
CASE: Past, Present, and Future

David Notkin
Dept. of Computer Science & Engineering

University of Washington
May 1997

www.cs.washington.edu/homes/notkin

UW CSE

CASE (ICSE 97) UW CSE

Computer Aided Software Engineering

Using
computers
to help
people
engineer
software

Design

Manufacturing

Engineering

Education

Control Sys.
Design

Sculpting

TolerancingTelephony

Computer Aided

Process
Planning

Lifecycle
Engineering

Drafting

Business
Solutions

UW CSE

What is CASE?

◆ Broadly construed, CASE is any software system
that helps in any software engineering task
– Configuration management tools

– Test tools

– grep, make, emacs …

– …

◆ But this is too broad to be useful
– Roughly, CASE comprises environments that support

software engineering

UW CSE

Environments vs. tools

◆ Integrated
– User interacts with a

single environment

– Environment is
responsible for
managing consistency

◆ Sharing of
representation

◆ Standalone
– User interacts with

each tool separately

– User must apply tools
appropriate to ensure
consistency

◆ Independent
representations

UW CSE

Why environments?

◆ “During the past decade there has been a
growing realization [that software tools]
have by and large failed to reduce cost and
improve quality. … [T]he essence of an
environment is that it attempts to redress
the failures of individual software tools
through synergistic integration.”
– Osterweil, 1981

UW CSE

Why environments?

◆ “Current software development
environments often help programmers solve
their programming problems by supplying
tools such as editors, compilers, and linkers,
but rarely do these environments help
projects solve their system composition or
management problems.”
– Notkin & Habermann, 1979

UW CSE

What are environments?

◆ “A software development environment
consists of a set of techniques to assist the
developers of software systems, supported
by some (possibly automated) tools, along
with an organizational structure to manage
the process of software development.
Historically, these facilities have been
poorly integrated.”
– Wasserman, 1981

UW CSE

Where might the computer help?

◆ Interaction and rich user interfaces

◆ Translation of high-level descriptions

◆ Maintaining consistency among large and
complex representations

◆ Encoding knowledge about an activity,
organization or process

◆ Broader availability of pertinent information

◆ Communication medium

UW CSE

CASE is ...

◆ “The CASE technology is a combination of
software tools and methodologies. …
Spanning all phases of the software
lifecycle, not just on implementation,
CASE is the most complete software
technology yet.”
– McClure, 1989

UW CSE

CASE is ...

◆ “To be truly successful, a CASE product
must literally support application
development from womb to tomb, from the
initial conception of an application through
its long-term maintenance.”
– Towner, 1989

UW CSE

CASE is

◆ “CASE provides the rigorous automated
support required to build flexible, high-
quality information systems quickly.”
– Mylls, 1994

UW CSE

CASE is … (Stone, 1993)

Automation

Integration

Methods and techniques

CASE

UW CSE

CASE confusion

◆ Environments in academia, CASE in industry

◆ CASE in information systems & information
technology
– The MIS world of CIOs

– Application Development (AD)

– Information Engineering (IE)

– Methodology plays a key role

◆ Upper CASE vs. lower CASE

UW CSE

Appearances in INSPEC

◆ Programming environment, program development environment,
software development environment, software engineering
environment, integrated program support environment

0
50

100
150
200
250
300
350
400
450
500

19
96

19
94

19
92

19
90

19
88

19
86

19
84

19
82

19
80

Software Tool

CASE

Environment

UW CSE

ICSE 2 (1976)

◆ “Environment”
– None

◆ “Tool”
– 2 technical papers

◆ “CASE”
– None

UW CSE

ICSE 9 (1987)

◆ “Environment”
– 3 technical papers, 2 panels

◆ “Tool”
– 1 technical paper

◆ “CASE”
– None

UW CSE

ICSE 10 (1988)

◆ “Environment”
– 6 technical papers, 1 panel

◆ “Tool”
– 7 technical papers

◆ “CASE”
– None

UW CSE

ICSE 97

◆ “Environment”
– 1 technical paper, 5 demos, 1 panel

◆ “Tool”
– 1 technical paper, 3 demos, 1 experience report

◆ “CASE”
– just this presentation

UW CSE

An environment taxonomy

◆ Language-centered environments

◆ Structure-oriented environments

◆ Toolkit environments

◆ Method-based environments

– Dart, Ellison, Feiler, Habermann, 1987

UW CSE

(A few) classic environments

◆ Interlisp

◆ Smalltalk-80

◆ Unix

◆ Cedar

UW CSE

Interlisp (Xerox PARC)

◆ Teitelman & Masinter, 1981

◆ Language-centered environment

◆ Very fast turnaround for code changes

◆ Monolithic address space
– Environment, tools, application code

commingled

◆ Code and data share common
representation

UW CSE

Smalltalk-80 (Xerox PARC)

◆ Goldberg, 1984

◆ Language-centered environment (OO)
– Classes as first-class objects, inheritance, etc.

◆ Environment structured around language
features (class browsers, protocols, etc.)

◆ Rich libraries (data structures, UI, etc.)

UW CSE

Unix (Bell Labs)

◆ Toolkit-based environment

◆ Simple integration mechanism
– Convenient user-level syntax for composition

◆ Standard shared representation

◆ Language-independent (although biased)

◆ Efficient for systems’ programming

UW CSE

Cedar (Xerox PARC)

◆ Teitelman, 1984

◆ Intended to mix best features of Interlisp,
Smalltalk-80, and Mesa

◆ Primarily was an improvement on Mesa
– Language-centered environment

– Abstract data type language
» Strong language and environment support for

interfaces

– Key addition: garbage collection

UW CSE

(Some) key research environments

◆ Toolpack

◆ Gandalf

◆ Mentor

◆ Cornell Program Synthesizer/Generator

◆ Arcadia

◆ Pecan

UW CSE

Toolpack (Osterweil, 1983)

◆ Consider breadth of tools needed for
software development (static analysis and
testing tools, documentation, etc.)

◆ “Tool fragments” to support tight
integration of tools into an environment

◆ Centralized tree-structured file system for
sharing data

◆ Focus on mathematical software

UW CSE

Gandalf (Habermann, Notkin, et al.)

◆ Structure-based environments
– Direct-manipulation of program objects

◆ Environment generation
– Integration through implicit invocation by

active abstract syntax trees

– Shared database structured on ASTs

◆ Higher-level, closer to task
– User focuses on “what” not “how”

UW CSE

Mentor

◆ Donzeau-Gouge, Huet, Kahn, Lang, Levy, 1984

◆ Structure-based environment

◆ Users could define dynamic views
– General-purpose tree manipulation language

◆ Formal basis for semantic definition
– Led to Centaur generation system

– Used natural semantics

UW CSE

Cornell

◆ Program Synthesizer [Teitelbaum & Reps, 1981]

– Syntax-based editing environment

– Text at expression-level

◆ Synthesizer Generator [Reps & Teitelbaum, 1984]

– Generation of syntax-based editors

– Based on definition of attribute grammars

– Incremental attribute grammar update
algorithm [Reps 1983]

UW CSE

Arcadia (R. Kadia, 1992)

◆ Process-based environment
– Process definition and execution

◆ Analysis and testing

◆ Measurement and evaluation

◆ UI development and management

◆ Event-based integration

◆ Typed object-base

UW CSE

Pecan (Reiss, 1984)

◆ Graphically-based environment

◆ Multiple, concurrent views
– Data structures

– Symbol table

– Flowchart

– Nassi-Shneiderman diagrams

◆ Many views read-only

UW CSE

Structure-oriented editors

◆ These failed because they
– unnecessarily and overly constrained the users

» one editor, one style

» hard to integrate external tools

» not bad for novice environments

– tried to reduce the wrong cost
» getting syntax (and static semantics) right isn’t such a big deal

– costly to produce (even after tons of research)

◆ Some language-oriented features have flourished
– Ex: Color to mark constructs in editors

UW CSE

Present Status of CASE?

Environment
Research

Development
Experience

7 56

1211
10

8 4

2
1

9 3

Industrial
Strength?

UW CSE

Commercialization

◆ 22 companies matched “CASE” in
Company Profiles database
– About 10,000 matched “software”

– 23 matched “application development”

◆ 3 Yahoo CASE categories
– 55-60 registered CASE pages in Yahoo

– (35 Java categories, thousands of pages)

UW CSE

The business of CASE

◆ IDE (Software through Pictures)
– Founded 1983

– Acquired by Thomson-CSF 1996
» ~$10M annual sales

◆ Rational
– Founded 1982

– Recently purchase Pure Atria
» ~$91M annual sales (+ ~$132M annual from Pure Atria)

UW CSE

The business of CASE

◆ Popkin
– Founded 1986

» ~$15M annual sales

◆ Cayenne Software, Inc. (1996)
– Merger of Bachman (1983) and CADRE (1982)

» ~$14M annual sales

◆ StructSoft (TurboCASE/Sys)
– Formed 1984

» ~$6M annual sales

UW CSE

The business of CASE

◆ I-Logix
– Founded 1987

» ~$10M annual sales

◆ Reasoning Systems
– Founded 1984

» ~$20M annual sales

UW CSE

Some context

◆ SAP AG
– R/3 Business Process (Re)Engineering

– Founded 1972
» >$2B annual revenue

◆ Largest “application development”
company in Company Profiles
– Progress Software, 1981

– ~$180M annual revenue

UW CSE

CASE quotations

◆ “Despite the many grand predictions of the trade press
over the past decade, computer-assisted software
engineering (CASE) tools failed to emerge as the
promised `silver bullet.’”
– Guinan, Cooprider, Sawyer; IBM Systems Journal, 1997

◆ “CASE tools are sometimes excessively rigid in forcing
the user to input too much information before giving
usable results back. CASE tools also typically don't adapt
to multiple or in-house methodologies…”
– www.confluent.com; 1997

UW CSE

Myth #1 of CASE

◆ Integration is job #1

◆ Integrating tools helps, but only if the tools
are the “right” tools

◆ That is, integration is a second order effect,
not a first order effect

UW CSE

Myth #2 of CASE

◆ Graphics inherently dominate text
– “A picture is worth a thousand words”

◆ This is a complicated issue
– Screen real estate

– Sharing with other tools

– Sharing with other people

UW CSE

Myth #3 of CASE

◆ Software tools are more important than
intellectual tools

◆ False
– Software tools are important but are generally a

second order effect

– Sometimes software tools can qualitatively
change the world, although usually indirectly

UW CSE

Myth #4 of CASE

◆ Tool adoption is a consumer problem not a
producer problem

◆ False
– See my flame in WOW

UW CSE

Organizational issues (Orlikowski)

◆ “CASE Tools as Organizational Change:
Investigating Incremental and Radical Changes in
Systems Development”
– MIS Quarterly Best Paper, 1993

◆ “[To] account for the experiences and outcomes
associated with CASE tools, researchers should
consider the social context of systems
development, the intentions and actions of key
players, and the implementation process following
by the organization.”

UW CSE

Myth #5 of CASE

◆ Goal should be to change how software
engineering is done

◆ No, it should be to enhance how people are
doing software engineering

UW CSE

Myth #6 of CASE

◆ The tools can handle creative aspects of
software engineering

◆ Tools frequently fail to be useful because
they make poor judgments about what the
human does well and what the computer
does well

UW CSE

Technical problems

◆ Integration

◆ Representation

◆ Views

◆ Multiple languages

◆ External tools

◆ ...

UW CSE

CDIF: a standard (EIA)

◆ CASE Data
Interchange Format
– EIA/CDIF 1994

◆ Members of the
standards committee
include
– Boeing, Ford, ICL,

Rational, IBM, and a
dozen or so more

UW CSE

So?

◆ Should we stop research and development
in environments and CASE?

◆ Certainly not
– Good solutions to the technical issues could

have broad impact

– The underlying motivations for CASE still
remain

◆ But the Holy Grail is farther away, not
closer

UW CSE

The near future?

◆ “Lightweight” CASE tools may make
significant headway
– Visio, Visual Thought, etc.

– Hundreds not thousands of dollars

◆ Start with a syntactic diagramming tool
– Add value through added shapes

– Integration with other tools through COM/OLE

◆ How far can they get?

UW CSE

Current projects of interest

◆ Desert (Brown, Reiss)
– www.cs.brown.edu/software/desert/

◆ IP (Microsoft, Simonyi)
– www.research.microsoft.com/research/ip/main.htm

◆ Atlantis (Columbia, Kaiser)
– www.psl.cs.columbia.edu/atlantis/atlantis.html

◆ Endeavors (UCI, Taylor & Redmiles)
– http://www.ics.uci.edu/pub/endeavors/

◆ …what else…?

