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Why is there so much hype?
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The extended Church-Turing thesis

Any ”reasonable” method of computation can 

be efficiently simulated on a standard model

(i.e. Turing machine, uniform circuits, etc.)
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The extended Church-Turing thesis

Any ”reasonable” method of computation can 

be efficiently simulated on a standard model

(i.e. Turing machine, uniform circuits, etc.)

Quantum 

Computing!

∃ 𝒪 s.t. BPP𝒪 ≠ BQP𝒪 [Simon
93

, Bernstein-Vazirani
93

]
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BQP = the set of languages decidable by a 

polynomial time quantum algorithm
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The extended Church-Turing thesis

∃ 𝒪 s.t. BPP𝒪 ≠ BQP𝒪 [Simon
93

, Bernstein-Vazirani
93

]

FACTORING ∈ BQP [Shor
94

]

BQP = the set of languages decidable by a 

polynomial time quantum algorithm

So there is theoretical evidence, but is there 

anything tangible?
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72-qubit Bristlecone chip

Experimental progress
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72-qubit Bristlecone chip

Experimental progress

NISQ Era [Preskill
18

]
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Oracle 

Separation

Quantum 

Algorithms

Experimental 

Progress
Complexity 

Theory

Quantum Supremacy
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Quantum supremacy proposal

A practical demonstration of a quantum computation 

which is

1. Experimentally feasible

2. Has theoretical evidence of hardness

3. Verifiable
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Quantum supremacy proposal

A practical demonstration of 

a quantum computation 

which is

1. Experimentally feasible

2. Has theoretical evidence 

of hardness

3. Verifiable

“an experimental violation of the extended 

Church-Turing thesis” – U. Vazirani
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Why factoring is not the right proposal

The speedups come from carefully 

engineered interference patterns with 

large amounts of constructive and 

destructive interference 

Which is hard to generate 

on the currently available 

noisy intermediate scale 

quantum devices

This behavior is far from “typical”. 

It’s hard to make this happen in 

the lab!!

“Proving a quantum system’s 

computational power by having it 

factor integers is a bit like proving a 

dolphin’s intelligence by teaching it 

to solve arithmetic problems” 

[Aaronson-Arkhipov
11

]
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Complexity theory 

inspired supremacy 

proposals

Experimentally

inspired supremacy 

proposals

Problems for which no efficient classical 

algorithms exist (perhaps under complexity-

theoretic conjectures)

Example: Boson Sampling [Aaronson
11

]

Proves efficient classical algorithms cannot exist 

unless PH-collapses

Problems which we can experimentally test 

in the near future (~10 years)

Example: Random Circuit Sampling [BIS+
16

]

Near-term experimentally feasible due to high-quality 

superconducting qubits
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A Quantum Supremacy Proposal

Random Circuit Sampling

Given the description of a quantum 

circuit 𝐶, sample from the output 

distribution of the quantum circuit.
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Part 0: 

What is quantum computing?
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What is quantum computing?

It’s computing (really, information processing) based on the 

principles of quantum mechanics rather than classical physics.

Quantum mechanics is a description of nature

• Formulated to explain the behavior of subatomic 

particles.

• QM has been spectacularly successful in explaining 

microscopic physical phenomena.
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What is quantum computing?

Quantum computers run in superposition. It’s like 

running probabilistically except there can be 

negative (complex) probabilities.

Remember physics?

=
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What is quantum computing?

The state of a deterministic computation is a binary string

𝑥 ∈ {0,1}𝑚

The state of a randomized computation is a probability distribution

𝑝𝑥 𝑥∈ 0,1 𝑚 σ𝑥 𝑝𝑥 = 1; 𝑝𝑥 ≥ 0

The state of a quantum computation is a superposition

෍

𝑥

𝛼𝑥|𝑥⟩ ෍

𝑥

𝛼𝑥
2 = 1; 𝛼𝑥 ∈ ℂ
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What is quantum computing?

Quantum computers are realized by measurement. 

Classical numbers which we can read.

෍

𝑥∈ 0,1 𝑛

𝛼𝑥|𝑥⟩
𝑝𝑥 𝑥∈ 0,1 𝑛

𝑝𝑥 = 𝛼𝑥
2
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What is quantum computing?

At a high level, quantum computing gives us some of the 

power of parallel computation without multiple processors. 

Some problems have good quantum algorithms, while we 

believe that for some quantum offers no improvement.
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Part 1: 

Classical hardness of

Random Circuit Sampling
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Fix an architecture over quantum circuits

Given a circuit from the architecture, sample from its 

output probability distribution
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Sampling from the exact output distribution of a 

quantum circuit is #P-hard

Trick: Since proving #P-hardness, by Toda’s Theorem 

can use PH reductions instead of just P reductions
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Recall the polynomial hierarchy…

#P

PH ⊆ P#P [Toda
91

]



Chinmay Nirkhe (UC Berkeley) Complexity and verification of Random Circuit Sampling27

Exact classical sampling from quantum 

circuits would give us:

Contradicts the non-collapse of the PH:

Toda’s Theorem

Pf: Estimating output probabilities is #P-hard. Apply BPPNP reduction 

due to Stockmeyer’s Thm
85

to get sampling is also #P-hard.



Chinmay Nirkhe (UC Berkeley) Complexity and verification of Random Circuit Sampling28

Therefore, exact quantum sampling is 

#P-hard under BPPNP-reductions
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But…

No quantum device would exactly sample 

from the output distribution due to noise! 

So in order to make this argument, we 

have to show that no classical sampler can 

even approximately sample from the same 

distribution!
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By construction, the “hardness” of our circuit 

was in Pr(0).

If an adversary knew that, they could generate 

an approximate sampler that never outputted 0.

Thereby, short-circuiting the hardness proof.
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We want to embed the hardness across 

all the outputs of the probability 

distribution.

We want a robustness condition: Being 

able to compute most probabilities 

should be #P-hard.
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We want a robustness condition: Being able to 

compute most probabilities should be #P-hard.

We want a robustness condition: Being able to 

compute Pr0(𝐶) for most circuits 𝐶 should be #𝑃-

hard.

Pr0(𝐶) = prob. 𝐶 outputs 0
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What known problem has such a 

property?

Theorem [Lipton
91

,GLR+
91

]: The following is #P-hard: For sufficiently large 𝑞, 

given uniformly random 𝑛 × 𝑛 matrix 𝑀 over 𝔽𝑞, output perm(𝑀) with 

probability > ¾ + 1/poly(𝑛)
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perm(𝐴) is a degree 𝑛 polynomial in the matrix entries of 𝐴

Choose 𝑅 a random matrix. Let 𝑀(𝑡) = 𝐴 + 𝑅𝑡.
𝑀(0) = 𝐴 and 𝑀(𝑡) for 𝑡 ≠ 0 is uniformly random.

perm(𝑀(𝑡)) is a degree 𝑛 polynomial in 𝑡

Choose random 𝑡1, … , 𝑡𝑛+1, calculate perm(𝑀(𝑡𝑖))
Interpolate the polynomial perm(𝑀(𝑡)). Output perm(𝑀(0))

Permanent is avg-case hard
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Permanent is avg-case hard

Assume we can calculate perm(𝑅) for random 𝑅 with 

probability > 1 − 1 /(3𝑛 + 3).

By union bound, we calculate perm(𝐴) with probability 2/3. 

Since permanent is worst-case #P-hard [Valiant
79

],

This proves statement for probability 1 – 1/(3𝑛 + 3).

Better interpolation techniques bring the probability down 

to ¾ + 1/poly(𝑛).
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Goal: find a similar polynomial structure 

in the problem of Random Circuit 

Sampling 
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High-level idea

Feynman Path Integral: 

Quantum analog of space-efficient brute-force 

evaluation of a circuit 
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Feynman Path Integral 

Then Pr0(𝐶) is a low-degree polynomial in the gate 

entries. We want to apply a similar interpolation 

technique as permanents. 
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Consider the circuit 𝐶(𝑡) formed by changing each gate 

𝐶𝑖 to 𝐶𝑖 + 𝑡𝐻𝑖 for random gate 𝐻𝑖.

Just like permanent!

But, 𝐶𝑖 + 𝑡𝐻𝑖 isn’t a quantum gate!

Idea #1
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Idea #2

Consider the circuit 𝐶(𝜃) formed by changing each gate

1. 𝐶(1) = 𝐶
2. For small 𝜃, circuit looks 𝜃-close to random!

3. Not a low-degree polynomial in 𝜃
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Consider the circuit 𝐶(𝑡) formed by changing each gate 

𝐶𝑖 to 𝐶𝑖 + 𝑡𝐻𝑖 for random gate 𝐻𝑖.

Just like permanent!

But, 𝐶𝑖 + 𝑡𝐻𝑖 isn’t a quantum gate!

Idea #2
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Idea #3

Taylor Series!

1. 𝐶(1) ≈ 𝐶
2. For small 𝜃, circuit looks 𝜃-close to random!

3. A low-degree polynomial in 𝜃
4. For more complicated technical reasons, this is a necessary, but 

not sufficient, proof of average-case hardness.



Chinmay Nirkhe (UC Berkeley) Complexity and verification of Random Circuit Sampling44

Theorem: On average, it is hard to 

exactly sample from the output of 

random circuits.

This puts Random Circuit Sampling 

on par with the best known 

supremacy proposals.
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Part 2: 

Verification of

Random Circuit Sampling
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How do we know if our quantum 

computer is doing what it says its 

doing?
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phdcomics.com & Caltech IQIM
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phdcomics.com & Caltech IQIM
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Sweet spot in verification

Toolbox

Noisy 50 qubit 

quantum computer

Super-computers 

capable of 2
60

size 

computations

Compromise: OK with exponential post 

processing time on supercomputer to compute “a 

few” ideal output probabilities for “intermediate” 

size quantum computers (𝑛 = 50 qubits)

Constraint: can only take a small (poly(𝑛)) 
number of samples from the quantum device

Challenge: Complexity arguments require 

closeness in total variation distance. But we can’t 

hope to unconditionally verify this with few 

samples from the device.
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Candidate test: Cross-Entropy [Boixo+
16

]

CE 𝑝dev, 𝑝id =෍

𝑥

𝑝dev 𝑥 log
1

𝑝id(𝑥)
= 𝔼𝑝dev log

1

𝑝id

Can be approximated in a few samples

• Sample 𝑥1, … , 𝑥𝑘from quantum device

• Use exponential time to calculate 𝑝id(𝑥𝑖)
• Estimate CE

• If score is close enough to expected CEideal, then accept.
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Candidate test: Cross-Entropy [Boixo+
16

]

This is a one-dimensional projection of high-dimensional information

Does not verify closeness in total-variation distance

Theorem: If cross-entropy is close to ideal and 

𝐻 𝑝dev ≥ 𝐻(𝑝id)
then the output distribution is close to ideal in total 

variation distance
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Candidate test: Binned output generation

Consider dividing the [0,1]
interval into poly(𝑛) bins

Observe 𝑘 samples 𝑥1, … , 𝑥𝑘 and 

calculate ideal probabilities for each 

sample on supercomputer

Plot and make sure correct number of 

points in each bin

Thanks!


