
Bliss Hacking Guide
Bliss is a Modular Simulator

Steven Swanson and Mark Oskin
swanson@cs.washington.edu, oskin@cs.washington.edu

The Bliss architecture simulator toolkit is comprised of over 13,000 lines of C++ code spread across over
100 source files. This guide is an overview of how to hack the code to implement your particular hardware
model. We begin this guide with a high level overview of the simulator.

1 Simulation overview

1.1 Core Abstractions

Bliss is comprised of three main abstractions: Engines, Components, and Channels.

1.1.1 Engines

An Engine is an object that drives simulation models. In Bliss, engines provide instances of classes called
Instruction. The Instruction class is an abstraction of a generic RISC like instruction. Engines provide
instances of this class on demand. In addition, engines support the redirection of an application (i.e. mis-
speculation).

Currently, Bliss supports a direct-execution Engine of the Alpha AXP architecture. Binaries (Al-
pha/OSF/COFF or Alpha/Linux/ELF) can be loaded by this engine and interpreted. A limited (basic) set of
system calls are implemented that allow for common user-mode applications (without networking) to run.
The engine supports speculative execution with full mis-speculation effects.

1.1.2 Components

A component is the core object of a simulation model in Bliss. Every simulation model is derived from a
Component. Components provide a host of standard and custom interfaces, depending upon their derivation
in the C++ class hierarchy. Specific component models will be discussed in later sections.

1.1.3 Channels

A channel, which is also a type of component, is the means by which components communicate to each other
when event-driven simulation is used. As will be discussed in the next section, Bliss supports a standardized
event-driven communication mechanism between components over a Channel, and custom inter-component
functional interfaces through the C++ class interface.

2 Simulation itself

Actual simulation in Bliss is a mixture of event driven and function based simulations. The key difference
between event driven and functional simulation is that event driven simulators focus simulation around the

1



dispatching and processing of messages (events). These messages arrive into modules through callback
functions, which in turn generate new messages that are subsequently delivered. In contrast, functional
simulation is structured around a sequence of function calls. When a module needs information from another
module a function is invoked in that module that processes the request and returns that information back to
the calling module. This calling process is usually done in a straightforward manner using the built in
function and calling semantics of the language.

The two types of simulators tend to have their respective pros and cons. Event driven simulators tend
to be slower than functional ones, and produce more obtuse coding styles. Once finished and working
properly, however, they tend to be more flexible. It is also easier to model more complex interactions with
event driven simulators instead of functional ones. The reason is that with functional simulators, modules
often need to perform calculations about the future behavior of a model and return a result based upon that
future behavior (for example, it is typical in a function based cache memory simulator to process a load or
store request completely through all levels of the cache hierarchy and then to return the result to the processor
model, all from a single function call made from the processor). This need in functional based simulators to
calculate the future makes the modeling of complex behaviors, such as bus contention, difficult. Conversely,
with event driven simulators bus contention modeling often happens for free as a byproduct of the message
dispatching logic.

Event driven simulators are plagued with their own problems. The interaction between models and
message traffic is often extremely difficult to predict. When bounded resource models are used, which is
the ideal case since they more closely match reality (i.e. not many real chips have infinite size buffers),
poorly written or configured models can live-lock. It is often difficult to predict the behavior of a simulator
model since the message traffic it processes can be in an order the designer did not originally think about.
This ordering is controlled explicitly in functional simulators by the order in which the simulator calls the
modules (for example, one often sees in functional processor simulators that the processor pipeline stages
modules are invoked back to front, completion stage to fetch stage). Event driven simulators dispatch mes-
sages based upon a centralized queue, which often makes the ordering of message delivery unpredictable.
Consequently, poorly written or configured simulator models can receive messages in orders they where not
written to expect.

Bliss attempts to combine functional and event driven simulation. With certain components, such as a
superscalar processor, functional simulation works well. Instructions proceed through the processor pipeline
in such a regular fashion that there isn’t the need for the dynamism of event driven simulation. Functional
simulation is sufficient because the need to predict the future affects of a simulator module is minimal (if
almost non-existent). In contrast, the memory system is rife with dynamic behavior. There is really no
telling how long a memory request will take until it is processed and its interaction is modeled with all other
memory requests. These interactions cause contention for resources at times that are extremely difficult
to predict far into the future (on the time scale of a cache miss). For this reason BLISS uses event driven
simulation for the memory system.

The two styles of simulation, event driven and functional are glued together in what Bliss calls a Domain.
A domain roughly corresponds to a group of components that interact synchronously (functional simulation)
and asynchronously (event driven simulation). Components can still interact if they are in different domains,
but only asynchronously. The key to this gluing of functional and event driven simulation styles is the use
of controlling components. These controlling components (which are invoked in an asynchronous like
fashion) then invoke function based simulation procedures in sub-components. As a specific example, the
SuperScalarProcessor class manages the functional simulation of the various pipeline stages.

Within a domain a component can be invoked for simulation in up to three different ways. First, it
can be simulated in a fully event driven style through a function AsyncSimulateOneCycle. This function
is invoked one (to many times) each clock cycle. The order in which components are simulated through
this function is not determinable and should not affect the simulation results. A component can also be

2



simulated through a transition function SyncSimulateOneCycle. This function is called only once per cycle
(at the start of a cycle) and the order in which component’s are invoked is not determinable. Finally, a
function SimulateOneCycle is used by functional simulation management components. The order in which
this function is invoked is “well known”, and controlled by a management class.

Components can support any or all of these simulation functions, although usually only one is imple-
mented. The exception is those components at the boundary between event driven and functional simulation.
For example the FetchStage module supports both the SimulateOneCycle (well-known ordering, functional
simulation) and the AsyncSimulateOneCycle (no-known ordering, event-driven simulation) interfaces.

A fourth way for a component to be simulated also exists. A special type of component, called a
Channel is used to deliver events between modules. When a message is delivered into a component, three
things occur. First, that components WhenCanYouTakeThisMessage function is invoked. If all receiving
components can accept the message then all component’s ReceiveMessage handler will be invoked. Finally,
depending upon a configuration value, each component will be added to a “live list” for that cycle for
re-invocation of the AsyncSimulateOneCycle function. This re-invocation of the AsyncSimulateOneCycle
function is controlled by a configuration parameter, discussed later (to improve simulation performance with
only a marginal decrease in accuracy this re-invocation is typically disabled).

A Files and directories

Bliss is broken up into a number of files and directories. We will briefly describe these here.

A.1 Directories

� Foundation: Core C++ classes (arrays, stacks, fifos, hash tables, priority queues), command line
parsing, tuple spaces, memory leak detection, fast-allocation mechanisms.

� Engines: Contains the abstract C++ interface for an engine. Particular engine types should be derived
from it.

� Engines/SimulatedAlpha: Contains the Alpha/AXP OSF or Linux binary interpreter.

� Engines/SimulatedAlpha/Tables: This directory contains definitions for the Alpha/AXP instructions.
Instructions, their opcodes and register usages are stored here.

� Engines/SimulatedAlpha/Implementors: This directory contains the information on how to execute
the alpha opcodes.

� Components: All simulation models should be placed off of this directory.

� Components/Core: Core component models (Component, Channel, Port, Domain)

� Components/Channels: Channel implementations (bounded and unbounded).

� Components/Processor: Processor cores should be placed off of this directory.

� Components/Processor/SuperScalarProcessor: This models a modern 7 stage pipelined superscalar
processor. The processor model is loosely based around the modern Alpha architectures (i.e. physical
register file instead of re-order buffer based).

� Components/Memory: This contains simulation models of clocked memory busses, caches, and DRAM
components, as well as an overall memory system component.

3



� Components/Systems: In this directory are simulation models of system boards. A system board is
really more of a container to bring together an engine, processor model, and memory system simulator.

� Simulators: This directory contains the front-end to the simulators (i.e. “main”).

� Configurations: This directory contains configuration files.

� bin: Initially this directory is empty, but once you build the simulator the program ends up here.

A.2 Files

� Configurations/StandardConfig.cxx:

� Standard.h: The include of all includes. All source files should start by including this file. This header
file in turn, includes all other header files in the proper order.

� Foundation/Global.h: This file defines basic types such as uint64 in a cross-platform way.

� Foundation/Compatibility.h: This file contains any porting hacks. Namely, some hacks to make Bliss
compile and work on Alpha/OSF boxes.

� Foundation/Allocator.h: The file contains a template class for the create of “free lists”. Free lists help
to speed up the allocation, deletion, and re-allocation of frequently used objects. Objects that are
created often such as Message’s and Instruction’s should use a free list.

� Foundation/Array.h: This file contains a basic (growable) array template. It has all the usual features
you would expect of such a class.

� Foundation/Fifo.h: This template implements a fixed size first-in first-out data structure.

� Foundation/PQueue.h: This template provides PQueue and PQueueOfPtr templates. These are auto-
sorted data structures with Push insertion and Pop (lowest) element functionality.

� Foundation/Stack.h: This template provides LIFO (any size) capability.

� Foundation/Hash.h/.cxx: These files implement a hash table. Objects that go into a hash table should
be derived from the HashableObject class.

� Foundation/Debug.h: This file just provides some macros that are used throughout the simulator for
debugging purposes.

� Foundation/TupleSpace.h/.cxx: A tuple is a named (typed) object. Tuples of integers, booleans, and
strings are supported. A TupleSpace is also implemented.

� Foundation/CommandLineParser..h/cxx: This implements the functionality required to parse com-
mand lines. It is not limited to such and can parse configuration files, and strings that contain one or
more configuration options. These options are used to configure a TupleSpace.

� Foundation/safemem.h/.cxx: These are compiled in if DEBUG MEMORY is defined. Note that when
you compile Bliss in this way a lot of stuff will be spewed to the screen about memory, most of it
being ok. The DEBUG MEMORY flag is really only useful for catching memory leaks (of Allocator
objects), and double free’s.

� Engines/Engine.h/.cxx: This file contains the abstract definition of an engine. Not much code is here.

4



� Engines/SimulatedAlpha/AlphaProcessor.h/.cxx: This file is the main core of the Alpha AXP binary
interpreter. The file is where all of the decoding tables are stored and the instruction implementa-
tions. Note, however, that the code for these is produced through a series of macros and inclusion of
form/use/table files (see below).

� Engines/SimulatedAlpha/Loader.h/.cxx: These files contain the logic to decode COFF and ELF Alpha
binaries.

� Engines/SimulatedAlpha/Sparse64BitMemorySpace.h: This file implements a sparsely populated 64
bit array. The array will be demand-allocated depending upon what you access. Clearly, on 32 bit
systems you don’t want to riffle through every possible address.

� Engines/SimulatedAlpha/OSFSysCallDefinations.h: This file defines the various OSF/Linux-Alpha
system call numbers.

� Engines/SimulatedAlpha/SystemTrapHandler.h/.cxx: These files implement a basic subset of the OSF/Linux-
Alpha system calls.

� Engines/SimulatedAlpha/AllTables.h: This file simply includes all known op-code tables.

� Engines/SimulatedAlpha/AllForms.h: This file includes all known forms. A form is a micro-environment
in which an instruction implementation operates. The reason we use this is consider writing a simula-
tor for the alpha add and subtract operations. The code would appear almost the same except for a +
instead of a � in one spot. Thus, to short hand the writing of the AXP execution core the bulk of this
code is encapsulated into a form. These forms are then instantiated by uses.

� Engines/SimulatedAlpha/AllUses.h: This file includes all known uses.

� Engines/SimulatedAlpha/Tables/TopLevel.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/intm.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/fltv.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/fltl.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/misc.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/jmplink.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/flti.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/itfp.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/inta.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/intl.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/ints.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Tables/fpti.table: See the Alpha AXP architecture handbook.

� Engines/SimulatedAlpha/Implementors/iOp3.form/.use: These files contain the implementations for
most 3 operand integer instructions. Miscellaneous instructions are also here.

5



� Engines/SimulatedAlpha/Implementors/fOp3.form/.use: These files contain the implementations for
most 3 operand floating point instructions.

� Engines/SimulatedAlpha/Implementors/iBr1.form/.use: integer branch instructions.

� Engines/SimulatedAlpha/Implementors/fBr1.form/.use: floating-point branch instructions.

� Engines/SimulatedAlpha/Implementors/iMem2.form/.use: Integer memory I/O operations.

� Engines/SimulatedAlpha/Implementors/fMem2.form/.use: Floating point memory I/O operations.

� Components/Core/Instruction.h/.cxx: This is one of the central classes of Bliss. This class is used to
store an instruction’s information. An abstraction of a typical RISC instruction is stored, as well as a
copy of the original Alpha AXP instruction. If you want to tag a piece of information to an instruction
and have that be available to all the models of the processor, you stick it here in the Instruction class.

� Components/Core/Component.h/.cxx: This is a core foundation class of Bliss. All simulation models
are derived from Component. Component provides the abstract interface to the simulation mech-
anisms, support functions for statistics and configuration output, and support for the hierarchy of
components model used by Bliss.

� Components/Core/ResourceLock.h: This class encapsulates the basic working mechanisms of re-
source lock. Note, this is not a resource lock for writing mutlithreaded simulators. This is an ab-
straction of a resource lock used by simulation model.

� Components/Core/ScheduledQueue.h: This is a class, much like PQueueOfPtr, except highly opti-
mized for near-term scheduling problems. It is used for scheduled access to resources (such as busses).

� Components/Core/Domain.h/.cxx: A Domain is a fundamental construct in Bliss. Components are
members of a Domain. A Domain is a component (hence there is a hierarchy of domains). Domains
are used to simulate multiple components.

� Components/Core/Message.h/.cxx: This is the base class for all messages. A Message is a special
type of C++ object that is passed across busses. You must derive model-specific message types from
this class.

� Components/Core/Port.h: A Port, separated into an InputPort and an OutputPort is used to manage the
delivery of messages to components. Busses have one logical InputPort and one logical OutputPort.
These logical ports are connected to 1 or more Component models, thus representing multiple physical
ports.

� Components/Core/MessageChannel.h/.cxx: This is the base class for all message channels (busses).

� Components/Channels/SimpleChannel.h/.cxx: This is a simple channel that has no bounds on its com-
munication amount.

� Components/Channels/BoundedChannel.h/.cxx: This is a bounded resource channel. It is used to
model more realistic busses.

� Components/Processor/SuperScalarProcessor/SuperScalarProcessor.h/.cxx: The SuperScalarProces-
sor class is the C++ object that puts all of the processor stage modules together. If you want to insert
pipeline stages, use your own stages, etc, then you will want to change the classes SuperScalarPro-
cessor uses.

6



� Components/Processor/SuperScalarProcessor/ProcessorStage.h/.cxx: All processor stages are derived
from the ProcessorStage class. This class provides the abstract mechanisms used to pass instructions
between stages. The reason that an abstract base class is used here is so that you can insert additional
pipeline stages, largely at will, without having to change the underlying models.

� Components/Processor/SuperScalarProcessor/FetchStage.h/.cxx: The FetchStage class is a complex
block-orientated fetch stage model that interacts with a branch predictor, branch target buffer, and
memory system. The FetchStage class will fetch whole block lines at a time, and has a configurable
look-ahead mechanism.

� Components/Processor/SuperScalarProcessor/DelayStage.h/.cxx: This processor stage does nothing.
It is meant to act as those stages of a processor that require only very simplistic software models (such
as decode), or those stages of modern processors that are there simply for wire-delay. The DelayStage
class is a configurable holder of instructions that is sufficient for these purposes.

� Components/Processor/SuperScalarProcessor/RenameStage.h/.cxx: After instructions are fetched they
are sent to a decode stage (which is a DelayStage). From there they are sent to a rename stage. This
stage renames the register inputs and outputs into a physical register pool.

� Components/Processor/SuperScalarProcessor/IssueWindowStage.h/.cxx: This stage is a holding bin
for renamed instructions that are not yet ready to execute. They remain here until their dependencies
are speculatively resolved. There is additional discussion later on this subject.

� Components/Processor/SuperScalarProcessor/RegisterAccessStage.h/.cxx: This stage modules the reg-
ister access to a physical register pool. It sits between the IssueWindowStage and the ExecutionStage.

� Components/Processor/SuperScalarProcessor/ExecutionStage.h/.cxx: This stage modals the actual
execution of instructions (or the address calculation of memory operations).

� Components/Processor/SuperScalarProcessor/StoreBuffer.h/.cxx: This stage modals a store buffer.
Currently, load speculation is not performed. Rather memory operations are queued and then dis-
patched into the memory system such that total-load-store (TSL) ordering is maintained.

� Components/Processor/SuperScalarProcessor/CompletionStage.h/cxx: This is the final stage of the
processor. This stage queues instructions and reconstructs program order. Possibly mis-speculated
instructions are detected here and the FetchStage notified to reset.

� Components/Processor/SuperScalarProcessor/Debugger.h/.cxx: This is a debugger that is specific to
the SuperScalarProcessor class. This debugger prints out instructions in a human-readable format
and uses the data structures of the various processor stages to provide additional information, such as
where the instruction is, what the state of its dependencies are, and how the processor stages are doing
on executing it.

� Components/Processor/SuperScalarProcessor/BranchTargetBuffer.h/.cxx: This file provides an ab-
stract interface to a branch target buffer (BTB) and two instantiations of it (a simple direct mapped,
and a tagged BTB).

� Components/Processor/SuperScalarProcessor/BranchPredictor.h/.cxx: This file provides the Branch-
Predictor class, an abstract C++ interface class to the workings of a branch predictor.

� Components/Processor/SuperScalarProcessor/GShareBranchPredictor.h/.cxx: This is an implemen-
tation of the gshare branch predictor.

7



� Components/Memory/MemoryTransactionMessage.h/.cxx: The MemoryTransactionMessage class is
a type of Message used for the communication of memory transactions (read, write, readresponse,
shared memory, etc).

� Components/Memory/SimpleClockedMemoryBus.h/.cxx: This bus, derived from BoundedChannel,
models a clocked memory bus that communicates MemoryTransactionMessage types.

� Components/Memory/SetAssociativeMemory.h/.cxx: This class encapsulates the logic behind a set
associative memory. Used in Caches, types of branch target buffers, etc.

� Components/Memory/SimpleCache.h/.cxx: This models a lockup free cache with bounded resource
constraints.

� Components/Memory/SimpleSDRAMModel.h/.cxx: This is a simple DRAM model with resource con-
straints.

� Components/Memory/SimpleCacheMemorySystem.h/.cxx: The SimpleCacheMemorySystem class puts
together an SDRAM model, a unified L2 cache and split L1 instruction and data caches.

� Components/Systems/SingleProcessorSystemBoard.h/.cxx: This class puts together a processor model
(SuperScalarProcessor) and a memory system model (SimpleCacheMemorySystem). It binds these
together and provides support for simulating them.

� Simulators/sim4.cxx: This is the front-end (main) to the Bliss simulator. Here is where it all begins.

� Simulators/run-alpha.cxx: This is a fast, execution-only simulator. It is used just to quickly execute
alpha binaries.

B License

Bliss is released under the following license. For the non-lawyers, this license is a FreeBSD-like license
that allows anyone to do anything (even sell it if they can) with this code. The only thing they must do is
acknowledge in tiny tiny print the origin of the code and the only thing they cannot do is sue the University
of Washington, or any contributors (that would be us). Official license begins here:

Copyright 2002 University of Washington. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met:

� Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

� Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF WASHINGTON “AS IS” AND ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY OF WASHINGTON OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8


