
An Empirical Study of Static Call Graph
Extractors

GAIL C. MURPHY
University of British Columbia
DAVID NOTKIN
University of Washington
WILLIAM G. GRISWOLD
University of California—San Diego
and
ERICA S. LAN
Microsoft Corporation

Informally, a call graph represents calls between entities in a given program. The call graphs
that compilers compute to determine the applicability of an optimization must typically be
conservative: a call may be omitted only if it can never occur in any execution of the program.
Numerous software engineering tools also extract call graphs with the expectation that they
will help software engineers increase their understanding of a program. The requirements
placed on software engineering tools that compute call graphs are typically more relaxed than
for compilers. For example, some false negatives—calls that can in fact take place in some
execution of the program, but which are omitted from the call graph—may be acceptable,
depending on the understanding task at hand. In this article, we empirically show a
consequence of this spectrum of requirements by comparing the C call graphs extracted from
three software systems (mapmaker, mosaic , and gcc) by nine tools (cflow, cawk, CIA, Field,
GCT, Imagix, LSME, Mawk, and Rigiparse). A quantitative analysis of the call graphs
extracted for each system shows considerable variation, a result that is counterintuitive to
many experienced software engineers. A qualitative analysis of these results reveals a number

This article is as revised and expanded version of a paper presented at the 18th International
Conference on Software Engineering (ICSE-18), March 1996. This research was funded in part
by National Science Foundation grants CCR-9506779 and CCR-9508745, a Canadian NSERC
postgraduate scholarship and research grant, a University of Washington Department of
Computer Science and Engineering Educator’s Fellowship, and a grant from Fujitsu Labora-
tories, Ltd.
Authors’ addresses: G. C. Murphy, Department of Computer Science, University of British
Columbia, 201-2366 Main Mall, Vancouver, British Columbia Canada V6T 1Z4; email:
murphy@cs.ubc.ca; D. Notkin, Department of Computer Science and Engineering, University
of Washington, Box 352350, Seattle, WA 98195–2350; email: notkin@cs.washington.edu; W. G.
Griswold, Department of Computer Science and Engineering, University of California—San
Diego, San Diego, CA 92093–0114; email: wgg@cs.ucsd.edu; E. S. Lan, Microsoft Corporation,
One Microsoft Way, Redmond, WA 98052-6399; email: erical@microsoft.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 1049-331X/98/0400–0158 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998, Pages 158–191.

of reasons for this variation: differing treatments of macros, function pointers, input formats,
etc. The fundamental problem is not that variances among the graphs extracted by different
tools exist, but that software engineers have little sense of the dimensions of approximation in
any particular call graph. In this article, we describe and discuss the study, sketch a design
space for static call graph extractors, and discuss the impact of our study on practitioners, tool
developers, and researchers. Although this article considers only one kind of information, call
graphs, many of the observations also apply to static extractors of other kinds of information,
such as inheritance structures, file dependences, and references to global variables.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors

General Terms: Experimentation, Languages

Additional Key Words and Phrases: Call graphs, design space, empirical study, software
system analysis, static analysis

1. INTRODUCTION
Various software tools compute call graphs, which represent calls between
entities in a given program. For example, compilers sometimes compute
call graphs to determine whether specific optimizations can be applied. As
another example, numerous software engineering tools extract call graphs
with the expectation that they will help software engineers increase their
understanding of a program.

A call graph is a binary relation over selected entities defined in a
program: for example, over procedures, over modules, over files, etc.1

Although we often discuss “the call graph” of a program, there are a
number of reasonable interpretations of the actual relation a call graph
represents.

Perhaps the most pleasing definition of a call graph is the relation
describing exactly those calls made from one entity to another in any
possible execution of the program. Unfortunately, computing this relation
is undecidable.2 A less pleasing, but easily computed, relation is the cross
product of all entities in the program, which simply assumes that any
entity can call any other entity in the program. Unfortunately, this relation
is seldom, if ever, useful. In practice, tools that compute call graphs fall
into different parts of this spectrum.

Compilers place one set of requirements on call graphs.3 The most
conspicuous requirement is that their call graphs must be conservative: a

1Call graphs are sometimes treated not as relations but as multigraphs [Allen 1974; Banning
1979; Callahan et al. 1990; Cooper and Kennedy 1984; Cooper et al. 1986; Lakhotia 1993;
Myers 1981].
2It is straightforward to reduce this problem to the halting problem.
3Call graphs have been used for interprocedural analysis and optimization for over two
decades [Allen 1974]. Early results constrained the programs for which call graphs could be
computed. Ryder [1979] loosened some of these restrictions, considering limited forms of
procedure parameters. Callahan et al. [1990] extended Ryder’s work to handle recursion,
while Hall and Kennedy [1992] increased the ability to handle some assignments to procedure
variables. Lakhotia [1993] further extended this work to handle additional kinds of assign-
ments to procedure parameters.

An Empirical Study of Static Call Graph Extractors • 159

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

call can be omitted only if it can never occur in any execution of the
program. Without this requirement, a compiler might, for example, apply
an optimization that does not preserve the semantics of the source pro-
gram.

Software engineering tools place a different—and in some ways more
relaxed—set of requirements on call graphs, since the call graphs are most
often consumed by humans for the purpose of understanding. As one
example, a software engineering tool might not be required to compute
conservative call graphs: some false negatives—calls that may take place
in some execution of the program, but which are omitted from the rela-
tion—may be acceptable, depending on the program-understanding task at
hand. As another example, although a compiler will compute a call graph
on source with all macros expanded, a software engineer retargetting a
software system might instead prefer a call graph computed on source
without the macros expanded.

A consequence of the relaxation of requirements is that the call graphs
extracted by different software engineering extraction tools will vary. Even
though some variances are anticipated, we believe software engineers have
two reasonable expectations about most extractors. One expectation is that
extractors built from similar technology will extract similar call graphs.
For instance, an engineer might reasonably expect that the call graphs
extracted by tools that parse the source will be similar. A second expecta-
tion is that a tool will behave similarly on different software systems,
extracting call graphs with the same kinds of characteristics across differ-
ent systems. For example, if the call graph extracted by a tool for a
particular system is conservative, it is reasonable to expect that the same
tool will extract conservative call graphs on other target systems.

The use of several call graph extraction tools as part of our research in
program understanding and transformation led us to question these im-
plicit expectations. To investigate the variances occurring among different
tools, we performed an empirical study that compared the results of
applying nine different software engineering tools for extracting call graphs
from C source code to three sample software systems. Our study showed
that the call graphs extracted by these different software engineering tools
vary (indeed, they vary in more dimensions than expected, surprising many
experienced software engineers). The fundamental problem is not that the
variances exist, but that engineers have little sense of the dimensions of
approximation in any particular call graph. It is likely that this problem is
not limited to C call graph extractors, but applies to extractors of other
relations in other languages as well.

In this article, we describe the study (Section 2) and present a quantita-
tive and qualitative analysis of the results of the study (Sections 3 and 4).
Using the analysis, we sketch a design space for static call graph extractors
(Section 5). We then discuss the ramifications of the study on practitioners,
considering how a practitioner might use the design space information to
help choose an appropriate extractor to aid a particular software engineer-
ing task (Section 6). We conclude the article (Section 7) with a discussion of

160 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

a few of the different ways in which the problem raised by this study may
be attacked by tool developers and researchers.

2. EMPIRICAL STUDY

The empirical study we performed focused solely on call graphs that are
computed by statically analyzing the program itself, rather than by analyz-
ing the program’s run-time behavior.

2.1 Overview

To perform this study, we (1) gathered nine software engineering tools that
can each extract a call graph from C source code, (2) applied the extractors
to three target software systems, and (3) analyzed the results both quanti-
tatively and qualitatively.

Table I summarizes the nine extractors used in the study. Some tools
required configuration scripts to extract call information; the names of
these tools are annotated with cg.

These nine tools represent an exhaustive list of the tools that were
available, at reasonable cost, meeting two important criteria: the ability to
produce a textual list of all calls extracted and the ability to run on the
Sparc platform running the SunOS 4.1 Unix operating system.4 Surpris-

4This platform was chosen because of the large number and kinds of call graph extractors
available for it. The specific version of the operating system used was SunOS 4.1.3_U1.

Table I. The Tools Studied

Tool Description

cawkcg cawkcg is an instantiation for C of the TAWK system [Griswold et al. 1996].
TAWK supports regular-expression-based querying of the abstract syntax
tree of a program.

GCT The Generic Coverage Tool [Marick 1994] can report on branch coverage,
multicondition coverage, loop coverage, etc., for C programs.

Imagix Imagix is a commercial software-understanding system intended to help
software engineers reverse-engineer or document large programs.

Rigiparse Rigiparse is a front-end to the Rigi reverse-engineering system [Müller and
Klashinsky 1988]

Field Field is a programming environment [Reiss 1995] tool. The tool within the
Field environment used in this study is called xrefdb.

cflow The cflow tool extracts external references for C programs. This tool is
distributed with most Unix systems.

CIA The C Information Abstraction System [Chen et al. 1996] extracts
structural information information from C programs and supports the
subsequent querying of that information.

LSMEcg The lexical source model extractor tool [Murphy and Notkin 1996] permits
engineers to extract information from source based on patterns consisting
of hierarchical regular expressions.

Mawkcg This tool is a variant of awk [Aho et al. 1979] that supports patterns as
data (see M. Brennan’s Unix Manual Page, Dec. 1994, “Mawk—pattern
scanning and text processing language”).

An Empirical Study of Static Call Graph Extractors • 161

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

ingly, many commercial tools, such as CenterLine Inc.’s CodeCenter, sup-
port the querying of an extracted call graph only by specific function names
through a user interface. Since we required a textual list of the calls for
comparison, we could not include these tools in our study.

This set of nine tools forms a suitable collection on which to base the
study because they represent a spectrum of technologies and approaches
available for building a call graph extractor. Five of the tools—cawk,
xrefdb, GCT, Imagix, and Rigiparse—are syntactic extraction tools, extract-
ing information based on a parse of the program. The CIA and cflow tools
are also syntactic tools, but they extract a function-refers-to-function
relation rather than a calls relation. If calls through function pointers are
not considered, it is reasonable to expect that the function-refers-to-
function relation is a superset of the call relation. The LSME and Mawk
tools differ from the other seven in extracting information using a lexical
scan of the source. Although these two tools are both lexical, they differ in
the granularity at which regular expressions to match in the source are
expressed: Mawk uses character-based regular expressions whereas LSME
uses token-based regular expressions; this allows, for example, Mawk to
decide on matches based in part on indenting conventions.

We chose three publicly available target software systems—mapmaker,
mosaic , and gcc —to use as the source to input to the call graph extractors.
The target systems, along with their sizes, are described in Table II.
Applying the extractors to three different systems from a variety of
application domains allows us to investigate whether and how the call
graphs extracted by a particular extractor vary with the source analyzed.

Version information for the tools and for the analyzed target systems is
provided in Appendix A.

2.2 Method

The procedure used in the study was as follows. Each target software
system was compiled to determine the include paths and the define s
necessary to produce a working executable. For each software system, we
then applied each of the nine tools to extract a list of the calls between
functions from the C source code comprising the system. Scripts were run
on the output produced by the tools to transform the extracted calls list to
the form:

~function1;function2!

Table II. The Software Systems Studied

Lines Lines of Nonblank,
Software System of Code Noncomment Code

mapmaker (a molecular biology application) 31,349 24,541
mosaic (a World Wide Web browser) 69,492 48,236
gcc (the GNU C compiler) 287,133 201,488

162 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

where function1 calls function2.

2.2.1 Input Preparation. Applying the tools fairly required making de-
cisions about the source from which calls would be extracted. This was
complicated by two factors. First, many of the systems created header and
source files as part of the compilation process; we had to make decisions
about which of these files to include when extracting calls. Second, the tools
present a range of choices for specifying the source files of interest. Some
tools, like cflow, can be run on individual C files. Other tools, like Imagix,
modify the makefile [Feldman 1978] for the target system, introducing new
targets for analysis based on common makefile structuring conventions.
For instance, the default Imagix analysis target assumes the symbol
OBJECTS is defined to describe the objects required to link the executable
for the system. The Field tool exemplifies a third category: Field works
either from file information included in an executable (compiled and linked
with the debug switch) or from the directory structure.

We took two steps to try to ensure that all tools received the same input.
First, we captured the output of a successful compilation run using make on
each system. If a call graph extraction tool accepted individual C files as
input, we created a script to run the tool based on the output of the
compilation process. Only two tools could not be run this way: Imagix and
Field. For Imagix, we edited the system makefiles it modified to ensure the
appropriate list of source files was provided as input to the Imagix
extractor. In the case of Field, we compiled each system with the debug
switch and provided the executables to Field as input. Second, we applied
each tool to preprocessed C source.5 For tools that allowed the preprocessor
to be specified, we used the cpp tool distributed with SunOS to eliminate
differences that might arise among the preprocessors distributed with
various tools.

2.2.2 Selecting a Baseline for Comparison. In an earlier study of static
call graph extractors [Murphy et al. 1996], we performed a pairwise
comparison of the call graphs extracted by various tools. A pairwise
comparison was used because we were interested in investigating the
behavior of the various extractors as they might normally be used. For
instance, an engineer applying a call graph extractor as part of a reverse-
engineering task would likely apply a tool, such as cflow, on all C source
files in the directories comprising the software system. Since the inputs
varied among tools, it was not reasonable to pick one extractor to form a
baseline.

In this extended study, we were interested in investigating the behaviors
of the extractors when they were provided as similar input as possible. A
common basis of input that could be provided to all extractors was prepro-
cessed input as described above. Given these study parameters, it is
reasonable to choose a definition of a call graph to use as a baseline for the

5In this article, we use the term “preprocessed source” to refer to the source resulting from
running the original source through the C preprocessor.

An Empirical Study of Static Call Graph Extractors • 163

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

comparison of all call graphs extracted. The definition we chose as a
baseline is the call graph consisting of all calls found during a static parse
of the C source code where the parse is sufficiently complete to permit
compilation of the program.

To collect the baseline call graphs for each target system, we used the
output of the GCT test coverage tool. GCT is built on top of the GNU C
compiler distribution and provides, among other functionality, the ability
to instrument the call sites in a system before passing the instrumented
code to the compiler. As part of the instrumentation process, the GCT tool
produces a map file that describes the call sites in a system. It is
straightforward to write an awk script to convert the call site information
in the map file into the call graph format used in our study. GCT can thus
be used to produce a call graph, for a compilable system, based on
information statically extracted from the system’s source.

The call graphs extracted by GCT form a reasonable baseline for compar-
ison in this study because

(1) they are derived using a parser designed to compile the code and

(2) they include information about call sites involving function pointers.

These points help increase the confidence that all call sites recognized by
the compiler are recognized by the extractor.

2.2.3 Data Gathering. We collected the data for the study by iteratively
applying the method described above. Iterations occurred for three reasons.
First, comparisons of extracted call graphs were used to tailor the scripts
specified to recognize calls by the lexical tools, LSMEcg and Mawkcg. A
numerical subscript is used when reporting the results from the LSME and
Mawk tools to indicate when different scripts were used with these tools.6

Second, multiple passes were needed to resolve differences in the files
scanned by various tools. Finally, the method was applied iteratively to
allow for upgrades to the tools being studied that fixed data reporting bugs.
For example, in gathering data using the Imagix tool, we discovered a bug
in the database-loading procedure used by Imagix; the calls were extracted
by the Imagix parser and stored in the intermediate files, but the calls were
not being included in the textual output from the tool. We allowed the
vendor to correct this data output problem.

As a final note, the data analyses appearing in the next two sections also
reflect a simple treatment of the data to remove from consideration the
majority of the calls through function pointers. As part of the iterative
application of the method, it was determined that two tools report calls

6Six different LSME scripts were used: one script for each of the unprocessed and prepro-
cessed sources for each of the three systems. The slight variations in the scripts result from a
need to recognize differences in the use of macros and embedded calls in the three systems.
Two different Mawk scripts were used: a separate script was needed for the unprocessed
source of mosaic because of a use of macros in the definition of functions. Further details on
the scripts are provided in Appendix B.

164 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

through function pointers: GCT and cawkcg. The filtering on the call graphs
reported by these two tools was performed because the tools report the sites
involving calls through function pointers in different ways: GCT often
simplifies the reporting by using the notation * ,... ., while cawkcg
reports the expression involved (e.g., *((resolveImageProc)hw- .html-
.resolveImage)). This reporting difference means a simple lexical com-
parison of call graphs containing the calls through function pointers can be
misleading. The filtering we performed consisted of removing calls involv-
ing a function with an asterisk in its name from the extracted call graph.
These call sites were considered as part of the qualitative analysis and are
reported on in Section 4. Based on the qualitative analysis, this simple
filtering process caught all but approximately four differences in the
reporting of calls through function pointers.

Details on the data collection appear in Appendix B.

2.2.4 Comparing the Call Graphs. For each target system, we compared
the call graphs extracted by each of the software engineering tools to the
call graph extracted using GCT. The call graphs were compared by comput-
ing the set intersection, callsGCT ù callsTool, and set differences, callsGCT

2 callsTool and callsTool 2 callsGCT, where Tool refers to one of the eight
extractors studied other than GCT. These computed sets were then studied
both quantitatively and qualitatively.

3. QUANTITATIVE RESULTS

Two quantitative analyses were performed on the extracted call graphs.
First, we present a quantitative comparison of each of the graphs extracted
by the eight software engineering tools to the baseline graphs (Section 3.1).
Then, to provide a sense of the similarity and differences among the
extracted call graphs, we report on the frequency distribution of the
number of calls reported by different combinations of tools (Section 3.2).

3.1 Quantitative Comparison to the Baseline

Figure 1 presents a quantitative comparison of the extracted call graphs to
the baseline call graphs for each of the three target systems: mapmaker,
mosaic , and gcc . (The raw data on which the graphs are based are
provided in Appendix C.) Each bar in each figure is divided into three
parts:

—the black portion of the bar represents the intersection between the call
graph extracted by the software engineering tool and the baseline graph;

—the white portion represents the calls in the baseline graph that were not
reported by the software engineering tool; and

—the gray portion represents the calls reported by the software engineer-
ing tool that were not in the baseline graph.

An Empirical Study of Static Call Graph Extractors • 165

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

Since the bars in Figure 1 explicitly represent the calls in the baseline
graph that were not reported by the software engineering tool (i.e., the

Fig. 1. Quantitative comparison of extracted call graphs to the baseline GCT graph.

166 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

white portion of the bar), the total length of a bar represents the number of
calls in the union of the baseline graph and the graph for the particular
tool. The data in Appendix C include the number of calls reported by each
tool. The three graphs in Figure 1 highlight a few notable results:

—Only the cawkcg tool extracted essentially the same call graph as the
baseline graph on all systems. (We discuss the few discrepancies between
the call graphs extracted by these two tools in Section 4.)

—The characteristics of the call graphs extracted by five of the syntacti-
cally based tools—cflow, CIA, Field, Imagix, and Rigiparse—varied con-
siderably between the three systems. For instance, Rigiparse, which
reported 0 false positives7 and 13 false negatives for the mosaic system,
reported 2 false positives and 2,449 false negatives for the gcc system.
The Field system, which reported 7 false positives and 59 false negatives
for the gcc system, reported 52 false positives and 165 false negatives for
the much smaller mosaic system.

—As described above, the CIA and cflow tools both extract the “references
between functions” relation rather than the “calls between functions”
relation. Since the references relation includes tuples for functions being
passed as parameters, e.g., to callbacks, it was expected that the CIA-
and cflow-extracted call graphs would contain false positives, but not
false negatives. This expected result held only for the mapmaker system.

—The LSMEcg and Mawkcg tools both attempt to recognize syntactic
constructs in source based on lexical patterns. It was thus expected that
the call graphs they extracted would contain false positives where the
patterns match unexpected constructs and false negatives where the
patterns miss pertinent constructs. The data in Figure 1 show that this
expected result held. For at least one system, mosaic , the LSMEcg tool
was able to perform similarly to one of the syntactic tools: LSMEcg
extracted a call graph containing 95 false positives and 206 false nega-
tives compared to the CIA tool which extracted a call graph containing 90
false positives and 243 false negatives.

As described in Section 2.2, to ensure a fair comparison we made a
number of decisions about the input provided to the tools. Some of the
decisions we made, such as ensuring the use of a particular preprocessor,
the SunOS cpp preprocessor, may not be representative of how the tools
are typically used. To provide a sense of how extracted call graphs may
vary in more typical circumstances, Figure 2 presents a comparison of some
call graphs that result when the input to the extractors is not tightly
constrained. The figure compares call graphs extracted from unprocessed
source and from source preprocessed with a tool other than the SunOS

7In all discussions of the results, the terms “false positive” and “false negative” represent
differences in a call graph with respect to the baseline call graph and should not necessarily be
construed to be errors.

An Empirical Study of Static Call Graph Extractors • 167

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

preprocessor, cpp , to some of the graphs described earlier. The two lexical
tools—LSMEcg and Mawkcg—were used to extract graphs from unprocessed

Fig. 2. A comparison of graphs extracted with different input restrictions.

168 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

source. The cawkcg tool with its own preprocessor was used to represent the
extraction of a graph from source preprocessed with a tool other than the
SunOS preprocessor. For comparison, the baseline graphs and the call
graphs extracted using cawkcg with the SunOS preprocessor from Figure 1
are also included.

Not surprisingly, the two lexical tools report more false positives and
false negatives when given unprocessed source. The false positives are
often the result of misinterpreting a macro as a call when the macro
actually defines statements not containing calls, such as statements access-
ing data. If the macro does include a call statement, a false negative will
also result. The cawkcg tool also reports more false positives and false
negatives when using its own preprocessor rather than the SunOS cpp
preprocessor. The cawkcg tool uses an extended C syntax that includes the
#define preprocessor directive and a modified preprocessor that leaves
C-like macro directives and invocations in the source code. Thus, it will
create false positives and negatives in situations similar to the lexical tools,
except that macros that are not C-like will be expanded.

3.2 Quantitative Comparison of Overlap among the Graphs

Comparing the call graphs extracted by each tool to the baseline graph
provides some insight into the nature of each graph, but it does not tell us
much about the similarities and differences among all the extracted
graphs. To provide insight into these similarities and differences, we
determined, for each call returned by any tool (including both false posi-
tives and false negatives), the number of other tools also reporting that
call. Figure 3 summarizes the results of this computation. Each bar in the
charts in Figure 3 reports on a combination of a specific number of tools.
The height of each bar shows the number of calls reported by a particular
number of tools. For instance, the leftmost bar of the top chart shows that
over 2,500 calls extracted from the mapmaker system were reported by all
nine extractors. The rightmost bar of the same chart shows that approxi-
mately 1,000 calls were reported by only one tool.

The height of each bar in Figure 3 tells only part of the story about the
overlap between the extracted graphs. It is also important to ask whether it
is always the same collection of a particular number of tools reporting
overlap. For example, do the bars representing the calls reported by two
tools always correspond to the lexical tools? To investigate this aspect of
overlap, we also determined how many calls were reported by particular
combinations of tools. The stratification of the bars in Figure 3 shows these
data: each gray-scale value represents a different combination of tools. The
tables on the right side of each bar chart clarify the number of different
combinations of tools shown in the bar charts. For example, the table for
the mapmaker system shows that five combinations of eight tools reported
some overlap; the bar chart shows that one combination of the tools
dominates with an overlap of over 1,500 calls. As another example, the
table for the gcc system shows that a call reported by seven of the tools

An Empirical Study of Static Call Graph Extractors • 169

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

could have been reported by any of 17 different combinations of seven tools.
The graphs in Figure 3 highlight a few notable results.

—For all three target systems, most calls are found by almost all the tools
or very few of the tools. Somewhat surprisingly, there is no obvious trend
in the groupings of the tools based on the extracted calls. For instance,

Fig. 3. Quantitative comparison of all extracted call graphs for mapmaker, mosaic , and gcc .

170 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

although most of the calls reported for the mosaic system are found by
either seven to nine of the tools or only one or two of the tools, there are
11 combinations of seven tools reporting some overlap, and seven combi-
nations of eight tools reporting call graphs with some overlap.

—Only in the gcc case is there quantitative evidence of all nine tools
reporting unique calls. However, upon inspection, it was determined that
the cawkcg and baseline call graphs do indeed overlap completely. The
number of tools reporting unique calls for gcc should, based upon the
qualitative investigation reported on in Section 4, be seven. If this
qualitative information was accounted for in Figure 3, then, the right-
most bar in the chart for gcc would show seven tool combinations rather
than nine.

In the case of the other two target systems, the call graph extracted by
at least one other tool completely overlapped with the graphs extracted
by cawkcg and GCT; the tool with the complete overlap differed in each
case.

—For the gcc system, there are seven combinations of eight tools reporting
overlap with four of these combinations reporting hundreds of calls in the
overlap.

4. QUALITATIVE RESULTS

It would be misleading to believe that extracting more calls indicates better
results, since additional calls may well represent false positives rather
than true positives. Moreover, the false positive and false negative identi-
fication was performed with respect to a baseline that has not been
definitively shown to be conservative, since determining the “true” call
graph is undecidable. Consequently, to better understand the differences
indicated by the quantitative comparison, we also analyzed the extracted
call graphs qualitatively.

In Section 4.1, we present the results of a qualitative comparison of the
extracted call graphs to the baseline graphs. In Section 4.2, we assess the
stability of the various extractor tools across the three target systems
through a qualitative categorization of the extracted graphs.

4.1 Qualitative Comparison to the Baseline

To investigate the false negatives, we first found tuples that appeared in
the set difference between the baseline graph and the graph extracted by
another tool, say cflow. We then inspected the source code to determine
whether the tuples represented false negatives in the graph reported by
cflow, or false positives in the baseline graph extracted with GCT. In all
cases sampled, the calls represented false negatives in the graph reported
by a non-GCT tool. Some of the sampled false negatives raise some
interesting points.

An Empirical Study of Static Call Graph Extractors • 171

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

—CIA’s extraction of the calls from gcc missed calls, such as (yyparse;
build_function_call), from a yyparse function in the c-parse.c file that
were found by seven of the tools, including the Mawkcg tool (which found
several thousand fewer calls than CIA).

—The call graphs reported by a number of the syntactic tools include false
negatives even when the tool does not report a syntax error in processing
the C source files. For instance, the CIA tool did not report a syntax error
when processing the c-parse.c file. As another example, the cflow tool
often missed function definitions when processing the mosaic source,
leading to false negatives when call sites occurring after the missed
function definition were incorrectly associated with the wrong caller.

—Field, when run on mapmaker, missed the call (main;banner), apparently
because main is not defined with a return type. Editing the definition of
main to add a return type allows Field to extract the call. Not all
functions, however, need be declared with a return type for Field to
extract calls. For example, a small test case of defining a function
without a return type did not result in a false negative.

—It was only in the case of the gcc system that the cawkcg tool reported
false negatives. The 21 false negatives were the result of differences in
the format of reporting calls through function pointers and, interestingly,
the result of a bug in the SunOS cc compiler that dropped the first
argument after any undefine flag.

False positives were investigated analogously to false negatives, except the
examined tuples were sampled from the set difference between a graph
extracted by a particular tool and the baseline graph. Before sampling the
false positives for qualitative analysis, we first adjusted for the difference
between the function-refers-to-function relation extracted by the CIA and
cflow tools and the desired calls between the functions relation. After
filtering the false positives reported by these two tools for tuples belonging
only to the function-refers-to-function relation, we found that CIA does not
report any false positives for mosaic or gcc , and reports 1 false positive for
mapmaker, whereas cflow reports 89, 108, and 308 false positives for
mapmaker, mosaic , and gcc , respectively. We then proceeded with the
analysis of the false positives. Some of the notable false positives include
the following:

—Field generated a number of false positives such as (CBChangeRadio;
XtVaGetValues) from mosaic , apparently by ignoring or mishandling a
preprocessor directive to conditionally exclude code.8

8The Field tool, xrefdb, used to extract a call graph does not permit the specification of the C
preprocessor to use. Field was thus selecting the preprocessor to apply, which may have been
different than the SunOS cpp tool.

172 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

—In mapmaker, LSMEcg mistook forward declarations placed in the middle
of a file for call sites, generating false positives such as (insert_unsorted-
_map;kosa_add).

—LSMEcg also reports a number of false positives for mosaic which result
from the use of printf debug statements of the form: printf(“CCI-
_free()”); .

—CIA apparently judged that a parameter (chrom) was a reference to a
function when it reported the tuple (attach_this;chrom) from mapmaker.
Although there is a function chrom in the mapmaker system, at this call
site, chrom appears to be an integer variable.

—When processing the source for mosaic , Imagix apparently does not
expand the include files correctly, resulting in false positives to an X
Window System symbol, XtDisplay, which is defined as both a macro and
as a function call. For instance, the call, (BulletRefresh,XtDisplay),
reported by Imagix is a false positive, since in this case XtDisplay refers
to a macro.

—Rigiparse reported false positives, such as (actual_hazard_this instance;
function_units), when extracting from gcc , apparently as a result of the
parser continuing after encountering syntax errors while processing the
file sched.c .

—Similar to the case of false negatives, the cawkcg tool produced false
positives only in the case of the gcc system. The three false positives
were due to differences in the reporting of calls through function pointers
not caught by the simple filtering described in Section 2.

The comparisons of the call graphs extracted by the eight software
engineering tools to the baseline graphs show that a software engineer
cannot rely on information about the underlying technology of an extractor
as a predictor of the behavior of the extractor. The five syntactic extractors,
for example, produce call graphs with varying numbers and kinds of false
positives and false negatives. The expectation that extractors built from
similar technology will extract similar call graphs thus does not hold.

4.2 Qualitative Categorization of the Graphs

A qualitative analysis of samples from the graphs provides insights into the
reasons for the differences among the graphs. However, it does not provide
any indication of the kind of reasoning a software engineer may perform
based on the call graph. If, for instance, a software engineer knows that a
call graph does not contain any false negatives, the engineer may be more
confident in using the information as the basis to perform a testing task on
the system. As another example, when performance tuning a system, an
engineer may desire a call graph that does not contain any false positives.
But, how does a software engineer know if a call graph extracted with a

An Empirical Study of Static Call Graph Extractors • 173

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

particular tool has the appropriate characteristics? Do tools extract call
graphs with similar characteristics across different systems?

To investigate this question, we categorized the tools for each system
based on whether or not the graphs extracted by the tools contain false
positives and false negatives. We then assessed stability by comparing the
categorization of each tool across the three target systems. As before, false
positives and false negatives are defined with respect to the baseline call
graph.

In this comparison, the baseline call graphs could be categorized as
precise because no false positives or false negatives were identified when
the baseline graphs were compared to the graphs extracted by the other
eight tools.9 This evidence, while strong, is not enough to characterize these
graphs as precise for several reasons. One, there may well be false
negatives. Two, we have no evidence of what calls are actually made in
some execution stream at run-time. And three, we have only analyzed three
target systems. As a result, we designate the baseline call graphs as
conservative. To simplify the discussion, we assign names to each of the
possible categories as shown in Table III.

Four tools—Field, Imagix, LSMEcg, and Mawkcg—produce an approxi-
mate call graph for each system. The remaining four tools produce different
kinds of call graphs, depending on the system analyzed:

—The cawkcg tool produces conservative call graphs for the mapmaker and
mosaic systems and an approximate call graph for the gcc system.
However, as discussed earlier, the false positives and the false negatives
reported were the result of differences in reporting calls through function
pointers and a bug in the SunOS cc compiler. From a qualitative
perspective, the cawkcg tool could be considered to produce a conservative
call graph for each system analyzed.

—The cflow tool produces a conservative call graph for the mapmaker
system and approximate call graphs when analyzing the mosaic and gcc
systems.

—The CIA tool produces a conservative call graph for mapmaker and an
optimistic call graph for both the mosaic and gcc systems.

9The categorizations discussed in this section use a definition of a call graph in which calls
through function pointers are identified, but the target of the call is not resolved.

Table III. Tool Categories

No False False
Positives Positives

No False Negatives Precise Conservative
False Negatives Optimistic Approximate

174 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

—The Rigiparse tool produces approximate call graphs for each of the
mapmaker and gcc systems and produces an optimistic call graph for the
mosaic system.

This categorization of tools must be interpreted in light of several points.
First, as mentioned previously, different kinds of call graphs are likely
useful for different software engineering tasks. For instance, a software
engineer trying to assess the cost of a change to the system may find an
optimistic call graph suitable as a basis for performing the task. Thus, it is
not necessary for every tool to produce a conservative call graph. Second,
the conservative category in this discussion does not account for calls
through function pointers and therefore should not be equated with the
meaning of the term in the compiler community. Finally, the categorization
is shown for a small sample of target systems; for example, it is not
necessarily the case that GCT would produce a conservative call graph for
all systems or that Imagix would always produce an approximate call
graph.

The categorization demonstrates that the second of our initial expecta-
tions for the study was not upheld. We had expected, as many software
engineers might, that a call graph extraction tool would behave similarly
on the source code for different software systems, extracting call graphs
with similar characteristics for the different systems. There is more than
one tool, however, that extracted call graphs that fall into different catego-
ries. These tools could cause problems for software engineers expecting a
call graph with particular characteristics. For instance, a software engineer
may miss a change in a maintenance scenario if a call graph unexpectedly
contains false negatives.

5. DESIGN DECISIONS

Although these empirical results report on only a few selected extractors,
they provide insight into the collection of design decisions that the devel-
oper of any static call graph extraction tool must make. One way to
characterize these decisions is to consider call graph extraction as a
function that maps source into a set of calls. The tool developer must make
trade-offs concerning the kind and condition of the source that the tool will
accept as input (the domain of the function) and the algorithm for extract-
ing and computing the call graph (the behavior of the function). The tool
developer must also face a number of engineering considerations. How fast
must the tool execute? How much customization by the user must be
supported? The choices a developer makes about the domain and behavior
of the function and the way the tool is packaged affect the kind of call
graph—conservative, optimistic, or approximate—a developed tool will
produce.

5.1 Domain

One key decision that a developer of a static call graph extractor must
make is the form of the input to the tool. Four choices of input format are

An Empirical Study of Static Call Graph Extractors • 175

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

available for the developer of an extractor for a system implemented in C:
unprocessed source, preprocessed source code, object code with symbol
table information, and executable code with symbol table information. Our
study focused on tools that could accept unprocessed and preprocessed
source code. In all cases we studied, the call graphs extracted from
unprocessed source code were approximate with respect to the baseline
definition we chose. The set of call graphs extracted from preprocessed
source code varied considerably, with no dominant kind of call graph
produced. Investigating call graphs extracted from object or executable
code with a symbol table was not within the scope of our study.

A second decision facing the tool developer is the set of constraints to
place on the input accepted by the extractor. The most obvious constraint is
whether the source forms a compilable or compiled system. If, for example,
the C source was preprocessed with a set of consistent define s, producing
source capable of passing both the syntactic and semantic checks of a
compiler, then the tool developer may be able to use various static analysis
techniques to handle indirect calls. In this case, the tool may be capable of
producing a call graph that is conservative in the compiler sense. On the
other hand, a tool that accepts source stripped of conditional definitions,
representing the source across every configuration, may be useful for
extracting call graphs to help understand a system prior to a reengineering
activity. However, it is sometimes the case that expanding all the define s
results in input containing multiple variants of statements such as defini-
tions of functions; for instance, define s are sometimes used to provide one
definition of a function for ANSI C and another definition for K&R-style C.
In these cases, it may only be feasible to use a lexically based tool,
increasing the probability of extracting an approximate call graph.

Another class of constraints includes static restrictions on the source
text. For example, some versions of cflow may not produce output unless
the input passes the first phase of lint, a C static program checker.10 For
tools extracting calls from source code, another constraint that must be
considered is the set of language variants the tool accepts; for C, for
example, does the tool extract from K&R C, ANSI C, the C subset of C11,
or C languages for various PCs? A related issue is how the tool handles
code generated by other programs. For example, Lex [Lesk 1975] and Yacc
[Johnson 1975] files almost always contain C code. Are calls extracted from
these files and reported in terms of the source before or after generation?
Only the lexical tools in our study can report the calls in terms of the
source before generation.11 If the appropriate extensions are used, cflow
will automatically generate and extract from the resulting files. In general,
the stricter the constraints placed on the input, the more guarantees a tool
developer can place on the characteristics of the extracted graph. Stricter

10Manual page distributed with the Sun Release 4.1, 1988.
11Since these are both programmable tools, the engineer can determine the appropriate caller
to use in reporting calls prior to generation.

176 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

input constraints, however, can make it more difficult to apply a tool on a
particular system to a specific software engineering task.

A third decision is the interface for providing input to the tool. The tools
we studied allowed software engineers to specify input either by invoking
the tool on individual files, on a list of files, on a directory structure, or else
on an executable file. For the majority of the tools studied, input can be
specified on an individual file basis. This approach provides fine-grained
control to the tool user because supplementary information, such as the
define s or include paths, can be set on a per-file basis similar to the
compilation process. In contrast, the Imagix tool accepted a list of files,
requiring a set of possibly conflicting define s and include paths to be
specified across the files. Some of the false positives in the call graphs
extracted by Imagix may be a result of this interface decision. Of the tools
studied, only Field supports the specification of input by directory structure
and by an executable file (compiled and linked with the debugging
switch).12

Another interface factor that affects the kind of call graph extracted from
a collection of C source code is the set of parameters accepted by a tool. If
the tool accepts the same parameters accepted by most C compilers, such as
the -I and -D parameters for include s and define s, respectively, it is
possible the tool can be substituted for the C compiler in the configuration
management tool for building the system. The GCT tool included in the
study, for instance, not only accepted the same parameters as gcc , but also,
after performing the desired instrumentation, runs the C compiler on the
resultant code. This feature further eases the substitution of the call graph
extraction tool for the compiler, particularly for systems such as gcc which
produce and use a number of temporary programs. Other tools, such as
Rigiparse, require variations on the parameters accepted by the C compiler;
for instance, the include s parameters must be included in double quota-
tions. This requirement complicates the substitution of Rigiparse for the C
compiler and may result, in some cases, in false negatives in an extracted
call graph because of difficulties in determining the system files that
should be processed.

Together, these decisions on the form, specification process, and any
other constraints on the input affect the tool users as well as the tool
developers. For example, a tool may be more useful to an engineer during a
port of a system to another platform if extraction is done prior to the
expansion of macros. Furthermore, as an aid in the porting process, the tool
user may find an approximate call graph to be sufficient. As another

12We performed a comparison of Field’s two approaches on mosaic . We expected that the
executable-based extracted call graph should be a subset of the directory-based extracted call
graph. But, unexpectedly, neither extracted call graph was a subset of the other. The
directory-based call graph included 303 calls not included in the executable-based call graph;
the executable-based call graph included 24 calls not included in the directory-based graph.
The 24 calls missed in the directory-based approach resulted from a file that exists in the
directory structure not being scanned. We were unable to determine why this file was not
included in the scan. This kind of anomalous behavior is by no means limited to Field.

An Empirical Study of Static Call Graph Extractors • 177

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

example, a tool that extracts from an executable system may be more
useful to an engineer writing test plans. To help with this task, the tool
user may require a conservative call graph.

5.2 Behavior

The behavior of an extraction tool is defined primarily by the analysis
algorithms it uses. Determining the algorithms used based on documenta-
tion is often difficult, since the documented information is seldom complete.
Many of the tools we studied, for example, do not explicitly state how they
handle calls through function pointers. Determining the algorithms used by
inspecting the source of a tool is also extremely difficult, since the algorith-
mic code is neither small nor isolated within the source. A search of the
literature is not sufficient either [Callahan et al. 1990, p.484]:

While many interprocedural data-flow problems are based on a call multigraph
[Allen 1974; Banning 1979; Cooper and Kennedy 1984; Cooper et al. 1986;
Myers 1981] or a relation between pairs of procedures indicating possible call
sequences [Barth 1978], few authors discuss how it is constructed from the
source program.

Inferring some algorithmic aspects, however, is feasible. Simple tests can
be used, for instance, to determine whether or not tools try to report calls
through function pointers. Of the tools we studied, GCT and cawk report
the sites of calls through function pointers. None of the tools we studied
attempted to perform any static analysis to report the actual calls that
might result at these call sites.

A secondary aspect of behavior is how tools handle source that does not
satisfy the input constraints. The Rigiparse tool, for instance, reports
syntax errors while processing the sched.c file that is part of the gcc
system; a false positive is subsequently reported when an access to an
array is misinterpreted as a call site. In contrast, the CIA tool separates
information extracted when a syntax error is reported. We chose not to
include this information in the extracted call graph, thus introducing false
negatives into the extracted call graph and moving the tool from reporting
a conservative call graph to reporting an optimistic call graph. The decision
not to include partial information for a source file, though, might also
reduce the kinds of false positives resulting from the misidentification of
syntactic constructs after a parse error that arose in the Rigiparse case.

Another aspect of behavior is whether the call graph extraction algorithm
is local, reporting call information simply as function-calls-function, or
whether it is global, resolving the location of called functions to files. All of
the tools we considered could report local call information. Only two of the
tools—Rigiparse and Mawkcg—could not easily produce global information
as well. It may be necessary to take into account global call information to
achieve certain characteristics in the extracted information for particular
definitions of call graphs.

178 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

5.3 Engineering Considerations

Tool developers must also make a number of engineering decisions when
building a call graph tool. In particular, the tool developer must consider
how programmable the tool needs to be, and the performance requirements
for the tool.

Typically, a tool developer can introduce programmable aspects into a
tool at many different levels and in many different ways. One choice the
developer may make is to not provide any programmable features. For
instance, although cflow may be executed with many different options, it
does not provide any significant programmable features to the software
engineer. At the other end of the spectrum are tools that require configura-
tion scripts to report or extract particular information such as call graphs;
the two lexical tools and cawk are representative of this approach. Some-
where in between on the spectrum of programmability are tools that allow
the engineer to specify some parameters to the extraction process. Rigi-
parse, for example, permits the engineer to specify the preprocessor to use.
Programmability of the tool is desirable in that it may help an engineer
extract a call graph with the desired characteristics for a task. On the other
hand, the use of programmable features places an onus on the software
engineer to assess the characteristics of extracted graphs to determine the
kind of information being gathered.

Determining and delivering appropriate performance for software sys-
tems is never easy. As with most properties, developers must balance speed
with other desired features. For call graph extractors, tool developers must
typically balance speed with programmability. Here, we use the term
“speed” to refer to both the time required to execute the extractor and
produce a call graph and the time required to appropriately program and
configure the extractor. A software engineer may be willing to trade some
execution speed for enhanced programmability, but, in general, the tool
must still be fast enough to permit reasonable iterative use so that a
suitable call graph can be produced. For instance, a software engineer
would not likely be willing to spend the time to write a suitable call graph
extraction script for LSME if it required several hours to run the tool over a
system that was tens of thousands of lines of code.13

Tool developers must also factor the intended use of the extractor with
execution speed. It is unlikely given the large design space for call graph
extractors that one extractor will be suitable for all tasks. In some cases,
software engineers may be willing to trade speed of execution for an
assurance of the kind of call graph produced by a tool. For instance, a
software engineer may be willing to run a tool over a period of a few hours
if it will produce a conservative—but not too conservative—call graph for
the purposes of reengineering.14 For other tasks, such as helping an

13LSME has been used to extract call graphs from tens of thousands of lines of code, requiring
on the order of tens of minutes of CPU time [Murphy and Notkin 1996].
14As described earlier, a call graph that is too conservative might consist of the cross product
of the names of all defined functions.

An Empirical Study of Static Call Graph Extractors • 179

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

engineer become familiar with a new code base, approximation in the call
graph may be an acceptable trade for speed.

6. CHOOSING AND USING THE RIGHT EXTRACTOR

Call graphs extracted by software engineering tools are intended to aid
engineers in performing various engineering tasks. How does an engineer
choose a suitable extractor for a particular task? How does an engineer
ensure that a call graph with the appropriate characteristics is available
for the task? We consider each of these questions in turn.

6.1 Choosing a Suitable Extractor

Engineers choose a particular tool or tools for a task, based on a number of
technical and managerial considerations. In this discussion, we focus on
two of the technical properties influencing selection of a call graph extrac-
tor: the constraints placed on the use of a tool and the communication of a
description of the behavior of a tool from the developer to the user.

6.1.1 Constraints. Does the extractor have constraints that are accept-
able to the engineer? If the constraints are too strong, then the engineer
will have to either modify the input or else use another tool with weaker
constraints. For example, the requirement of the cflow tools that input-pass
a lint check may be too strong for an engineer to use when modifying a
large legacy system, since many realistic systems do not pass lint’s strenu-
ous checks. As another example, syntactic tools that require the presence of
all include files may be too strong when trying to port a system onto a
new platform.

6.1.2 Design. Are the design decisions made clear to the engineer?
Ideally, the design decisions made by the tool developer should be made
explicit in the documentation of the tool. In practice, however, most tools
make explicit only a few of the decisions. Engineers develop inferences,
primarily based on comparing the actual output to the expected output.
Gaps between the actual and expected output affect an engineer’s confi-
dence in the tool.

Looking at various kinds of false positives clarifies this point. The
engineer can quite easily identify some tuples as false positives, while
simultaneously understanding why the tool might have generated them.
For example, by looking at the source, an engineer may easily determine
that the (CCI_free, CCI_free) false positive reported by LSMEcg results
from the lexical approach of the tool not distinguishing call syntax used
inside a string in a print debug statement. Such false positives tend to help
the engineer infer how the tool works, without necessarily decreasing
confidence in the extractor.

In contrast, false positives that arise from inconsistent interpretations of
syntactic constructs tend to decrease the engineer’s understanding and
confidence in the extractor. For instance, Imagix’s inconsistent handling of

180 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

XtDisplay may confuse the engineer, perhaps decreasing the engineer’s
confidence in the extractor.

Several of the tools produce erroneous results by mistaking syntactic
constructs. An engineer who sees a large number of erroneous results may
have decreased confidence in the tool and will, in any case, have a hard
time inferring what is supposed to be extracted.

6.2 Extracting an Appropriate Call Graph

Sometimes an engineer will not be able to find an extractor that produces a
call graph with the appropriate characteristics for a specific task. An
engineer has several options in this case. The engineer might become a tool
developer, perhaps by using the programmable features of an existing tool,
and create the appropriate extractor. However, it can be difficult some-
times for an engineer to produce an appropriate extractor within the time
and cost constraints placed on the software engineering task. This study, in
part, shows how complex an engineering activity it can be to produce an
appropriate extractor.

Another approach available to the engineer is to combine the output of
two or more existing static call graph extraction tools. For instance, an
engineer could decrease the false negatives in a call graph for the mosaic
system by combining the graphs produced by the CIA and Rigiparse tools.
This combined call graph would still be an optimistic graph in that it would
contain no false positives. A difficulty facing the software engineer in this
scenario is the determination of the characteristics of each of the extracted
graphs.

An engineer might also combine the output of a static call graph
extractor, such as GCT, with the output produced from a dynamic extrac-
tor, perhaps based on a profiling tool such as gprof [Graham et al. 1982], to
supplement the statically produced graph with information about the
actual calls through function pointers. Using gprof, we collected a dynamic
call graph for mosaic , based on a simple test case that covered approxi-
mately 23% of the call sites reported by GCT. In comparison to the
GCT-extracted graph, the dynamically gathered call graph reported on
1,741 calls: 950 of those calls overlapped the statically extracted graph; 791
calls did not appear in the statically extracted graph; and 3,169 calls from
the statically extracted graph did not appear in the dynamically extracted
graph. A large number of the calls reported that differ from the GCT-
reported calls were due to the reporting by the profiling tool of calls
between system routines. Calls through function pointers accounted for 50
of the calls; these calls were filtered in a straightforward manner from the
profiling output and could be used to supplement a statically extracted call
graph for tasks requiring more complete information.

7. CONCLUSION

Abstractly, call graph extractors seem fairly straightforward to develop.
The design and engineering aspects, however, are quite complex. As

An Empirical Study of Static Call Graph Extractors • 181

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

confirmed by our empirical study, this leads to tools that, in practice,
return significantly different results when passed the same source pro-
grams as input.15

It is not that these tools are inherently flawed. For the most part, the
differences represent differing choices made by the developers of these tools
in a design space for call graph extractors; however, the volume of the
design space raises several problems.

One problem is that we know little about which points in the design
space are useful to practitioners. Joint collaborations between practitioners
and researchers are needed to identify the software engineering tasks that
could benefit from call graph information and to determine the appropriate
design space choices for tools to support the extraction of that information.
With this information, the necessary research and development can be done
to provide the needed tools.

Even given an appropriate selection of tools and an understanding of the
kinds of call graphs suitable for different tasks, the software engineer is
faced with the problem of selecting an extractor for a particular task. As
our study showed, an engineer cannot make assumptions about the kind of
call graph produced based on simple information such as the technology
used to create an extractor. Nor can the engineer assume that if a tool
extracts a particular kind of call graph—say a conservative call graph on
one system—that it will produce a conservative call graph for all target
systems.

There are several possible ways to attack this problem. It may be possible
to engineer tools that guarantee certain behavioral properties, such as
always returning an optimistic call graph. Or, it may be sufficient to more
effectively communicate the design decisions that specific extractors have
made so that practitioners can select an appropriate extractor based on the
needs imposed by the particular task they are performing. The aspects of
the design space described in this article provide a sketch of a basis for the
documentation required. Another possible approach is to develop new tools
and techniques for helping an engineer assess the kind of call graph
extracted. Advances are likely needed in all of these directions to ade-
quately support the engineer.

One limitation of our study is that we considered static call graph
extractors for only one language, C. It may be that determining call graph
extraction for C is uncommonly difficult compared to many other lan-
guages. For example, the separation of macro expansion from the C
language per se places pressures on C call graph extractors that are less
likely to arise for extractors that work on languages such as Ada, Modula-2,
and many others. Similarly, there may be more variants of C than for many
other languages, which adds additional pressures. On the other hand,
object-oriented languages require that the tool developer make design
decisions not considered for C call graph extractors. For example, a tool

15Unexpectedly inconsistent computations from long-lived, widely available, and broadly used
programs have also been documented in seismic data processing [Hatton and Roberts 1994].

182 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

developer must determine how to handle dynamic binding of method
invocations to method definitions.

Although this article only considers one kind of information, call graphs,
the observations about design decisions also apply to static extractors of
other kinds of information, such as inheritance structures, file depen-
dences, and references to global variables.

APPENDIX

A. VERSION INFORMATION

The following summarize the version (and availability) information for the
tools used:

—The version of cawk used was 0.6.

—The version of cflow used was the executable distributed with Sparc SUN
OS 4.1.3_U1. The only available documentation is a Unix man page.
Although cflow is distributed as part of the operating system on many
Unix platforms, it performs quite differently on each platform.

—The version of CIA used was “CIA 10/1/94,” as reported by executing cia
-h . CIA is available from http://www.research.att.com:80/orgs/ssr/book/
reuse/. The version used in the study was downloaded on June 26, 1995.

—Version 2.5 of Imagix was used. Imagix is copyright by Imagix Corpora-
tion.16

—The version of Field used was downloaded in September, 1996, from the
semianonymous FTP site at wilma.cs.brown.edu.

—The version of LSME used was Version 1.6 (Build 1).

—Version 1.2.2 of Mawk was used. Mawk is available by anonymous FTP
at several sites including tsx-11.mit.edu.

—The version of Rigiparse—or more specifically, cparse—used was 5.4.1d.
Rigiparse is available by anonymous FTP from tara.uvic.ca.

The version information for the systems we analyzed is

—MAPMAKER/EXP 3.0 and MAPMAKER/QTL 1.1,

—mosaic Version 2.5 (for the X Window System), and

—gcc version 2.7.2.

B. RUNNING THE TOOLS

The following describe characteristics of running the software engineering
call graph extraction tools and the GCT tool:

16http://www.imagix.com

An Empirical Study of Static Call Graph Extractors • 183

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

cawkcg. The cawk tool was run with the options -file -no-macro -N
-inclLoc -I ,cawk directory . -f call.scr in addition to the flags
derived for each file through the compilation process. When running cawk
with its own preprocessor, the -no-macro was dropped, and one to two
dozen -E switches and zero to a few -T switches were used, depending on
the program being processed. The -E and -T switches give information to
cawk’s cpp about what macros must be inlined (for those macros that
cawk’s cpp cannot figure out for itself) and what identifiers in macros are
forward references to typedefs. When compiling gcc , the -U_GNUC_switch
was added so that GNU C language extensions would not be used in the
source code.

The script used to configure the cawk tool, call.scr, is shown in Figure 4.
The script causes the tool to traverse ASTs for function call expressions.
When matches are found, the associated action code is executed.

cflow. cflow was run over the C source code files comprising a target
system with the -r -i_ option as well as any necessary include s or
define s. The include s and define s were derived on a per C source file
basis from the compilation process.

CIA. CIA was run with the -c option and any necessary include s and
define s to create a .A file for each C source code file. The necessary
include s or define s were derived and applied, on a per C source file
basis, from the compilation process. The resultant .A files were linked
using CIA, and the database was queried using cref -u func - func - .

Field. The xrefdb tool of Field was used to generate a program data-
base. The INCLUDE_PATHenvironment variable was set to any necessary

Fig. 4. Script used to configure the cawk tool.

184 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

include directories as derived from the output of the compile process. The
values of the define s necessary for compilation were passed to the xrefdb
tool using a series of -F flags. Since the xrefdb tool was run per executable,
any necessary define s or include s required for one C source file were
applied to the analysis of all C source files.

The xrefdb tool was run once against each executable produced for a
given system, sometimes producing more than one database per system.
Each Field database was then queried with (C.from, C.call); to
produce a textual list of the calls between functions. The lists of calls
between functions from each query were combined to form a call graph for
the system.

GCT. GCT accepts a superset of the command-line parameters accepted
by gcc . After instrumenting the code, GCT passes the file to a C compiler
for compilation. This design allows GCT to be substituted for the compiler
used to build the target systems. The control file used in the invocations of
GCT was as follows:

(coverage routine call)
(options instrument macros instrument-included-files)

To produce a call graph, a simple awk script was used to extract the
relevant information from the map file produced as part of the instrumen-
tation process.

Imagix. The Imagix environment was used to add targets to the make-
file(s) for a system being analyzed. The makefile targets inserted by Imagix
to run the Imagix analyzer depend on makefile conventions, such as having

Fig. 5. LSME call graph script used for the mosaic system (LSMEcg2).

An Empirical Study of Static Call Graph Extractors • 185

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

symbols defined for the C files to be compiled. As necessary, these targets
were modified to refer to the C source files reported as being used in the
compilation process. The define s and include s derived from the compila-
tion process were added to the definition of the IMAGIX_FLAGS symbol.
Since mapmaker and gcc had only one makefile, any define s or include s
necessary for one C source file were applied by Imagix to the analysis of all
C source files for that system. The mosaic source, on the other hand,
includes one makefile per subdirectory. In this case, the include s and
define s were set on a per-directory basis.

The Imagix database was created by executing the command make
imagix for the appropriate makefiles comprising a given system. The
necessary directories were added to a project for a target system using the
Imagix environment’s Add Data command. The call graph for a target
system was produced by loading the database and executing a special print
script provided by Imagix Corporation.

LSMEcg. The LSME tool is a generator. The tool accepts a description of
a set of hierarchical regular-expression-based patterns to search for in a set
of input files and generates an appropriate extractor. Generating an
extractor for calls between functions in C code requires the writing of a
short script. Six similar but slightly different scripts were used. The scripts
differ in such aspects as the handling of arguments passed to a function,
the handling of embedded calls, and the handling of macros (for unproc-
essed source).

The script used to report calls from the preprocessed mosaic source code
is shown in Figure 5. The first pattern in the script, named “function,”

Table IV. LSME Script Differences Compared to the Script Shown in Figure 5

Number

Script Use
of

Lines Difference from LSMEcg2

LSMEcg1 Preprocessed
mapmaker source

22 Permits declaration of pointers to function calls
in function definitions, and alters callee name
identification to permit operators attached to
the callee name.

LSMEcg3 Preprocessed gcc
source

22 Permits use of multiple parentheses in call site
to accomodate macro expansions.

LSMEcg4 Unprocessed
mapmaker source

27 Permits declaration of pointers to function calls
in function definitions, and alters callee name
identification to permit operators attached to
the callee name. Permits more liberal function
definition than LSMEcg1 as based on LSMEcg5.

LSMEcg5 Unprocessed
mosaic source

31 Permits presence of macro between the name of
a function being defined and the definition of
the function’s arguments; allows multiple
parentheses in call site to accomodate macros;
and recognizes commas in function definitions.

LSMEcg6 Unprocessed gcc
source

21 Does not recognize embedded calls.

186 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

describes the structure of a function definition. The code between the @
symbols is action code that is executed when a potential function definition
is found in the source being scanned. In this case, the action code will reject
the match if the function name is a keyword or an operator. Once a function
definition is matched, scanning continues looking for one or more instances
of the function call pattern, named “function.call,” and subsequent in-
stances of the function definition pattern. The function call pattern permits
the matching of calls with one level of embedded calls. Murphy and Notkin
[1996] provide further details on the meaning of LSME scripts.

Table IV summarizes the differences among the five other LSME scripts
used in the study and the script shown in Figure 5.

In the case of preprocessed source, the program generated from the
LSME patterns was provided as input, the result of passing the target
system source through the SunOS preprocessor. The necessary include s
and define s were passed to the preprocessor on a per-C-source-file basis
as determined from the compilaiton process. In the case of unprocessed

Fig. 6. Mawk call graph script.

An Empirical Study of Static Call Graph Extractors • 187

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

source, the generated program was provided the original source of the
target systems.

Mawkcg. Mawk is a version of awk that supports patterns as data.
Similar to LSME, Mawk requires a script with patterns and action code to
define a call gaph extractor. The script used to extract calls between
functions with Mawk is shown in Figure 6. This script takes advantage of
GNU formatting conventions to represent function definitions. The mean-
ing of a similar script to extract calls with Mawk is described by Griswold
et al. [1996].

In the case of preprocessed source, the Mawk tool, configured by the call
graph extraction script, was invoked on each C source file after it was
preprocessed using the SunOS preprocessor. The necessary include s and
define s were passed to the preprocessor on a per-C-source-file basis as
determined from the compilation process. In the case of unprocessed
source, the original script was provided to the Mawk tool configured by the
appropriate call graph extraction script.

Table V. Raw Data for mapmaker System

Number of Intersection GCT Tool
Tool Reported Calls with GCT Minus Tool Minus GCT

GCT 4,732 2 2 2
cawkcg 4,732 4,732 0 0
cflow 5,032 4,732 0 300
CIA 4,969 4,732 0 237
Field 4,594 4,580 152 14
Imagix 4,608 4,596 136 12
Rigiparse 4,721 4,710 22 11
LSMEcg1 4,994 4,551 181 443
Mawkcg1 3,326 2,867 1,865 459
cawkcg (own preproc) 5,607 4,077 655 1,530
LSMEcg4 (no preproc) 5,320 3,224 1,508 2,096
Mawkcg1 (no preproc) 3,259 1,738 2,994 1,521

Table VI. Raw Data for mosaic System

Number of Intersection GCT Tool
Tool Reported Calls with GCT Minus Tool Minus GCT

GCT 4,119 2 2 2
cawkcg 4,119 4,119 0 0
cflow 4,040 3,583 266 187
CIA 3,966 3,876 243 90
Field 4,006 3,954 165 52
Imagix 4,077 3,994 125 83
Rigiparse 4,106 4,106 13 0
LSMEcg2 4,008 3,913 206 95
Mawkcg1 2,310 2,123 1,996 187
cawkcg (own preproc) 4,575 3,990 129 585
LSMEcg5 (no preproc) 4,179 2,707 1,412 1,472
Mawkcg2 no preproc 2,521 1,547 2,572 974

188 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

Rigiparse. The RIGICPP environment variable was set to use the C
preprocessor distributed with SunOS. The Rigiparse tool was invoked on
each C source file with any necessaary include s and define s passed on
the command-line in quotations. The Rigiparse tool was run with the -f
option for nonhierarchical output. The necessary include s and define s
were derived from the compilation process.

The one exception to this process was the use of Rigiparse to extract a
call graph from the gcc system. In this case, the preprocessor was invoked
separately due to the large number of parameters, and the output was sent
directly to the cparse executable which is normally invoked by rigiparse.

Source Code. The following describes the source code considered when
producing call graphs for each system:

—mapmaker: The mapmaker software is structured into four subdirectories:
lib, mapm, quant and (the GNU) readline. This software, when compiled,
produces two executables: mapmaker and qtl . The extractor tools were
run after make had been called in the mapmaker directory (resulting in
the creation of a makehelp.c file in the lib subdirectory).

—mosaic: The mosaic software considered as part of this study is struc-
tured into four subdirectories: libXmx, libhtmlw, libwww2, and src. This
software, when compiled, produces one executable: Mosaic. The version of
Motif used was 1.1.

—gcc: The gcc software considered as part of this study was the C source
files used to produce a compiler for the C language. This software, when
compiled, produces several executables, some of which are used to
produce intermediate files during the compilation process.

C. RAW DATA

Tables V–VII contain the raw data collected from running the call graph
extraction tools. The tables include data showing the number of calls

Table VII. Raw Data for gcc System

Number of Intersection GCT Tool
Tool Reported Calls with GCT Minus Tool Minus GCT

GCT 11,980 2 2 2
cawkcg 11,962 11,959 21 16
cflow 10,494 10,128 1,852 366
CIA 11,746 11,664 316 82
Field 11,928 11,921 59 7
Imagix 11,622 11,459 521 163
Rigiparse 9,533 9,531 2,449 2
LSMEcg3 11,716 10,659 1,321 1057
Mawkcg1 9,696 8,980 3,000 716
cawkcg (own preproc) 22,107 11,067 913 11,040
LSMEcg6 (no preproc) 19,255 8,014 3,966 11,241
Mawkcg1 (no preproc) 18,042 6,841 5,139 11,201

An Empirical Study of Static Call Graph Extractors • 189

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

reported by each tool (not including calls through function pointers), the
number of calls that were also reported by the baseline tool GCT, the
number of calls reported by GCT that were not reported by a particular
tool, and the number of calls reported by a particular tool that were not
reported by GCT.

ACKNOWLEDGMENTS

We wish to thank the authors and companies of all the call graph extractor
tools used in the study for making their tools available to us. We also thank
Robert Bowdidge, Michael VanHilst, Michael Ernst, and the anonymous
reviewers for providing valuable comments on drafts of this article.

REFERENCES

AHO, A. V., KERNIGHAN, B. W., AND WEINBERGER, P. J. 1979. Awk: A pattern scanning and
processing language. Softw. Pract. Exper. 9, 4, 267–280.

ALLEN, F. 1974. Interprocedural data flow anlaysis. In Proceedings of Information Pro-
cessing 74 (Software). North-Holland Publishing Co., Amsterdam, The Netherlands,
398–402.

BANNING, J. P. 1979. An efficient way to find the side effects of procedure calls and the
aliases of variables. In Conference Record of the 6th ACM Symposium on Principles of
Programming Languages. ACM, New York, NY, 29–41.

BARTH, J. M. 1978. A practical interprocedural data flow analysis algorithm. Commun.
ACM 21, 9 (Sept.), 29–41.

CALLAHAN, D., CARLE, A., HALL, M. W., AND KENNEDY, K. 1990. Constructing the procedure
call multigraph. IEEE Trans. Softw. Eng. 16, 4 (Apr.), 483–487.

CHEN, Y.-F., NISHIMOTO, M. Y., AND RAMAMOORTHY, C. V. 1990. The C information abstrac-
tion system. IEEE Trans. Softw. Eng. 16, 3 (Mar.), 325–334.

COOPER, K. AND KENNEDY, K. 1984. Efficient computation of flow insensitive interprocedural
summary information. In Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler
Construction. ACM Press, New York, NY, 247–258.

COOPER, K. D., KENNEDY, K., AND TORCZON, L. 1986. Interprocedural optimization: Eliminat-
ing unnecessary recompilation. SIGPLAN Not. 21, 7 (July), 58–67.

FELDMAN, S. I. 1978. Make: A program for maintaining computer programs. Tech. Rep.
57. AT&T Bell Laboratories, Inc., Murray Hill, NJ.

GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK, M. K. 1982. Gprof: A call graph execution
profiler. In Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction. ACM,
New York, NY, 120–126.

GRISWOLD, W. G., ATKINSON, D., AND MCCURDY, C. 1996. Fast, flexible syntactic pattern
matching and processing. In Proceedings of the IEEE 1996 4th Workshop on Program
Comprehension (WPC ’96) (Berlin, Germany). IEEE Press, Piscataway, NJ, 144–153.

HALL, M. W. AND KENNEDY, K. 1992. Efficient call graph analysis. ACM Lett. Program.
Lang. Syst. 1, 3 (Sept.), 227–242.

HATTON, L. AND ROBERTS, A. 1994. How accurate is scientific software?. IEEE Trans.
Softw. Eng. 20, 10 (Oct.), 785–797.

JOHNSON, S. C. 1975. Yacc: Yet another compiler compiler. Tech. Rep. 32. AT&T Bell
Laboratories, Inc., Murray Hill, NJ.

LAKHOTIA, A. 1993. Constructing call multigraphs using dependence graphs. In Confer-
ence Record of the 20th ACM Symposium on Principles of Programming Languages (Charles-
ton, SC, Jan. 10–13, 1993). ACM Press, New York, NY, 273–284.

LESK, M. 1975. Lex—A lexical analyzer generator. Tech. Rep. 39. AT&T Bell Laboratories,
Inc., Murray Hill, NJ.

MARICK, B. 1994. Craft of Software Testing. Prentice-Hall, Inc., Upper Saddle River, NJ.

190 • G. C. Murphy et al.

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

MÜLLER, H. A. AND KLASHINSKY, K. 1988. Rigi—A system for programming-in-the-large. In
Proceedings of the 10th International Conference on Software Engineering (Singapore, April
11-15, 1988). IEEE Computer Society Press, Los Alamitos, CA, 80–86.

MURPHY, G. C. AND NOTKIN, D. 1996. Lightweight lexical source model extraction. ACM
Trans. Softw. Eng. Methodol. 5, 3 (July), 262–292.

MURPHY, G., NOTKIN, D., AND LAN, E.-C. 1996. An empirical study of static call graph
extractors. In Proceedings of the 18th International Conference on Software Engineering
(Berlin, Germany, Mar. 25-29). IEEE Computer Society Press, Los Alamitos, CA, 90–99.

MYERS, E. 1981. A precise inter-procedural data flow algorithm. In Conference Record of
the 8th ACM Symposium on Principles of Programming Languages. ACM, New York, NY,
219–230.

REISS, S. 1995. The Field Programming Environment: A Friendly Integrated Environment
for Learning and Development. Kluwer Academic Publishers, Hingham, MA.

RYDER, B. G. 1979. Constructing the call graph of a program. IEEE Trans. Softw. Eng.
SE-5, 3 (May), 216–226.

Received: February 1997; revised: May 1997; accepted: October 1997

An Empirical Study of Static Call Graph Extractors • 191

ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 2, April 1998.

