
Splitwise: Efficient Generative LLM 
Inference Using Phase Splitting
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Result 1: Splitwise transfers request state with less than

~0.8% end-to-end overhead on average

Result 2: Clusters designed using Splitwise provide

much higher throughput than existing clusters
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Transfer request state over P2P GPU Infiniband;

optimize with parallel and overlapped transfers

Each LLM inference request has two distinct phases with different resource requirements

Split cluster into three server pools and use

phase-specific resource management at scale
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Prompt phase Token phase
User input processed in parallel Serialized token generation
Compute and power intensive Memory intensive (relies on KV cache)

Limited batching benefits Batching improves throughput

Which is better,
    pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens
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Splitwise splits inference across different servers to enable phase-specific resource management

Prompt phases

Token phases

Allocated
power

Splitwise clusters are much more resource efficient than existing clusters

Which is better,
    pizza or burger?

Pizza
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is better .
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KV-cache transfer

Prompt computation and token generation phases Example 1: Batching effects Example 2: Power usage

Start transfer after computing
first layer in prompt phase

Infiniband


