Applying Model Checking to
Large Software Specifications

David Notkin e
Dept. of Computter Science & Engineering |7 paigeame
University of Washington + William Chan
10 March 1997 + Steve Burns
. . « Francesmary Modugno
www.cs.washington.edu/homes/notkin « Jon Reese
Notkin (c) 1997 1

Embedded systems

0 Softwareis
increasingly pervasive
0 No complex system is
any longer built
without software
— Avionics, medical
imaging and treatment,
consumer electronics,
appliances, ...

] uwcse)
}Software Model Notkin (c) 1997 2
*. Checking |

y G

Problems

0 Getting embedded systems to work
properly isimportant
— Safety-critical systen{somp.risks; Leveson,
Safeware]
— Pressures of the marketplace
0 Getting them to work right is hard
— Hard to clarify requirements
» Problems that appear later cost far more to fix
= Difficulties at the interfaces

| Software Model Notkin (c) 1997 3
& Checking

Reactive systems

Inputs. Outputs

0 Reactive systems are often specified (in part) by state
machines that describe the actions that the system should
make in response to an external event

] uwecse)
| Softwareodel Notkin (c) 1997 4
h e

Key question

0 How do we increase
our confidence that
the requirements ~\/
specification has the 7~¢\™
properties we want?
— It does what it is
supposed to do
— It doesn't do things it
isn’t supposed to do

] uwcse)
}Software Model Notkin (c) 1997 5
*. Checking |

) S

Symbolic model checking

0 Evaluate temporal
propatl €s Of fl ni te aate Temporal Logic Finite State

systems Formula Machine
0 Extremely successfully

for hardware

verification Checter
0 Open question:

applicableto large Yes No

software specifications / N

for reactive systems?

] uwcse)
}Software Model Notkin (c) 1997 6
*. Checking |

) S

Software model checking

0 Finite state software specifications
— Reactive systems (avionics, automotive, etc.)
— Hierarchical state machine specifications
» Statecharts (Harel), RSML (Leveson)
0 Goal: increase confidence in the correctness
of the specification

] uwcse)
‘?So{twareMcdé
. Checking_|

Why might model checking fail?

0 Software is often specified with infinite
state descriptions
— We don’t address those specifications
» Jackson, Damon, Jha; Wing, Vaziri-Farahani; etc.
0 Software specifications may be structured
differently from hardware specifications
— Hierarchy

— Representations and algorithms for model
checking may not scale

] uwcse)
‘?So{twareMcdé
. Checking_|

Our approach—try it!

0 Applied model checkingto 0 Translation process

the specification of TCAS (RSML to SMV)
I 0 Model checking
— Traffic Alert andCollision (deding with BDD’s)

Avoidance system .
¥) 0 Analyzing TCAS
» In use on U.S. commercial

aircraft properties
— FAA adopted specification
— Initial design and
development by Leveson

| software Model
¥ Checking

Outline

0 Hierarchical state machine specifications
0 Symbolic model checking
o TCAS

0 Our experiencesin analyzing TCAS using
model checking

[l

Temperature Rod Movement Rod Configuration
Tenp_Readi ng Ext ernal Tenperature
Events I'nitiate_Move Rod_Mve Rod_Config
Move_Fi ni shed Ext ernal Rod_Config
Rod_Updat ed Rod_Config Rod_Move
O ock_Event Ext er nal Rod_Move
Tenp_Updat e Tenper ature Rod_Mve

]
Sample transitions

Trigger_Event: Tenp_Update
Condition: Tenperature in Too Hot
Qut put Action: Panic_Event

Trigger _Event: Tenp_Update
Condi tion: Rod_Mvenent in Ready and Tenperature in Hot
Qutput Action: Initiate_Mve

Trigger_Event: C ock_Event
Condi tion: Rod_Mvenent in Just_Mved and
t > t(entered(Just_Mved))+ Myve_Del ay

] uwcse)
| software Model Notkin (¢) 1997 12
*. Checking |

\ Checking |

Events

0 External—interactions with environment

0 Synchrony hypothesis
— External event arrives
— Triggers cascade of internal events (micro
steps)
— Stability reached before next external event
0 Technical issues with micro steps
— Harel, Pnueli, Leveson
] uwes)

| software Niode! Notkin (c) 1987 3
K‘\(Chs:k’lng 1

Properties to check: examples

o If Tenper at ur e isin Hot , then
eventually Tenper at ur e isin Ckay or
Rod_ConfigurationisinAl'l _In

0 Rod_Confi gurati on only changesin
responseto aMove_Fi ni shed event

] uwcse)
| software Niode! Notkin (c) 1987 14
*. Checking |

 Checking_{

TCAS C;)

0 http://www.faa.gov/and/and600/and620/newtcas.htm
0 Warn pilots of traffic
— Plane to plane, not through ground controller
— On essentially all commercial aircraft
0 Issue resolution advisories only
— Vertical resolution only
— Relies on transponder data

B

o=
Notkin (c) 1997 % 15

] uwcse
| softwar e Model
. Checking_|

TCAS specification

0 Irvine Safety Group (Leveson et al.)
— Specified in RSML as a research project
— FAA adopted RSML version as official

O Specification is about 400 pages long

0 This study uses: Version 6.00, March 1993
— Not the current FAA version

] uwecse)

| Softwareodel Notkin (c) 1997 16
£ Checking |

) izl

TCAS—high-level structure

o)

Own_Aircraft Other_Aircraft

0 Own_Aircraft
— Sensitivity levels, Alt_Layer, Advisory_Status
0 Other_Aircraft

— Tracked, Intruder_State, Range_Test, Crossing,
Sense Descend/Climb

] uwcse)
| software Model Notkin (<) 1997 17
*. Checking |

\ Checking |

Model checking

0 Doesatemporal logic formula

hold for afinite state machine?
Temporal Logic Finite State

0 Tempora logic

— If not, find counterexample Formula (Machine
— until, eventually, always, etc.

Model

0 For many logics, checking can e
be donein linear timein the
size of the space state

— Explicit model checking / AN
does this, exploiting
symmetries for performance

] uwcse)
| software Model Notkin (¢) 1997 18
*. Checking |

\ Checking |

Symbolic model checking

0 State space can be huge (>21°%) for many
systems

0 Use implicit representation
— Data structure to represent transition relation

a boolean formula

0 Algorithmically manipulate the data
structure to explore the state space

0 Key: efficiency of the data structure

] uwese)

}Software Model Notkin (c) 1997 19
K‘\(Check’lng 1

Using SMV

0 SMV isaBDD-based model checker
0 It checks CTL formulas
— A specific temporal logic

] uwecse)

() 2552

| Software M odel Notkin (c) 1997 21
£ Checking

) izl

Binary decision diagrams (BDDs)

0 “Folded decision tree” /.\
o Fixed variable order &)? .
o Many functions have : . :
small BDDs .
— Multiplication is a
notable exception
0 Can represent

— State machines
(transition functions)

— Temporal queries

o

TAK
Y

©dd Parity

‘LSQ g:; :\rn‘gcdé’ Notkin (c) 1997
 Chesking_|
Iterative jprocess
0 Iterate SMV version of —_—
nvironment

specification
o Clarify temporal formula

0 Model environment more
pl‘eci <A y of Specification

0 Refine specification

Modeled Part

Use of non-determinism

O Inputs from environment
— Altitude := {1000...8000}

0 Simplification of functions
— Alt_Rate := 0.25*(Alt_Baro-ZP)/Delta_t
— Alt_Rate := {-2000...2000}
0 Unmodelled parts of specification

— States ofx her _Ai rcraft treated as non-
determinstic input variables

] uwcse)
| softwareModel Notkin (¢) 1997 23

. Checking |
S

Abstracted
Part of
Specification
] uwecse)
|Saftware Model Notkin (c) 1997 2
¥ Checking
MODULE mai n
VAR
on state: {ON, OFF};
on_event: bool ean;
of f _event: bool ean;
ASSI GN
init(state) := OFF;
next (state) := case
state = ON &
of f _event: OFF;
off state = OFF &
on_event: ON,
1: state;
esac;
] uwcse)
| softwareModel Notkin (¢) 1997 24

. Checking |
S

State encoding

0 Flatten nested AND
and nested OR states

0 Onevariable for each
OR state
— An enumerated type of
the alternatives
o VAR

o

, C}s

y

d

cHd®
nmo >

oRu

{ ;
{F.&;
] uwcse)

| softwareModel Notkin (¢) 1997 2%
*. Checking |

S

Synchrony hypothesis

0 Handling an external event

DEFI NE
Stable := !Initiate_Mve &
I Move_Fi ni shed &
' Rod_Updated & ! d ock_Event
ASSI GN
next (Move_Fi ni shed) : = case
Stable : {0, 1};
1 0
esac;
...for other external events...

] uwcse)
}Software Model Notkin (c) 1997 26
*. Checking |

y G

Transitions

VAR RC: {Out, Mid, In};

ASSIGN
T_Out_Mid : Mid; T_Mid_In: In;
T_Mid_Out : Out; T_In_Mid : Mid;
1:RC;

esac;

] uwecse)

() 2552

| Software M odel Notkin (c) 1997 27
£ Checking

) izl

Non-deterministic transitions

0 A machineis deterministic
if at most oneof T_A B,
T_A_C, €tc. can betrue 5

0 Else non-deterministic

o Can encode non-
deterministic transitions

0 next(S) := case

TAB&TAC {BCG

TAB: B TAC: G

1:.8S

esac,

] uwecse)
|Saftware Model Notkin (c) 1997 28
& Checking_|

Checking properties

O Initial attempts to check any property
generated BDDs of over 200MB

O First successful check took 13 hours
— Has been reduce to a few minutes

O Partitioned BDDs

0 Reordered variables

0 Implemented better search for

counterexamples
] wwese)
}Software Model Notkin (c) 1997 29

. Checking |
S

Property checking

0 Domain independent properties
— Deterministic state transitions
— Function consistency
0 Domain dependent
— Output agreement
— Safety properties
0 We used SMV to investigate some of these
properties on TCASOan_Ai rcraft module

] uwcse)
}Software Model Notkin (c) 1997 30
*. Checking |

) S

Disclaimer

Deterministic transitions

The intent of thiswork is to evaluate symbolic
model checking of state-based specifications, not to
evaluate the TCAS || specification. Our study used
apreliminary version of the specification, version
6.00, dated March, 1993. We did not have access to
|ater versions, so we do not know if the issues
identified here are present in later versions.

0 Do the same conditions allow for non-
deterministic transitions?

0 Inconsistencies were found earlier by other

eaia | Methods [Heimdahl and Leveson]

version of

tcassee | — ldentical conditions allowed transitions from

] uwcse)
}Software Model Notkin (c) 1997 31
*. Checking |

y G

Sensitivity Level 4 to SL 2 orto SL 5
0 Our formulae checked for @l possible non-
determinism; we found this case, too

] uwcse)
}Software Model Notkin (c) 1997 32
*. Checking |

y G

Tradeoffs

0 Our approach was slower than the
Heimdahl & Leveson approach

0 Their approach reported some false
positives

] uwecse)

| Softwareodel Notkin (c) 1997 2
£ Checking

) izl

Di spl ay_Model _Goal

V._254a ;= M5 =TARA| MS=TAonly | M5=3| M8 = 4 |
Ms=5] MM=6| M8 =7,
V.254b := ASL = 2| ASL =3 | ASL =4 | ASL =5 |
ASL =6 | ASL = 7;
T 254 := (ASL = 2 & V_254a) | (ASL =2 & M5 = TA only) |
(V_254b & LG = 2 & V524a);
V_257a := LG=5| LG=6| LG= 7| LG = none;
V. 257b := M5 =TARA| MB=5 || MB=6 M =7,
V_257¢ := M5 =TARA| MS=TAonly | MS=3 | MS =4 |
Ms=5|] MS=6| Ms =T,
V_257d := ASL = 5| ASL = 6 | ASL = 7;
T 257 := (ASL = 5| V_257a | V_257b) |
(ASL = 5 & = TA only) |
(ASL = 5& LG = 2 & V_257¢c) |
(V_257d & LG = 5 & V_257h) |
(V_257d & V_257a & M5 = 5);
Function consistency
o Many functions are
defined in terms of v.ifC
1 1
cases F:= V2 if C2
V, if Cy

0 A function is
inconsistent if two AG!((C,&C,) | (C,&Cy|(C,&Cy)

different condition<C;
andC; and be true
simultaneously

] uwese)

}Software Model Notkin (c) 1997 35

. Checking |
S

O Tells pilot desired rate of altitude change

0 Checking for consistency gave a
counterexample
— Other_Aircraft reverse from an Increase-
Climb to an Increase-Descend advisory
— After study, this is only permitted in our non-
deterministic modelling oft her _Ai rcraft
— Modelling a piece oft her _Ai rcraft’s logic
s precludes this counterexample

}Software Model Notkin (c) 1997 36
K‘\(Check’lng 1

Output agreement

0 Related outputs should be consistent

— Resolution advisory

» Increase-Climb, Climb, Descend,

Increase-Descend

— Display_Model_Goal

» Desired rate of altitude change

» Between -3000 ft/min and 3000 ft/min
— Presumably, on a climb advisory,

Di spl ay_Model _Goal should be positive
] wwese)

}Software Model Notkin (c) 1997 37
K‘\(Check’lng 1

Output agreement check

0AG (RA=dinb -> DMG > 0)
— If Resolution Advisory i€ i nb, then
Di spl ay_Model _Goal is positive
0 Counterexample was found
— t,:RA=Descend, DMG = -1500
— t, : RA = Increase-Descend, DMG = -2500
— t,:RA=Climb, DMG = -1500

] uwcse)
| softwareModel Notkin (¢) 1997 38

. Checking |
S

Where may formulae come from?

“There have been two pilot reports received which
indicated that TCAS had issued Descend RA's at
approximately 500 feet AGL even though TCAS js
designed to inhibit Descent RAs at 1,000 feet AGL
All available data from these encounters are being
reviewed to determine the reason for these RAs.”

Performance results

Property \Time (secs) #BDD nodes Memory (MB)
Transition Consistency 387 717K 16.4
Function Consistency 289.5 387K 115
Step Termination 57.2 142K 7.4
Descend Inhibit 166.8 429K 11.8
Increase-Descend 193.7 282K 9.9
Output Agreement 325.6 376K 11.6

0 Sun SPARCStation 10 with 128MB
0 SMV Release2.4.4

] uwecse)
| Softwareodel Notkin (c) 1997 20

. Checking
| Cheskin

--TCAS Web site
wiy
| Software Model Notkin (c) 1997 39
. Chesking_|
Discussion

0 A positive data point for applying model
checking to state based software
specifications

O Iterative use of model checking promising

— Refine and debug specification
— Explicit clarification of interfaces
— Regression testing of specifications

] uwcse)
}Software Model Notkin (c) 1997 41

Discussion

. Checking |
S

0 What are the limits?
— Specification size

» We produce around 200 boolean variables, about
the edge of what SMV can handle

— Numerical issues (multiply, divide, etc.)
» Needed to refiné her _Ai rcraft
— Desirable properties to check?
0 Domain expertiseis critical
~ — Thanks, Jon!
o) uwes)

}Software Model Notkin (c) 1997 42
K‘\(Check’lng 1

Discussion

0 Differencesin applying to software and to

hardware?

— Word-level vs.
— Event structure? Synchrony hypothesis?

bit-level?

— Properties to check?
— Timing properties?

Notkin (c) 1997

Model checking software

(\% uw cse |
|Software Model | Notkin () 1997
& !

Displayed Model_Goal =
0
Max(Own_Track Alt Rate,

PREV (Displayed Model Goal),
1500 ft/min)

Min(Own_Track_Alt Rate,
PREV (Displayed_ModelGoal),
~1500 ft/min)

2500 ft/min
~2500 ft/min
Max(Own_Track Alt Rate,

1500 ft/min)

Min(Own_Track Alt Rate,
~1500 ft/min)

PRrEV(Displayed Model_Goal)

if Composite RA not in state Positive

if (New_Climb or New_Threat) and
not New_Increase.Climb and

not (Increase_Climb_Cancelled or
Increase_Descend_Cancelled) and
Composite RA in state Climb

if (New Descend or New Threat) and
not New Increase Descend and

not (Increase_Climb_Cancelled or
Increase_Descend Cancelled) and
Composite RA in state Descend

if New_Increase Climb

if New Increase Descend

if Tncrease_Climb Cancelled and
not New_Increase.Climb and
Composite RA in state Positive

if Increase Descend Cancelled and
not New Increase Descend and

Composite RA in state Positive

Otherwise

e

Tracked

Tniruder-Status

i} il

Reversil

Comi=(mm) | G| 0

Tevel- Wail

T
iy Aoy e)
e
Eom)

Tralic Display-Statas

b Sync

[Not-Waiiing To-Send Individual NotEvaluated
{}
Wai nd Individual-Evatusted

e — L
P E————] ———

