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Embedded systems

◆ Software is
increasingly pervasive

◆ No complex system is
any longer  built
without software
– Avionics, medical

imaging and treatment,
consumer electronics,
appliances, ...
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Problems

◆ Getting embedded systems to work
properly is important
– Safety-critical systems [comp.risks; Leveson,

Safeware]

– Pressures of the marketplace

◆ Getting them to work right is hard
– Hard to clarify requirements

» Problems that appear later cost far more to fix

– Difficulties at the interfaces
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Reactive systems

Internal clock events

Inputs Outputs

◆ Reactive systems are often specified (in part) by state
machines that describe the actions that the system should
make in response to an external event
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Key question

◆ How do we increase
our confidence that
the requirements
specification has the
properties we want?
– It does what it is

supposed to do

– It doesn’t do things it
isn’t supposed to do
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Symbolic model checking
◆ Evaluate temporal

properties of finite state
systems

◆ Extremely successfully
for hardware
verification

◆ Open question:
applicable to large
software specifications
for reactive systems?

Finite State
Machine

Temporal Logic
Formula

Model
Checker

Yes No
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Software model checking

◆ Finite state software specifications
– Reactive systems (avionics, automotive, etc.)

– Hierarchical state machine specifications
» Statecharts (Harel), RSML (Leveson)

◆ Goal: increase confidence in the correctness
of the specification
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Why might model checking fail?

◆ Software is often specified with infinite
state descriptions
– We don’t address those specifications

» Jackson, Damon, Jha; Wing, Vaziri-Farahani; etc.

◆ Software specifications may be structured
differently from hardware specifications
– Hierarchy

– Representations and algorithms for model
checking may not scale
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Our approach—try it!

◆ Applied model checking to
the specification of TCAS
II
– Traffic Alert and Collision

Avoidance system
» In use on U.S. commercial

aircraft

– FAA adopted specification

– Initial design and
development by Leveson

◆ Translation process
(RSML to SMV)

◆ Model checking
(dealing with BDD’s)

◆ Analyzing TCAS
properties
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Outline

◆ Hierarchical state machine specifications

◆ Symbolic model checking

◆ TCAS

◆ Our experiences in analyzing TCAS using
model checking

Too Hot

Move OutJust Moved

Move InReady

Cold

Okay

Hot

All Out

All In

Midway

Temperature Rod ConfigurationRod Movement

On

Off Panic

Temp_Reading External Temperature
Initiate_Move Rod_Move Rod_Config
Move_Finished External Rod_Config
Rod_Updated Rod_Config Rod_Move
Clock_Event External Rod_Move
Temp_Update Temperature Rod_Move

Events
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Sample transitions
On Panic

Trigger_Event: Temp_Update
Condition: Temperature in Too Hot
Output Action: Panic_Event

Ready Move In

Trigger_Event: Temp_Update
Condition: Rod_Movement in Ready and Temperature in Hot
Output Action: Initiate_Move

Just Moved Ready

Trigger_Event: Clock_Event
Condition: Rod_Movement in Just_Moved and
           t > t(entered(Just_Moved))+ Move_Delay
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Events

◆ External—interactions with environment

◆ Synchrony hypothesis
– External event arrives

– Triggers cascade of internal events (micro
steps)

– Stability reached before next external event

◆ Technical issues with micro steps
– Harel, Pnueli, Leveson
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Properties to check: examples

◆ If Temperature is in Hot, then
eventually Temperature is in Okay or
Rod_Configuration is in All_In

◆ Rod_Configuration only changes in
response to a Move_Finished event
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TCAS
◆ http://www.faa.gov/and/and600/and620/newtcas.htm

◆ Warn pilots of traffic
– Plane to plane, not through ground controller

– On essentially all commercial aircraft

◆ Issue resolution advisories only
– Vertical resolution only

– Relies on transponder data
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TCAS specification

◆ Irvine Safety Group (Leveson et al.)
– Specified in RSML as a research project

– FAA adopted RSML version as official

◆ Specification is about 400 pages long

◆ This study uses: Version 6.00, March 1993
– Not the current FAA version
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TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

◆ Own_Aircraft
– Sensitivity levels, Alt_Layer, Advisory_Status

◆ Other_Aircraft
– Tracked, Intruder_State, Range_Test, Crossing,

Sense Descend/Climb
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Model checking
◆ Does a temporal logic formula

hold for a finite state machine?
– If not, find counterexample

◆ Temporal logic
– until, eventually, always, etc.

◆ For many logics, checking can
be done in linear time in the
size of the space state

– Explicit model checking
does this, exploiting
symmetries for performance

Finite State
Machine

Temporal Logic
Formula

Model
Checker

Yes No
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Symbolic model checking

◆ State space can be huge (>21000) for many
systems

◆ Use implicit representation
– Data structure to represent transition relation as

a boolean formula

◆ Algorithmically manipulate the data
structure to explore the state space

◆ Key: efficiency of the data structure
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Binary decision diagrams (BDDs)

◆ “Folded decision tree”

◆ Fixed variable order

◆ Many functions have
small BDDs
– Multiplication is a

notable exception

◆ Can represent
– State machines

(transition functions)

– Temporal queries
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Using SMV

◆ SMV is a BDD-based model checker

◆ It checks CTL formulas
– A specific temporal logic

TCAS
(RSML)

Properties
(CTL)

Model Checker
(SMV)

Partial TCAS
(SMV)
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Iterative process

◆ Iterate SMV version of
specification

◆ Clarify temporal formula

◆ Model environment more
precisely

◆ Refine specification

Environment

Abstracted
Part of

Specification

Modeled Part
of Specification
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Use of non-determinism

◆ Inputs from environment
– Altitude := {1000…8000}

◆ Simplification of functions
– Alt_Rate := 0.25*(Alt_Baro-ZP)/Delta_t

– Alt_Rate := {-2000…2000}

◆ Unmodelled parts of specification
– States of Other_Aircraft treated as non-

determinstic input variables
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Translating RSML to SMV

On

Off

MODULE main
VAR

state:{ON,OFF};
on_event: boolean;
off_event: boolean;

ASSIGN
init(state) := OFF;
next(state) := case

state = ON &
        off_event: OFF;

state = OFF &
        on_event: ON;

1 : state;
esac;
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State encoding

A B

D F

E G

S

C

T U

◆ Flatten nested AND
and nested OR states

◆ One variable for each
OR state
– An enumerated type of

the alternatives
◆ VAR

S: {A,B,C};
T: {D,E};
U: {F,G};
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Synchrony hypothesis

◆ Handling an external event
DEFINE

Stable := !Initiate_Move &
             !Move_Finished &
             !Rod_Updated & !Clock_Event
ASSIGN

next(Move_Finished) := case
Stable : {0,1};
1      : 0;

esac;
…for other external events…
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Transitions

VAR RC: {Out, Mid, In};

ASSIGN

T_Out_Mid : Mid; T_Mid_In : In;

T_Mid_Out : Out; T_In_Mid : Mid;

1 : RC;

esac;
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Non-deterministic transitions

◆ A machine is deterministic
if at most one of T_A_B,
T_A_C, etc. can be true

◆ Else non-deterministic

◆ Can encode non-
deterministic transitions

◆ next(S) := case
T_A_B & T_A_C: {B,C};
T_A_B : B; T_A_C : C;
1 : S;

esac;

A

C

B
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Checking properties

◆ Initial attempts to check any property
generated BDDs of over 200MB

◆ First successful check took 13 hours
– Has been reduce to a few minutes

◆ Partitioned BDDs

◆ Reordered variables

◆ Implemented better search for
counterexamples
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Property checking

◆ Domain independent properties
– Deterministic state transitions

– Function consistency

◆ Domain dependent
– Output agreement

– Safety properties

◆ We used SMV to investigate some of these
properties on TCAS’ Own_Aircraft module
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Disclaimer

The intent of this work is to evaluate symbolic
model checking of state-based specifications, not to
evaluate the TCAS II specification.  Our study used
a preliminary version of the specification, version
6.00, dated March, 1993.  We did not have access to
later versions, so we do not know if the issues
identified here are present in later versions.
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Deterministic transitions

◆ Do the same conditions allow for non-
deterministic transitions?

◆ Inconsistencies were found earlier by other
methods [Heimdahl and Leveson]

– Identical conditions allowed transitions from
Sensitivity Level 4 to SL 2 or to SL 5

◆ Our formulae checked for all possible non-
determinism; we found this case, too

Earlier
version of
TCAS spec

V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |
          MS = 5 | MS = 6 | MS = 7;
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
          ASL = 6 | ASL = 7;
T_254  := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |
          (V_254b & LG = 2 & V524a);
V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |
          MS = 5 | MS = 6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T_257  := (ASL = 5 | V_257a | V_257b) |
          (ASL = 5 & MS = TA_only) |
          (ASL = 5& LG = 2 & V_257c) |
          (V_257d & LG = 5 & V_257b) |
          (V_257d & V_257a & MS = 5);
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Tradeoffs

◆ Our approach was slower than the
Heimdahl & Leveson approach

◆ Their approach reported some false
positives
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Function consistency

AG ! ((C1 & C2) | (C1 & C3) | (C2 & C3))

F :=
V1 if C1
V2 if C2
V3 if C3

◆ Many functions are
defined in terms of
cases

◆ A function is
inconsistent if two
different conditions Ci
and Cj and be true
simultaneously
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Display_Model_Goal

◆ Tells pilot desired rate of altitude change

◆ Checking for consistency gave a
counterexample
– Other_Aircraft  reverse from an Increase-

Climb  to an Increase-Descend  advisory

– After study, this is only permitted in our non-
deterministic modelling of Other_Aircraft

– Modelling a piece of Other_Aircraft’s logic
precludes this counterexample
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Output agreement

◆ Related outputs should be consistent
– Resolution advisory

» Increase-Climb, Climb, Descend,
Increase-Descend

– Display_Model_Goal

» Desired rate of altitude change

» Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory,
Display_Model_Goal should be positive
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Output agreement check

◆ AG (RA = Climb -> DMG > 0)

– If Resolution Advisory is Climb, then
Display_Model_Goal is positive

◆ Counterexample was found
– t 0 : RA = Descend, DMG = -1500

– t 1 : RA = Increase-Descend, DMG = -2500

– t 2 : RA = Climb, DMG = -1500
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Where may formulae come from?

“There have been two pilot reports received which
indicated that TCAS had issued Descend RA's at
approximately 500 feet AGL even though TCAS is
designed to inhibit Descent RAs at 1,000 feet AGL.
All available data from these encounters are being
reviewed to determine the reason for these RAs.”

                                             --TCAS Web site
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Performance results

Property Time (secs) #BDD nodes Memory (MB)
Transition Consistency 387 717K 16.4
Function Consistency 289.5 387K 11.5
Step Termination 57.2 142K 7.4
Descend Inhibit 166.8 429K 11.8
Increase-Descend 193.7 282K 9.9
Output Agreement 325.6 376K 11.6

◆ Sun SPARCStation 10 with 128MB

◆ SMV Release 2.4.4
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Discussion

◆ A positive data point for applying model
checking to state based software
specifications

◆ Iterative use of model checking promising
– Refine and debug specification

– Explicit clarification of interfaces

– Regression testing of specifications
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Discussion

◆ What are the limits?
– Specification size

» We produce around 200 boolean variables, about
the edge of what SMV can handle

– Numerical issues (multiply, divide, etc.)
» Needed to refine Other_Aircraft

– Desirable properties to check?

◆ Domain expertise is critical
– Thanks, Jon!
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Discussion

◆ Differences in applying to software and to
hardware?
– Word-level vs. bit-level?

– Event structure?  Synchrony hypothesis?

– Properties to check?

– Timing properties?
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Model checking software

Theory Software
Engineering

Domain
Expertise

Hardware
Verification


