
Using Modern Graphics Architectures for General-Purpose Computing:
A Framework and Analysis

Chris J. Thompson Sahngyun Hahn Mark Oskin
Department of Computer Science and Engineering

University of Washington
{cthomp, syhahn, oskin}@cs.washington.edu

Abstract

Recently, graphics hardware architectures have begun
to emphasize versatility, offering rich new ways to pro-
grammatically reconfigure the graphics pipeline. In this
paper, we explore whether current graphics architectures
can be applied to problems where general-purpose vec-
tor processors might traditionally be used. We develop a
programming framework and apply it to a variety of prob-
lems, including matrix multiplication and 3-SAT. Compar-
ing the speed of our graphics card implementations to stan-
dard CPU implementations, we demonstrate startling per-
formance improvements in many cases, as well as room
for improvement in others. We analyze the bottlenecks
and propose minor extensions to current graphics architec-
tures which would improve their effectiveness for solving
general-purpose problems. Based on our results and cur-
rent trends in microarchitecture, we believe that efficient use
of graphics hardware will become increasingly important to
high-performance computing on commodity hardware.

1. Introduction

Modern graphics hardware has reached a turning point
where raw performance enhancements—as measured by
traditional metrics such as polygon fill rates—are becom-
ing less and less essential. As McCool observes [10], per-
formance levels of “cheap” video game hardware are suffi-
cient to overwrite every single pixel of a 640x480 display
with its own transformed, lit, and textured polygon more
than 50 times every 30th of a second. As such, recent
graphics hardware architectures, including both research
and commercial designs, have begun to move away from
traditional fixed-function pipelines and emphasize versatil-
ity, providing rich new ways of programmatically reconfig-
uring the graphics pipeline [8, 10, 16]. As a result, pow-
erful and potentially general-purpose constructs not unlike

vector and stream processors are appearing in commodity
PC machines, thanks to their graphics chips. The power of
these “graphics” processors should not be underestimated;
for example, the NVIDIA GeForce3 chip contains more
transistors than the Intel Pentium IV, and its successor the
GeForce4 is advertised as being able to perform more than
1.2 trillion internal operations per second. Most of this
time, however, this power is going unused because it is only
being exploited by graphics applications.

We believe that current graphics architectures, with mi-
nor evolutionary changes, could be used to accelerate other
domains where vector processors might traditionally be
used. This approach is important because, due to economic
and other factors, it is unlikely that dedicated vector pro-
cessors will ever become commonplace on the desktop. In
contrast, powerful graphics chips are already widely avail-
able.

In this research, we investigate the programming, per-
formance, and limitations of a recent graphics architecture
on non-graphics problems. We begin by describing prior
work in this area. In Section 3, we describe modern pro-
grammable graphics hardware architectures. The next sec-
tion presents a programming framework we have devised
that allows us to conveniently solve computational prob-
lems using graphics hardware. In Section 5, we implement a
number of toy algorithms with our framework, and we also
apply the framework to two real problems: matrix multi-
plication and 3-satisfiability. We then compare the speed
of our graphics card implementations to CPU implemen-
tations. In various cases, we demonstrate significant per-
formance gains. At the same time, there is potential for
considerable improvement. We analyze the bottlenecks and
in Section 6 we propose minor architectural extensions to
current graphics architectures that would improve their ef-
fectiveness and efficiency for solving general-purpose prob-
lems. We conclude with a discussion of avenues for future
work, including some which draw inspiration from earlier
research in VLIW and vector processors.

2. Prior work

While the last decade was dominated by fixed func-
tion non-programmable graphics architectures, some pro-
grammable graphics architectures were also explored. Early
systems, such as Pixar’s CHAP [2, 7] and the commercially
available Ikonas platform [3], had user microcodable SIMD
processors that could process vertex and pixel data in paral-
lel. Programmable MIMD machines that could process tri-
angles in parallel, such as the Pixel Planes [4] and the SGI
InfiniteReality, became popular for a short time, but their
low-level custom microcodes were complex and rarely used
by commercial developers.

As transistor costs decreased, CPU vendors began to in-
troduce graphics-oriented SIMD processor extensions into
general purpose CPU designs. Examples of these ex-
tensions include Intel’s MMX/SSE instructions, AMD’s
3DNow architecture, and Motorola’s AltiVec technology.
While such extensions can accelerate a variety of graphics
operations, they fall far short of the functionality of even a
basic graphics chipset; for instance, none offer high level
support for a rendering pipeline. For this reason, it is likely
that all modern computer architectures for the foreseeable
future will include sophisticated graphics coprocessors, mo-
tivating the work in this paper. Following industry conven-
tions, we refer to graphics coprocessors as GPUs [Graphics
Processing Units].

More recently, Sony developed a custom dual-processor
SIMD architecture for graphics called the Emotion En-
gine [6]. This design is fully programmable. The first of the
two processors is interfaced to the main CPU as a coproces-
sor, running instructions from the application’s instruction
stream, much like MMX or AltiVec. The second proces-
sor executes custom assembly subroutines for graphics or
sound [8]. While the Emotion Engine is powerful, its ex-
tremely high level of programmability has also earned it a
reputation for being difficult to program, since application
writers must pay careful attention to very low-level details
such as pipeline latency, hazards, and stalls throughout the
rendering process.

Most new graphics architectures strike a balance be-
tween programmability and manageability by exposing
only part of the rendering process to programmers.
NVIDIA’s GeForce3/4 and ATI’s Radeon grant full pro-
grammatic control over the process through which individ-
ual vertices are transformed from modeling space to world
space. All attributes (position, color, normal vector,etc.)
of each vertex may be programmatically altered viavertex
programs written in a custom assembly language. Later in
the rendering process,shader programs let the programmer
control how textures are mapped as well as how the final
colors of geometric fragments are computed. Each pro-
gramming model is designed to limit implementation com-

plexity. For instance, in vertex programs every assembly
instruction has the same latency, memory accesses are only
allowed to registers and the maximum number of different
registers accessed by each instruction is capped so that the
register files only need a small number of ports, and pre-
cisely one instruction is issued per clock. None of these
programming models was designed with general purpose
non-graphics programming in mind, but as we demonstrate
in this paper, they have the potential to evolve in this direc-
tion.

The work of Proudfootet. al. [18] is closest in spirit to
our own. In that work, the authors describe a language for
developing arbitrarily complicated graphical shaders and a
compiler for that language that generates code targeted to
modern graphics architectures. The authors propose an in-
novative abstraction calledcomputation frequencies that al-
lows them to combine vertex programs and pixel programs
under one high-level umbrella, and their compiler is intelli-
gent enough to virtualize hardware resources that may not
exist on a given hardware target. However, because their
work is oriented towards graphical shaders, it does not of-
fer any support for branches, labels, or main memory ac-
cess, making it unsuitable for the kind of general purpose
programming explored in this paper. Nevertheless, Proud-
foot’s work was influential; theCg compiler [14] released
by Microsoft and NVIDIA very recently is essentially a
commercial version of that work with some practical ex-
tensions such as labels.Cg and other similar emerging lan-
guages [1] remain too focused on graphical shader develop-
ment to be used for the kinds of general-purpose program-
ming explored in this paper, but their evolution towards gen-
erality remains an exciting area for future work.

3. Modern graphics hardware

3.1. The graphics pipeline

Traditionally, graphics hardware follows a fixed series of
steps called thegraphics pipeline to render an image. These
steps are illustrated below:

Generate geometry

 Transform geometry

 Clip to viewport

 Perform lighting

 Apply textures

 Rasterize geometry

 Draw pixels

Figure 1. The traditional graphics pipeline.

Initially, a user application supplies the graphics hardware
with raw geometry data (typically in the form of four-
component homogenous vectors1) specified in some local
coordinate system. The hardware transforms this geometry
into world space, then clips away parts of the transformed
geometry not contained within the user’s viewport. Next,
the hardware performs lighting and color calculations. Tex-
tures are applied, then the hardware converts the vector-
based geometry to a pixel-based raster representation. Fi-
nally, the resultant pixels are composited into the screen
buffer.

Most contemporary programmable architectures revise
the standard pipeline as shown in Figure 2:

Generate geometry

 Transform geometry

 Clip to viewport

 Perform lighting

 Apply textures

 Rasterize geometry

 Draw pixels

Vertex programs

Pixel programs

Figure 2. A programmable graphics pipeline.

The transform and lighting steps collapse together into one
step in which the position, color, and lighting of geom-
etry are determined by vertex programs written in a cus-
tom assembly language. Similarly, the texturing and color
compositing stages are collapsed into a single abstract stage
where the outputs are determined by shader programs, writ-
ten in either an assembly language or configured through
a simpler series of functional statements (depending on the
particular programming interface).

For the remainder of this paper, we concentrate on a spe-
cific target, the NVIDIA GeForce4 chipset [8]. This chipset
is representative of recent graphics architectures; it is func-
tionally similar to ATI’s Radeon chipset as well as the hard-
ware in Microsoft’s Xbox game console. It conforms fully
to the abstract DirectX 8 interface [11] and can also be ac-
cessed using a more basic application programming inter-
face called OpenGL [13].

3.2. Vertex programs

In this section, we describe the GeForce4’s instruction
set architecture for vertex programming. All registers in
this architecture hold quad-valued floating point values. If

1Homogenous quad-vectors are popular in graphics because they allow
perspective transformations to be represented as matrix multiplication. In
this notation,(x,y,z,w) corresponds to the location(x/w, y/w, z/w) in
Cartesian space.

the user tries to load a register with a scalar or integer value,
the value is automatically converted to floating point and
mirrored into each of the four vector slots.

Essentially, vertex programs compute functions. Each
program takes its input from a series of read-only source at-
tribute registers, and places its results into a series of write-
only output attribute registers. Temporary values may be
stored in temporary registers which are both readable and
writeable. Vertex programs cannot access main memory di-
rectly, but they may read values from a block of 96 constant
registers which can be used to pass information into vertex
programs. The constant register file may also be accessed
indirectly, through a special register called the address reg-
ister (used as an index into the register file).

Each time the hardware receives a new geometry vertex,
the hardware loads the 16 quad-float source attribute reg-
isters with attributes, such as position, normal vector, and
color describing that vertex. The hardware also initializes
the 16 temporary registers to(0,0,0,0). It then invokes
whatever vertex program is currently active.

Table 1. The source attribute registers.
Register name Meaning
v[OPOS] Object position
v[WGHT] Vertex weight
v[NRML] Normal vector
v[COL0] Primary color
v[COL1] Secondary color
v[FOGC] Fog coordinate
v[6]–v[7] Unused
v[TEX0]–v[TEX7] Texture coordinates

To limit the number of ports required of the register
file and ensure that one instruction can complete per clock,
each individual assembly instruction may only read from a
single source attribute register (e.g. ADD R0, v[OPOS],
v[WGHT] would be invalid). Similarly, each instruction
can only access a single constant register.

After computing its results, the program updates the rele-
vant 15 output attribute registers. This information is tagged

Table 2. The output attribute registers.
Register name Meaning
o[HPOS] Clip space object position
o[COL0]–o[COL1] Front colors
o[BFC0]–o[BFC1] Back colors
o[FOGC] Fog coordinate
o[PSIZ] Point size
o[TEX0]–o[TEX7] Texture coordinates

to the current vertex, and then the vertex is passed on to the
next stage of the graphics pipeline.

There are 21 instructions that can be used in vertex pro-
grams. Each generates a single result and places it in a desti-
nation register. The instructions are summarized in Table 3.
Most instructions operate on all four components of the in-
put register, but a few instructions (e.g. EXP, LOG) operate
only on a single scalar component. The hardware limits ev-
ery vertex program to a maximum of 128 instructions.

Table 3. The vertex program instruction set.
Opcode Description
ARL Address register load
MOV Move
MUL Multiply
ADD Add
SUB Subtract
MAD Multiply and add
ABS Absolute value
RCP Reciprocal
RCC Reciprocal (clamped)
RSQ Reciprocal square root
DP3 3-component dot product
DP4 4-component dot product
DPH Homogenous dot product
DST Cartesian distance
MIN Minimum
MAX Maximum
SLT Set on less than
SGE Set on greater/equal than
EXP Exponential base 2
LOG Logarithm base 2
LIT Light coefficient formula

3.3. Shader programs

Unlike the vertex programming hardware, the shading
hardware is not naturally programmable in a general assem-
bly language. Four texture units capable of performing var-
ious kinds of indexed lookups into 1, 2, or 3-dimensional
banks of memory may be turned on or off by the program-
mer and assigned specific mapping operations. Every ge-
ometric fragment passes through each of the four texture
units in sequence, then finally through a “combiner” stage
which generates an output color based on the final texture
unit’s result and the geometric fragment’s untextured color
(computed earlier by a vertex program). This final combiner
can compute a fixed set of functions.

The DirectX programming interface attempts to abstract
the pixel shading hardware behind an assembly language

similar to the language used for vertex programs. However,
this language is much more restricted, since any shader pro-
gram must ultimately be no more complex than the under-
lying hardware. A fixed number of “texture address” op-
codes are allowed to control texture lookup and mapping,
and similarly a fixed number of “texture register” opcodes
control the computation performed by the final combiner
stage. The OpenGL interface to the pixel shading hardware
does not attempt a similar abstraction, instead exposing the
underlying hardware directly through a configurable, but
non-programmable interface.

Even though the shading hardware is relatively restricted
in a general-purpose sense—always performing four (cus-
tomizable) texture lookups in serial then a limited function
computation—it can nevertheless be used for some nontriv-
ial computation. For instance, clever programmers can run
two-dimensional physical simulations in hardware using
texture lookups and combiners to perform finite-difference
calculations. Similarly, it is possible to arrange the tex-
ture lookups to perform Gaussian blur and generalized con-
volution at interactive rates [15]. As future hardware ar-
chitectures for shading inevitably evolve towards full pro-
grammability, shader programs will be a powerful resource
for general-purpose computation.

Somewhat surprisingly for hardware designed to process
pixel samples, the shading hardware offers no built-in sup-
port for logical operations (AND, XOR,etc.). In some
cases, however, these operations can be simulated using the
available hardware.

In developing our programming framework, we decided
not to explore the use of shader programs. Though such an
investigation would be interesting, we felt that our current
efforts would be more fruitfully applied to other areas, for
several reasons. First, the vertex programming architecture
is inherently much more general and programmable than the
current shading architecture; vertex programs are thus more
naturally suited for general-purpose computation. Second,
the shading hardware currently uses 10-bit fixed point num-
bers for computation while the vertex processing hardware
uses higher precision 16-bit floating point. Finally, the lack
of logical operations means that pixel programs would not
provide significantly more convenience to the programmer.

4. A new programming model

4.1. Overview

The cornerstone of this work is a simple C++ framework
we have developed for writing general-purpose programs
with vector operations. This framework stays fairly close
to the underlying hardware; we do not develop an intri-
cate abstraction or new language designed to hide the hard-
ware. Nevertheless, the framework does important things:

it presents an abstraction of the hardware as a device for
computing vector functions, exposes vectors as a C++ data
type, manages memory for efficient computation on those
vectors, mostly hides the fact that the hardware is designed
to operate at quad-float granularity rather than on vectors of
single floats, and takes care of interfacing with the under-
lying hardware, hiding the necessary bookkeeping data and
operations from the programmer.

We would have liked to completely shield the program-
mer from the quad-float register concept, but because the
hardware is fundamentally designed this way, and because
opcodes do not all behave consistently (some operate on all
four vector components simultaneously, while some oper-
ate on a single scalar component of a source register or dis-
tribute their results unevenly into the components of target
registers), we would have had to create a new, higher-level
assembly language to completely hide the quad-float reg-
isters from the user. In practice, this is only an issue with
peculiar opcodes like LOG and EXP, and it does not affect
most example programs discussed in this paper.

4.2. Framework components

4.2.1. DVector. The DVector class encapsulates a vec-
tor of data. When created, DVectors are assigned a fixed
size and typed as containing either single-precision floating
point numbers or unsigned bytes. Like the standard C++
vector class, the programmer can access individual elements
of a DVector using the [] operator. When each DVector is
created, our framework’s memory manager works behind
the scenes to allocate a buffer of video memory for it, as
well as maintain state information.

For convenience, we provide helper functions to generate
large vectors of various sizes and types, including random
vectors and unsigned byte ranges.

4.2.2. DProgram. The DProgram class encapsulates the
instructions of an assembly language program meant for the
graphics hardware. The framework provides a function for
creating a DProgram from an array of strings containing an
assembly language program.

Programmers only need to write assembly instructions
that perform the desired computation. Our framework trans-
parently takes care of inserting additional assembly instruc-
tions for bookkeeping before a DProgram is executed on
the hardware. While the precise calling convention for as-
sembly language programs depends on the programmer’s
choice of functional semantics (specified through a DFunc-
tion object, described in the next section), assembly pro-
grammers can depend on the framework to load source at-
tribute registers with program inputs before each assembly
program invocation, and programmers are responsible for
placing computed return values in output attribute registers
before returning.

4.2.3. DFunction. The DFunction class, the heart of our
framework, encapsulates three things:

• a DProgram,

• a choice of functional semantics for the DProgram, and

• bindings for the constant registers.

The framework supports six kinds of functional semantics,
shown below, wherev represents ann-element vector ands
represents a scalar:

• unary: v → v andv → s

• binary: [v,v] → v and[v,v] → s

• ternary: [v,v,v] → v and[v,v,v] → s.

For instance, a DFunction with[v,v] → v semantics takes
a pair of n-element vectors as input and computes ann-
element vector as output.

The specific functional semantics assigned to a DFunc-
tion determine the conventions that the framework will fol-
low in calling the associated DProgram. Each type of
DFunction has an execute() method which takes an appro-
priate number of DVectors as input and returns either a
DVector or a scalar as appropriate. For instance, a binary
[v,v] → v DFunction’s execute() method takes two DVec-
tors as input. To compute this binary function, the frame-
work breaks the input DVectors into a series of quad-floats,
pairs of which are placed in registers v[1] and v[2]. The bi-
nary DProgram is expected to read its input from these two
registers and store its results in register o[1]. If the input
DVectors have sizen, this means that the assembly routine
stored in the DProgram will be called�n/4� times in order
to completely process the input vectors.

Because the current hardware architecture does not give
us a way to preserve state information between assembly
routine invocations (since the temporary and output regis-
ters are zeroed before each vertex program invocation), for
DFunctions whose semantics require producing scalar out-
put our framework uses the computer’s CPU to sum the re-
sults produced by each individual vertex program invoca-
tion in order to generate the final scalar result.2 Naturally,
this limits the variety of scalar-valued functions that can
be computed using our framework, but architectural limi-
tations make greater generality difficult. In order to per-
form as much computation on the hardware as possible and
limit the amount of work done by the CPU, our assembly
calling convention for scalar-valued functions saturates the
source attribute registers as completely as possible, mak-
ing the most data available to each vertex program invoca-
tion. For instance, while computing a unaryv → s function,

2This sum can also be performed on the graphics hardware using a
feature called “pixel blending.” However, our experiments suggest that
each pixel blending update causes the whole graphics hardware pipeline to
stall, significantly reducing overall vertex program throughput.

we break the input vector into blocks of 15 quad-floats and
place them in registers v[1] through v[15]. The assembly
program is still expected to store a single result in regis-
ter o[1]. If the input DVectors have sizen, this means that
the assembly routine stored in the DProgram will be called
only �n/15� times in order to completely process the input
vectors, and the CPU only needs to sum�n/15� values to
produce a final output scalar.

4.2.4. DSemaphore. A major advantage of using graphics
hardware as a computational co-processor is that the CPU
is completely idle while the graphics hardware is working
(i.e. using DMA [Direct Memory Access] to retrieve its
input, performing computation, and writing its results to a
memory buffer). Because the CPU is free to perform unre-
lated computation as the GPU is churning away; the aggre-
gate computational throughput of the computer should be
viewed as the sum of the maximum computational through-
put of the CPU and of the maximum computational through-
put of the GPU.

By default, each DFunction’s execute() method causes
the CPU to idle until the graphics hardware finishes pro-
cessing. However, our framework also provides an ex-
ecuteAsync() method which causes the GPU to begin
computing asynchronously, freeing the CPU to compute
simultaneously. The executeAsync() method returns a
DSemaphore object with one method, waitForComple-
tion(). Should the CPU reach a point where it needs to use
the results computed by the GPU, calling waitForComple-
tion() causes the CPU to wait for the GPU to finish.

To avoid exaggerating the quantitative performance of
the graphics hardware,none of the empirical results re-
ported in this paper make use of executeAsync() to si-
multaneously perform computation on both the CPU and
GPU. A goal of this paper is to show that modern graphics
hardware can—working alone—outperform modern CPUs
for large vector computation.

4.2.5. Example. The code fragment shown in Figure 3
uses our framework to compute the factorial function for a
vector of single-digit integers. The assembly fragment uses
two techniques to avoid branching: conditional set opcodes
are used to select vector elements that need to be affected
by subsequent operations, and the main loop has been man-
ually unrolled 8 dimes (enough to compute the factorial of
any single-digit integer). While both these techniques po-
tentially perform a lot of unnecessary computation for some
input elements, the vector processing engine is fast enough
to compensate for this extra work, as we demonstrate later
in this paper. Naturally, such techniques are not sufficient
to always avoid branching. To implement a branch, the pro-
grammer would create two DFunctions, one for the code
before the branch, and one for the subsequent code. To de-
cide whether to branch, the programmer would examine the

DVector output from the first DFunction with the main CPU
with standard C++ code. There is no way with our current
framework to branch in different directions for each indi-
vidual element of a vector.

4.3. Framework implementation

We implemented our framework using the OpenGL pro-
gramming interface because it allows lower-level control of
the underlying hardware than the DirectX interface. The
OpenGL extensions for managing banks of video mem-
ory proved essential to this research—we discovered that
having the hardware perform DMA from the computer’s
main memory is extremely slow. We use the CPU to
transfer blocks of data to video memory in large, single
passes, and then let the GPU retrieve its input from video
memory directly. Output from vertex programs uses the
OpenGL “pbuffer” feature to direct the results of the ren-
dering pipeline to invisible video memory buffers, rather
than the screen.

To facilitate experimentation and also to make it possible
to run and debug programs on a computer without a pro-
grammable GPU, our framework includes a simulated im-
plementation of the vertex engine. This simulator is only
functionally identical to the graphics card; we did not have
enough information about the low-level hardware architec-
ture of the GeForce4 to attempt a hardware simulation or to
get details such as timing correct. Our work on the simu-
lator proved to be helpful for debugging our assembly rou-
tines.

Another important implementation detail was our
method of retrieving output data from the graphics card for
storage in the output DVector. Unfortunately in OpenGL
there is no mechanism for redirecting vertex program output
directly to a buffer in memory without having it also pass
through the rest of the graphics pipeline and get converted
to pixel data. Hence, we were forced to direct the outputs
of the vertex programs into pixel buffers, then grab the re-
sulting chunks of pixels. While OpenGL supports retriev-
ing a chunk of pixels as floating point numbers, the results
are only as accurate as the underlying 8-bit pixel representa-
tion! This means that the results returned by our framework,
even though they were computed internally at single preci-
sion, suffer a significant loss of precision when retrieved
from the graphics card. Such a situation is clearly subopti-
mal, but it was the best we could do. Clearly there is a need
to enhance OpenGL to allow rendering of vertex program
output to a memory buffer. DirectX 8.1 has such a feature,
but the particular function that implements it always uses a
software-based emulation of a GPU even if a graphics card
is available. This unusual behavior is documented in the
DirectX SDK [11] and reasons for it are not given, but it is
likely that older generations of graphics hardware were not

DVector* inputVec = allocDVector(5, DV_UCHAR);
DVector* outputVec = allocDVector(5, DV_UCHAR);

// Fill the test input vector.
(*inputVec)[0] = 6;
(*inputVec)[1] = 2;
(*inputVec)[2] = 3;
(*inputVec)[3] = 1;
(*inputVec)[4] = 4;

char* program[] = {
// The result will be stored in R1.
// We’ll use R2 to store the next number to
// multiply into R1.
// R3 is a bit vector to decide which
// elements still need to be multiplied.
// R4 will hold the result of multiplying
// R3 by the next constant.
"MOV R1, v[1];",
"MOV R2, v[1];",

// If R2>=2 decrement R2.
// If R2< 2 leave unchanged.
"SGE R3, R2, c[12];",
"SLT R4, R2, c[12];",
"MUL R5, R3, -c[11];",
"ADD R2, R2, R5;",

// Multiply the updated values into R1.
"MUL R6, R3, R2;",
"MUL R7, R1, R6;",
"MUL R8, R1, R4;",
"ADD R1, R7, R8;",

// Unroll once.
"SGE R3, R2, c[12];",
"SLT R4, R2, c[12];",
"MUL R5, R3, -c[11];",
"ADD R2, R2, R5;",
"MUL R6, R3, R2;",
"MUL R7, R1, R6;",
"MUL R8, R1, R4;",
"ADD R1, R7, R8;",
...
// Unroll six more times.
...

// Store the result in the output register.
"MOV o[COL0], R1;",
0 };

DFunctionUnary programFunc(makeProgram(program));
programFunc.setConstant(11, 1);
programFunc.setConstant(12, 2);

programFunc.execute(inputVec, outputVec);

Figure 3. A vector implementation of the single-
digit factorial function.

fast enough to justify a round trip of data from memory to
the GPU, and perhaps the DirectX designers assumed that
this would always be true. As our results in the next sec-
tion demonstrate, modern graphics architectures have inval-
idated that assumption.

5. Results

5.1. Overview

To judge the effectiveness of our framework for solv-
ing general-purpose programming problems, we obtained a
GeForce4 Ti4600, the fastest consumer GPU manufactured
by NVIDIA at the time of writing. Advertised specifications
for this card include:

• 136 million vertices per second,
• 1.23 trillion operations per second, and
• 10.4GB/sec memory bandwidth.

The 1.23 trillion “operations per second” number seems
somewhat high, and presumably it reflects micro-ops used
by the chip internally across all functional units, not just
the vertex processing engine. If we accept the 136 million
vertices/second number, a more reasonable estimate for the
GPU’s vertex program speed in terms of vertex program op-
codes might be:

Opcodes per program estimate * Vertices per second
= 15*136 million
= 2.04 billion opcodes per second.

While this number still seems high, the empirical results
presented in this section do demonstrate remarkable perfor-
mance.

For testing purposes, we compared CPU and GPU imple-
mentations of various toy routines, as well as two more re-
alistic problems—dense matrix multiplication and 3-SAT—
on a 1.5GHz Pentium IV computer with 1GB of RAM. The
GeForce4 had 128MB of onboard video RAM (none of our
example programs used all of this space). The CPU imple-
mentations of each algorithm were written in straight C++
and used raw arrays rather than the standard vector class
to avoid unneccessary overhead. All tested programs were
compiled with Microsoft Visual C++ 6.0 using the “maxi-
mize speed” optimization setting.3

Timing measurements were taken using the test com-
puter’s real time clock. This clock had a (relatively coarse)

3Our framework does not incorporate a GPU-specific compiler or any
kind of automated optimizer for the GPU assembly language, so an argu-
ment could be made that comparing results with the C++ optimizer turned
off might be a more fair comparison. Naturally, one can imagine devel-
oping algorithms that optimize the way the GPU is used. However, even
without such a GPU code optimizer, our results compare veryfavorably
with heavily optimized native code.

resolution of 10 milliseconds, which explains why some of
the shorter test cases measured as taking 0 milliseconds.

5.2. Test programs

We used the following toy programs as test cases; each
consists of a single DFunction:

arithmetic Evaluates log(πx3) for each element of a vec-
tor. The program contains 13 opcodes.

exponents Computesx50 for each element of a vector. The
program includes 49 opcodes.

factorial Computes the factorial function for a vector of
random integers, each between 0 and 9. This program
was illustrated in Figure 3. It simulates branching us-
ing the SLT and SGE opcodes and manual loop un-
rolling. The program contains 59 opcodes.

muls Performs a variety of multiplies on each element of
a vector; the total number of opcodes can be made to
vary from 10 to 120. We use this to study the effects
of increasing program sizes.

In Table 4, we present results showing how computa-
tion times for both the CPU and GPU compare with re-
spect to increasing input vector sizes for three of the test
programs. Figure 4 illustrates the data for the arithmetic
program graphically.

Table 4. The effects of increasing vector sizes.
Vector size

Test case 10000 100000 1000000 10000000

arithmetic CPU 0 10 120 1220
GPU 10 10 20 190

exponents CPU 10 50 420 4180
GPU 0 0 30 250

factorial CPU 0 20 170 1650
GPU 10 10 40 330

Run times in milliseconds

It is difficult to accurately compare the performance the
CPU and GPU for the smallest vector size tested, since the
clock resolution is too coarse. However, two of the test
cases suggest that for such small vectors the overhead in-
herent in using our framework causes the GPU implemen-
tations to be slightly slower than the CPU implementations.
However, on all the larger vector sizes, our graphics card
implementations outperformed the CPU implementations.
For the largest vector size, our GPU implementations were
between 5.0 to 16.7 times faster than their CPU brethren.

These results may seem surprising or even shocking at
first glance, but they make sense. Essentially, the graphics
hardware allows us to establish a high-speed custom data
processing pipeline. Once the pipeline is set up, data can

Input vector size

R
un

 ti
m

e
(lo

ga
rit

hm
ic

)

CPU

GPU

10000000100000010000010000

Figure 4. The effects of increasing vector sizes
on the run time of the arithmetic program, plotted
using a logarithmic scale on the y-axis. Though
both the CPU and GPU run times increase in pro-
portion to the input size, the GPU is significantly
faster (up to 6.4 times quicker) for large vectors.

be streamed through with devastating efficiency. The two
test cases where the GPU and CPU must perform roughly
the same number of calculations, arithmetic and exponents,
show that there is a correlation between how much work is
being done on the graphics card and how strongly the GPU
implementations outperform equivalent CPU implementa-
tions. The arithmetic test case, which executes 13 opcodes
per vector element, beats the CPU implementation by a fac-
tor of 6.4 on the largest vector size. In comparison, the
exponents test case, which executes 49 opcodes per vector
element, is 16.7 times faster on the GPU. (The factorial test
case is an oddity, because the GPU performs far more op-
erations per element of the input vector than the equivalent
CPU implementation. This is because the CPU implemen-
tation of the factorial function only needs to perform four
multiplications to compute the factorial of the number 5,
and can branch and begin processing the next vector ele-
ment immediately after finishing the fourth multiplication.
In contrast, the GPU must execute the entire unrolled loop
shown in Figure 3 on every element of the input vector.)
These results demonstrate how important it is to carefully
plan how the graphics hardware will be used so that a max-
imal amount of work can be done within the GPU on each
chunk of data submitted, and they suggest future opportuni-
ties for compiler research.

In order to explore the relationship between vertex pro-
gram complexity and run times, we ran the muls test pro-
gram on a 1,000,000 element vector, varying the total num-
ber of opcodes between 10 and 120. The results are shown
in Figure 5.

Number of MUL opcodes

R
un

 ti
m

e
(m

ill
is

ec
on

ds
)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

CPU

GPU

Figure 5. The effects of program size (number of
multiplications) on the run time of the muls test
program with a 1,000,000 element input vector.
The CPU run time roughly doubles as the pro-
gram complexity doubles, whereas the GPU run
time grows much more slowly, merely tripling as
the program complexity increases by 12 times.

While the run time of the CPU implementation approx-
imately doubles as the number of multiplications doubles,
the GPU run time grows far more slowly. In fact, even
though we increase the number of opcodes by a factor of
12, the run time of the GPU implementation only increases
by a factor of 3. Programmers should thus feel free to
write very complicated assembly routines, because addi-
tional complexity is relatively cheap on the GPU as com-
pared to a conventional CPU. These results indicate that
the current hardware architecture’s limitation on vertex pro-
grams being a maximum of 128 opcodes is suboptimal, be-
cause programmers could fruitfully make use of longer ver-
tex programs. Moreover, these results suggest that either
the hardware’s transfer of data between video memory and
the GPU or the CPU’s fetch of the computational results
from video memory is more of a bottleneck than the hard-
ware’s capacity for computation. (If we were pushing the
vertex processing hardware to its limits, we would expect
the GPU’s run time to double as the number of opcodes
doubles.)

In order to better understand the bottlenecks, we instru-
mented a 50 opcode version of the muls example with code
to measure the time to retrieve data from the video card.
The results, gathered from a run with a 5,000,000 element
input vector, are shown in Table 5.

Observe that only 21% of the runtime is spent retrieving
data, indicating that the major bottleneck is in sending data
to the GPU. The time for all other types of processing in
the program is negligible. One consequence of these results

Table 5. Output retrieval time for the muls test.
Total run time 140 milliseconds
Time to retrieve output 30 milliseconds

is that future hardware architectures should concentrate on
finding more efficient ways to “feed the beast.”

5.3. A more realistic test: Matrix multiplication

The test programs demonstrated earlier were enlighten-
ing, but because each is implemented with only a single
DFunction, they do not reflect typical uses of our frame-
work to solve real problems. To adequately demonstrate our
framework, we implemented a dense matrix multiplication
algorithm.

Our matrix multiplier begins by allocating two large
DVectors; one to hold the first source matrix and another
to hold the transpose of the second source matrix. The al-
gorithm also allocates an array in main memory to hold the
result of the matrix multiplication. Our algorithm performs
multiplication in the na¨ıve way: for each(i, j)-th element of
the output matrix, we use a[v,v]→ s DFunction to multiply
one row of the first matrix with one column of the second
matrix. We store the scalar result in the(i, j)-th location
in the output matrix and then move on to the next output
matrix element. Our results are shown in Figure 6.

Matrix size

R
un

 ti
m

e
(m

ill
is

ec
on

ds
)

500 750 1000 1250 1500

20000

40000

60000

80000

100000

CPU

GPU

Figure 6. Matrix multiplication run time as a func-
tion of matrix size. For a 1500x1500 matrix, the
GPU outperforms the CPU by a factor of 3.2.

While the runtimes of both implementations haveO(n3)
growth rates, the GPU implementation of matrix multiply
significantly outperforms the CPU implementation, and this
performance differential increases as the matrix size in-
creases. For a 1500x1500 matrix, the GPU is 3.2 times

faster than the CPU. Much of this advantage undoubtedly
stems from the graphics hardware’s ability to perform more
than one floating-point multiplication per clock.

5.4. Another realistic test: 3-SAT

As another illustration of our programming framework,
we implemented a solver for the 3-satisfiability problem
[3-SAT]. Our solver uses a simple, common genetic algo-
rithm [19] to search for solutions to 3-SAT problems that are
too large to exhaustively enumerate. Similar, though more
sophisticated, algorithms for solving 3-SAT have in the past
been applied to traditional vector processors [9, 12].

Our algorithm works by encoding the set of clauses into
the elements of a DVector, placing variable assignments in
the constant registers, and using a unaryv → s function to
determine how many clauses are currently satisfied (if there
are more variables than can be accommodated in the con-
stant registers, we perform multiple DFunction evaluations
with a different set of constant registers each time). We then
randomly select a variable, flip its value, and again compute
how many clauses are satisfied. If the new variable value
is an improvement, we keep it. Otherwise, we revert to our
old set of variable values. If we cease to make progress for
a number of iterations, we discard the entire set of current
variable assignments, generate a new set, and continue from
there. After a fixed number of iterations without finding a
solution, we give up and report “no solution found.” Our
results are shown in Figure 7.

Problem size (clauses / variables)

R
un

 ti
m

e
(m

ill
is

ec
on

ds
)

0

5000

10000

15000

20000

CPU

GPU

2000/5001500/3751000/250500/125

Figure 7. Run time as a function of problem size
for 100,000 iterations of our 3-SAT solver. All
problem instances selected are unsatisfiable.

Due to the way we structured our GPU implementation
of the 3-SAT solver, our run time for each iteration essen-
tially only depends on the number of clauses, and the in-
crease in vector size between 500 and 2000 clauses is not

sufficient to greatly affect the run time of our GPU imple-
mentation. In contrast, the run time of the CPU implemen-
tation increases very noticeably with the increasing number
of clauses.

6. Analysis

Though the framework we have developed in this paper
is effective for real problems, our framework could be much
more useful and powerful if a number of limitations of the
graphics hardware were addressed. In this section, we dis-
cuss some of the architectural weaknesses we discovered.
Many of these limitations could be easily resolved with mi-
nor changes to the hardware and programming interfaces.
By adopting such changes, graphics hardware manufactur-
ers could potentially increase the size of the market for their
products. Hence, we feel that these observations could have
a real impact on future graphics architectures.

A faster memory interface: Transferring data to the
GPU is a bottleneck that makes it difficult to fully exploit
the potential computational throughput of the vertex pro-
cessing engine. Also, this transfer introduces overhead that
makes applying the GPU to small vector problems ineffi-
cient.

Hardware to perform DMA from the graphics card to
main memory: While the graphics card can fetch data from
memory without CPU intervention, freeing the CPU for
other types of calculation, DMA hardware does not exist for
transferring data in the opposite direction. Since any signif-
icant use of graphics hardware for general-purpose compu-
tation requires retrieving data from the graphics card, such
hardware is potentially important. Moreover, this hardware
would also help accelerate many popular multi-pass graph-
ics rendering algorithms.

Operating system management of video memory: If
graphics hardware becomes a popular way to accelerate
computation, multiple processes may contend for video
memory. Currently, there is no mechanism for dealing with
this; each process is responsible for periodically checking
whether memory it has allocated on the video card has been
trampled by another process. If the memory has been over-
written by another process, the process must reallocate its
memory buffers. Without OS-level management of video
memory, frequent context switches may lead to thrashing.

Better control over arithmetic precision: Suggestions
from the previous paragraph would avoid the ugly step of us
having to access single-precision floating point numbers by
reading a bank of 8-bit pixels. However, a larger issue is that
the graphics card is designed for speed rather than accuracy.
The LOG opcode, for instance, is fast partially because it is
not as accurate as a traditionallog() function. The NVIDIA
engineers were insightful enough to have the LOG function
place a few scalars in output registers that can be used to

increase the precision of logarithmic results (the mechanism
for doing this is somewhat esoteric and is described in the
NVIDIA OpenGL SDK [13]), but it should be possible to
have a true, high-precision LOGHI opcode. Unfortunately,
it may be difficult to implement such an opcode while still
preserving the assembly language’s uniform semantics (all
opcodes take the same amount of time).

Logical Boolean operations: It is somewhat surpris-
ing that such simple operations are not available, especially
since they are very common in image processing. Simu-
lating logical operations using other opcodes is tedious and
many times more inefficient than a good hardware imple-
mentation.

Ability to preserve state across vertex program invo-
cations: This is perhaps our most important recommenda-
tion. Often, the programmer wants to inspect a vector for
some global property. For instance, a programmer might
want to inspect a vector to determine if it contains the num-
ber 42. Ideally, the programmer should be able to get more
than a yes/no answer—the vertex program should be able
to return the vector index where number 42 is located. Cur-
rently, such global vector operations must be done by the
CPU rather than the GPU because there is no way of shar-
ing data between multiple vertex program invocations. At
the beginning of each vertex program, the temporary and
output registers are cleared and set to zero. If this zero-
ing was an optional behavior that could be turned on or
off, the programmer would be able to share state across
vertex program invocations. OpenGL is filled with a myr-
iad of Boolean flags for controlling the hardware, so such
an optional behavior would not be unusual. Though this
change may initially seem like a very straightforward mod-
ification of the current architecture—since it involvesnot
doing something that is currently being done— it introduces
complications which inevitably compromise either the se-
mantics of the current instruction set architecture or con-
strain the implementation of the underlying hardware. By
zeroing the output registers between vertex program invo-
cations, the current architecture ensures that programmers
have the illusion that the GPU has a single functional unit
that processes vertices in sequence, even though the actual
hardware implementation has multiple functional units pro-
cessing vertices in parallel, and each functional unit has its
own set of output and temporary registers. Not zeroing the
registers would require either a single shared set of output
registers, or synchronization between functional units. Al-
ternatively, the architecture could be extended to include
a new bank of global registers that would be accessible
both from OpenGL and from any vertex program. These
registers would be shared between functional units and in-
cur the inevitable overhead of synchronization, but standard
graphics applications not needing to share data between ver-
tex program invocations would simply avoid accessing the

global registers and suffer no performance penalty. Regard-
less of how vertex state preservation is accomplished, we
feel that it would dramatically improve the speed of many
general-purpose algorithms.

A compiler: We have demonstrated in this paper that the
most efficient way to use the graphics hardware is to sup-
ply it with basic blocks that contain as many instructions as
possible. Coding such blocks in assembly is tedious and er-
ror prone. Moreover, techniques such as loop unrolling for
getting around the hardware’s lack of branching are more
practical for a compiler to implement. Also, a compiler
could make more efficient use of the vertex attribute reg-
isters. This would reduce the number of vertices that would
need to be sent to the GPU, reducing the costs associated
with transferring data from main memory to the graphics
hardware. While some progress has recently been made
in this direction [14], researchers need to review the cata-
logue of modern, sophisticated compiler techniques and de-
termine which are most fruitfully applied to graphics hard-
ware. For instance, trace scheduling, which is inherently
designed for processors in which branching may be incon-
venient and for which large basic blocks are desirable (e.g.
VLIW processors), could potentially deliver dramatic per-
formance improvements.

7. Discussion and future work

In this paper we have described a programming frame-
work we devised for solving general-purpose problems us-
ing graphics hardware. We demonstrated the framework’s
surprising effectiveness at accelerating highly regular op-
erations on large vectors. We then described implemen-
tations of matrix multiplication and 3-SAT that used our
programming framework. We investigated the sources of
bottlenecks and proposed minor architectural enhancements
which would help to reduce the bottlenecks and make
general-purpose programming more effective on modern
programmable graphics hardware.

The results described in this paper are much better than
we expected. Our feeling prior to beginning this research
was that bottlenecks, architectural limitations, or simply
slow hardware would have put the GPU much farther be-
hind the CPU, even for the simplest examples. That our
dense matrix multiplication algorithm was so fast surprised
us.

Graphics hardware similar to the hardware discussed
in this paper is available in the majority of consumer
oriented desktop PCs sold today, as well as in the
Microsoft Xbox game console. This means that com-
modity hardware is being shipped with vector units capa-
ble of previously inconceivable—and largely untapped—
computational power. As evidenced by the increasing pop-
ularity of distributed computing clusters and the decreas-

ing popularity of supercomputers, we believe that there is
sufficient demand for low cost alternative computing tech-
nologies using commodity hardware to make our approach
a valuable contribution. If current performance trends in
graphics hardware continue, in a few years it may not be un-
usual to go into the server room of a biotech research com-
pany and find clusters of cheap PCs containing multiple low
cost, high performance video cards selected specifically for
their vector capabilities. One can even imagine the emer-
gence of a class of thin “blade” computational servers de-
signed specifically to accomodate multiple graphics chips,
rather than multiple CPUs.

Of course, to reach those kinds of goals, much research
remains to be done and this paper has only scratched the
surface. In the future, we intend to evaluate our framework
in the context of larger, real-world problems in areas such
as computational biochemistry and mechanical engineering.
We are also very interested in exploring the performance
characteristics of networked clusters of GPUs, and poten-
tially developing a cluster-aware version of our framework.
We also hope to investigate applications of modern com-
piler techniques to graphics hardware. Part of the reason
we believe that the emergence of powerful desktop GPUs is
so exciting is because it lets us reexamine much of the rich
body of research that has been done about vector proces-
sors and potentially apply it on a much larger scale than has
previously been possible.

Acknowledgements

An excellent talk by Pat Hanrahan encouraged us to
start investigating the computational capabilities of modern
graphics hardware. We are also grateful to Stephen Spencer
for helping us set up the hardware used in this research.

References

[1] ATI Corporation. RenderMonkey Version 0.5 Beta Docu-
mentation, August 2002.

[2] R. Barzel and D. Salesin. Patchwork: A fast interpreter for
a restricted dataflow language.The Journal of Systems and
Software, 6(3):251–259, August 1986.

[3] N. England. A graphics system architecture for interac-
tive application-specific display functions.IEEE Computer
Graphics and Applications, 6(1):60–70, January 1986.

[4] H. Fuchs et al. Pixel-planes 5: A heterogeneous multi-
processor graphics system using processor-enhanced mem-
ories. InComputer Graphics (Proceedings of SIGGRAPH
89), volume 23, pages 79–88, Boston, Massachusetts, July
1989.

[5] J. K. Hao. A clausal genetic representation and its re-
lated evolutionary procedures for satisfiability problems. In
Proceedings of the International Conference on Artificial
Neural Nets and Genetic Algorithms, pages 289–292, Ales,
France, April 1995.

[6] A. Kunimatsu et al. Vector unit architecture for emotion
synthesis.IEEE Micro, 20(2):40–47, March/April 2000.

[7] A. Levinthal and T. Porter. CHAP: A SIMD graphics pro-
cessor. InComputer Graphics (Proceedings of SIGGRAPH
84), volume 18, pages 77–82, Minneapolis, Minnesota, July
1984.

[8] E. Lindholm, M. J. Kilgard, and H. Moreton. A user-
programmable vertex engine. InProceedings of ACM SIG-
GRAPH 2001, pages 149–158, August 2001.

[9] A. M. Logar, E. M. Corwin, and T. M. English. Implementa-
tion of massively parallel genetic algorithms on the MasPar
MP-1. In Proceedings of the 1992 ACM/SIGAPP Sympo-
sium on Applied Computing, pages 1015–1020, 1992.

[10] M. D. McCool. SMASH: A next-generation API for pro-
grammable graphics accelerators. Technical report CS-
2000-14, Computer Graphics Lab, University of Waterloo,
2000.

[11] Microsoft Corporation.DirectX Software Development Kit,
2001. Version 8.1.

[12] N. Nemer-Preece and R. Wilkerson. Parallel genetic algo-
rithm to solve the satisfiability problem. InProceedings
of the 1998 ACM Symposium on Applied Computing, pages
23–28, 1998.

[13] NVIDIA Corporation. OpenGL Extension Specifications,
May 2001.

[14] NVIDIA Corporation. Cg Language Specification, August
2002.

[15] NVIDIA Corporation. NVSDK Software Development Kit,
2002. Version 5.2.

[16] M. Olano. A Programmable Pipeline for Graphics Hard-
ware. Ph.D. thesis, University of North Carolina at Chapel
Hill, 1998.

[17] B. Paul et al.The Mesa 3D Graphics Library, 2002. Version
4.0.3.

[18] K. Proudfoot et al. A real-time procedural shading sys-
tem for programmable graphics hardware. InProceedings
of ACM SIGGRAPH 2001, pages 159–170, August 2001.

[19] A. Whitley. A genetic algorithm tutorial. Technical re-
port CS-93-103, Department of Computer Science, Col-
orado State University, 1993.

