenberg uncertainty 
principle



Emergence of optimal-parameter 
quantum error-correcting codes

Oct 2021: [Dinur-Evra-Livne-Lubotzky-Mozes21] construction of 
c3 classical codes (constant rate, constant fraction distance, 
constant local testability)

Nov 2021: [Panteleev-Kalachev21]
Independent construction of linear-rate and -distance quantum 
codes and c3 classical codes 

Feb 2022: [Leverrier-Zémor22] 
simplified proof of linear-rate and -distance quantum codes

Jun 2022: [Anshu-Breuckmann-Nirkhe22]
linear-rate + linear-distance + expanding codes are NLTS

And the Leverrier-Zémor construction has necessary expansion

Simons Institute for the Theory of Computing



Description complexity 
lower bounds
A broader perspective

– NLTS only proves circuit depth lower bounds

– We wanted to prove lower bounds on the length 
of classical descriptions of low-energy states

entanglement 
structure

description 
length

computational 
complexity



Outline for the 
remainder of the talk

- NLTS and QPCP conjectures
- Stronger lower bounds in distribution-testing
- Defining state complexity 
- Ideas for future research and open problems



Part 2: 
exponential lower 
bounds for ground-
states descriptions

A complexity theoretic approach



QCMA
classical proofs for 
quantum statements

prover

q. verifier

quantum
poly 𝑛

time 

QMA

𝑄 𝜓

prover

q. verifier

quantum
poly 𝑛

time 

QCMA

𝑄 𝜋

prover

verifier

classical 
poly 𝑛

time 

NP

𝑄 𝜋

⊇⊇

If QMA ≠ QCMA, ⇒ ground-states do not have polynomial-size verifiable classical descriptions.

Proof by contrapositive. If such descriptions exist, then they can be sent in lieu of the original state.



QCMA
classical proofs for 
quantum statements

prover

q. verifier

quantum
poly 𝑛

time 

QMA

𝑄 𝜓

prover

q. verifier

quantum
poly 𝑛

time 

QCMA

𝑄 𝜋

prover

verifier

classical 
poly 𝑛

time 

NP

𝑄 𝜋

⊇⊇ ⊇ P⊇PSPACE

If QMA ≠ QCMA, ⇒ ground-states do not have polynomial-size verifiable classical descriptions.

Proof by contrapositive. If such descriptions exist, then they can be sent in lieu of the original state.

vs.

DALL-E 2 renderings.



Lower bounds for all types of classically verifiable descriptions

NLTS proved that low-depth circuits cannot represent 
ground- or low-energy states of local Hamiltonians

More formally prove that a distribution-testing oracle 
separates QMA and QCMA

[Natarajan-Nirkhe22]:
There exists a generalization of local 
Hamiltonians for which we can prove that the 
ground-states cannot be described by any sub-
exponential size classical description 

prover

q. verifier

quantum
poly 𝑛

time 

QMA

𝑄 𝜓

prover

q. verifier

quantum
poly 𝑛

time 

QCMA

𝑄 𝜋

≠
(oracle)



Outline for the 
remainder of the talk

- NLTS and QPCP conjectures
- Stronger lower bounds in distribution-testing
- Defining state complexity 
- Ideas for future research and open problems



Part 3: 
complexity theory for 
the quantum world

Definitions of state complexity



State complexity classes

description of a decision problem
ex. Does 𝐶 accept any quantum state?

yes/no (binary) answer

description of a quantum state
ex. the accepting quantum state of 𝐶

a quantum state 𝜓 matching the 
description

Decision Complexity Class State Complexity Class



example complexity class: stateQMA

prover

verifier
quantum 
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Hamiltonian 
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ground-state 
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QMA



example complexity class: stateQMA

prover

verifier
quantum 
poly 𝑛

time 

state 
description

untrusted 
state |𝜙⟩

stateQMA

abort or target state |𝜓⟩

How does stateQMA compare to QMA?

It is easy to prove that stateQMA contains 
the ground-states of local Hamiltonians



Comparing stateQMA and QMA
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Comparing stateQMA and QMA

prover

verifier
quantum 
poly 𝑛

time 

state 
description

untrusted 
state |𝜙⟩

stateQMA
abort or target state |𝜓⟩

quantum 
poly 𝑛

time 

prover

q. verifier

quantum
poly 𝑛

time 

QMA

𝑄 𝜓

stateBQPQMA

Theorem [Irani, Natarajan, Nirkhe, Rao, Yuen22]:
Under oracle separations, there are states producible by 

stateQMA that cannot be produced by stateBQPQMA

i.e. search-to-decision reductions likely do not hold for QMA



Our current understanding of state complexity

• stateQMA is (likely) not equal to stateBQPQMA

• Equivalently, QMA does not have search-to-decision reductions
• [Irani, Natarajan, Nirkhe, Rao, Yuen22]
• stateQIP = statePSPACE
• interactive protocols for state generation are equal to space-

bounded constructible states
• [Rosenthal, Yuen22 and Metger,Yuen23]
• Unitary synthesis problems
• What can we say about the complexity of quantum state 

transformations?
• Can all unitaries be synthesized with access to a suitably powerful 

oracle? [Aaronson16]

Kristina Armitage for Quanta Magazine



Outline for the 
remainder of the talk
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Future work and 
open questions
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Open problems

Quantum Probabilistically Checkable Proofs (QPCP) 
Conjecture

Is it hard-to-approximate the minimum eigenvalue of local Hamiltonian?

• Biggest open question in quantum complexity theory

• Can we verify “quantum proofs” quickly without reading too many bits?

• Classical PCPs revolutionized theoretical CS (ex. cryptography, approx. algs)

• Help understand the nature of “many-body” entanglement at low-temperature

• Partially resolved by the NLTS problem (QPCP implies NLTS)

prover

q. verifier

quantum
poly 𝑛

time 

QMA

𝑄 𝜓



Proving stronger lower bounds than NLTS

Constant-depth quantum circuits are just one of 
many classical witness that can be provided for 
an NP proof. 

QPCP Conj. + NP≠QMA ⟹
lower-bounds for all families of NP witnesses

Open question: Can we prove lower-bounds for 
some other families of NP witnesses? Is there is a 
family of local Hamiltonians for which all known 
NP witnesses are insufficient?

Any state of this form is also a NP witness. These 
are called “trivially-rotated stabilizer states”.

NLTS+ conjecture: There exists local Hamiltonian 
such that all such states have energy ≥ 𝜖𝑛.

Our proof of NLTS does not satisfy this!

Clifford circuit

constant-depth circuit

0  …. .… 0



Open problems

Fleshing out the notion of state complexity
How should we understand quantum states in relation to the pantheon of results in 

complexity theory?

• Quantum states generalize distributions, quantum computation, and describe physical phenomenon

• How do we understand their complexity? Meaning we need to understand how to define computation 

with quantum inputs and/or quantum outputs

• Notions of reductions, relations to decision complexity

• hardness-of-approximation, interactive proofs

• Specifically, what is the correct notion of stateNP? How do we generalize NLTS Hamiltonians?




