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TECH & SCIENCE Is Government Ready for the Brewing

REVOLUTIONARY QUANTUM Quantum Storm?
COMPUTER IS ONE STEP CLOSER TO >
REALITY AFTER MAJOR
BREAKTHROUGH

BY ARISTOS GEORGIOU ON 3/8/18 AT 9:22 AM

China’s race for the mother of all supercomputers just
got more crowded

Baidu, Alibaba and Tencent jockey for position in the development of quantum
computing, which delivers a faster and more efficient approach to processing
information than today’s fastest computers

Why law firms need to worry about quantum
computing ) : .
BY AGNESE SMITH December 7, 2018 Will quantum com pUtlng break blockchain?

@ December 12,2018 & Gary Stevens

Safe and secure with blockchain
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Why law firms need to worry about quantum oo and secure with blockehain
computing
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The extended Church-Turing thesis

Any “reasonable” method of computation can
be efficiently simulated on a standard model
(i.e. Turing machine, uniform circuits, etc.)
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The extended Church-Turing thesis
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3 0 s.t. BPPY # BQPY [Simon?3, Bernstein-Vazirani?]
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The extended Church-Turing thesis

3 0 s.t. BPPY # BQPY [Simon?3, Bernstein-Vazirani®?]

FACTORING € BQP  [Shor?4]

BQP = the set of languages decidable by a
polynomial time quantum algorithm
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The extended Church-Turing thesis
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So there is theoretical evidence, but is there

anything tangible?
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polynomial time quantum algorithm
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Experimental progress

Alibaba Group
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sl NISQ Era [Preskill'8]

GO 816 72-qubit Bristlecone chip
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Oracle
Separation

Quantum
Algorithms

Experimental
Progress

Quantum Supremacy

Chinmay Nirkhe (UC Berkeley) Complexity and verification of Random Circuit Sampling




Quantum supremacy proposal

A practical demonstration of a quantum computation
which is

1. Experimentally feasible

2. Has theoretical evidence of hardness
3. Verifiable
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Quantum supremacy proposal
A practical demonstration of

Google moves toward quantum

" supremacy with 72-qubit
a quanfum computation computer

which is

“an experimental violation of the extended
Church-Turing thesis” — U. Vazirani
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Why factoring is not the right proposal

The speedups come from carefully
engineered interference patterns with
large amounts of constructive and
destructive interference

This behavior is far from “typical”.
It's hard to make this happen in
the lab!!

Chinmay Nirkhe (UC Berkeley)

Which is hard to generate
on the currently available
noisy intermediate scale
guantum devices

“Proving a quantum system’s
computational power by having it
factor integers is a bit like proving a
dolphin’s intelligence by teaching it
to solve arithmetic problems”
[Aaronson-Arkhipov'']
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Complexity theory Experimentally

inspired supremacy inspired supremacy
proposals proposals
Problems for which no efficient classical Problems which we can experimentally test
algorithms exist (perhaps under complexity- in the near future (~10 years)

theoretic conjectures)

Example: Boson Sampling [Aaronson'’] Example: Random Circuit Sampling [BIS+1¢]
Proves efficient classical algorithms cannot exist Near-term experimentally feasible due to high-quality
unless PH-collapses superconducting qubits
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A Quantum Supremacy Proposal

Given the description of a quantum
circuit C, sample from the output
distribution of the quantum circuit.
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Part 0:
What is quantum computing?
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What is quantum computing?

It's computing (really, information processing) based on the
principles of quantum mechanics rather than classical physics.

Quantum mechanics is a description of nature

 Formulated to explain the behavior of subatomic
particles.

* QM has been spectacularly successful in explaining
microscopic physical phenomena.
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What is quantum computing?

Quantum computers run in superposition. It's like
running probabilistically except there can be
negative (complex) probabilities.

Remember physics?

|
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What is quantum computing?

The state of a deterministic computation is a binary string
x € {0,1}™
The state of a randomized computation is a probability distribution

{Px}xe{o,l}m dxPx =1;,0, =0

The state of a quantum computation is a superposition

Eaxpc) Eaﬁzl;axEC

X X
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What is quantum computing?

Quantum computers are realized by measurement.
Classical numbers which we can read.

z axlx) — /71 —) {px}xE{O,l}Z
Dy = lay|

x€{0,1}"
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What is quantum computing?

At a high level, qguantum computing gives us some of the
power of parallel computation without multiple processors.

Some problems have good quantum algorithms, while we
believe that for some quantum offers no improvement.
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Part 1:
Classical hardness of
Random Circuit Sampling




Fix an architecture over quantum circuits

0) M
gi .I:ﬁ
0)

Given a circuit from the architecture, sample from its
output probability distribution
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Sampling from the exact output distribution of a
quantum circuit is #P- hard

owlﬁ
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Exact classical sampling from quantum
circuits would give us:

p#P C BPP""

Contradicts the non-collapse of the PH:

BPP"" C ¥3 C PH C P#F

Toda’s Theorem

Pf: Estimating output probabilities is #P-hard. Apply BPPN? reduction
due to Stockmeyer’s Thm?3> to get sampling is also #P-hard.
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Therefore, exact quantum sampling is
P-hard under BPPN'-reductions
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But...

No quantum device would exactly sample
from the output distribution due to noisel

So in order to make this argument, we
have to show that no classical sampler can

even approximately sample from the same
distribution!
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By construction, the “hardness” of our circuit
was in Pr(0).

If an adversary knew that, they could generate
an approximate sampler that never outputted 0.

Thereby, short-circuiting the hardness proof.
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We want to embed the hardness across
all the outputs of the probability
distribution.

We want a robustness condition: Being

able to compute most probabilities
should be #P-hard.

Chinmay Nirkhe (UC Berkeley) Complexity and verification of Random Circuit Sampling




asoo

\ C1101

Pr[C outputs 1101] = Pr{C11¢1 outputs 0000]

B
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We want a robustness condition: Being able to
compute Pr,(C) for most circuits C should be #P-

hard.

Pr,(C) = prob. C outputs 0
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perm(M) = » || M; o)

ceS,, 1=1

Theorem [Lipton?!,GLR+°']: The following is #P-hard: For sufficiently large g,
given uniformly random n X n matrix M over F , output perm(M) with
probability > 34 + 1/poly(n)
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Permanent is avg-case hard perm(4) = » ] 4.0

ceS, 1=1

perm(A) is a degree n polynomial in the matrix entries of A

Choose R a random matrix. Let M(t) = A + Rt.
M(0) = Aand M(t) fort # 0is uniformly random.
perm(M(t)) is a degree n polynomial in t

Choose random ¢y, ..., t,,;+1, calculate perm(M(t;))
Interpolate the polynomial perm(M(t)). Output perm(M(0))

Chinmay Nirkhe (UC Berkeley) Complexity and verification of Random Circuit Sampling




Permanent is avg-case hard perm(4) = » ] 4.0

ceS, 1=1
Assume we can calculate perm(R) for random R with
probability > 1 — 1 /(3n + 3).

By union bound, we calculate perm(A4) with probability 2/3.
Since permanent is worst-case #P-hard [Valiant’?],
This proves statement for probability 1 - 1/(3n + 3).

Better interpolation techniques bring the probability down
to 34 + 1/poly(n).

Complexity and verification of Random Circuit Sampling
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Goal: find a similar polynomial structure
in the problem of Random Circuit
Sampling
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- Cﬁ; High-level idea
B

~® 4 Feynman Path Integral:

m

(Ym|Clyo) = > [ [wi1Cly;-1).

Y1,Y2,--,Ym—-1€10,1}7 =1

Quantum analog of space-efficient brute-force
evaluation of a circuit

Chinmay Nirkhe (UC Berkeley) Complexity and verification of Random Circuit Sampling




Feynman Path Integral

m

(0]C10) = D 1 [ ws1Cilyi-1)-

y17y27°°'7ym—]_€{0,1}n J:].

Then Pr,(C) is a low-degree polynomial in the gate
entries. We want to apply a similar interpolation
technique as permanents.
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Ildea #1 (0|C0) = > 1 (wi1C5ly5-1)-

Y192,y Ym—1€4{0,1}7 j=1

Consider the circuit C(t) formed by changing each gate
C; to C; + tH; for random gate H;.

Just like permanent!

But, C; + tH; isn't a quantum gate!
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Ideu #1 (0|C|0) = Z (WilCjlyj—1)-

y17y27"'7y’rn—1€{071}nj 1

C; — C’Z-Hz-e_whi where h; = —1log H;

1. C(1) =C
2. For small 6, circuit looks 6-close to random!
3. Not a low-degree polynomial in 6
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Idea #2 (0]C0) = > (Wi |Cjlyj-1)-

Yi1,Y2,---, ym_16{071}n-] 1

Consider the circuit C(t) formed by changing each gate
C; to C; + tH; for random gate H;.

Just like permanent!
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Idea #3 (0|C|0) = Z H ;15— 1).

Taylor Series!

poly(n)
Replace e " with Z (= Hh)

k=0

1. C€(1) =
2. For small 9, circuit looks 6-close to random!
3. A low-degree polynomial in 6
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Theorem: On average, it is hard to
exactly sample from the output of
random circuits.

This puts Random Circuit Sampling
on par with the best known
supremacy proposals.
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Part 2:
Verification of

Random Circuit Sampling
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How do we know if our quantum
computer is doing what it says its
doing?
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IT’s a secretT computation...

phdcomics.com & Caltech IQIM
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I don't remember.

phdcomics.com & Caltech IQIM
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Sweet spot in verification

Toolbox

Noisy 50 qubit
quantum computer

Super-computers
capable of 290 size
computations

Chinmay Nirkhe (UC Berkeley)

Compromise: OK with exponential post
processing time on supercomputer to compute “a
few” ideal output probabilities for “intermediate”
size quantum computers (n = 50 qubits)

Constraint: can only take a small (poly(n))
number of samples from the quantum device

Challenge: Complexity arguments require
closeness in total variation distance. But we can’t
hope to unconditionally verify this with few
samples from the device.
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Candidate test: Cross-Entropy [Boixo+ ']

1

= [E log —
Pig (x) Pdev gPid

CE(Paev: Pia) = ) Paev() log
X

Can be approximated in a few samples

« Sample x4, ..., x;from quantum device

» Use exponential time to calculate p;q(x;)
* Estimate CE

* If score is close enough to expected CE;4..1, then accept.
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Candidate test: Cross-Entropy [Boixo+ ']

This is a one-dimensional projection of high-dimensional information

Does not verify closeness in total-variation distance

Theorem: If cross-entropy is close to ideal and

H(pdev) = H(piq)
then the output distribution is close to ideal in total

variation distance
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Candidate test: Binned output generation

01 Consider dividing the [0,1]
R (s oly(n) bins
% 6102
’ . ples x4, ..., x;, and
3 4w obabilities for each
S e upercomputer
2 4 6 s 0 Plot and make sure correct number of

points in each bin

sample number i
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