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The Extended Church Turing Thesis

Any ”reasonable” method of computation can be efficiently
simulated on a standard model (i.e. Turing Machine, uniform 

circuits, etc.)

9O s.t. BPPO ( BQPO [BV93,Sim94]



FACTORING 2 BQP

BQP = the set of languages decidable by a 
polynomial time quantum algorithm

[Sho94]

9O s.t. BPPO ( BQPO [BV93,Sim94]



Experimental Progress

72-qubit Bristlecone chip
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Complexity-Theory 
inspired supremacy 

proposals

Experimentally
inspired supremacy 

proposals

Problems for which no efficient classical 
algorithms exist (perhaps under 

complexity-theoretic conjectures)

Example: Boson Sampling [AA11]

Proves efficient classical algorithms cannot exist 
unless PH-collapses

Problems which we can experimentally test 
imminently

Example: Random Circuit Sampling [BIS+16]

Near-term experimentally feasible due to high-
quality superconducting qubits



A Quantum Supremacy Proposal

Random Circuit Sampling

Given the description of a quantum 
circuit C, sample from the output 

distribution of the quantum circuit.
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Fix an architecture over quantum circuits

Given a circuit from the architecture, sample from its 
output probability distribution



Sampling Proposal

Candidate Quantum Computer Classical Supercomputer

Choose a random 
instance of your 

sampling 
problem

on ~50 qubits

Calculates ideal 
output 

distribution 
exactly

Outputs samples Compare and 
accept if close



Sampling from the exact output distribution of a 
quantum circuit is #P-hard

Trick: Since proving #P-hardness, by Toda’s Theorem 
can use PH reductions instead of just P reductions

|0i

|0i
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Exact classical sampling from quantum 
circuits would give us:

P#P ✓ BPPNP

Contradicts the non-collapse of the PH:

BPP
NP ✓ ⌃3 ( PH ✓ P

#P

Toda’s Theorem

Proof: Estimating output probabilities is #P-hard. Apply BPPNP

reduction due to Stockmeyer’s Thm ’85 to get sampling is #P-hard 
as well.



Therefore, exact quantum sampling is 
#P-hard under BPPNP-reductions



But you aren’t done yet! No 
quantum device would exactly
sample from the output 
distribution due to noise! 

So in order to make this argument, 
you have to show that no classical 
sampler can even approximately 
sample from the same distribution!



We want to embed the hardness across 
all the outputs of the probability 

distribution.

We want a robustness condition: Being 
able to compute most probabilities 

should be #P-hard.
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Pr[C outputs 1101] = Pr[C1101 outputs 0000]



We want a robustness condition: Being able 
to compute most probabilities should be 

#P-hard.

We want a robustness condition: Being able 
to compute Pr0(C) for most circuits C 

should be #P-hard.

Pr0(C) = prob. C outputs 0



Which known problem has such a 
property?

perm(M) =
X

�2Sn

nY

j=1

Mj,�(j)

Theorem [Lip91,GLR+91]: The following is #P-hard: For sufficiently large q, 
given uniformly random n x n matrix M over Fq, output perm(M) with 

probability > ¾ + 1/poly(n)

Basis for Boson Sampling



Permanent is avg-case hard

perm(A) is a degree n polynomial in the matrix entries

Choose R a random matrix. Let M(t) = A + Rt.
M(0) = A and M(t) for t ≠ 0 is uniformly random.
perm(M(t)) is a degree n polynomial in t

perm(A) =
X

�2Sn

nY

j=1

Aj,�(j)

Choose random t1,…, tn+1, calculate perm(M(ti))
Interpolate the polynomial perm(M(t)). Output perm(M(0))



Proof Permanent is avg-case hard
Assume we can calculate perm(R) for random R with 
probability > 1 - 1 /(3n + 3).

By union bound, we calculate perm(A) with probability 
2/3. Since permanent is worst-case #P-hard [Val79],
This proves statement for probability 1 – 1/(3n + 3).

Better interpolation techniques bring the probability down 
to ¾ + 1/poly(n).



Goal: find a similar polynomial 
structure in the problem of Random 

Circuit Sampling 



High-level idea

hym|C|y0i =
X

y1,y2,...,ym�12{0,1}n

mY

j=1

hyj |Cj |yj�1i.

Feynman Path Integral: 

Quantum analog of space-
efficient brute-force 
evaluation of a circuit 
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y1 y2 ym



Feynman Path Integral 

Then Pr0(C) is a low-degree polynomial in the gate 
entries. We want to apply a similar interpolation 

technique as permanents. 

h0|C|0i =
X

y1,y2,...,ym�12{0,1}n

mY

j=1

hyj |Cj |yj�1i.



Idea 1:

Consider the circuit C(t) formed by changing each 
gate Ci to Ci + tHi for random gate Hi.

Just like permanent!

But, Ci + tHi isn’t a quantum gate!

h0|C|0i =
X

y1,y2,...,ym�12{0,1}n

mY

j=1

hyj |Cj |yj�1i.



Idea 2:

Consider the circuit C(θ) formed by changing each 
gate

1. C(1) = C
2. For small θ, circuit looks θ-close to random!
3. Not a low-degree polynomial in θ

Ci 7! CiHie
�i✓hi where hi = �i logHi

h0|C|0i =
X

y1,y2,...,ym�12{0,1}n

mY

j=1

hyj |Cj |yj�1i.

Applying fraction of a gate is inherently quantum! No classical analog!



Idea 3:

Taylor Series!

1. C(1) ≈ C
2. For small θ, circuit looks θ-close to random!
3. A low-degree polynomial in θ
4. For more complicated technical reasons, this is a necessary, 

but not sufficient, proof of average-case hardness.

Replace e�i✓hi with

poly(n)X

k=0

(�i✓hi)
k

k!

h0|C|0i =
X

y1,y2,...,ym�12{0,1}n

mY

j=1

hyj |Cj |yj�1i.



Current state of Quantum Supremacy Proposals

Proposal Worst-case hardness Average-case hardness Imminent experiment

BosonSampling

FourierSampling

IQP

Random Circuit Sampling


