Lightweight Lexical Source Model
Extraction

GAIL C. MURPHY
University of British Columbia
and

DAVID NOTKIN

University of Washington

Software engineers maintaining an existing software system often depend on the mechanized
extraction of information from system artifacts. Some useful kinds of information—source
models—are well known: call graphs, file dependences, etc. Predicting every kind of source
model that a software engineer may need is impossible. We have developed a lightweight
approach for generating flexible and tolerant source model extractors from lexical specifica-
tions. The approach is lightweight in that the specifications are relatively small and easy to
write. It is flexible in that there are few constraints on the kinds of artifacts from which source
models are extracted (e.g., we can extract from source code, structured data files, documenta-
tion, etc.). It is tolerant in that there are few constraints on the condition of the artifacts. For
example, we can extract from source that cannot necessarily be compiled. Our approach
extends the kinds of source models that can be easily produced from lexical information while
avoiding the constraints and brittleness of most parser-based approaches. We have developed
tools to support this approach and applied the tools to the extraction of a number of different
source models (file dependences, event interactions, call graphs) from a variety of system
artifacts (C, C++, CLOS, Eiffel, TCL, structured data). We discuss our approach and describe
its application to extract source models not available using existing systems; for example, we
compute the implicitly-invokes relation over Field tools. We compare and contrast our
approach to the conventional lexical and syntactic approaches of generating source models.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—
computer-aided software engineering (CASE); D.2.6 [Software Engineering]: Programming
Environments; D.3.4 [Programming Languages]: Processors—parsing

This research was performed while the first author was at the University of Washington and
was funded in part by the NSF grants CCR-8858804 and CCR-9506779, in part by a Canadian
NSERC postgraduate scholarship, and in part by the University of Washington Department of
Computer Science and Engineering Educator’s Fellowship.

This article is a revised and expanded version of a paper presented at the 3rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-3), October, 1995.

Authors’ addresses: G. C. Murphy, Department of Computer Science, University of British
Columbia, Vancouver, B.C., Canada V6T1Z4; email: murphy@cs.ubc.ca; D. Notkin, Depart-
ment of Computer Science and Engineering, University of Washington, Box 352350, Seattle,
WA 98195-2350; email: notkin@cs.washington.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1996 ACM 1049-331X/96/0700-0262 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996, Pages 262-292.

Lightweight Lexical Source Model Extraction . 263

General Terms: Design, Experimentation, Languages

Additional Key Words and Phrases: Lexical analysis, lexing, reverse engineering, scanner
generation, scanning, software maintenance, source code analysis, source model, static analy-
sis

1. INTRODUCTION

Software engineers often depend on information mechanically extracted
from system artifacts to help maintain an existing system. Examples of
useful kinds of information—which we call source models—include file
dependences, call graphs, cross-reference lists, program dependence
graphs, among others.

To produce desired source models, engineers sometimes use lexical tools
in the style of grep, awk [Aho et al. 1979], and lex [Lesk 1975]. An engineer
produces a source model with these tools by specifying regular expressions
to be matched to text within the artifacts. One advantage of these lexical
tools is their versatility; few constraints are placed on the kinds of artifacts
to which they may be applied. For example, regular expressions can be
applied to both source code and documentation. Lexical approaches are also
generally fast and easy to use.

For source models that require recognition of syntactic constructs, such
as call graphs, the use of existing lexical tools quickly becomes unwieldy.
Using parsers is a seductive alternative, but existing parser-based ap-
proaches have two drawbacks. First, parser-based approaches generally
place stringent constraints on the artifacts from which source models are to
be extracted, precluding their use during some maintenance activities.
Many parser-based tools, for example, require that all system header files
be present and correct; this is an important constraint for compilation, but
is overly strict for computing a call graph while a system is being ported.
Second, modifying an existing parser—for instance, to produce a new
source model—can be quite complicated in practice.

Expanding a tool’s capabilities to include additional source languages
and additional analyses, while seemingly conceptually simple, can often
be quite difficult. The statement that “all you have to do is add a new
parser” is deceptively appealing [Reubenstein et al. 1993, p. 117].

This brittleness often drives engineers back toward lexically oriented and,
often ad hoc, approaches. For example, Wong and several colleagues
recently described a case in which they decided against writing a parser to
produce a source model during a structural redocumentation task, instead
extracting the information using “a collection of Unix’s csh, awk, and sed
scripts. . .” [Wong et al. 1995, p. 49].

We have developed a source model extraction approach that extends the
kinds of source models that can be easily produced from lexical informa-

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

264 . Gail C. Murphy and David Notkin

tion. Being lexical, the approach avoids the constraints and the brittleness
of most parser-based approaches. Our lightweight approach allows software
engineers to generate flexible and tolerant source model extractors as
needed for the software engineering tasks being performed.

—By lightweight, we mean that the specifications for new extractors are
reasonably small and easy to write. For example, specifications for C
[Kernighan and Ritchie 1978] call graph extractors, event extractors for
CLOS [Bobrow et al. 1988], and global variable references extractors for
TCL [Ousterhout 1994] are all fewer than 25 lines.

—By flexible, we mean that there are few constraints on the structure of
the artifact considered. For instance, we have used our approach to
generate extractors for both source code and structured data files.

—By tolerant, we mean that there are few constraints on the condition of
the artifact from which information is to be extracted. For instance, we
have extracted call information from source that does not compile; this
information may be valuable to software engineers as a change is made
to the system.

Our specification language, like other lexical systems, is based on
regular expressions. In contrast to other lexical systems, our language
includes a number of features intended to ease the description of the
source model to be extracted. First, our language simplifies the specifi-
cation of hierarchically related regular expressions, allowing, for exam-
ple, an engineer to state that a regular expression describing a call
construct may occur only after a match to a regular expression describ-
ing a function definition. This helps ease the description of syntactic
constructs. Second, an engineer specifies a regular expression in terms
of tokens, rather than characters, reducing the amount of information
the engineer needs to define. Finally, like many other lexical ap-
proaches, our language permits an engineer to attach code to a regular
expression; the code is executed when text from an artifact is matched to
the expression. From the code, an engineer may access artifact text
unified to different parts of the regular expression: this facilitates the
production of the desired source model.

Similar to existing lexical, and some syntactic, methods of extracting
source models, our approach produces approximate information—not all
intended constructs may be extracted, and some unintended constructs
may be extracted. The number of unintended constructs matched is re-
duced, in part, by three heuristics encoded into the scanners we generate.
In general, our approach trades precision in extraction for improved
efficiency in developing a desired extractor, and increased flexibility and
tolerance in the generated tool.

Section 2 presents an overview of our approach. Section 3 describes
our specification language. The technical basis of the approach, which is
grounded in the generation and execution of a set of hierarchical

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 265

lterate

Examines System

Artifact(s)

Writes

LSM
Spec

Examines

Fig. 1. The LSME approach.

deterministic finite-state machines, is discussed in Section 4. Section 5
describes the use of our approach to extract the implicitly-invokes
relation between tools in the Field [Reiss 1990; 1995] programming
environment; we do not know of any existing approach that can easily
extract this relation. Section 6 provides a discussion of the approach,
considering the expressiveness of our specification language, the accu-
racy of the source models we produce, the effect of heuristics on the
behavior of our system, an assessment of the efficiency of our tools, and
a description of the engineering tradeoffs compared to other similar
tools. Section 7 covers related work, and Section 8 summarizes the
article.

2. THE LEXICAL SOURCE MODEL EXTRACTION APPROACH

An overview of our lexical source model extraction (LSME) approach is
shown in Figure 1. An engineer examines the system artifacts and writes a
lexical specification describing the information to extract as a source model.
Using this specification, our system produces a source model from the
artifacts. As necessary, the engineer may refine the specification and
recompute a new source model.

Our system consists of two generators: a scanner generator and an
analyzer generator. As shown in Figure 2, each generator reads the
specification written by the engineer. In the specification, the engineer
defines:

(1) patterns describing constructs of interest in a system artifact,

(2) actions to execute when a pattern is matched to information in an
artifact being scanned, and

(3) optionally, postprocessing analysis operations for combining local infor-
mation extracted from individual files into a global source model.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

266 . Gail C. Murphy and David Notkin

LSME Specification

Patterns & X Analysis
Actions Operations

LSME
Scanner
Generator

Intermediate
Relational
Representation

Scanner

System
Artifact(s)

Source
Model

Fig. 2. Architecture of the LSME system.

The scanner generator uses the first two parts—the pattern and action
definitions—to generate a scanner that reads in a sequence of artifact files
and produces a stream of local output. In some cases, such as determining
the imports relation between Ada [GPO 1983] packages, the desired source
model may be produced by simply scanning individual files. In other cases,
such as determining the calls relation between C files, the desired source
model must be computed by combining information scanned from individ-
ual files. When information must be combined, the output from a generated
scanner may be an intermediate relational representation.

The analyzer generator uses the optional third part of the specification,
the postprocessing operations, to generate an analyzer that reads an
intermediate representation stream produced by a scanner and computes
the desired source model.

Sometimes, producing the desired source model requires scanning a
number of different kinds of system artifacts. For instance, as described in
Section 5, extracting the implicitly-invokes relation between tools in the
Field programming environment involves two scanners: one to scan C
source code and another to scan structured data files. Multiple scanners
may also be used over the same system artifacts to produce a source model.
For example, to produce a “refers-to” relation from C code, an engineer
might use one scanner to extract information about calls among functions
and another scanner to extract information about references of functions to
global variables. The results from multiple scans may either be appended
to a source model produced directly from scanning or may be appended to
the intermediate relational representation. Appending this information is
easy, since both the source model and the intermediate representation

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 267

stream are stored as ASCII files. As necessary, a generated analyzer may
be used to combine the results from multiple scans.

3. THE SPECIFICATION LANGUAGE

The language for specifying extractors has three parts: patterns describing
constructs of interest to search for in system artifacts, action code to
execute after a pattern is matched to a portion of a system artifact, and
optionally, analysis operations that compute a source model from an
intermediate relational representation produced during scanning.

3.1 Specifying Patterns

The engineer describes the information to extract from the system artifacts
as a set of hierarchical patterns. Each pattern uses regular expressions to
describe a construct that may be found within the artifacts. For example,
the following pattern may be used to extract the names of functions defined
within a file containing K&R C source code:!

[(type)] (functionName) \([{ (formalArg) }+ 1 \) [{ (type) (argDecl) ; }+ 1 \{

This pattern specifies that a function definition consists of an optional
type specification, followed by the name of the function, a left parenthesis,
an optional list of formal arguments, a right parenthesis, an optional list of
declarations of the types of the formal arguments (each of which is
terminated by a semicolon), and an opening curly brace for the start of the
function body. The names appearing within angle brackets in the pattern
introduce scanner variables that will be matched to tokens from the input
stream during scanning. The scanner generated from this pattern has no
semantic knowledge of the form or possible values of these scanner vari-
ables; for instance, the generated scanner is unaware of the names of the
built-in types in the C programming language.

This pattern will not generally extract all function definitions; for exam-
ple, it will not match definitions with an argument declared to be of a
pointer type where the asterisk is separated by white space from both the
type and the argument identifier (e.g., int * x;). Simple refinements of this
basic pattern, though, can be used to find all function definitions for
existing bodies of code. For example, this pattern has been iteratively
refined to find all of the function definitions in the 18,000 lines of C, yacc
[Johnson 1975], and lex code comprising the cross-reference tool of the
Field software system (see Appendix A).

Patterns may be nested hierarchically. For instance, to extract a static
calls relation between functions, the engineer may specify the following two
patterns where the pattern after the blank line is a child of the first
pattern.

10ur notation uses square brackets to indicate optional constructs, { } to indicate a nonempty
sequence of constructs, { }+ to indicate one or more nonempty sequences of constructs, | to
represent alternation, and back slashes to escape reserved single-character tokens.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

268 . Gail C. Murphy and David Notkin

[(type)] (functionName) \([{ (formalArg) }+ 1 \) [{ (type) (argDecl) ; }+] \{

(calledFunctionName) \([{ (parm) }+] \)

During extraction, the source will be scanned for an occurrence of the
first pattern. Once the first pattern is matched, scanning will continue
looking for both another occurrence of the first pattern and occurrences of
the second pattern. This ensures scanning will not miss the start of the
next function declaration while still being tolerant to syntactical deviations
in the source code. For example, the scanning is not dependent upon a
closing curly brace (or, moreover, to perfectly matched braces in the
definition of the function).

Disjunction is supported by permitting the description of multiple pat-
terns at the same level of the hierarchy. For example, an engineer can
search for global data declarations and function definitions by defining two
patterns at the same hierarchical level.

In contrast to most scanning approaches that define tokens on a per-
language basis (for instance, in lex), the patterns specified by the engineer
implicitly define two classes of tokens. The first class of tokens is the class
of single-character tokens. These tokens are defined by their appearance
within a specified pattern. For instance, the escaped left and right paren-
theses in the patterns above become single-character tokens. The second
class of tokens is the class of identifiers, consisting of any sequence of
nonwhite-space characters that do not contain any single-character token.?

3.2 Specifying Actions

An engineer may attach action code to a pattern that is to be executed
when the pattern is matched in the source code. The action code can access
the value of the scanner variables matched to scanned tokens and perform
operations such as writing to the local output stream. The pattern shown
below will write out a stream of the form “function calls function” when
static calls are matched in the source.

[(type)] (functionName) \([{ (formalArg) }+ 1 \) [{ (type) (argDecl) ; }+ 1 \{

(calledFunctionName) \([{ (parm) }+ 1 \)
@ write (functionName, “ calls ”, calledFunctionName) @

The @ symbols introduce action code to be executed when the second
pattern is matched in the input source. Our current tools define actions in
Icon [Griswold and Griswold 1983], a general-purpose imperative program-
ming language with special features for string scanning, and built-in

?In most cases, white space consists of any number of space, tab, and new-line characters. A
mechanism is provided for redefining starting and ending character sequences to identify
blocks of comments to be ignored by the tokenizer. In some cases, this may remove a new line
from consideration as white space. New lines may be mentioned within a pattern; this also
removes new lines from consideration as white space.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 269

support for set, list, and table data structures. Action code may be attached
to any scanner variable or one-character token appearing within a pattern.

In addition to producing output, action code may be used to control the
matching of constructs in the source to particular patterns. Specifically, an
engineer may reject matches to a particular pattern by invoking the fail
expression within the action code. This control is often used to reject
matches when patterns are too general. For example, the child pattern for
locating calls within a function specified above may also match control
constructs such as if statements. An engineer can reject these matches by
testing the value of the calledFunctionName variable:?

(calledFunctionName)
@ if calledFunctionName == “if” then
fail
write (functionName, “ calls ”, calledFunctionName) @
\([{{(parm)}+1\)

When a match is failed, the scanner will backtrack and try to match the
next best alternative. This is similar to the REJECT mechanism in the lex
scanner generator, and as is the case with lex, the fail mechanism may be
used to match overlapping patterns. The effect of failing a match on the
behavior of the scanner is discussed in further detail in Section 4.

3.3 Specifying Analysis Operations

Sometimes, the desired source model cannot be produced directly during
scanning. Instead, the source model must be computed at the conclusion of
scanning from multiple kinds of information extracted from the artifacts.
For example, a calls source model that includes information about the files
in which the caller and callee functions are declared—referred to as a global
calls source model in this article—must go beyond the example above. This is
because the file of the callee can only be resolved after scanning is completed.
An engineer defines the desired computation in an analysis section of the
specification that is input to our tools. The computation is performed on the
intermediate relational stream produced during scanning.

Consider the use of our tool to produce a global calls source model. First,
the engineer must place the necessary information to compute this model on
the intermediate relational stream. This is accomplished by using the special
relation function within action code attached to a pattern. For example, an
engineer may use the relation function to record the file in which a function is
defined when a function definition boundary is recognized:

[(type)] (functionName) \([{ (formalArg) }+ 1 \) [{ (type) (argDecl) ; }+ 1 \{ @
file := getArgument(1)

relation (“decl”, “file=" 1l file, “function=" 11 functionName)
@
3The Icon operator == compares two strings.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

270 . Gail C. Murphy and David Notkin

analysis @
A line starting with a # is a comment line.

Retrieve all tuples from the calls relation.
callR := relationSelect ("calls", "", "")

Visit each tuple in the calls relation.
every tuple := !callR.records do {

Extract the caller from the tuple
caller := tupleGetValue (tupleProject (tuple, 1), "function")

Determine the file of the caller by querying the decl relation
selectR := relationSelect ("decl", "function=" || caller, "')
callerFile := tupleGetValue (tupleProject (get (selectR.records), 1), "file")

Extract the callee from the tuple
callee := tupleGetValue (tupleProject (tuple, 2), "function")

Determine the file of the callee by querying the decl relation
selectR := relationSelect ("decl", "function=" || callee, "")
calleeFile := tupleGetValue (tupleProject (get (selectR.records), 1), "file")

Write out the call information with associated files.
write (callerFile, "/", caller, " ", calleeFile, "/, callee)

¥

Fig. 3. Analysis specification for computing a global C calls source model.

The relation function writes one tuple of a binary relation to the interme-
diate stream. The first parameter to the relation function is the name of the
relation to which the tuple being written belongs, while the second and
third parameters are the values of each part of the binary relation. In this
case, the file location is recorded in a relation named “decl”. The tuple
values are strings consisting of a space separated list of keyword and value
pairs. In the example above, for instance, the name of the file is retrieved
as the first argument to the scanner program using the getArgument
function. The second parameter is then formatted as a string consisting of
the keyword “file” with the value of the retrieved name of the file (the I
operator concatenates strings). The third parameter records the name of
the function scanned as the value of the “function” keyword. In a similar
fashion, the engineer can record the name of the caller and callee functions
within a “calls” relation.

In the analysis section, where the desired computation is defined, the
engineer may use relational operations such as selection and difference
which are provided as built-in functions to a generated analyzer as well as
general Icon code. For instance, to form the global calls source model, an
engineer may use relational selection operations to determine the file
information for each function involved in a tuple of the “calls” relation.
Given the file information, the global “calls” source model may be output.
The analysis section specified by an engineer to perform this computation
is shown in Figure 3.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 271

[<type> } <functionName>
\([{ <formalarg> }+] \)
[{ <type> <argDecl> ; }+ 1 \{

Scanner
Generator

Fig. 4. Deterministic finite-state machine generated for a pattern.

Details on the functions available for use in an analysis section of a
specification, such as relationSelect and tupleGetValue, are provided in
Appendix B.

4. THE GENERATED TOOLS

Given a specification for a source model, our system generates:

(1) a scanner, which when given an artifact produces either an intermedi-
ate relational representation stream or a source model and

(2) optionally, an analyzer, which produces a source model from an inter-
mediate stream.

4.1 Scanner

Based on the specification provided by the engineer, the scanner generator
produces a description of a lexer and a description of a set of hierarchically
related deterministic finite-state machines. These descriptions are com-
bined into an Icon program that executes the finite-state machines on input
that is tokenized by the lexer.

Each pattern in a specification is translated into a separate deterministic
finite-state machine. Figure 4 shows the pattern for locating C function
definitions and the state machine generated for that pattern. Each gener-
ated state machine has an initial state (marked by an oval in the figure)
and one or more final states (marked by the diamond in the figure). The
generated finite-state machines are related in the same hierarchy as the
patterns from which they were generated.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

272 . Gail C. Murphy and David Notkin

Each transition in a state machine has an associated value indicating the
kinds of tokens on which the transition can be taken. Transitions are
represented by edges in Figure 4; the labels on the edges represent the
transition values. The transition values are either single-character tokens
or identifiers. A single-character token matches only that token in the input
stream. An identifier matches any identifier returned by the lexer and any
single-character token that does not appear in the pattern from which the
machine was generated.

The generated scanner program is responsible for both executing the
appropriate state machines as tokens are produced and for recording the
paths taken through the machines. At the start of the scanning process,
only the state machines at the top of the multirooted tree are active. As
tokens are produced by the lexer, transitions are taken, in parallel, in all
active machines. On each token, a new path is also started from the initial
state in all active machines.

The scanner always attempts to match the longest possible sequence of
tokens. When a path reaches a final state, the scanner continues execution
of all paths of equal or greater length in machines at the same or higher
level of the hierarchy to determine if a longer match is possible. Scanning
continues as long as paths grow.

Since multiple state machines are active concurrently, a final state may
be reached by more than one path simultaneously. The scanner must
choose one path to reduce. Reducing a path results in the unification of
tokens to variables named in the matched pattern and in the execution of
action code. Two heuristics guide the choice of the path to reduce:

(1) If more than one path has reached a final state, and the paths are in
different state machines, reduce the path in the machine with the
lowest number in a breadth-first ordering of the machines. The ma-
chines are ordered based on the definition of the associated patterns in
the specification. This heuristic enables the scanner to reset. In the
calls example above, the start of the definition of a new function resets
the search from looking for calls to looking for functions. The heuristic
also permits engineers to prioritize patterns at the same level of the
hierarchy; patterns closer to the top of the specification have a higher
priority.

(2) If more than one path reaches a final state at the same hierarchical
level, reduce the path with the largest number of matched identifiers
and single-character tokens. This generally selects the most specific
pattern.

If, while executing action code as part of reducing, a fail expression is
encountered, the scanner halts the reduction and looks for another possible
path to reduce. If no other path is ready to reduce, the scanner backtracks
and continues the execution of the existing paths. After a successful
reduction occurs, scanning proceeds by pruning all existing paths, by
restarting all machines at the same or higher level of the hierarchy than

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 273

the machine of the reduced path, and by restarting all machines that are
children of the machine of the reduced path.

Active paths are pruned when no transition is possible with the current
token. It is still possible, however, that the search space may explode if the
patterns are not sufficiently specific. To bound the search space, a third
heuristic is encoded into the scanner, pruning a path if more than a fixed
number of tokens have been matched. The default value of the number of
tokens that may be matched is 100. An engineer may specify a different
value for this heuristic when a scanner is generated.

Translating Patterns to State Machines. Ensuring that the appropriate
variables are unified with consumed tokens and that the appropriate action
code is executed when a path reduces requires the maintenance of addi-
tional information linking a pattern to its deterministic state machine. We
ensure the correct linkage by first performing a straightforward translation
from a given pattern (i.e., regular expression) into a nondeterministic
finite-state machine with € moves. Transitions in the generated nondeter-
ministic machine are labeled with either an €, a single-character token, or
an identifier. In the case of an identifier label, the appropriate variable to
unify with a consumed token is also maintained on the transition. Action
code is associated with non-e transitions. The nondeterministic machine for
the pattern to recognize C function definitions (with action code to write
out the name of recognized functions) is shown in Figure 5.

The production of the deterministic machine from the nondeterministic
machine follows the standard algorithm [Aho et al. 1986, p. 117; Rabin and
Scott 1959] with one variation. In the standard algorithm, each state in the
deterministic machine corresponds to a set of states in the nondeterminis-
tic machine. In our algorithm, each state in the deterministic machine
corresponds to a set of pairs of nondeterministic machine states. These
pairs encode path information from the nondeterministic machine into the
deterministic machine. For example, consider the nodes of the determinis-
tic machine for matching function definitions (also shown in Figure 5).
Each deterministic machine node is annotated with a set of pairs (shown
vertically) of nondeterministic machine states. The top element of each pair
names a state in the nondeterministic machine that may transition to the
nondeterministic machine state named in the bottom element of the pair
when a token of the kind named on the input arc of the deterministic
machine state is seen. For example, the second state of the deterministic
machine (a double box in the figure) contains the pairs:

indicating that from state 3, if an identifier—the kind of token attached to
the input arc—is returned by the tokenizer, the nondeterministic machine
may transition to state 7, and from state 4 may transition to state 3.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

274 . Gail C. Murphy and David Notkin

[<type>] <functionName> @
write (functionName)
@
\([{ <formalArg> }+ \)
[{ <type> <argDecl> ; }+ 1 \(

identifier

identifier

£

e e}
)

—
—_
o

£ <type>

[s 0 Fes{ 20] 2
T [y
€ e

18 Jes 25 Jeo] 24 oo
{
<os>

(a) Nondeterministic state machine (b) Deterministic state machine

Fig. 5. Nondeterministic and deterministic finite-state machines generated for a pattern.

As described earlier, the scanner maintains path information as tokens
are consumed and deterministic machines executed. The path information
that is maintained is actually the path information in the nondeterministic
machine. As a transition in the deterministic machine is taken, the scanner
determines the possible corresponding paths in the nondeterministic ma-
chine by matching the bottom element of each pair in the current determin-

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 275

istic state with the top element of each pair in the new deterministic state.
For example, if the deterministic machine shown in Figure 5 is in the
second state, there are at least two active paths (each path is shown in []):
[(13) (37)] and [(1 4) (4 3)]. If an identifier is then seen, we match the
[(1 4) (4 3)] path with the (3 7) pair, forming the path ([1 4) (4 3) (3 7)]. The
other path is pruned from consideration, since there is no pair that matches
to state 7 in the new deterministic state.

When a deterministic machine is reduced, the path from the nondeter-
ministic machine is traversed, the variables unified with consumed tokens,
and the action code executed.

4.2 Analyzer

The analyzer generator translates the analysis code from the source model
specification file into an Icon program that reads tuples from the interme-
diate representation stream, forms the relations as defined by those tuples,
and then performs the relational operations and processing specified by the
analysis code.

5. EXAMPLE

To clarify our approach, we describe the use of our system to extract the
“implicitly-invokes” [Garlan and Notkin 1991] source model among tools
within the Field programming environment. Field tools communicate indi-
rectly through a centralized message server. Tools express interest in
events by registering regular expressions with the message server, and
they announce events by passing ASCII messages to the message server.
The message server matches incoming messages to the stored regular
expressions, and it forwards the messages to the appropriate tools. An
understanding of the “implicitly-invokes” source model in Field may be
useful for software engineers modifying an existing tool or integrating a
new tool into the environment.

Event registrations and event announcements are coded as calls to C
functions in Field. An examination of the source code comprising Field
revealed that some of the C calls involved in event registration and
announcement have, as a first parameter, a literal character string with
the name of the event. We can use the information about this coding style
to produce a static approximation of the dynamic interconnections of Field
tools.

More precisely, Field tools register events through calls to the C function,
MSGregister, and announce events using the C functions, MSGsend, MSG-
senda, MSGcall, and MSGcalla. We wrote patterns to scan the C source
code for these functions with action code that output two relations to the
intermediate stream: an event registration relation and an event announce-
ment relation. A generated analyzer was used to join these two relations on
the event name to form a source model consisting of possible dynamic
interconnections among Field tools.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

276 . Gail C. Murphy and David Notkin

if funcName == "if" | funcName == "switch"
funcName == “while” | funcName == "forin" then
fail

[<type>] <funcName> Cj<f { Caxg> [{ , <arg> }+] 1 \)
[{ <type> [[<mod> }+] <decl> [{ , <decl> }+] ; 1+ 1 \I[

<calledFuncName \(" <event)> [{ <otherParm> }+ 1 " ()

if not find ("MSGsend”, calledFuncName) &
not find ("MSGcall", calledFuncName) &
not find (“MSGregister”, calledFuncName) then
fail

tool := getArgument(l)
file := getArgument(2)
event := map (event, &ucase, &lcase)
if find ("MSGregister", calledFuncName) then
relation ("registers", "tool=" || tool |
" file=" || file |
" function=" || funcName ||
" event=" || event, "")
else
relation ("announces", "tool=" {| tool ||
" file=" || file |
" function=" || funcName |
" event=" || event, "")

Fig. 6. Patterns for extracting events from Field source code.

Scanning Event Information. The specification we wrote to extract the
registration and announcement of Field events from C source code is shown
in Figure 6. Two nested patterns are defined. The first pattern matches C
(K&R-style) function declarations. The second pattern matches calls within
a function body that take a constant character string as a first argument.
Action code is depicted within boxes in Figure 6. The point in the pattern at
which action code is attached is indicated with a grey dot.

The action code for the first pattern checks the name of the function
matched and rejects any matches to control constructs (e.g., if statements,
switch statements, etc.) through the use of the fail expression.*

Action code is also attached to two parts of the second pattern. The first
body of action code (attached to CalledFuncName) checks the name of the
matched function call to ensure it is either an event registration or an
event announcement.® Matches to any other function calls are rejected
using the fail expression. The second piece of action code (attached to the
end quote of the literal C string) writes a tuple of either the event

4The forin construct is a macro used in the Field code.

5The Icon find function succeeds if the first parameter is a substring of the second parameter.
This use of the find function to determine if the call is related to events may match other
functions than the five MSG calls outlined above. This is a tradeoff made by the engineer to
ease the specification of the action code. Specifying all five calls in full string comparisons to
the calledFuncName variable is another option that might increase an engineer’s confidence in
the actions of the scanner.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 277

registration (registers) or event announcement (announces) relation to the
intermediate stream (the || operators concatenate strings). The tuple in-
cludes the name of the tool, the names of the file and function being
scanned, and the name of the event. The tool name is the name of the
directory containing the file being scanned. The directory and file informa-
tion are passed in as arguments to the scanner. The name of the event is
taken from the first nonblank portion of the C literal string and is
transformed into all lowercase letters by the call to the Icon map function.

For example, given the following snippet of C code from the flowmenu.c
file in the flow directory which contains source for the Field call graph
display tool

void FLOW_menu_setup_trace(fw)

FLOW_WIN fw;
{...MSGsenda(“DDTR EVENT ADD %s * * 0 * * 0 CALL %1”,fw—system); ...}

we output the following tuple for the announces relation:®

tool=flow file=flowmenu.c function=FLOW_menu_setup_trace event=ddtr.

Scanning 160,000 lines of Field source code with the Icon program
generated by our system takes approximately seven minutes on a DEC
Alpha (3000/300X). The scanner generates 103 tuples for the announces
relation and seven tuples for the registers relation. This was a smaller
number of tuples than we expected, causing us to further inspect the Field
source code. We determined from this inspection that very few tools used
the MSGregister function with the event passed as a string. Instead, most
tools called the registration function with a variable containing the name of
the event. The values are generally set by reading an auxiliary data file
containing blocks such as:

BUILD:
SYSTEM_MSG = “DEBUG SYSTEM %1s”
MAKE_MSG = “BUILD MAKE%1s”
COMPILE_MSG = “BUILD COMPILE %1s”
COMMAND_MSG = “BUILD COMMAND%1s %2s”
COMPILEGO_MSG = “BUILD COMPGO %1s”
FILEWD_MSG = “MSG FILE_WD”

>

Each block begins with the name of a tool followed by a colon. A number of
messages are then defined; each message is preceded by a message name,
an equals sign, and a starting quote.

To extract event registrations from this structured data file, we wrote the
specification shown in Figure 7. Each time a message definition is matched,
action code is executed to transform the name of the tool and the name of
the event to lowercase characters and to output an event registration
relation to the intermediate representation stream. Scanning the 181-line

SFor presentation purposes, this tuple is shown in a different format than output by our tools.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

278 . Gail C. Murphy and David Notkin

<tool>: { <name> =" <event> <otherParm> 1+

tool := map (tool, &ucase, &lcase)

event := map (event, &ucase, &lcase)

relation ("registers", "tool=" || tool ||
" event=" || event, "")

Fig. 7. Pattern to extract event registrations from Field structured data files.

structured data file using the generated scanner takes less than a second
and generates 95 additional tuples for the registers relation.

Computing a Source Model. To combine the information in the register
and announces relations into the desired implicitly-invokes format, we
wrote the analysis specification shown in Figure 8. This specification
creates an index for the registers relation, performs a relational join
between the announces relation and the registers relation, and outputs the
desired source model. A value in the source model describes a possible
implicitly-invokes relation between two Field tools, and specifies a portion
of the name of the event, and the file and function from which the event
announcement is made. For example, the source model value

annot autoc annot autocbase.c handleMsg

describes that the autoc tool (second value) implicitly-invokes the annot tool
(first value) through the annot event (third value) and that the announce-
ment of the annot event is made from the handleMsg function in the
autocbase.c file. Information about the location of the event registration is
not provided because this information is not available for tuples extracted
from the structured data file.

Analyzing the announces and register relations extracted from the Field
source code and the structured data file takes less than a second on a DEC
Alpha. The computed source model consists of 61 event interactions be-
tween the 22 Field tools.

Assessing the Source Model. Determining the true implicitly-invokes
relationship between Field tools is undecidable using static analysis tech-
niques because Field allows events to be arbitrary strings that can be
constructed at run-time. Unix’s grep can be used to capture many of the
invocations and registrations, but the quantity of information returned is
great (380 lines), and data- and control-flow analysis would have to be
performed to compute the relationship values. Performing even part of this
analysis by hand would be, at best, a time-consuming activity.

Instead, we compared the extracted source model with one gleaned from
reading the available literature and the man pages about Field. Because
there are many ways of sending messages between tools beyond using the C

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 279
This is a comment line.

Create an index for the events relation.
eventList := ["event']
relationMakeIndex ("register", i, "event", eventList)

Perform a join between the announce and register relations
based on the event name. tupleProject and tupleGetValue
are functions that provide access to fields in the relation.

announceR := relationSelect ("announces", "", "")

every tuple := !announceR.records do {
theEvent := tupleGetValue (tupleProject (tuple, 1), "event")
registerR := relationSelect ("register", "event=" [| theEvent, "")
every rtuple := !registerR.records do {

Write out a value in the source model.

registerValue := tupleProject (rtuple, 1)

announceValue := tupleProject (tuple, 1)

write (tupleGetValue (registerValue, "tool"), " ",
tupleGetValue (announceValue, "tool"), " ",
theEvent, " ",

tupleGetValue (announceValue, "file™), " ",
tupleGetValue (announceValue, "function"))

Fig. 8. Implicitly-invokes analysis specification.

functions with a constant character string parameter, the extractor missed
some implicit invocations between tools. For example, the annot tool (the
annotation editor) registers interest in some events announced by the
cross-reference tool. The registration information about these events is
stored in a second auxiliary data file (annot_data.auxd). Since we did not
scan this data file, the analyzer did not have sufficient information to
determine the implicitly-invokes relation between the cross-reference tool
and the annotation editor. More events of this nature could have been
determined by increasing the number of auxiliary data files scanned.

On the other hand, there were also relations between tools that we
automatically extracted, but did not find in a study of the documentation.
For instance, the interaction between the autocommenter tool (autoc) and
the annotation editor tool (annot) was found by our extraction approach,
but is not readily apparent in the documentation.

In any case, we are unaware of any other source model extraction tools
that extract this (or any similar) relation.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

280 . Gail C. Murphy and David Notkin

6. DISCUSSION

6.1 Expressiveness

Our pattern specification language is equivalent to regular expressions. For
instance, each path in the pattern tree may be used to form a regular
expression by joining parents to children with wildcard expressions and by
adding the appropriate iteration and alternation information. For example,
the two patterns to search for call information in C code may be joined by

(functionPattern ((wildCardPattern)* callPattern)*)*

where functionPattern is the pattern to recognize a C function definition;
wildCardPattern matches any characters and white space; callPattern is the
pattern to recognize a C call; and the parentheses with a star enclose a
regular expression that occurs zero or more times.

In contrast to other existing regular-expression tools, our approach
combines a number of features to simplify the specification and use of
regular expressions for recognizing language features.

First, we simplify the input provided by the engineer by deriving a lexer
from the specified pattern. The engineer, for instance, does not need to
specify a character-based regular-expression pattern to represent identifi-
ers, numbers, etc. for the particular language of interest. One limitation of
our approach is that it reduces the control an engineer has of the tokeniza-
tion process, sometimes causing unexpected results. For example, a scan-
ner generated from a pattern consisting of only a string may not match all
occurrences of that string in a given piece of text. Rather, only those pieces
of text in which the string is preceded by white space will be matched. In
general, the benefit of reducing the difficulty and time required to specify a
desired source model generally outweighs the limitations associated with
an implicit lexer. To handle cases in which more control is necessary, we
could augment our system with the ability to accept an explicit lexer
defined by the engineer.

Second, our approach of allowing patterns to be defined hierarchically
permits the engineer to easily refine and augment a collection of existing
patterns. This is important given the iterative nature of our approach. New
patterns can be introduced into the hierarchy without modifying existing
patterns; this is in contrast to existing lexical tools in which existing
regular expressions must be modified and augmented (e.g., with iteration
information) as new hierarchical information is introduced.

Finally, the heuristics built into the generated scanners restrict the
number of matches of the patterns to the text of an artifact. To the
engineer, this more closely approximates the behavior found when search-
ing based on a grammar. For instance, the heuristic which prefers to match
a piece of text to a pattern closer to the top of the hierarchy reduces the
amount of code that an engineer must otherwise write to remove unwanted
matches of regular-expression patterns to artifact text.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 281

Table I. Uses of the LSME Approach

Patterns and Supporting
Actions Analysis Code Total
Extractor (# Lines) (# Lines) (# Lines) (# Lines)
CLOS Events 15 0 0 15
Eiffel Calls 110 15 94 219
Modula-3 Calls 15 20 0 35
TCL Globals 16 0 0 16

Since it is based on regular expressions, our pattern language is not well
suited to extracting fine-grained, statement-oriented source models like
control dependence graphs. Our pattern language is, however, sufficiently
expressive to have been used to extract a number of different kinds of
source models from a variety of types of system artifacts. Some of the uses
of the approach are summarized in Table I. The data in this table include
the number of lines of specification written by the engineer (the “Patterns
and Actions” and “Analysis” columns) and the number of lines of supporting
Icon code (the “Supporting Code” column).” In most cases, the total amount
of specification and supporting code written by an engineer is less than 40
lines. The specification and code required to support the extraction of call
information from Eiffel [Meyer 1991] source code is somewhat larger
because of the need to extract, track, and compute inheritance and type
information.

6.2 Accuracy

The accuracy of a source model extracted using our system depends
primarily upon three factors: the structure of the language used within an
artifact (e.g., ANSI C, structured data files, etc.), the adherence to style
within an artifact (e.g., limited nesting of calls, standardized placement of
the dereferencing operator in C, etc.), and the effort spent in refining a
specification. For example, a global variable references source model ex-
tracted from over 7000 lines of TCL code is exact because a particular
global variable construct, suitable for extraction with regular expressions,
was used uniformly throughout the program. On the other hand, it is
impossible to write a specification using our approach that will extract all
calls from any C program because the regular-expression-based language
limits the ability to express nested call constructs. We can, however, exploit
coding styles to decrease the number of calls missed (false negatives) by an
extractor generated with our system. For instance, if only two levels of
embedded calls are allowed, regular expressions may be written to express
the limited embedding.

One difficulty for an engineer using our approach is determining the
accuracy of the extracted source model. This is not unique to our approach.

“The supporting Icon code includes procedures to write out source model information, to
compute inheritance hierarchies from relational information, etc.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

282 . Gail C. Murphy and David Notkin

In an empirical study of four syntactically based C call graph extractors, we
found that all tools generated some false positives (source model values
reported that are not part of the “true” source model) and that all tools
generated some false negatives [Murphy et al. 1996]. Understanding the
sources of approximation in these syntactic approaches, as well as in our
approach, often requires careful analysis by the engineer. However, in
contrast to most syntactically based approaches, the iterative and light-
weight nature of our approach enables an engineer to more easily improve
the accuracy of the source model in a number of ways including refinement
of the patterns in a specification, the use of multiple passes to extract
different information that is then combined during analysis, among others.
For instance, by extracting calls from both preprocessed and postprocessed
Field system source code and by expanding some macros during analysis,
we were able to extract 95% of the calls extracted for the same source by
the CIA system [Chen 1995; Chen et al. 1990] and 96% of the calls
extracted by the Field system.®

Approximate source models are useful for some, but not all, software
engineering tasks. We could not find any publicly or commercially available
Eiffel call graph extractor; building a good, even if approximate, extractor
in a couple of hours was beneficial for helping to understand an existing
system written in Eiffel. Griswold and Atkinson [1995] have demonstrated
with their Ponder system that approximate control-flow information can be
useful for constructing call graph displays used by engineers modifying an
existing health care system. For other tasks, such as determining branch
coverage for testing, or computing a graph of program dependences for
automating restructuring tasks, approximate models may not be sufficient,
and our approach may not be applicable. In many cases, though, the
flexibility an engineer gains in being able to extract a desired source model
is a fair trade for accuracy.

6.3 Heuristics

The heuristics embedded in the scanners we generate tend to reduce the
number of false positives that might otherwise be reported. Reducing the
false positives often causes a corresponding decrease in false negatives. For
instance, the heuristic that selects the pattern closest to the top of the
hierarchy ensures that the C call graph extractor resets when a new
function definition is seen; this may eliminate a false positive that would
result from considering the function definition as a call from a previously
defined function, as well as eliminating the false negatives that would arise
from not considering the construct as a function definition when subse-
quent calls are matched.

The impact of the heuristics on the behavior of a generated scanner is
dependent upon the patterns specified by an engineer. To investigate the
impact of the heuristics, we gathered statistics on the execution of scanners

8In comparison, the Field system found 97% of the calls found by CIA. Almost 3% of the calls
found by Field were not reported by CIA.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 283

Table II. Execution Statistics for Generated Scanners

Heuristic 1 Heuristic 2 Heuristic 3 Number
Hierarchy Longest Token Bound of Paths
Specification Avg (Total) Avg (Total) Avg (Total) Avg (Max)
Field Events 0(0) 0 0(3) 34)
Field Structured Data 0(0) 15 (15) 2(2) 1(3)
C Calls 50 (2439) 57 (2783) 0(0) 3(12)

generated for three different specifications: the Field event specification
shown in Figure 6, the Field structured data specification shown in Figure
7, and a C calls specification based on the patterns in Section 3.1. The first
scanner was executed on the preprocessed C, yace, and lex source code
comprising the Field system; the second scanner was executed on a 181-line
Field structured data file; the third scanner was executed on a publicly
available molecular biology application, Mapmaker,® comprised of approxi-
mately 46,000 lines of C code. Table II summarizes the data collected from
the execution of these scanners. The data in the table include statistics on
the number of average (and total) times each heuristic was invoked and the
average (and maximum) number of active paths.'®

The number of times heuristics were invoked during the scanning for
Field events is small because the Field event specification is comprised of
two clearly distinct patterns. In contrast, the C calls extractor is comprised
of two similar patterns, resulting in higher values of heuristic invocations.
The single pattern in the Field structured data specification ends in a
repetitive sequence, causing several invocations of the second heuristic that
chooses the longest possible match.

6.4 Performance

Our scanner and analysis generators are fast; the generators complete
execution in a few seconds on a Sparc 20/50 for all specifications we have
written. Although theoretically the conversion a generator performs from
the nondeterministic state machines to the deterministic state machines
could result in an exponential number of states in the deterministic
machines, we have not found this to be a problem in practice. For example,
there are less than 20 states in the deterministic machines generated for
the Field event specification. One of the largest examples we have speci-
fied, a call graph extractor for Eiffel code, which consists of four patterns
with 234 symbols (regular-expression characters, variable names, single-
character tokens, etc.), translates into a set of deterministic machines with
a total of 87 states.

9Version 3.0 of the MAPMAKER/EXP source code and version 1.1 of MAPMAKER/QTL source
code were scanned.

10The average values were calculated by taking the average over all (average) values returned
from the scan of each file.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

284 . Gail C. Murphy and David Notkin

Table III. Comparing the Speed of Tokenizing an Input Stream (Sparc 20/50)

Scan Time Lines Scanned
Tool (mins) Per Minute
lex :54 186K
LSME lexer 1:37 103K

To support our iterative approach, it is also important that the generated
scanners be efficient. While developing patterns, we often use the Icon
interpreter to test the generated scanners on sample files. Interpreting the
scanner generated for extracting Field events over an 840-line C file from
Field takes 20 seconds on a SPARC 20/50. This is fast enough to support
the iterative refinement of a specification.

Once the specification has been refined to extract the desired informa-
tion, the generated Icon scanner program can be compiled for better
efficiency. To give a basic sense of the speed of the compiled Icon, Table III
reports a comparison of the time required to perform the basic operation of
breaking an input stream into tokens using a scanner generated with our
system and a similar tokenizer we wrote and generated using lex. These
lexers recognized the start and end of C-style comments, specific one-
character tokens (i.e., opening and closing parentheses, a comma, and an
opening curly bracket), and identifiers consisting of nonwhite-space se-
quences of characters other than the specified one-character tokens. The
performance data reported is based on executing each lexer on the 215 C
source files comprising the source for the Field programming environment.
The LSME-generated lexer is able to process approximately 103K lines per
minute, compared to the 186K lines by lex.

The execution time of a generated scanner is heavily dependent upon the
patterns in a specification, the content of the artifacts being scanned, and
the value of the third heuristic that governs the maximum length of paths,
since these three factors affect the size of the search space explored. To give
a sense of the performance of our scanners, Table IV compares the time
required to run two different lightweight scanners for extracting C calls
from the Field system source code with the execution times of the parser-
based Field and CIA calls extractors (on a Sparc 20/50). The first scanner
(labeled LSME—no cpp) was generated from a specification containing two
patterns and was run over the approximately 167,000 lines of preprocessed
C source code comprising Field. The second scanner (labeled LSME—cpp)
was generated from a specification containing three patterns and was run
over the approximately 985,000 lines of postprocessed source code (similar
to the Field and CIA tools). The data reported include the CPU time!! to

1The CPU time reported is a sum of the user and system seconds required to produce the
source model as reported by the Unix time command. For the CIA tool, the time reported
includes the time to scan each source file (using the cia command), combine the results of the
scans into a database (also using the cia command), and then query the database for the
source model (using the cref command). For the Field tool, the time reported includes the time

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 285

Table IV. Performance of Various Tools Extracting C Calls Information from the Field Code
Base (Sparc 20/50)

CPU Time Wall Clock Lines Scanned % Calls
Tool (mins) Time (mins) Per Minute Same as CIA
CIA 7:22 15:44 133.2K 100
LSME (2 patterns, no cpp) 7:34 8:51 22.5K 85
Field 9:02 17:11 109.1K 97
LSME (3 patterns, cpp) 21:10 23:31 46.6K 92

produce a “function calls function” source model,'? the wall clock time,*®
and a calculation of the number of lines of source scanned per minute. The
data in the table show the dependence of the scanners generated using our
approach on the specification and artifact; the second scanner, for instance,
has a higher scanning rate than the first scanner although it encodes more
patterns and scans more lines of code. Although the second scanner runs
more slowly than the CIA and Field tools, its performance is adequate for
supporting an engineer during most maintenance tasks.

Similar to speed, the space required by a generated scanner during
execution depends upon the patterns specified by an engineer, the artifacts
being scanned, and the value of the third heuristic. To measure the space
used by a scanner generated by our tool at execution, we altered the code of
the two generated scanners to report, using the Unix ps command, the size
of the process at the completion of a scan. These scanners each had the
default third heuristic value of 100. The average space used across the
scans of the 251 Field source files was modest; 237KB was the average
space used by the scanner generated from two patterns, and 409KB was the
average space used by the scanner generated from three patterns. The
maximum space required by either of these two scanners was 2252KB.

The performance of a source model extractor cannot be considered
independent of the information it extracts. Table IV also reports a compar-
ison of the similarity between the source models extracted to the source
model extracted by the CIA tool.'* As noted above, the degree of approxi-

to scan the source files and to then query the resultant database for the desired source model
(using the xrefdb command in each case). The time reported for the LSME scanner generated
from two patterns includes the time to scan the individual source files comprising the Field
code base, as well as the time required to postprocess the resultant source model with awk to
expand some common macros for ease of comparison to CIA. The time reported for the LSME-
generated scanner from three patterns is simply the time to preprocess and scan the
individual Field source files. Both LSME scanners were set to filter out comments.

12Note that in the case of the CIA tool, the source model extracted is a “function refers-to
function” source model which is a superset of the “function calls function” source model.

13As reported by the Unix time command.

14Note that the source model extracted by the LSME scanner generated from two patterns was
postprocessed, using a simple awk script, to expand some common macros for ease of
comparison.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

286 . Gail C. Murphy and David Notkin

mation acceptable in a source model depends upon the task being per-
formed.

The analyzers generated from our specifications perform sufficiently fast
for the analysis specifications we have written. For example, as we de-
scribed earlier, the generated analyzer for the Field events specification
runs in less than a second (SPARC 20/50) on the data extracted by the
generated scanner. When better performance or more sophisticated rela-
tional operations are required, other analyzers, such as commercial rela-
tional databases, may be used.

6.5 Engineering Tradeoffs

An alternative approach to source model extraction is exemplified by
software information systems (e.g., Masterscope [Teitelman and Masinter
1981], Omega [Linton 1983], cscope [Steffen 1985], CIA [Chen 1995; Chen
et al. 1990], Field [Reiss 1990; 1995], LaSSIE [Devanbu et al. 1991], XL
C++ Browser [Javey et al. 1992], Sniff [Bischoffberger 1992], etc.). These
systems derive a database from the system’s artifacts; desired source
models are then extracted from the database. In contrast, we produce a
separate source model extractor for each desired source model. This differ-
ence is in part a matter of engineering. To understand in what situations
one approach may be better than the other requires consideration of a
number of dimensions.

In the database approach, one must anticipate what information to
include in the database. If a new source model is needed that depends on
information not in the database, the database structure must generally be
modified; the tool that creates the database must be modified; and the tools
that extract existing source models from the database may have to be
modified. Our approach is not dependent on anticipating these needs.

Our approach of computing source models on demand, however, may be
less effective if a number of source models need to be extracted from the
same source code, since scanning is, in general, done for each desired
model. In contrast, the conventional approach amortizes scanning costs;
once the database is computed, it is often inexpensive to extract source
models from the database.

7. RELATED WORK

7.1 Regular-Expression-Based Tools

A number of tools and languages support the scanning of textual artifacts
for specified regular expressions.

The grep family of tools (e.g., grep, fgrep, egrep, agrep [Wu and Manber
1992], and cgrep [Clarke and Cormack 1995]) support the identification of
text in artifacts matching specified regular expressions. Most of these tools
are restricted to searching and returning lines from the artifacts, although
the agrep tool permits the use of a separator pattern to delimit the records
to be considered, while the cgrep tool permits the description of records, in

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 287

which the grep is to be conducted, by a pair of regular expressions. None of
these tools provides support for identifying the pieces of text matched to
particular parts of the regular expression, and none supports the execution
of actions when matches are found, restricting their use for source model
extraction.

These restrictions are relaxed in the awk text-scanning language [Aho et
al. 1979], the lex scanner generator [Lesk 1975], and the perl shell
language [Wall 1990], which support the execution of code written by the
engineer when text is matched to specified regular expressions. The lex tool
does not provide any support for unifying matched lexemes to parts of the
regular expression, whereas the awk and perl languages support unifica-
tion for a subclass of regular expressions. The use of these tools for source
model extraction is complicated by the limited support for accessing the
values of text matched to portions of the regular expressions and by a lack
of support for specifying prioritized hierarchical collections of regular
expressions.

The TLex tool [Kearns 1991], a pattern-matching and parsing library for
C++ [Stroustrup 1986], is the lexical tool which is most similar to our
approach, providing access when a match is made to a parse tree automat-
ically constructed for the regular expression. TLex supports a broader class
of regular expressions than our approach with some support for contextual
regular expressions (i.e., match a regular expression only when another
regular expression matches to the right). TLex, however, does not ease the
specification of complex hierarchical regular expressions with associated
heuristics for matching, nor does it have the ability to control matching
(and backtracking) within the action code.

As described earlier, our approach also differs from existing regular-
expression tools in its use of an implicitly defined lexer.

7.2 Parse-Tree-Based Tools

To enable more precise matching of syntactic constructs, many approaches
construct parse trees from structured artifacts and provide support for
traversing and performing actions on the parse trees.

Some, like Ladd and Ramming’s A* tool [Ladd and Ramming 1995],
Arnon’s Scrimshaw system [Arnon 1993], and Griswold’s tawk system
[Griswold et al. 1996] support regular-expression matches over parse trees.
Others, such as Refinery [Buson et al. 1990], TXL [Cordy et al. 1991],
Scruple [Paul and Prakash 1992], GENOA [Devanbu 1992], Code Miner
[Dunn and Knight 1993], and Ponder [Griswold and Atkinson 1995], take a
variety of different approaches for querying and transforming parse trees.
Scruple, for instance, provides a language based on the concrete syntax of
the artifacts for querying abstract syntax trees. Refinery, on the other
hand, supports queries in first-order set-theoretic logic.

Regardless of the query language supported, our approach differs from
all of these systems in searching only for those code constructs that the
engineer has specified rather than performing a parse. This makes our

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

288 . Gail C. Murphy and David Notkin

approach less sensitive to incomplete source and syntax errors. Approaches
that use a parse tree, however, generally support the extraction of a wider
range of (more precise) source models (e.g., program dependence graphs
[Ferrante et al. 1987], def-use chains, etc.) than is possible using our approach.

Our approach also does not require the specification of the parse tree or
generation of a parser: a nontrivial exercise when a specification for an
artifact of interest is not available. There have been several different
approaches taken to address this problem. The Field [Reiss 1995] and Sniff
[Bischoffberger 1992] systems use approximate (fuzzy) parsers that per-
form a partial parse of the source code looking for particular syntactic
constructs. Approximate parsers typically trade both the ability to create
some source models, say def-use chains, and sometimes also the accuracy of
extracted source models, for ease in specifying the parser. In contrast to our
lexical approach, which makes similar tradeoffs, the cost of building an
approximate parser is generally more than a few hours.

Other systems, including Software Refinery’s DIALECT, TXL, and the
SOOP system [Gil and Lorenz 1994], have addressed the problem of
creating a parse tree through parser generators. These approaches trade
the cost of developing the necessary syntax and parse tree specifications for
the ability to create more source models.

The GENOA system makes a similar tradeoff using a slightly different
approach. A companion tool, called GENII, is provided that helps interface
an existing compiler front-end with the GENOA system. Although this simpli-
fies the problem, the interface specifications are still fairly substantial:

From our experience, we estimate that interfacing to a well-documented front-
end for a fairly simple, typed algorithmic language like C or PASCAL would
take a few days: far less time than it would take to implement a new front-end
from scratch. . . .

Generating an interface to a documented front-end for a complex language
like C++, PL/1 or Ada would be proportionately more time-consuming. A rough
rule-of-thumb would be that the time to write a GENII specification for an
interface to a front-end for a given language grows linearly with the size of the
BNF specification of the grammar of the language [Devanbu 1992, p. 311].

Whether the cost of creating appropriate specifications for generating a
parse tree or interfacing to an existing front-end are warranted is depen-
dent upon the task, and anticipated future tasks, being performed by an
engineer. Our lexical approach is not meant to replace these systems, but
rather to provide engineers with a means of evaluating whether a given
type of source model information is useful for a particular kind of task and
to permit additional flexibility and tolerance for scanning new and different
kinds of system artifacts or artifacts that are not in the appropriate
condition to parse.

8. SUMMARY

We have developed a lexically based approach to extracting information
from source that can extract from a wide range of software system

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 289

artifacts (e.g., programming language source files, structured data files,
etc.) and that can consider almost all information contained within an
artifact. The approach is based on the specification of hierarchical
regular expressions with attached action code and on the subsequent
generation and execution of a hierarchy of deterministic finite-state
machines. The matching of text from an artifact to the specified regular
expressions is controlled by the structure of the specification, heuristics,
and the action code attached to the regular expressions.

Similar to other lexical approaches, our approach is lightweight,
flexible, and tolerant. The approach is lightweight in that specifications
are easy to write and are typically small; specifications for C call graph
extractors, event extractors for CLOS, implicitly-invokes extractors for
Field, and global variable reference extractors for TCL all have specifi-
cations of fewer than 25 lines. The approach is flexible in that it may be
applied to a number of different kinds of system artifacts including
source code and structured data files. Finally, the approach is tolerant
in that few constraints are placed on the condition of the artifacts; the
same pattern, for example, has been used to extract C call graphs from
both preprocessed and postprocessed source code.

Source models may also be extracted using parser-based approaches.
Parser-based approaches can extract a wider range of more precise
source models than is possible using our approach. The effort required to
produce a parser-based extractor for a desired source model, however, is
typically high, and the extractors produced are often brittle.

Our lexical source model extraction approach makes it easier for an
engineer to quickly produce many desired source models from system
artifacts. Although the source models produced using our approach may
be approximate, this is often a fair trade for the ease of producing more
flexible and tolerant extractors. Reducing the cost of producing source
models may encourage engineers to broaden the kinds of information
extracted from artifacts while performing software maintenance tasks.
Engineers may also use our approach to prototype and test some kinds of
source models prior to investing in the development of a more accurate
parser-based version. Increasing the information available to engineers
about an existing system may enable maintenance tasks to be performed
more efficiently or effectively.

APPENDIX

A. FUNCTION DEFINITIONS

The following pattern was used to find all function definitions from the
18,000 lines of C, yacc, and lex code comprising the cross-reference tool of
the Field software system.

[(type)] (functionName) @

if functionName == “if” | functionName == “switch” |
functionName == “while” | functionName == “forin” then
fail

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

290 . Gail C. Murphy and David Notkin

write (functionName)
@
\([(formalArg) [{, (formalArg) }+ 11 \)
[{ (type) [{ (mod) }+] (argDecl) [{, (argDecl) }+ 1; }+ 1 \{

The scanner generated from this pattern extracted, from the postprocessed
source code, all 278 function definitions reported by the Field tool. The scanner
also extracted one extraneous function definition consisting of empty brackets;
this definition is easily identified and filtered from the final source model.

When the preprocessed source code is provided as input to the same
generated scanner, 99% (276 of 278 function definitions) of all functions
definitions are extracted. In this case, the scanner misses the definition of a
yyparse function because it is surrounded by preprocessor symbols and the
definition of XRDB_scan_string, a function defined with variable argu-
ments. Three extraneous function definitions were also reported.

B. ANALYSIS OF RELATIONAL FUNCTIONS

The relational functions available for use in the analysis section of an
LSME specification are described here:

relationCreate ()
Creates a new binary relation.
relationMakelndex (theRelationName, field, keyWord, keyWordList)
Make an index for the specified relation on the indicated field and for the
specified keyword in the third and fourth parameters.
relationAddTuple (theRelation, theTuple)
Add the specified tuple to the specified relation.
relationMember (theRelation, valuel, value2)
Is the tuple described by valuel and value2 part of the specified relation?
relationDifference (relation1, relation2)
Compute the difference between two structurally similar relations.
relationSelect (theRelationName, key1, key2)
Select tuples from the specified relation using the criteria given in the second
and third parameters.
relationWrite (aRelation)
Write the specified relation to the output.
tupleGetValue (field, key)
Extract the value associated with the given key from the field of a tuple
specified as the first parameter.
tupleProject (tuple, field)
Extract either the first or the second field—as specified by 1 or 2 in the field
parameter—from the specified tuple.
writeTuple (tuple)
Write the specified tuple to the output.

ACKNOWLEDGMENTS
Steve Wampler provided valuable assistance in improving the efficiency of
our generated Icon code. William Griswold provided valuable comments on

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

Lightweight Lexical Source Model Extraction . 291

an earlier draft of this article. We also thank Richard Helm, David Lamb,
Sui-Ching Lan, Kevin Sullivan, Michael VanHilst, and John Vlissides for
valuable comments on a previous paper describing this work. We also
thank the anonymous referees for their constructive comments.

REFERENCES

AHO, A. V., KERNIGHAN, B. W., AND WEINBERGER, P. J. 1979. Awk—A pattern scanning and
processing language. Softw. Pract. Exper. 9, 4, 267-280.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, Mass.

ARNON, D. S. 1993. Scrimshaw: A language for document queries and transformations. In
EP °94: Proceedings of the 5th International Conference on Electronic Publishing. John Wiley
and Sons, Ltd., Chichester, U.K.

BoBrow, D. G., DEMIcHIEL, L. G., GaBrieL, R. P., KEeNE, S. E., AND KiczALES, G.
1989. Common Lisp object system specification. X3J13 Doc. 88-002R, June. Also in Lisp
Symb. Comput. 1, 3/4 (Jan.), 245-394.

BISCHOFFBERGER, W. R. 1992. Sniff—A pragmatic approach to a C++ programming envi-
ronment. In Proceedings of the 1992 Usenix C++ Conference. USENIX Assoc., Berkeley,
Calif., 67-81.

BuURrsoN, S., KoTik, G. B., AND MARKOSIAN, L. Z. 1990. A program transformation approach
to automating software re-engineering. In Proceedings of the 14th International Computer
Software and Applications Conference. IEEE Computer Society Press, Los Alamitos, Calif.,
314-322.

CLARKE, C. L. A. AND CORMACK, G. V. 1995. Context grep. Tech. Rep. MT-95-02, Multitext
Project, Dept. of Computer Science, Univ. of Waterloo, Waterloo, Ontario.

CHEN, Y. 1995. Reverse engineering. In Practical Reusable UNIX Software, B. Krishnamur-
thy, Ed. John Wiley and Sons, New York, chap. 6.

CHEN, Y.-F., NisHiMmoTO0, M. Y., AND RAMAMOORTHY, C. V. 1990. The C information abstrac-
tion system. IEEE Trans. Softw. Eng. SE-16, 3 (Mar.), 325-334.

Corby, J. R., HALPERN-HAMU, C. D., AND PromisLow, E. 1991. TXL: A rapid prototyping
system for programming language dialects. Comput. Lang. 16, 1, 97-107.

DEvANBU, P. T. 1992. GENOA—A customizable, language- and front-end independent code
analyzer. In Proceedings of the 14th International Conference on Software Engineering.
ACM, New York, 307-317.

DevanBU, P., BRACHMAN, R. J., SELFRIDGE, P. G., AND BALLARD, B. W. 1991. LaSSIE: A
knowledge-based software information system. Commun. ACM 34, 5 (May), 34—49.

Dunn, M. F. AND KNIGHT, J. C. 1993. Automating the detection of reusable parts in existing
software. In Proceedings of the 15th International Conference on Software Engineering. IEEE
Computer Society Press, Los Alamitos, Calif., 381-390.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July), 319-349.

GARLAN, D. AND NoTKIN, D. 1991. Formalizing design spaces: Implicit invocation mecha-
nism. In Proceedings of the 4th International Symposium of VDM Europe (VDM ’91). Lecture
Notes in Computer Science, vol. 551. Springer-Verlag, Berlin, 31-44.

GILL, J. AND LorENZ, D. H. 1994. SOOP—A synthesizer of an object-oriented parser. Tech.
Rep. 9404, Technion—Israel Inst. of Technology, Haifa, Israel.

GPO. 1983. Reference Manual for the Ada Programming Language. MIL STD 1815A,
United States Government Printing Office, Washington, D.C.

GriswoLD, R. E. AND GriswoLD, M. T. 1983. The Icon Programming Language. Prentice-
Hall, Englewood Cliffs, N.J.

GriswoLD, W. G. AND ATKINSON, D. C. 1995. Managing the design tradeoffs for a program
understanding and transformation tool. J. Syst. Softw. 30, 1 (July/Aug.), 99-116.

GriswoLD, W. G., ATKINSON, D. C., AND McCurDY, C. 1996. Fast, flexible syntactic pattern
matching and processing. In Proceedings of the 4th Workshop on Program Comprehension.
IEEE Computer Society Press, Los Alamitos, Calif., 144-153.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

292 . Gail C. Murphy and David Notkin

JAVEY, S., Mitsul, K., NAKAMURA, H., OHIRA, T., YASUKA, K., KUsE, K., KAMIMURA, T., AND
HeLMm, R. 1992. Architecture of the XL C++ Browser. In Proceedings of the 1992 CAS
Conference, J. Botsford, Ed. Center for Advanced Studies, IBM Canada Ltd. Laboratory,
Toronto, Ontario, 369-379.

JOHNSON, S. C. 1975. Yacc—Yet another compiler compiler. Computing Science Tech. Rep.
32, AT&T Bell Laboratories, Murray Hill, N.J.

KEARNS, S. M. 1991. TLex. Softw. Pract. Exper. 21, 8 (Aug.), 805-821.

KERNIGHAN, B. AND RITCHIE, D. 1978. The C Programming Language. Prentice-Hall, Engle-
wood Cliffs, N.J.

Lapp, D. A. AND RAMMING, J. C. 1995. A*: A language for implementing language proces-
sors. IEEE Trans. Softw. Eng. 21, 11 (Nov.), 894-901.

Lesk, M. E. 1975. Lex—A lexical analyzer generator. Computing Science Tech. Rep. 39,
AT&T Bell Laboratories, Murray Hill, N.dJ.

LinTON, M. A. 1983. Queries and views of programs using a relational database. Ph.D.
thesis, Univ. of California, Berkeley, Calif.

MEYER, B. 1991. Eiffel: The Language and Environment. Prentice-Hall, Englewood Cliffs, N.J.

MurpHY, G. C., NOTKIN, D., AND LAN, E. S.-C. 1996. An empirical study of static call graph
extractors. In Proceedings of the 18th International Conference on Software Engineering.
IEEE Computer Society, Washington, D.C., 90-99.

OUSTERHOUT, J. 1994. TCL and the TK Toolkit. Addison-Wesley, Reading, Mass.

PauL, S. AND PrARASH, A. 1992. Source code retrieval using program patterns. In Proceed-
ings of the 5th International Workshop on Computer-Aided Software Engineering (CASE).
IEEE Computer Society Press, Los Alamitos, Calif., 95-105.

RaBIN, M. O. AND ScotT, D. 1959. Finite automata and their decision problems. IBM J. Res.
Devel. 3, 2 (Apr.), 114-125.

REiss, S. 1990. Connecting tools using message passing in the Field program development
environment. IEEE Softw. 7, 4, 57—66.

Reiss, S. P. 1995. The Field Programming Environment: A Friendly Integrated Environ-
ment for Learning and Development. Kluwer Academic, Amsterdam.

REUBENSTEIN, H., P1azza, R., AND ROBERTS, S. 1993. Separating parsing and analysis in
reverse engineering tools. In Proceedings of the Working Conference on Reverse Engineering.
IEEE Computer Society Press, Los Alamitos, Calif., 117-125.

STEFFEN, J. L. 1985. Interactive examination of a C program with Cscope. In Proceedings of
the USENIX Winter Conference. USENIX Assoc., Berkeley, Calif., 17-175.

STROUSTRUP, B. 1986. C++ Programming Language. Addison-Wesley, Reading, Mass.

TEITELMAN, W. AND MASINTER, L. 1981. The Interlisp programming environment. I[EEE
Comput. 14, 4 (Apr.), 25-33.

WaLL, L. 1990. Programming Perl. O’Reilly and Associates, Sebastopol, Calif.

Wong, K., TILLEY, S. R., MULLER, H. A., AND STOREY, M. D. 1995. Structural redocumenta-
tion: A case study. IEEE Softw. 12, 1 (Jan.), 46-54.

Wu, S. AND MANBER, U. 1992. Agrep—A fast approximate pattern-matching tool. In Proceed-
ings of the USENIX Winter 1992 Technical Conference. USENIX Assoc., Berkeley, Calif.,
153-162.

Received September 1995; revised January 1996; accepted April 1996

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 3, July 1996.

