
Splitwise: Efficient Generative LLM
Inference Using Phase Splitting

vv

Result 1: Splitwise transfers request state with less than

~0.8% end-to-end overhead on average

Result 2: Clusters designed using Splitwise provide

much higher throughput than existing clusters

v

Transfer request state over P2P GPU Infiniband;

optimize with parallel and overlapped transfers

Each LLM inference request has two distinct phases with different resource requirements

Split cluster into three server pools and use

phase-specific resource management at scale
1 2

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah,
Íñigo Goiri, Saeed Maleki, Ricardo Bianchini

aka.ms/splitwise

0

5

10

15

20

25

0 512 1024 1536 2048

Tr
an

sf
er

 la
te

nc
y

(m
s)

Key-value tokens

Serialized Overlapped Splitwise

A100 A100 A100 H100 A100

x70 x45 x25 x25 x26

Baseline Splitwise
homogeneous

Splitwise
heterogeneous

Throughput
optimized
clusters

#Servers

Throughput

Cost

Power

1x

1x

1x

1x

1x

1x

1x

2.4x

0.73x

1.14x

1x

2.6x

v

Prompt phase Token phase
User input processed in parallel Serialized token generation
Compute and power intensive Memory intensive (relies on KV cache)

Limited batching benefits Batching improves throughput

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Prompt phase Token phase

0
200
400
600
800

1000
1200

0 20 40 60

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Batched requests

0

2000

4000

6000

8000

10000

0 20 40 60Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Batched requests

Splitwise splits inference across different servers to enable phase-specific resource management

Prompt phases

Token phases

Allocated
power

Splitwise clusters are much more resource efficient than existing clusters

Which is better,
 pizza or burger?

Pizza

User prompt First token

Prompt server Token server

Rest of the output tokens

is better .

Token GPUsPrompt GPUs KV

Prompt phase

Transfer state

Delay

Token phase

Transfer state
Prompt
server

Token
server

Prompt pool Token poolMixed pool

Global
Scheduler

Requests

GPU GPU

Small batches
Full power

Compute-intensive GPUs

Large batches
Power capped

Memory-intensive GPUs

Paper, code, traces at

KV-cache transfer

Prompt computation and token generation phases Example 1: Batching effects Example 2: Power usage

Start transfer after computing
first layer in prompt phase

Infiniband

