Quantum information and computation

CSE 534* | Autumn 2024

Course information

Instructor: Chinmay Nirkhe (OH: Tu 2:00 - 3:00pm, CSE2 217)
Teaching Assistant (TA): Lukshya Ganjoo (OH: Mon 3:30 - 4:30pm, CSE2 121)
Location: Guggenheim Hall Rm. 218
Times: Tu, Th 10:00am - 11:30am
Final: Dec 9, 2024 10:00am - 12:20pm

Course description

Introduction to quantum information and computation. Qubits, quantum gates, and measurements. Entanglement and non-locality. Density matrix formalism. Quantum algorithms: Simon's algorithm, Grover search, Shor's factoring, and Hamiltonian Simulation. Quantum error-correction. Recommended: either solid background in mathematics and/or theoretical computer science, or prior familiarity with quantum-computing fundamentals.

Prerequisites

The course material will be accessible to both computer scientists and physicists, provided they have a strong mathematical background. No explicit prerequisites are set for this course. We will review what is necessary but students with weaker math backgrounds may need to review material outside the course as necessary.

My expectation is that students have strong mathematical background in linear algebra (such as MATH 318, 340, or equiv.). They should have taken and done well in such courses. In terms of computer science prerequisites, exposure to the theory of computation (such as CSE 431, 531, or equiv.) and theory of algorithms (such as CSE 417, CSE 521-22, 525, or equiv.) is useful as we will be extending the results from classical computation to quantum computation. No physics knowledge is necessary but it doesn't hurt to have taken a previous course on quantum mechanics (such as PHYS 225, 324, or equiv.). It is also helpful (but not necessary) to have taken group theory (such as MATH 402-04, 411-12, or equiv.), and analysis (such as MATH 327, 424-28 or equiv.).

Undergraduate students or graduate students of non-traditional backgrounds for this course are encouraged to contact me to see if this course is right for them.

Literature and other material

There are no explicit textbooks for this course but the following is a pretty good library to have around. I will link related readings from these books or online lecture notes as appropriate: This video lecture series from Watrous at IBM may also be helpful.

The following are topics textbooks that might be helpful for further exploration outside the scope of this course.

Course schedule and topics

Problem sets and grading

Grades in this course are based 70% on problem sets and 30% on the final. As this is a graduate course, we will try to be lenient for reasonable extension requests on problem sets but all requests are up to the discretion of the TA and a reason for refusal or approval will not be given.


*. This course was previously known as CSE 599Q.
†. Course schedule and contents subject to change and will be announced throughout the term.