
Notkin (c) 1997 1

Applying Model Checking to
Large Software Specifications

David Notkin
Dept. of Computer Science & Engineering
University of Washington
10 March 1997
www.cs.washington.edu/homes/notkin

Joint with:
• Richard Anderson
• Paul Beame
• William Chan
• Steve Burns
• Francesmary Modugno
• Jon Reese

Notkin (c) 1997 2
UW CSE

Software Model
Checking

Embedded systems

◆ Software is
increasingly pervasive

◆ No complex system is
any longer built
without software
– Avionics, medical

imaging and treatment,
consumer electronics,
appliances, ...

Notkin (c) 1997 3
UW CSE

Software Model
Checking

Problems

◆ Getting embedded systems to work
properly is important
– Safety-critical systems [comp.risks; Leveson,

Safeware]

– Pressures of the marketplace

◆ Getting them to work right is hard
– Hard to clarify requirements

» Problems that appear later cost far more to fix

– Difficulties at the interfaces
Notkin (c) 1997 4

UW CSE

Software Model
Checking

Reactive systems

Internal clock events

Inputs Outputs

◆ Reactive systems are often specified (in part) by state
machines that describe the actions that the system should
make in response to an external event

Notkin (c) 1997 5
UW CSE

Software Model
Checking

Key question

◆ How do we increase
our confidence that
the requirements
specification has the
properties we want?
– It does what it is

supposed to do

– It doesn’t do things it
isn’t supposed to do

Notkin (c) 1997 6
UW CSE

Software Model
Checking

Symbolic model checking
◆ Evaluate temporal

properties of finite state
systems

◆ Extremely successfully
for hardware
verification

◆ Open question:
applicable to large
software specifications
for reactive systems?

Finite State
Machine

Temporal Logic
Formula

Model
Checker

Yes No

UW CSE

Software Model
Checking

Software model checking

◆ Finite state software specifications
– Reactive systems (avionics, automotive, etc.)

– Hierarchical state machine specifications
» Statecharts (Harel), RSML (Leveson)

◆ Goal: increase confidence in the correctness
of the specification

UW CSE

Software Model
Checking

Why might model checking fail?

◆ Software is often specified with infinite
state descriptions
– We don’t address those specifications

» Jackson, Damon, Jha; Wing, Vaziri-Farahani; etc.

◆ Software specifications may be structured
differently from hardware specifications
– Hierarchy

– Representations and algorithms for model
checking may not scale

UW CSE

Software Model
Checking

Our approach—try it!

◆ Applied model checking to
the specification of TCAS
II
– Traffic Alert and Collision

Avoidance system
» In use on U.S. commercial

aircraft

– FAA adopted specification

– Initial design and
development by Leveson

◆ Translation process
(RSML to SMV)

◆ Model checking
(dealing with BDD’s)

◆ Analyzing TCAS
properties

UW CSE

Software Model
Checking

Outline

◆ Hierarchical state machine specifications

◆ Symbolic model checking

◆ TCAS

◆ Our experiences in analyzing TCAS using
model checking

Too Hot

Move OutJust Moved

Move InReady

Cold

Okay

Hot

All Out

All In

Midway

Temperature Rod ConfigurationRod Movement

On

Off Panic

Temp_Reading External Temperature
Initiate_Move Rod_Move Rod_Config
Move_Finished External Rod_Config
Rod_Updated Rod_Config Rod_Move
Clock_Event External Rod_Move
Temp_Update Temperature Rod_Move

Events

Notkin (c) 1997 12
UW CSE

Software Model
Checking

Sample transitions
On Panic

Trigger_Event: Temp_Update
Condition: Temperature in Too Hot
Output Action: Panic_Event

Ready Move In

Trigger_Event: Temp_Update
Condition: Rod_Movement in Ready and Temperature in Hot
Output Action: Initiate_Move

Just Moved Ready

Trigger_Event: Clock_Event
Condition: Rod_Movement in Just_Moved and
 t > t(entered(Just_Moved))+ Move_Delay

Notkin (c) 1997 13
UW CSE

Software Model
Checking

Events

◆ External—interactions with environment

◆ Synchrony hypothesis
– External event arrives

– Triggers cascade of internal events (micro
steps)

– Stability reached before next external event

◆ Technical issues with micro steps
– Harel, Pnueli, Leveson

Notkin (c) 1997 14
UW CSE

Software Model
Checking

Properties to check: examples

◆ If Temperature is in Hot, then
eventually Temperature is in Okay or
Rod_Configuration is in All_In

◆ Rod_Configuration only changes in
response to a Move_Finished event

Notkin (c) 1997 15
UW CSE

Software Model
Checking

TCAS
◆ http://www.faa.gov/and/and600/and620/newtcas.htm

◆ Warn pilots of traffic
– Plane to plane, not through ground controller

– On essentially all commercial aircraft

◆ Issue resolution advisories only
– Vertical resolution only

– Relies on transponder data

Notkin (c) 1997 16
UW CSE

Software Model
Checking

TCAS specification

◆ Irvine Safety Group (Leveson et al.)
– Specified in RSML as a research project

– FAA adopted RSML version as official

◆ Specification is about 400 pages long

◆ This study uses: Version 6.00, March 1993
– Not the current FAA version

Notkin (c) 1997 17
UW CSE

Software Model
Checking

TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

◆ Own_Aircraft
– Sensitivity levels, Alt_Layer, Advisory_Status

◆ Other_Aircraft
– Tracked, Intruder_State, Range_Test, Crossing,

Sense Descend/Climb

Notkin (c) 1997 18
UW CSE

Software Model
Checking

Model checking
◆ Does a temporal logic formula

hold for a finite state machine?
– If not, find counterexample

◆ Temporal logic
– until, eventually, always, etc.

◆ For many logics, checking can
be done in linear time in the
size of the space state

– Explicit model checking
does this, exploiting
symmetries for performance

Finite State
Machine

Temporal Logic
Formula

Model
Checker

Yes No

Notkin (c) 1997 19
UW CSE

Software Model
Checking

Symbolic model checking

◆ State space can be huge (>21000) for many
systems

◆ Use implicit representation
– Data structure to represent transition relation as

a boolean formula

◆ Algorithmically manipulate the data
structure to explore the state space

◆ Key: efficiency of the data structure

Notkin (c) 1997 20
UW CSE

Software Model
Checking

Binary decision diagrams (BDDs)

◆ “Folded decision tree”

◆ Fixed variable order

◆ Many functions have
small BDDs
– Multiplication is a

notable exception

◆ Can represent
– State machines

(transition functions)

– Temporal queries

01

1 1

1 10

10

1 1

0

0

x1

x4

x3

x2

Odd Parity

Due to Randy Bryant

Notkin (c) 1997 21
UW CSE

Software Model
Checking

Using SMV

◆ SMV is a BDD-based model checker

◆ It checks CTL formulas
– A specific temporal logic

TCAS
(RSML)

Properties
(CTL)

Model Checker
(SMV)

Partial TCAS
(SMV)

Notkin (c) 1997 22
UW CSE

Software Model
Checking

Iterative process

◆ Iterate SMV version of
specification

◆ Clarify temporal formula

◆ Model environment more
precisely

◆ Refine specification

Environment

Abstracted
Part of

Specification

Modeled Part
of Specification

Notkin (c) 1997 23
UW CSE

Software Model
Checking

Use of non-determinism

◆ Inputs from environment
– Altitude := {1000…8000}

◆ Simplification of functions
– Alt_Rate := 0.25*(Alt_Baro-ZP)/Delta_t

– Alt_Rate := {-2000…2000}

◆ Unmodelled parts of specification
– States of Other_Aircraft treated as non-

determinstic input variables

Notkin (c) 1997 24
UW CSE

Software Model
Checking

Translating RSML to SMV

On

Off

MODULE main
VAR

state:{ON,OFF};
on_event: boolean;
off_event: boolean;

ASSIGN
init(state) := OFF;
next(state) := case

state = ON &
 off_event: OFF;

state = OFF &
 on_event: ON;

1 : state;
esac;

Notkin (c) 1997 25
UW CSE

Software Model
Checking

State encoding

A B

D F

E G

S

C

T U

◆ Flatten nested AND
and nested OR states

◆ One variable for each
OR state
– An enumerated type of

the alternatives
◆ VAR

S: {A,B,C};
T: {D,E};
U: {F,G};

Notkin (c) 1997 26
UW CSE

Software Model
Checking

Synchrony hypothesis

◆ Handling an external event
DEFINE

Stable := !Initiate_Move &
 !Move_Finished &
 !Rod_Updated & !Clock_Event
ASSIGN

next(Move_Finished) := case
Stable : {0,1};
1 : 0;

esac;
…for other external events…

Notkin (c) 1997 27
UW CSE

Software Model
Checking

Transitions

VAR RC: {Out, Mid, In};

ASSIGN

T_Out_Mid : Mid; T_Mid_In : In;

T_Mid_Out : Out; T_In_Mid : Mid;

1 : RC;

esac;

Notkin (c) 1997 28
UW CSE

Software Model
Checking

Non-deterministic transitions

◆ A machine is deterministic
if at most one of T_A_B,
T_A_C, etc. can be true

◆ Else non-deterministic

◆ Can encode non-
deterministic transitions

◆ next(S) := case
T_A_B & T_A_C: {B,C};
T_A_B : B; T_A_C : C;
1 : S;

esac;

A

C

B

Notkin (c) 1997 29
UW CSE

Software Model
Checking

Checking properties

◆ Initial attempts to check any property
generated BDDs of over 200MB

◆ First successful check took 13 hours
– Has been reduce to a few minutes

◆ Partitioned BDDs

◆ Reordered variables

◆ Implemented better search for
counterexamples

Notkin (c) 1997 30
UW CSE

Software Model
Checking

Property checking

◆ Domain independent properties
– Deterministic state transitions

– Function consistency

◆ Domain dependent
– Output agreement

– Safety properties

◆ We used SMV to investigate some of these
properties on TCAS’ Own_Aircraft module

Notkin (c) 1997 31
UW CSE

Software Model
Checking

Disclaimer

The intent of this work is to evaluate symbolic
model checking of state-based specifications, not to
evaluate the TCAS II specification. Our study used
a preliminary version of the specification, version
6.00, dated March, 1993. We did not have access to
later versions, so we do not know if the issues
identified here are present in later versions.

Notkin (c) 1997 32
UW CSE

Software Model
Checking

Deterministic transitions

◆ Do the same conditions allow for non-
deterministic transitions?

◆ Inconsistencies were found earlier by other
methods [Heimdahl and Leveson]

– Identical conditions allowed transitions from
Sensitivity Level 4 to SL 2 or to SL 5

◆ Our formulae checked for all possible non-
determinism; we found this case, too

Earlier
version of
TCAS spec

V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
 ASL = 6 | ASL = 7;
T_254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |
 (V_254b & LG = 2 & V524a);
V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T_257 := (ASL = 5 | V_257a | V_257b) |
 (ASL = 5 & MS = TA_only) |
 (ASL = 5& LG = 2 & V_257c) |
 (V_257d & LG = 5 & V_257b) |
 (V_257d & V_257a & MS = 5);

Notkin (c) 1997 34
UW CSE

Software Model
Checking

Tradeoffs

◆ Our approach was slower than the
Heimdahl & Leveson approach

◆ Their approach reported some false
positives

Notkin (c) 1997 35
UW CSE

Software Model
Checking

Function consistency

AG ! ((C1 & C2) | (C1 & C3) | (C2 & C3))

F :=
V1 if C1
V2 if C2
V3 if C3

◆ Many functions are
defined in terms of
cases

◆ A function is
inconsistent if two
different conditions Ci
and Cj and be true
simultaneously

Notkin (c) 1997 36
UW CSE

Software Model
Checking

Display_Model_Goal

◆ Tells pilot desired rate of altitude change

◆ Checking for consistency gave a
counterexample
– Other_Aircraft reverse from an Increase-

Climb to an Increase-Descend advisory

– After study, this is only permitted in our non-
deterministic modelling of Other_Aircraft

– Modelling a piece of Other_Aircraft’s logic
precludes this counterexample

Notkin (c) 1997 37
UW CSE

Software Model
Checking

Output agreement

◆ Related outputs should be consistent
– Resolution advisory

» Increase-Climb, Climb, Descend,
Increase-Descend

– Display_Model_Goal

» Desired rate of altitude change

» Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory,
Display_Model_Goal should be positive

Notkin (c) 1997 38
UW CSE

Software Model
Checking

Output agreement check

◆ AG (RA = Climb -> DMG > 0)

– If Resolution Advisory is Climb, then
Display_Model_Goal is positive

◆ Counterexample was found
– t 0 : RA = Descend, DMG = -1500

– t 1 : RA = Increase-Descend, DMG = -2500

– t 2 : RA = Climb, DMG = -1500

Notkin (c) 1997 39
UW CSE

Software Model
Checking

Where may formulae come from?

“There have been two pilot reports received which
indicated that TCAS had issued Descend RA's at
approximately 500 feet AGL even though TCAS is
designed to inhibit Descent RAs at 1,000 feet AGL.
All available data from these encounters are being
reviewed to determine the reason for these RAs.”

 --TCAS Web site

Notkin (c) 1997 40
UW CSE

Software Model
Checking

Performance results

Property Time (secs) #BDD nodes Memory (MB)
Transition Consistency 387 717K 16.4
Function Consistency 289.5 387K 11.5
Step Termination 57.2 142K 7.4
Descend Inhibit 166.8 429K 11.8
Increase-Descend 193.7 282K 9.9
Output Agreement 325.6 376K 11.6

◆ Sun SPARCStation 10 with 128MB

◆ SMV Release 2.4.4

Notkin (c) 1997 41
UW CSE

Software Model
Checking

Discussion

◆ A positive data point for applying model
checking to state based software
specifications

◆ Iterative use of model checking promising
– Refine and debug specification

– Explicit clarification of interfaces

– Regression testing of specifications

Notkin (c) 1997 42
UW CSE

Software Model
Checking

Discussion

◆ What are the limits?
– Specification size

» We produce around 200 boolean variables, about
the edge of what SMV can handle

– Numerical issues (multiply, divide, etc.)
» Needed to refine Other_Aircraft

– Desirable properties to check?

◆ Domain expertise is critical
– Thanks, Jon!

Notkin (c) 1997 43
UW CSE

Software Model
Checking

Discussion

◆ Differences in applying to software and to
hardware?
– Word-level vs. bit-level?

– Event structure? Synchrony hypothesis?

– Properties to check?

– Timing properties?

Notkin (c) 1997 44
UW CSE

Software Model
Checking

Model checking software

Theory Software
Engineering

Domain
Expertise

Hardware
Verification

